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We calculate logarithmic negativity, a quantum entanglement measure for mixed quantum states, in
quantum error-correcting codes and find it to equal the minimal cross sectional area of the entanglement
wedge in holographic codes with a quantum correction term equal to the logarithmic negativity between the
bulk degrees of freedom on either side of the entanglement wedge cross section. This leads us to conjecture
a holographic dual for logarithmic negativity that is related to the area of a cosmic brane with tension in the
entanglement wedge plus a quantum correction term. This is closely related to (though distinct from) the
holographic proposal for entanglement of purification. We check this relation for various configurations of
subregions in AdS3=CFT2. These are disjoint intervals at zero temperature, as well as a single interval and
adjacent intervals at finite temperature. We also find this prescription to effectively characterize the
thermofield double state. We discuss how a deformation of a spherical entangling region complicates
calculations and speculate how to generalize to a covariant description.
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I. INTRODUCTION

Holographic duality (the AdS/CFT correspondence)
[1–3] has made a dramatic impact on how we understand
theories of quantum gravity and strongly coupled conformal
field theories. One of the recent explorations in this context
is a connection to quantum information theory, aiming to
uncover the mechanism of holographic duality and quantum
gravity [4–7]. In particular, it has been proposed that the
duality can be interpreted as a quantumerror-correcting code
[8–10]. This surprising connection has been able to shed
light on mysterious parts of holographic duality. For
example, it helps to explain the holographic formula of
entanglement entropy, which equates the von Neumann
entropy of the boundary conformal field theory (CFT) to the
geometry of the bulk anti-de Sitter (AdS) [11,12]:

SðρAÞ ¼
AreaðLAÞ

4GN
þ Sbulk: ð1Þ

Here,SðρAÞ is thevonNeumann entropyof the subspaceA in
the boundaryCFT, andLA is the extremal surface in the bulk

homologous to A; GN is the bulk Newton constant. Sbulk is
the bulk entanglement entropy of the corresponding entan-
glement wedge, the quantum correction term [13,14]. This
formula was shown to hold in the case of “holographic
states” made of perfect tensors [10] and in random tensor
networks [15]. It was later proven more generally for
quantum error-correcting codes [8].
Formixed quantum states, thevonNeumann entropy is not

a proper measure for the quantum correlation; it captures
classical (thermal) correlations as well as purely quantum
ones. The (logarithmic) entanglement negativity is a measure
of quantum entanglement, which can be applied to mixed
states. In the quantum field theory context, for example, it
has been computed and discussed for ð1þ 1Þd CFTs and
ð2þ 1Þd topological quantum field theories [16–31].
In this paper, we will make a comparison, in the holo-

graphic context, between the entanglement negativity and the
minimal cross sectional area of entanglement wedges. The
entanglement wedge has been proposed as a natural bulk
region corresponding to a given boundary region [32–34] and
has proven to be an important concept, distinct from the causal
wedge, when discussing bulk reconstruction [9,10,33–36].
In addition, it was recently proposed that minimal entangle-
ment wedge cross sections are a measure of the entanglement
of purification (EoP) [37–45].Wewill discuss the distinctions
between the bulk objects proposed as duals to the logarithmic
negativity and EoP. It is also worth mentioning that there is a
proposal for holographic negativity that relates certain com-
binations of bulk geodesics to the negativity in the boundary
CFT [46–50].
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First, we consider the logarithmic negativity in generic
quantum error-correcting codes. With this formalism, we
study negativity and the entanglement wedge cross section
in holographic quantum error-correcting codes—they are
toy models of holographic duality. There, as we will see,
the logarithmic negativity is equivalent to the cross sec-
tional area of entanglement wedges with a bulk quantum
correction term. We explicitly show this for setups where
we bipartition the (boundary) system at finite temperature
as well as arbitrary tripartitions.
With motivations from quantum error-correcting codes,

we next conjecture a general bulk object that computes the
logarithmic negativity. While for general entangling surface
geometries this is difficult to compute due to the back-
reaction of the cosmic branes that we will introduce, the
calculation is greatly simplified for ball-shaped subregions.
In these symmetric setups, the backreaction is accounted
for by an overall constant to the area of the entanglement
wedge cross section. We then conjecture that the logarith-
mic negativity, E, in holographic CFTs is given by

E ¼ Xd
EW

4GN
þ Ebulk; ð2Þ

where EW is the minimal cross sectional area of the
entanglement wedge associated with the boundary region
of interest and Xd is a constant which depends on the
dimension of the spacetime. Ebulk is the quantum correction
term corresponding to the logarithmic negativity between
the bulk fields on either side of the cross section. In
AdS3=CFT2 (where Xd ¼ 3=2), we find that the entangle-
ment wedge cross section formula reproduces many
known properties of the logarithmic negativity in ð1þ 1Þd
(holographic) CFTs.
For the rest of the Introduction, we briefly recall the

definitions of the key concepts in this paper: the (loga-
rithmic) entanglement negativity, the entanglement wedge,
and holographic error-correcting codes.

A. Entanglement negativity

For bipartite pure states, the von Neumann entropy of the
reduced density matrix effectively encapsulates the quan-
tum correlations between subsystems. However, when
working with mixed states, the von Neumann entropy is
not a proper entanglement measure; for example, the von
Neumann entropy additionally counts the classical corre-
lations. In particular, in thermal systems without quantum
correlations, this will just be the regular thermal entropy.
The (logarithmic) negativity was proposed as a comput-

able measure of quantum entanglement for mixed states
[51–55]. The negativity is a measure derived from the
positive partial transpose criterion for the separability of
mixed states [51] and is defined/computed by taking the
trace norm of the partial transpose of the density matrix; for
the Hilbert space HA ⊗ HB, the partial transpose of the
density matrix ρ is defined in terms of its matrix elements as

hiA; jBjρTA jkA; lBi ¼ hkA; jBjρjiA; lBi; ð3Þ

where fjiA=Big represent the orthonomal basis for HA=B.
The entanglement negativity and logarithmic negativity are
defined as

N ðρÞ ≔ 1

2
ðjρTA j1 − 1Þ;

EðρÞ ≔ ln jρTA j1; ð4Þ

where jAj1 ≔ Tr
ffiffiffiffiffiffiffiffiffi
AA†

p
. In this paper, we will be mainly

concerned with the logarithmic negativity (and hence by
entanglement negativity, we refer to E unless stated
otherwise).

B. Entanglement wedge

The entanglement wedge is the bulk region correspond-
ing to the reduced density matrix on the boundary. In this
paper, we are only concerned with entanglement of the CFT
on the boundary on a fixed time slice, corresponding to a
Cauchy slice of AdS in the bulk. Relevant generalizations
of entanglement entropy to time-dependent situations have
been studied in Refs. [56–58]. Given a Cauchy slice, Ξ, and
a subset of the conformal boundary, A ⊂ ∂Ξ, the relevant
surface, γA, is the codimension-2 extremal surface homolo-
gous to A, ∂A ¼ ∂γA. The corresponding entanglement
wedge of A is the codimension-1 surface in Ξ of which the
boundary is γA ∪ A.
We are interested in the minimal cross sectional area of

the entanglement wedge. This picture is intuitive when the
bulk does not contain horizons. However, when there is a
black hole in the bulk, the entanglement wedge cross
section can become disconnected (Fig. 1).

