Files

Abstract

Protein activity state, rather than protein or mRNA abundance, is a biologically regulated and relevant input to many processes in signaling, differentiation, development, and diseases such as cancer. While there are numerous methods to detect and quantify mRNA and protein abundance in biological samples, there are no general approaches to detect and quantify endogenous protein activity with single-cell resolution. Here, we report the development of a chemoproteomic platform, single-cell activity-dependent proximity ligation, which uses automated, microfluidics-based single-cell capture and nanoliter volume manipulations to convert the interactions of family-wide chemical activity probes with native protein targets into multiplexed, amplifiable oligonucleotide barcodes. We demonstrate accurate, reproducible, and multiplexed quantitation of a six-enzyme (Ag-6) panel with known ties to cancer cell aggressiveness directly in single cells. We further identified increased Ag-6 enzyme activity across breast cancer cell lines of increasing metastatic potential, as well as in primary patient-derived tumor cells and organoids from patients with breast cancer.

Details

Actions

Preview

from
to
Export
Download Full History