Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DataCite
DublinCore
EndNote
NLM
RefWorks
RIS
Cite
Citation

Files

Abstract

Various chemical modifications have been found in cellular RNAs, but their functions remain an uncharted territory. N6 -methyladenosine (m6A), the most abundant and dynamic internal modification in eukaryotic messenger RNA (mRNAs), is indispensable for cell viability, pluripotency and human health, but how m6A achieves such wide-ranging biological functions remains unclear. The m 6A functional studies have been hindered by the lack of methods for its precise detection. To address this problem, I developed one method to detect m6A modification status at nucleotide-resolution, and identified exact m6A sites in human mRNAs and long non-coding RNAs (lncRNAs). Afterwards, I discovered that m6A alters the local RNA structure to control the RNA-structure-dependent accessibility of RNA binding sites, thus affecting RNA-protein interactions; I termed this mechanism ‘m6A-switch’. Two members of heterogeneous nuclear ribonucleoproteins (HNRNPs), HNRNPC and HNRNPG, are found to be regulated by m6A-switches. These m6A-switch-regulated HNRNPC/G binding activities affect the RNA abundance and alternative splicing events. These findings illustrate how RNA-binding proteins gain regulated access to their RNA binding sites through m6A-dependent RNA structural remodeling, and provides a new direction for investigating RNA-modification-coded cellular biology.

Details

PDF

from
to
Export
Download Full History