C. Holographic codes

A series of concrete and exactly solvable toy models of
holography, holographic codes, were proposed in Ref. [10].
Leveraging the fact that the AdS/CFT correspondence
shares central properties with quantum error-correcting

FIG. 1. The gray bulk region is the entanglement wedge of
boundary subregion A. The dotted line represents the minimal
entanglement wedge cross section. The figure on the right
displays a black hole. The cross section then becomes discon-
nected, containing pieces on either side of the black hole but not
including any of the horizon.
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codes, the authors studied a tensor network description of a
quantum-error-correcting code living on a given two-
dimensional time slice. This code acts as an isometric
map from the bulk Hilbert space to the boundary Hilbert
space. This “holographic code” is composed of perfect
tensors which are tensors such that any partition of indices
into HA and HB induces an isometry T from HA to HB,
given that jHAj ≤ jHBj. An example of a holographic code
model, the holographic pentagon code, is depicted in Fig. 2.
For a complete discussion of such codes, see Ref. [10].

II. ENTANGLEMENT WEDGE AND NEGATIVITY
IN QUANTUM ERROR-CORRECTING CODES

In this section, we will calculate the logarithmic neg-
ativity in generic quantum error-correcting codes. We will
later use this technology to gain geometrical insight into
logarithmic negativity in holographic codes. Following the
structure of Ref. [8], we warm up by starting with simple
erasure-correcting code models for holography and then
continue to more general error-correcting codes.

A. Conventional QEC

We work with a total Hilbert space H endowed with the
tensor product structure H ¼ HA ⊗ HĀ; HA ¼ ðHA1

⊗
HA2

Þ ⊕ HA3
. The logical state is then encoded in the state

subspace such that there exists a unitary UA such that

jĩi ¼ UAðjiiA1
⊗ jχiA2;ĀÞ; jχiA2;Ā ∈ HA2;Ā: ð5Þ

This implies a code that corrects for the erasure of Ā. Here,
the state jχiA2;Ā is our entanglement resource for quantum
error correction.
The three-qutrit code is the simplest example of conven-

tional quantum error correction that displays holographic
properties. It consists of three physical qutrits, each with
states j0i, j1i, and j2i, that encode a single logical qutrit jĩi
as follows:

j0̃i ¼ 1ffiffiffi
3

p ðj000i þ j111i þ j222iÞ;

j1̃i ¼ 1ffiffiffi
3

p ðj012i þ j120i þ j201iÞ;

j2̃i ¼ 1ffiffiffi
3

p ðj021i þ j102i þ j210iÞ: ð6Þ

This code can correct for the erasure of any single physical
qutrit because there exists a unitary operator, UA1A2

, such
that

U†
A1A2

jĩi ¼ jiiA1
jχiA2Ā; jχi≡ 1ffiffiffi

3
p ðj00i þ j11i þ j22iÞ;

ð7Þ

where A1, A2, and Ā correspond to the three qutrits. See
Ref. [9] for the explicitUA. Because of the symmetry of the
code, there also exist analogous unitary operators UA2Ā and
UA1Ā. In Refs. [8,9], this simple code is shown to contain
analogs of many important aspects of holography: black
holes, effective field theory, radial commutativity, subre-
gion duality, and the holographic formula of entanglement
entropy (the Ryu-Takayanagi (RT) formula).
We will only replicate the argument for the RT formula

here because the other properties do not directly apply to
the calculation and interpretation of the negativity of this
code. Consider an arbitrary mixed state of a conventional
quantum error-correcting code

ρ̃ ¼ UA1A2
ðρA1

⊗ jχihχjA2;ĀÞU†
A1A2

; ð8Þ

where ρA1
is an arbitrary mixed input state. Defining

χA2
≡ TrĀjχihχjA2;Ā, the von Neumann entropies for the

reduced density matrices ρ̃A ¼ TrĀρ̃ and ρ̃Ā ¼ TrAρ̃ are

Sðρ̃AÞ ¼ SðχA2
Þ þ Sðρ̃Þ; Sðρ̃ĀÞ ¼ SðχA2

Þ: ð9Þ

By identifying SðχA2
ÞIcode as the “area operator,” L,

hLi ¼ SðχA2
Þ ¼ −

X
a

pa lnpa; ð10Þ

an RT-like formula for error-correcting codes is obtained. L
can be thought of as an area because it contributes equally
to A and Ā. Furthermore, if one works with tensor net-
works, L originates from jχi, which make up the Hilbert
space of the contracted legs of the network. Though this
initial formulation of error-correcting codes displays cer-
tain aspects of holography, it is not entirely satisfactory.
This is partially due to the entanglement entropy not being
symmetric. Only for system A is there a bulk entropy term.
In the next section, we expand to more general error-
correcting codes so that both entropies contain bulk entropy
terms, as we expect they should. Another motivation for

FIG. 2. The holographic pentagon code introduced in Ref. [10].
Each perfect tensor, represented by a pentagon, has six indices,
with one free bulk index (represented by dots).
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this generalization is that we will be able to apply our
results to the holographic codes introduced in Ref. [10].
The ability to use holographic codes will be crucial in our
analysis of negativity in tripartitions.
Before discussing more generic holographic code mod-

els, let us consider the negativity of the conventional
quantum error correction (QEC) model. In order to take
the partial transpose with respect to A or Ā, we need to
perform a Schmidt decomposition of jχi:

jχi ¼
X
a

ffiffiffiffiffiffi
pa

p jaiA2
⊗ jaiĀ: ð11Þ

jχi is maximally entangled when

pa ¼
1

jÃj ; jÃj ¼ minðjA2j; jĀjÞ: ð12Þ

Taking the partial transpose with respect to Ā [59],

ρ̃TĀ¼
X
a;b

ffiffiffiffiffiffiffiffiffiffiffi
papb

p
UA1A2

ðρA1
⊗ jaihbjA2

⊗jbihajĀÞU†
A1A2

;

ρ̃TĀ†ρ̃TĀ¼
X
a;b

papbUA1A2
ðρ2A1

⊗jaihajA2
⊗ jbihbjĀÞU†

A1A2
;

jρ̃TĀ j1¼
�X

a

ffiffiffiffiffiffi
pa

p �
2

: ð13Þ

(See Fig. 3 for graphical representations of these objects,
when jχi is maximally entangled.) We obtain the entangle-
ment negativity N and logarithmic negativity E,

N ðρ̃Þ ¼ ðPa
ffiffiffiffiffiffi
pa

p Þ2 − 1

2
; ð14Þ

Eðρ̃Þ ¼ ln

�X
a

ffiffiffiffiffiffi
pa

p �
2

¼ S1=2ðχA2
Þ; ð15Þ

where S1=2 is the Rényi entropy with Rényi index 1=2. So,
the negativity is equal to the expectation value of the area
operator hLi when χA2

is maximally mixed:

Eðρ̃Þ ¼ hLi ¼ lnðjÃjÞ: ð16Þ
For tensor networks, because the spectrum of the entan-
glement Hamiltonian is flat, χA2

is maximally mixed, and

we find no difference from the von Neumann entropy.
However, when we move to AdS/CFT, the spectrum is not
flat, and this term accounts for the tension of the cosmic
brane. These codes are also not entirely satisfactory
because there is no quantum correction to the logarithmic
negativity.
Because jχi for the three-qutrit code is maximally

entangled, we can apply (16). When bipartitioning the
boundary, the bulk minimal geodesic cuts only a single leg
(Fig. 4) of dimension 3, leading to a negativity of logð3Þ.

