Files

Abstract

Changes in synaptic strength across timescales are integral to algorithmic operations of neural circuits. However, pinpointing synaptic loci that undergo plasticity in intact brain circuits and delineating contributions of synaptic plasticity to circuit function remain challenging. The whole-mount retina preparation provides an accessible platform for measuring plasticity at specific synapses while monitoring circuit-level behaviors during visual processing ex vivo. In this review, we discuss insights gained from retina studies into the versatile roles of short-term synaptic plasticity in context-dependent circuit functions. Plasticity at single synapse level greatly expands the algorithms of common microcircuit motifs and contributes to diverse circuit-level behaviors such as gain modulation, selective gating, and stimulus-dependent excitatory/inhibitory balance. Examples in retinal circuitry offer unequivocal support that synaptic plasticity increases the computational capacity of hardwired neural circuitry.

Details

Actions

PDF

from
to
Export
Download Full History