Files
Abstract
A novel method for determination of 3-D structure in biplane angiography, including determining the distance of a perpendicular line from the focal spots of respective x-ray sources to respective image planes and defining the origin of each biplane image as the point of intersection with the perpendicular line thereto, obtaining two biplane digital images at arbitrary orientations with respect to an object, identifying at least 8 points in both images which correspond to respective points in the object, determining the image coordinates of the 8 or more identified object points in the respective biplane images, constructing a set of linear equations in 8 unknowns based on the image coordinates of the object points and based on the known focal spot to image plane distances for the two biplane images; solving the linear equations to yield the 8 unknowns, which represent the fundamental geometric parameters of the biplane imaging system; using the fundamental parameters to calculate the 3-dimensional positions of the object points identified in the biplane images; and determination of the 3-D positions of the vessel segments between the object points.