B. Subsystem QEC with complementary recovery

Subsystem quantum error correction is a generalization
to conventional quantum error correction. This generaliza-
tion is crucial to our analysis because the holographic codes
that we will employ belong to this family of error-
correcting codes. There is a further generalization that is
referred to as operator-algebra quantum error-correcting
codes, though we leave this analysis to the Appendix A
because it may distract from our main results. Again, we
will make the Hilbert space H factorize into HA ⊗ HĀ,
while the code subspace factorizes as Hcode ¼ Ha ⊗ Hā.
This code subspace is created such that the state can be
recovered either on A or Ā. This construction allows the RT
formula to be symmetric. The code space is spanned by

jĩji ¼ UAðjiiA1
jχjiA2;ĀÞ ¼ UĀðjjiĀ1

jχiiĀ2;AÞ: ð17Þ

We can simplify the code subspace to

jĩji ¼ UAUĀðjiiA1
jjiĀ1

jχiA2Ā2
Þ ð18Þ

because

FIG. 3. Graphical representations of Eq. (13). Here, squares
represent UA or U†

A, and circles represent ρA1

FIG. 4. The tensor network representation of the three-qutrit
code. There is only one tensor in this network. It maps the single
bulk logical qutrit (central black dot) to the three physical qutrits.
The red line represents the minimal geodesic separating boundary
region A and its complement Ac.
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U†
Ā
jχjiA2;Ā ¼ jjiĀ1

jχiA2Ā2
;

U†
AjχiiĀ2;A ¼ jiiA1

jχiA2Ā2
: ð19Þ

Therefore, a density matrix can be encoded as

ρ̃ ¼ UAUĀðρA1Ā1
⊗ jχihχjA2Ā2

ÞU†
Ā
U†

A: ð20Þ

See Fig. 5 for a graphical representation. By defining χA2
≡

TrĀ2
jχihχj and χĀ2

≡ TrA2
jχihχj, we obtain

ρ̃A ¼ UAðρA1
⊗ χA2

ÞU†
A;

ρ̃Ā ¼ UĀðρĀ1
⊗ χĀ2

ÞU†
Ā: ð21Þ

The associated area operators are

LA ≡ SðχA2
ÞIa; LĀ ≡ SðχA2

ÞIā; ð22Þ

so the new RT formulas are symmetric:

Sðρ̃AÞ ¼ hLAi þ Sðρ̃aÞ; Sðρ̃ĀÞ ¼ hLĀi þ Sðρ̃āÞ: ð23Þ

The calculation of negativity in subsystem quantum error
correction with complementary recovery is quite similar
to that of conventional QEC. We Schmidt decompose
jχiA2Ā2

as

jχiA2Ā2
¼

X
a

ffiffiffiffiffiffi
pa

p jaiA2
jaiĀ2

; ð24Þ

so that the density matrix is

ρ̃¼UAUĀ

�
ρA1Ā1

⊗
X
ab

ffiffiffiffiffiffiffiffiffiffiffi
papb

p jaihbjA2
⊗ jaihbjĀ2

�
U†

Ā
U†

A:

ð25Þ

We now take the partial transpose with respect to Ā:

ρ̃TĀ ¼ UAUT
Ā

�
ρ
TĀ1

A1Ā1
⊗

X
ab

ffiffiffiffiffiffiffiffiffiffiffi
papb

p jaihbjA2

⊗ jbihajĀ2

�
U†T

Ā
U†

A: ð26Þ

Taking the trace norm, we find

jρ̃TĀ j1 ¼
�X

a

ffiffiffiffiffiffi
pa

p �
2���ρTĀ1

A1Ā1

���
1
: ð27Þ

Therefore,

Eðρ̃Þ ¼ S1=2ðχA2
Þ þ EðρA1;Ā1

Þ ¼ hLi þ EðρA1;Ā1
Þ ð28Þ

because χA2
is maximally mixed. Again, we have found the

negativity to have a contribution from the area operator.
However, this time, there is an additional quantum correc-
tion term equal to the negativity of the input state. We have
thus found a quantum-corrected holographic logarithmic
negativity formula. The quantum correction term is neg-
ligible when the bulk correction to the holographic von
Neumann entropy (1) is negligible. We again note that the
appearance of S1=2 will imply nontrivial backreaction when
we move to AdS/CFT.

C. Entanglement negativity in holographic perfect
tensor network codes

So far, we have been working abstractly in the language
of erasure-error-correcting codes. In order to obtain “geo-
metric” insights of the entanglement structure of our
quantum states, we now apply the results to the holographic
perfect tensor network codes introduced in Ref. [10].
Holographic perfect tensor network codes are subsystem

quantum-error-correcting codes made out of perfect ten-
sors. They act as maps from the bulk Hilbert space of
logical indices to the boundary Hilbert space of physical
indices. The authors of Ref. [10] were able to analyze these
codes from the perspective of a discrete RT formula by
implementing the “greedy algorithm,” which gives a
corresponding “greedy geodesic.” The greedy geodesic is
initialized at a boundary subspace A. The greedy algorithm
is implemented by removing tensors in the bulk one by one
if more indices of that tensor lie outside of the greedy
geodesic than inside. On a graph of negative curvature, this
process will stop at some equilibrium position within the
bulk, defining the greedy geodesic γA for boundary sub-
space A. The graph version of the entanglement wedge is
then the union of the tensors that are bounded by A and γA.
In the following, we will analyze the logarithmic

negativity of the holographic perfect tensor network codes.
As the usefulness of negativity arises when working with
mixed states, once again, we are mainly interested in
the following two setups: (i) we start with a mixed state
in the total (boundary) Hilbert space and then bipartition

FIG. 5. In subsystem quantum error correction with comple-
mentary recovery, “bulk” degrees of freedom (d.o.f.) in the code
subspace (Ha ⊗ Hā) are encoded in the “boundary” Hilbert
space (HA ⊗ HĀ) using the auxiliary state jχi as an entanglement
resource.
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the boundary Hilbert space and discuss the entanglement
negativity of the bipartition, and (ii) we start with a pure
state but trace out a sub-Hilbert space to obtain a mixed
state for the compliment. We then bipartition the remaining
Hilbert space and discuss the entanglement negativity.

