Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DataCite
DublinCore
EndNote
NLM
RefWorks
RIS

Files

Abstract

Motivated by findings that energetically consistent subgrid dissipation schemes can improve eddy-permitting ocean simulations, this work investigates the impact of the subgrid dissipation scheme on low-resolution atmospheric dynamical cores. A kinetic energy-conserving dissipation scheme is implemented in the model adding a negative viscosity term that injects back into the eddy field the kinetic energy dissipated by horizontal hyperdiffusion. The kinetic energy-conserving scheme enhances numerical convergence when horizontal resolution is changed with fixed vertical resolution and gives superior low-resolution results. Improvements are most obvious for eddy kinetic energy but also found in other fields, particularly with strong or little scale-selective horizontal hyperdiffusion. One advantage of the kinetic energy-conserving scheme is that it reduces the sensitivity of the model to changes in the subgrid dissipation rate, providing more robust results.

Details

PDF

from
to
Export
Download Full History