Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DataCite
DublinCore
EndNote
NLM
RefWorks
RIS

Files

Abstract

Although advances in nanotechnology have enabled the construction of complex and functional synthetic nucleic acid-based nanoarchitectures, high-resolution discrete structures are lacking because of the difficulty in obtaining good diffracting crystals. Here, we report the design and construction of RNA nanostructures based on homooligomerizable one-stranded tiles for x-ray crystallographic determination. We solved three structures to near-atomic resolution: a 2D parallelogram, a 3D nanobracelet unexpectedly formed from an RNA designed for a nanocage, and, eventually, a bona fide 3D nanocage designed with the guidance of the two previous structures. Structural details of their constituent motifs, such as kissing loops, branched kissing loops, and T-junctions, that resemble natural RNA motifs and resisted x-ray determination are revealed, providing insights into those natural motifs. This work unveils the largely unexplored potential of crystallography in gaining high-resolution feedback for nanoarchitectural design and suggests a route to investigate RNA motif structures by configuring them into nanoarchitectures.

Details

PDF

from
to
Export
Download Full History