1. Bipartite entanglement at finite temperature

For the first setup, we put our boundary theory at finite
temperature by introducing a black hole in the center of the
bulk (see Fig. 6). Following Refs. [8,10], we implement the
black hole by removing the central tensor. The new central
legs are bulk indices that model the black hole entropy. The
resulting tensor network is a subsystem quantum-error-
correcting code. Therefore, we are able to apply the result
from (28) to calculate the negativity of the bipartition. For
the case of the entanglement entropy, the minimal cut
homologous to A “goes through” the black hole, and hence
the entanglement entropy receives two types of contribu-
tions: the “quantum” part contributed from the part of the
cut which does not “touch” the horizon and the “thermal”
part coming from the horizon. For the case of the
entanglement negativity, Eq. (28) suggests that we simply
remove the thermal contribution, and consequently, it does
not pick up the volume law contribution from the horizon.
This tensor network picture of finite temperature holo-
graphic codes resembles the minimal entanglement wedge
area of black holes (Fig. 1).

2. Tripartite entanglement

For the second setup, we investigate mixed states created
by tracing out a subspace of an overall pure state (i.e.,
the bulk input state is pure). In doing so, we decompose the
original error-correcting code into one that only has the
physical d.o.f. in boundary subsystems A and B. In order to
arrive at this effective error-correcting code, we must trace
out the d.o.f. of C as seen in Fig. 7. This involves removing
all of the tensors in the entanglement wedge of C by

repeatedly applying the Hermitian conjugates, V†, of the
perfect tensors in the entanglement wedge of C. Once this
process is completed, we are left with a new tensor network
with a simplified geometry. The new tensor network is an
isometry from the bulk logical indices to A and B. The
dangling bonds can be treated as an effective horizon
analogous to the black hole horizon in the previous section.
We are then able to repeat our argument from before and
find the negativity to be equivalent to the entanglement
wedge cross section in holographic codes with the bulk
quantum correction [60].

III. CONJECTURE FOR AdS/CFT

The QEC code considerations above suggest that the
logarithmic negativity is captured by the minimal entan-
glement wedge cross section. We now need to address the
differences between tensor networks and AdS/CFT. For
example, the spectrum of the entanglement Hamiltonian in
holographic code models is completely flat (i.e., jχi is
maximally entangled), while it is not in (holographic)
CFTs. This implies that in the full-fledged AdS/CFT the
area contribution in (28) should describe some backreacted
geometry analogous to the area contribution for the holo-
graphic duals of Rényi entropies [61–63].

A. Backreaction

To address the issue of backreaction, we briefly overview
Dong’s proposal for the holographic dual of Rényi entropy.
There, a close variant of the Rényi entropy is equal to the
area of a cosmic brane with tension

n2
∂
∂n

�
n − 1

n
Sn

�
¼ Areaðcosmic branenÞ

4GN
; ð29Þ

where Sn is the nth Rényi entropy and cosmic branes are
gravitating objects living in the bulk. The tension of the
cosmic brane depends on the replica index as

Tn ¼
n − 1

4nGN
: ð30Þ

FIG. 6. A black hole in a holographic code is implemented by
removing the central tensor of the network. The minimal geodesic
(red) homologous to A does not pick up any contributions from
the black hole horizon and represents the entanglement wedge
cross section.

FIG. 7. The process of tracing out boundary subregion C
(orange indices on the left) to arrive at an effective error-
correcting code (right) without disturbing ρAB. The red line on
the right is the area term for the effective code, representing the
entanglement wedge cross section.
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The cosmic brane is analogous to the RT surface except that
it creates a conical deficit angle

Δϕ ¼ 2π
n − 1

n
: ð31Þ

In order to find the corresponding backreacted geometry,
one must find the classical solution to the equations of
motion for the action

I ¼ −
1

16πGN

Z
ddþ1x

ffiffiffiffi
G

p
Rþ Imatter þ Ibrane; ð32Þ

where

Ibrane ¼ Tn

Z
dd−1y

ffiffiffi
g

p
: ð33Þ

G is the total bulk metric, while g is the induced metric on
the brane. Note that the brane becomes tensionless in the
replica limit (n → 1), so the formula naturally reproduces
the RT formula.
For negativity, we introduce backreaction in the bulk by

defining a family of area functions in the ambient bulk of
the entanglement wedge

Ãn ≡ n2
∂
∂n

�
n − 1

n
An

�
¼ Areaðcosmic branenÞ

4GN
; ð34Þ

where the bulk gravitational solution now has boundary
conditions on the boundaries of the entanglement wedge.
We then naturally claim

E ¼ lim
n→1=2

An þ Ebulk: ð35Þ

An is in general a very difficult problem to solve as one
needs an analytic formula for Ãn. However, a special case
of this is when the entangling surface is spherical, in which
case we know the effect of the backreaction. In this special
case, the negativity is proportional to the tensionless brane
(n → 1) answer [64,65]

E ¼ Xhol
d Ã1 þ Ebulk ¼ Xhol

d
EW

4GN
þ Ebulk; ð36Þ

where

Xhol
d ¼ 1

2
xd−2d ð1þ x2dÞ − 1;

xd ¼
2

d

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

d
2
þ d2

4

r �
: ð37Þ

We will use this simplification throughout this paper.
Observe that when d ¼ 2, Xhol

2 ¼ 3=2, and this relation is
consistent with (and follows alternatively from) the fact that

EA ¼ S1=2ðρAÞ and SnðρAÞ ¼ ðc=6Þð1þ 1=nÞ lnl=ϵ, where
l is the radius (size) of the region (interval) A. The
coefficient Xhol

d smoothly interpolates between the Xhol
2 ¼

3=2 that we will use for ð1þ 1Þd CFTs and Xhol
∞ ¼

e − 1–1.718. Notably, for the N ¼ 4 supersymmetric
Yang-Mills, X hol

4 ∼ 1.674.

B. Connection to entanglement of purification

The minimal entanglement wedge cross section was
studied in Refs. [37,39] as an interesting measure of
entanglement in mixed states. References [37,39] identified
properties of this measure and matched these properties to a
list of correlation measures in quantum information theory.
They decided upon the entanglement of purification. The
entanglement of purification is a famously difficult quantity
to obtain. It is also dependent on both quantum and classical
correlations, differing from the negativity which only mea-
sures quantum correlations. Even so, the proposal for holo-
graphic EoP and our proposal for holographic negativity do
not contradict one another. Rather, we identify Ã1 in (34)
with the conjectured holographic EoP and note that the
negativity and EoP will be proportional only when the
entangling surface is spherical and not for generic
configurations.
It is also worth mentioning that there is yet another

proposal for holographic negativity which has been shown
to produce the correct behaviors for adjacent subsystems
and bipartite thermal systems of ð1þ 1Þd CFTs [46,49].
(There is also a higher-dimensional version of this pro-
posal.) The proposal relates the entanglement negativity in
holographic CFTs to a proper combination of the bulk
minimal surface areas (geodesics). For example, for the
case of two adjacent intervals at zero temperature, it was
proposed that the entanglement negativity is given by

E ¼ 3

16GN
ðLA1

þ LA2
− LA1;A2

Þ; ð38Þ

where LA1;A2
is the area of the codimension-2 extremal

surface homologous to the union of A1 and A2. As a
corollary of this conjectured formula, the holographic
negativity is related to the mutual information of the two
intervals as

