Files

Abstract

We present a quantum embedding method for ground and excited states of extended systems that uses multiconfiguration pair-density functional theory (MC-PDFT) with densities provided by periodic density matrix embedding theory (pDMET). We compute local excitations in oxygen mono- and divacancies on a magnesium oxide (100) surface and find absolute deviations within 0.05 eV between pDMET using the MC-PDFT, denoted as pDME-PDFT, and the more expensive, nonembedded MC-PDFT approach. We further use pDME-PDFT to calculate local excitations in larger supercells for the monovacancy defect, for which the use of nonembedded MC-PDFT is prohibitively costly.

Details

Actions

Preview

from
to
Export
Download Full History