Format | |
---|---|
BibTeX | |
MARCXML | |
TextMARC | |
MARC | |
DataCite | |
DublinCore | |
EndNote | |
NLM | |
RefWorks | |
RIS |
Files
Abstract
We calculate logarithmic negativity, a quantum entanglement measure for mixed quantum states, in quantum error-correcting codes and find it to equal the minimal cross sectional area of the entanglement wedge in holographic codes with a quantum correction term equal to the logarithmic negativity between the bulk degrees of freedom on either side of the entanglement wedge cross section. This leads us to conjecture a holographic dual for logarithmic negativity that is related to the area of a cosmic brane with tension in the entanglement wedge plus a quantum correction term. This is closely related to (though distinct from) the holographic proposal for entanglement of purification. We check this relation for various configurations of subregions in AdS3/CFT2. These are disjoint intervals at zero temperature, as well as a single interval and adjacent intervals at finite temperature. We also find this prescription to effectively characterize the thermofield double state. We discuss how a deformation of a spherical entangling region complicates calculations and speculate how to generalize to a covariant description. .