E ¼ 3

4
IðA1; A2Þ: ð39Þ

Overall, there seems to be an intriguing connection
between three quantum information theoretical quantities
in holographic theories: the entanglement negativity, the
entanglement of purification, and the mutual information.
Unfortunately, computing the entanglement of purifica-

tion would be rather difficult in general. Using random
tensor networks [15], we can compare the three quantities
of interest: entanglement negativity, entanglement of
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purification, and mutual information. We look at a triparti-
tion of the boundary. It was stated in Ref. [39] that any such
tripartition can be decomposed into Bell and GHZ-like
states, up to unentangled states,

UAUBUCjΨiABC
¼ðjΦiA1B1

ÞcðjΦiB2C1
ÞaðjΦiA2C2

ÞbðjGHZiA3B3C3
Þg; ð40Þ

with

jΦiAB ¼ 1ffiffiffiffi
p

p
Xp−1
i¼0

jiiAjiiB;

jGHZiABC ¼ 1ffiffiffiffi
p

p
Xp−1
i¼0

jiiAjiiBjiiC: ð41Þ

It is straightforward to then show that the negativity and
entanglement of purification of AB both equal ðcþ gÞ lnp
and half the mutual information equals ðcþ g

2
Þ lnp. All

three of these are coincident in the limit of large index
dimension, EPðA; BÞ ¼ E ¼ ð1=2ÞIðA;BÞ, which is the
standard limit when dealing with random tensor networks.

IV. ENTANGLEMENT WEDGE
AND NEGATIVITY IN AdS3=CFT2

In the following, we will make more detailed compar-
isons between the entanglement negativity and the minimal
entanglement wedge cross section in the context of AdS3=
CFT2: Specifically, the entanglement negativity here will
be computed using the properties of holographic CFT2.
When possible, we also compare these with (suitable linear
combinations of) the mutual information. We recall that the
minimal entanglement wedge cross section is proposed as a
holographic dual of the entanglement of purification [37];
the proposed holographic formula relates the entanglement
negativity to the mutual information [46]. We have seen
that all these quantities in the specific setup of the random
stabilizer code are equal.
Paralleling the discussion in tensor networks, we are

interested in the following basic setups:
(1) The case of single interval.—In this case, we

bipartition the total space into a single interval A
and its compliment Ac and consider the entangle-
ment negativity EA. The system can be in its ground
state or in more generic pure or mixed states.
However, our main focus will be cases of mixed
states, in particular, the system at finite temperature,
since for pure states the entanglement negativity is
simply the Rényi entropy with Rényi index 1=2.

(2) The case of two intervals.—In this case, we start
from the ground state and tripartition the total system
into intervals A1, A2, and B. We trace out B and
discuss the entanglement negativity of the reduced
density matrix ρA1A2

for the two intervals A1;2. The

two intervals can be right next to each other
(adjacent) or can be separated (disjoint) by the
interval B.

(3) In addition, we will consider the entanglement
negativity of the thermofield double state; here,
we take the partial transpose in either one of
the Hilbert spaces and discuss the entanglement
negativity.

Let us warm up by considering a single interval at zero
temperature. As previously mentioned, the entanglement
negativity of the interval is equal to the Rényi entropy at
Rényi index 1=2. For 1þ 1d CFTs, the Rényi entropies are
simply determined by the central charge

Sn ¼
c
12

�
1þ 1

n

�
ln

�
l
ϵ

�
; ð42Þ

where l is the length of the interval and ϵ is a UV cutoff,
and hence in this case, the negativity is given by

E ¼ S1=2 ¼
c
4
ln
l
ϵ
: ð43Þ

Noting that the minimal entanglement wedge cross section
in this case is equal to the length of the RT surface (equal to
the von Neumann entanglement entropy), we confirm that

E ¼ 3

2
EW: ð44Þ

A. Two intervals

1. Adjacent intervals

We start with the entanglement negativity at zero
temperature for two intervals A1;2, which can be adjacent
or disjoint. Our starting point is the expression of the
moment TrðρT2Þne as a correlation function of the twist
operators [16,17]:

E ¼ lim
ne→1

ln TrðρT2Þne

¼ lim
ne→1

lnhσneðw1; w̄1Þσ̄neðw2; w̄2Þ

× σ̄neðw3; w̄3Þσneðw4; w̄4ÞiC: ð45Þ

Here, the conformal dimension of the twist operator σn is

hn ¼
c
24

�
n −

1

n

�
: ð46Þ

The complex Euclidean coordinates w ¼ iτ þ x are set to
be w1 ¼ Y1, w2 ¼ Y2, w3 ¼ X1, w4 ¼ X2, with

X1 −X2 ¼ l1; Y1 − Y2 ¼ l2; Y2 −X1 ¼ d; ð47Þ
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where l1;2 is the length of the interval A1;2 and d is the
distance between the intervals.
In the limit of the adjacent intervals, d → 0, the neg-

ativity is given by the three-point function,

E ¼ lim
ne→1

lnhσneðw1; w̄1Þσ̄2neðw2; w̄2Þσneðw4; w̄4ÞiC; ð48Þ

and hence completely determined by conformal symmetry.
Using the dimension of the twist operator, one then obtains

E ¼ c
4
ln

�
l1l2

l1 þ l2

�
þ const: ð49Þ

Let us compare the negativity (49) with the minimal
cross section of the corresponding entanglement wedge,
which is given, according to Ref. [37], by

EW ¼
� c

6
ln 1þ ffiffi

x
p

1−
ffiffi
x

p ; 1
2
≤ x ≤ 1

0; 0 ≤ x ≤ 1
2
;

ð50Þ

where x is the cross-ratio,

x ≔
w12w34

w13w24

¼ l1l2

ðl1 þ dÞðl2 þ dÞ : ð51Þ

In the limit of adjacent intervals d → 0,

EW →
c
6
ln ð4zÞ ¼ c

6
ln

�
4

ϵ

l1l2

ðl1 þ l2Þ
�
: ð52Þ

Thus, if the constant in (49) is properly chosen,
E ¼ ð3=2ÞEW .
Let us also consider the following, properly normalized,

mutual information for the two intervals: ð3=4ÞIðA1; A2Þ.
This quantity was claimed to be equal to the entanglement
negativity in AdS/CFT [46]. This claim follows from the
proposed holographic formula for the entanglement neg-
ativity for the mixed state of the adjacent intervals

E ¼ 3

4
·

1

4GN
½L12 þ L23 − L13�; ð53Þ

where L12, etc., are the bulk geodesic lengths. It is
straightforward to check that ð3=4ÞIðA1; A2Þ is also given
by ðc=4Þ ln½l1l2=ðl1 þ l2Þ� þ const. Summarizing, for
adjacent intervals, all three quantities are equal,

E ¼ 3

2
EW ¼ 3

4
IðA1; A2Þ: ð54Þ

We now generalize to a thermal state. We take adjacent
intervals of equal length l. For finite temperature, the
negativity of adjacent intervals is computed by the follow-
ing three-point function of twist fields on the cylinder:

