Format | |
---|---|
BibTeX | |
MARCXML | |
TextMARC | |
MARC | |
DataCite | |
DublinCore | |
EndNote | |
NLM | |
RefWorks | |
RIS |
Files
Abstract
Drosophila’s innate response to gravity, geotaxis, has been used to assess the impact of aging and disease on motor performance. Despite its rich history, fly geotaxis continues to be largely measured manually and assessed through simplistic metrics, limiting analytic insights into the behavior. Here, we have constructed a fully programmable apparatus and developed a multi-object tracking software capable of following sub-second movements of individual flies, thus allowing quantitative analysis of geotaxis. The apparatus monitors 10 fly cohorts simultaneously, with each cohort consisting of up to 7 flies. The software tracks single flies during the entire run with ∼97% accuracy, yielding detailed climbing curve, speed and movement direction with 1/30 s resolution. Our tracking permits the construction of multi-variable metrics and the detection of transitory movement phenotypes, such as slips and falls. The platform is therefore poised to advance Drosophila geotaxis assay into a comprehensive assessment of locomotor behavior.