Files

Abstract

Quantum networks connect quantum capable nodes in order to achieve capabilities that are impossible only using classical information. Their fundamental unit of communication is the Bell pair, which consists of two entangled quantum bits. Unfortunately, Bell pairs are fragile and difficult to transmit directly, necessitating a network of repeaters, along with software and hardware that can ensure the desired results. Challenging intrinsic features of quantum networks, such as dealing with resource competition, motivate formal reasoning about quantum network protocols. To this end, we developed BellKAT, a novel specification language for quantum networks based upon Kleene algebra. To cater to the specific needs of quantum networks, we designed an algebraic structure, called BellSKA, which we use as the basis of BellKAT's denotational semantics. BellKAT's constructs describe entanglement distribution rules that allow for modular specification. We give BellKAT a sound and complete equational theory, allowing us to verify network protocols. We provide a prototype tool to showcase the expressiveness of BellKAT and how to optimize and verify networks in practice.

Details

Actions

PDF

from
to
Export
Download Full History