E ¼ lim
ne→1

ln ðhσneðz1Þσ̄2neðz2Þσneðz3ÞiβÞ: ð55Þ

Unlike the case for thermal bipartite negativity, there are no
ambiguities regarding transforming from the complex plane
to the cylinder. This is due to the adjacent intervals being
finite [66]. We use the following map from the complex
plane to the cylinder,

wðzÞ ¼ e2πz=β;

E ¼
�
2π

β

�
−c=4

hσðe−2πl=βÞσ̄2ð1Þσðe2πl=βÞiC; ð56Þ

where we have taken the replica limit. We then compute the
three-point function to arrive at a negativity of

E ¼ c
4
ln

�
β

2πϵ
tanh

�
πl
β

��
; ð57Þ

where we have introduced the regulator ϵ.
We can now do the corresponding calculation holo-

graphically. We use the planar BTZ geometry

ds2 ¼ −
ðr2 − r2HÞ

R2
dt2 þ dr2

r2 − r2H
þ r2

R2
dx2: ð58Þ

Due to the symmetry of the setup, the minimal cross section
is purely radial,

Σ ¼
Z

r∞

r�

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2H

p ; ð59Þ

where r� is the location of the turning point which is related
to the interval length by [5]

r� ¼ rH cothðlrHÞ: ð60Þ

Using (28), we arrive at

E ¼ 3

8GN
Σ ¼ c

4
ln

�
β

2πϵ
tanh

�
πl
β

��
; ð61Þ

which exactly matches the CFT result. We note that the
same answer has been found using (53) [46].

2. Disjoint intervals

While the negativity for adjacent intervals is given in
terms of the three-point function and is hence universal, the
negativity for disjoint intervals depends on the full operator
content of the theory. Let us examine in the case of the
holographic CFT in the large-c limit, using the result from
Ref. [67].
Starting from (45), using a conformal map that sends

w1 → ∞, w2 → 1, w3 → x, and w4 → 0, the negativity is
written as
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E ¼ lim
ne→1

lnðjw24j−4hne jw13j−4hne Þ

þ lim
ne→1

ln ½hσneð∞Þσ̄neð1Þσ̄neðx; x̄Þσneð0Þi�: ð62Þ

The first term does not contribute in the replica limit since
hne → 0. Hence, the sole contribution [the second term in
(62)] depends only on x, and the negativity for two disjoint
intervals (at zero temperature and for infinite systems) is a
scale invariant quantity.

Monodromy method.—We now try to find behaviors of the
universal function hσneð∞Þσ̄neð1Þσ̄neðx; x̄Þσneð0Þi in the
large-c limit. It can be expanded in terms of the conformal
blocks as

hσneð∞Þσ̄neð1Þσ̄neðx; x̄Þσneð0Þi
¼

X
p

apF ðc; hp; hi; xÞF̄ ðc; h̄p; h̄i; x̄Þ; ð63Þ

where p labels operators in intermediate operator product
expansion channels with conformal dimension hp; hi
collectively represents the conformal dimensions of four
“external” operators, i.e., hne ; ap is a constant depending on
the operator product expansion coefficients. In the decom-
position of the conformal block, we assume there is a single
dominant channel p and disregard other contributions
[68,69]:

hσneð∞Þσ̄neð1Þσ̄neðx; x̄Þσneð0Þi
∼ F ðc; hp; hi; xÞF̄ ðc; h̄p; h̄i; x̄Þ: ð64Þ

For holographic CFTs, the conformal block exponentiates
as [70]

F ðc; hp; hi; xÞ ∼ exp
�
−
c
6
f
�
hp
c
;
hi
c
; x
��

: ð65Þ

Hence, assuming fðhp=c; hi=c; xÞ ¼ fðh̄p=c; h̄i=c; x̄Þ,

lnhσneð∞Þσ̄neð1Þσ̄neðx; x̄Þσneð0Þi ∼ −
c
3
f

�
hp
c
;
hi
c
; x

�
:

ð66Þ

In Ref. [67], the dominant channel when x → 1 (the limit
of adjacent intervals d=l1;2 → 0) is identified as the double

twist operator σ2ne with conformal dimension hp ¼ hð2Þne ¼
ðc=12Þðne=2 − 2=neÞ. On the other hand, when x → 0 (the
limit where the distance between of two intervals is large
d=l1;2 → ∞), the dominant channel is vacuum. The
analysis in the latter case (x → 0) is similar (identical) to
the case of the entanglement entropy of two disjoint
intervals; it is exponentially small. (For small x, the
computation of the four-point function is identical to the

one performed for entanglement entropy, and there is a
factor of (n − 1) which vanishes in the n → 1 limit.) In the
following, we will mainly focus on the case of x → 1.
The function f can be found by using the monodromy

method, and this program was carried out in Ref. [67]. The
same kind of approximation was used to compute the
mutual information for disjoint intervals in holographic
CFT in Ref. [68] to reproduce the result from the RT
formula. There, as the distance between the two intervals
increases/decreases, there is a “phase transition,” and the
mutual information has a “singularity” as a function of the
distance between the intervals [71]. We expect there is a
similar phase transition in the entanglement negativity [67].
In the monodromy method, the large-c conformal block

f is given in terms of the accessory parameter c2 as
∂f=∂x ¼ c2ðxÞ. In Ref. [67], two solutions were found
numerically in the monodromy problem and are approx-
imately given by

yð1 − yÞc�2 ð1 − yÞ ¼ −
3

4
þ 3

4

�
1

2
� 1

4

�
yþ � � � ;

c−2 ðxÞ ∼
3ðxþ 3Þ
16xðx − 1Þ ; cþ2 ðxÞ ∼

3ð3xþ 1Þ
16xðx − 1Þ ; ð67Þ

where y ¼ 1 − x. By integrating c2, these accessory
parameters are translated to conformal blocks in the vicinity
of x ¼ 1,

f−ðxÞ ¼ 3

16
ln

�ð1 − xÞ4
x3

�
þ const:;

fþðxÞ ¼ 3

16
ln

�ð1 − xÞ4
x

�
þ const: ð68Þ

If the dominant solution [f−ðxÞ in this case] is chosen, the
entanglement negativity is given by

E− ∼ −
c
3
·
3

16
ln

�ð1 − xÞ4
x3

�
þ const: ð69Þ

As in the case of adjacent intervals, the constant has to be
chosen properly, which cannot be determined from the
monodromy method. We set

const ¼ c
4
lnð4Þ: ð70Þ

[See Eqs. (49) and (52) in Sec. IVA 1.]
The entanglement negativity, computed by using the

solutions f�, is plotted in Fig. 8, together with the minimal
entanglement wedge cross section. Note that the above
solutions are valid for x ∼ 1. On the other hand, for
sufficiently small x, there is a phase transition to the other
branch, where negativity is simply zero. While the entan-
glement negativity E� and the minimal entanglement
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wedge cross section ð3=2ÞEW disagree, it is interesting to
note that the minimal entanglement wedge cross section is
right in between the two solutions.
To have a closer comparison with the minimal entangle-

ment wedge cross section ð3=2ÞEW (52), we define an
analogue of conformal block FWðxÞ by

3

2
EWðxÞ≕ ln ½apFWðxÞF̄WðxÞ�: ð71Þ

Choosing ap ¼ 4c=4 [i.e., ln ap ¼ ðc=4Þ lnð4Þ; see (70)],

FWðxÞ ¼
�
1

4

1þ ffiffiffi
x

p
1 −

ffiffiffi
x

p
�c

8

: ð72Þ

FWðxÞ can be expanded in small y ¼ 1 − x as

FWðxÞ ¼ y−
c
8

�
1 −

cy
16

þ cðc − 12Þ
512

y2

−
cðc2 − 36cþ 320Þ

24576
y3 þ � � �

�
: ð73Þ

Further introducing the corresponding accessory para-
meter by

cW2 ðxÞ ≔ −
3

4

6

c
dEW

dx
¼ −

3

4

1

ð1 − xÞ ffiffiffi
x

p ; ð74Þ

we see that c−2 and cW2 disagree at linear order in y:

yð1 − yÞcW2 ð1 − yÞ ¼ −
3

4
þ 3

8
yþ 3

32
y2 þ � � � : ð75Þ

Series expansion.—Reference [67] also looked at
the expansion of the conformal block in terms of the
cross-ratio,

F ðhp;yÞ¼yhp
�
1þhp

2
yþhpðhpþ1Þ2

4ð2hpþ1Þ y
2

þ h2pð1−hpÞ2
2ð2hpþ1Þ½cð2hpþ1Þþ2hpð8hp−5Þ�y

2þ���
�
;

ð76Þ

where once again y ¼ 1 − x. Setting hp ¼ −c=8, we obtain

F ðhp; yÞ ¼ y−
c
8

�
1 −

cy
16

þ ðc − 16Þcy2
576

þ � � �
�
: ð77Þ

This is supposed to be valid for any c, but as we will see,
there is a complication. It seems that the hp → −c=8 limit
and the large-c limit do not commute.
One reason is that, for generic values of hp, the third term

is of order ðcyÞ2 and the forth term is of order cy2, while
when hp ¼ −c=8, they are both of the same order. On the
other hand, for hp ∼ ac with c large and a generic value of
a ≠ −1=8, we keep leading order terms ðcyÞn. For exam-
ple, in the above expression (76), the third term is of order
ðcyÞ2, while the last term is subleading and of order cy2.
Collecting the ðcyÞn terms,

F ðhp; yÞ ¼ yhp
�
1þ hp

2
yþ h2p

8
y2 þ h3p

48
y3 þ � � �

�
: ð78Þ

On the other hand, from the entanglement wedge cross
section, keeping leading order terms,

FWðxÞ ¼ y−
c
8

�
1 −

cy
16

þ c2y2

512
−

c3y3

24576
þ � � �

�
: ð79Þ

Substituting a ¼ −1=8 in (78), Eq. (78) matches precisely
with (79). Note also that (78) can be exponentiated as
F ðhp; yÞ ¼ exp ½−ðc=6ÞfðxÞ� with

fðxÞ ¼ −
6

c

�
c

�
a ln yþ a

2
yþ � � �

��
: ð80Þ

The corresponding accessory parameter is given by
c2ðxÞ ¼ ∂f=∂x ¼ 3aþ 6a=ð1 − xÞ. Expanded in y and
substituting a ¼ −1=8 naively,

yð1 − yÞc2ð1 − yÞ ¼ −
3

4
þ 3

8
y: ð81Þ

This expansion matches with the expansion of the entan-
glement wedge cross section cW2 (75). This is consistent
with the result from the monodromy method. However, of
course, a ¼ −1=8 is precisely the point where various
complications arise, as seen from (76): some of the
expansion coefficients in (76) diverge.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

FIG. 8. (Blue and yellow) The logarithmic negativity for
disjoint intervals at zero temperature for holographic CFT
computed from the large-c conformal blocks f�ðxÞ as a function
of the distance d between the two intervals. (Green) The minimal
entanglement wedge cross section, ð3=2ÞEW , plotted in the unit
of c.
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B. Single interval at finite temperature

Let us now discuss the case of a single interval at finite
temperature. In this case, the negativity can be expressed
as [66]

E ¼ lim
L→∞

lim
ne→1

ln ½hσneð−LÞσ̄2neð−lÞσ2neð0Þσ̄neðLÞiβ�; ð82Þ

where the conformal dimensions of σne and σ
2
ne are given by

hne ¼
c
24

�
ne −

1

ne

�
;

hð2Þne ¼ 2hne
2
¼ c

12

�
ne
2
−

2

ne

�
: ð83Þ

Here, the order of the limits is important; the replica limit
has to be taken before the L → ∞ limit. Below, we use the
twist operator formula to compute the entanglement neg-

ativity. Noting hn → 0 and hð2Þn → −c=8 in the replica limit,
the negativity is given by

E¼ c
2
ln

�
β

2π
e
πl
β

�
þ lim

L→∞
lim
ne→1

lnhσnð∞Þσ̄2nð1Þσ2nðx;x̄Þσ̄nð0Þi:

ð84Þ

Here, the cross-ratio in the L → ∞ limit is

x ¼ ð1 − e
2πL
β Þðe−2πL

β − e−
2πl
β Þ

ðe−2πL
β − 1Þðe−2πl

β − e
2πL
β Þ

→ e−2πl=β: ð85Þ

As for the conformal block part, one can derive its semi-
classical approximation by using the monodromy method

lnhσnð∞Þσ̄2nð1Þσ2nðx; x̄Þσ̄nð0Þi ¼ −
c
3
fðxÞ; ð86Þ

where fðxÞ can be computed for x ∼ 0 (s channel) and
x ∼ 1 (t channel) separately by using the monodromy
method. See Ref. [72] for previous calculations.

1. t channel

In this channel, the identity block is dominant. The
monodromy calculation is straightforward and gives

fðxÞ ¼ 12hð2Þne

c
lnð1 − xÞ; x → 1: ð87Þ

This is a situation very similar to the entanglement entropy;
the vacuum (identity) block is completely determined by
the primary operator with no additional contributions from
descendant operators. Recalling x → e−2πl=β in L → ∞,

E ¼ c
2
ln

β

2π
þ c
2
ln

�
2 sinh

πl
β

�
; x → 1: ð88Þ

Note that the proper cutoff factor is missing in these
expressions. We simply replace β=2π → β=ð2πϵÞ.
The above result can be compared with the minimal

entanglement wedge cross section [37],

3

2
EW ¼ c

2
min

�
ln

�
β

πϵ
sinh

πl
β

�
; ln

�
β

πϵ

��
; ð89Þ

and the generic CFT result [66]

E ¼ c
2
ln

�
β

πa0
sinh

πl
β

�
−
πcl
2β

þ gðe−2πl=βÞ ð90Þ

with g ¼ 0. With the choice g ¼ 0, this also is the expected
result from the holographic negativity proposal [46,49] and
related to the mutual information. Near x ∼ 1, all of these
three quantities (the entanglement negativity, the minimal
entanglement wedge cross section, and the mutual infor-
mation) agree. See Fig. 9.

2. s channel

In this channel, the dominant operator is the twist
operator σn with dimension hn. The semiclassical con-
formal block can be obtained by solving the monodromy
problem around ðx; 0Þ with the trivial monodromy
TrMðx;0Þ ¼ 2 in the replica limit.
Numerical solutions of the monodromy problem are

shown in Fig. 10. The situation here is similar to the
negativity for disjoint intervals for x ∼ 1. [See Sec. IVA 2,
around (67).] There are two solutions c�2 centered around

cW2 ðxÞ ¼ −
3

4

1

x
: ð91Þ
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0.5
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2.0

2.5

3.0

FIG. 9. The logarithmic negativity for an interval of length l at
finite temperature β for holographic CFT. (Yellow) The generic
CFT result (90) with g ¼ 0. (Green) The negativity (88) com-
puted from the t-channel solution (87) for x ∼ 1. (Blue) The
minimal entanglement wedge cross section.
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The accessory parameter cW2 ðxÞ is consistent with the
minimal entanglement wedge cross section (89); the
corresponding conformal block, up to a unknown constant,
is given by

fWðxÞ ¼ 6hð2Þne

c
lnðxÞ ¼ −3

4
ln x; x → 0;

FWðxÞ ¼ x
c
8: ð92Þ

If we use the conformal block FW and fWðxÞ, the
negativity is constant as a function of l=β for x ∼ 0:

E ¼ c
2
ln

β

2π
; x → 0: ð93Þ

Note that the proper cutoff factor is missing in this
expression. We simply replace β=2π → β=ð2πϵCÞ, where
ϵ is the cutoff andC is an unknown constant. The negativity
(93) can be matched with the minimal entanglement wedge
cross section (89) by choosing C properly (C ¼ 2). On the
other hand, with the solution Fþ or F−, the negativity is
not constant for x ∼ 0.
It is also worthwhile to have a look at the series

expansion (76): with hð2Þn ¼ ac, hn ¼ δc, the series expan-
sion gives

F ðxÞ ¼ x−ac
�
1þ a2cx

2δ
þ � � �

�
: ð94Þ

In the replica limit a → −c=8 and δ ¼ 0, each term in the
expansion diverges, except for the leading term. Keeping
this term alone and discarding (heuristically) all divergent
terms reproduce FW . Once again, this is a situation very
similar to the case of the two disjoint intervals.

C. Thermofield double state

In this section, we consider the thermofield double state
in CFT. It is a purification of the mixed thermal state at
inverse temperature β and given by

jTFDi ¼ 1ffiffiffiffiffiffiffiffiffiffi
ZðβÞp X

i

e−βEi=2jii1jii2; ð95Þ

where we have introduced the two copies of the original
CFT Hilbert space, Htot ¼ H1 ⊗ H2, and jii1;2 is the ith
energy eigenstate with energy Ei; ZðβÞ is the partition
function. When tracing out either copy of the CFT, the
resulting reduced density matrix is thermal. The thermo-
field double state is conjectured to be dual to the AdS
eternal black hole [73].
We follow Ref. [65] to obtain the negativity between the

copies. From the density matrix

ρTFD ¼ 1

ZðβÞ
X
i;j

e−βðEiþEjÞ=2jii1hjj1 ⊗ jii2hjj2; ð96Þ

it is straightforward to compute

���ρT1

TFD

���
1
¼ Zðβ=2Þ2

ZðβÞ : ð97Þ

By taking the logarithm, the entanglement negativity is
given in terms of the free energy FðβÞ¼−ð1=βÞlnðZðβÞÞ as

EðρTFDÞ ¼ β½FðβÞ − Fðβ=2Þ�: ð98Þ

In the holographic pentagon code, we can create the AdS
eternal black hole by connecting two codes with black
holes at their center by linking the black hole microstate
legs (Fig. 6). Using (28) and following our discussion in
Sec. II C, we see that the negativity is given by the area of
the horizon ABH as

EðρTFDÞ ∝ ABH; ð99Þ

leading us to an interesting relation between the black hole
area/entropy and the temperature/free energy of the dual
CFT,

β½FðβÞ − Fðβ=2Þ�CFT ∝ ABH: ð100Þ

When moving beyond the tensor network description to
the full AdS/CFT, we analogously find the minimal cross
sectional area of the entanglement wedge to be the area of
the black hole horizon. In AdS3=CFT2, we adopt the same
normalization constant (equal to 3=2) as before relating the
negativity and the minimal entanglement wedge cross
section. This leads to

FIG. 10. The accessory parameter c2 as a function of the cross-
ratio x. There are two solutions (blue and yellow) centered around
cW2 ðxÞ ¼ −3=ð4xÞ (green).
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β½FðβÞ − Fðβ=2Þ� ¼ 3

2

ABH

4GN

or FðβÞ ¼ Fðβ=2Þ þ 3ABH

8βGN
: ð101Þ

We implement this recursively to obtain

FðβÞ ¼ 3

8GN

X∞
i¼0

ABHðβ=2iÞ
β=2i

: ð102Þ

We work with the boundary of the Euclidean BTZ black
hole, which is of length L ¼ 2πlAdS (where lAdS is the
radius of AdS). Using rBH ¼ 2π=β, we arrive at the
formally divergent sum

FðβÞ ¼ 3π2lAdS
2GNβ

2

X∞
i¼0

4i: ð103Þ

We can obtain a value for this by analytically continuing the
geometric series. This gives us a value of −1=3. We use the
Brown-Henneaux formula to arrive at

FðβÞ ¼ O
�
L
ϵ

�
−
πcL
6β2

þOðϵÞ þ � � � ; ð104Þ

where L is the size of the CFT system and ϵ is the cutoff.
The finite, universal part of the free energy precisely
matches that for a thermal CFT.

V. DISCUSSION

We have discussed negativity in quantum error-
correcting codes and tensor network models of holography.
We have shown that the entanglement negativity in these
models is captured by the minimal cross sectional area of
the entanglement wedge. We have also conjectured a
generalization to AdS/CFT using the backreacted geometry
of cosmic branes and have checked our proposal for a
variety of configurations in AdS3=CFT2.
We close with a couple of discussions below:

(a) Nonspherical entangling surfaces We stress that (36)
should hold only for spherical entangling surfaces,
which includes all examples discussed in this paper so
far. The backreaction in (35) becomes highly non-
trivial when working with other geometries. For
example, in AdS3=CFT2, if we bipartition the space
into the union of two intervals and its complement, the
entangling surface is no longer a sphere (two points in
this dimension). Because we are working with the
vacuum, we know that EA ¼ S1=2ðρAÞ. As the cross-
ratio is varied, the proportionality between the neg-
ativity and the area of the entanglement wedge cross
section changes (see Fig. 11).

(b) Bit threads We recall that the entanglement wedge is
the bulk region corresponding to the reduced density

matrix on the boundary. We can formulate the relation
between the negativity and the entanglement wedge
from the perspective of bit threads [74] by stating that
the negativity between two boundary regions A and B
is proportional to the maximum number of bit threads
connecting the two regions through the bulk dual of
ρAB. The maximization procedure is taken over all
possible bit thread configurations. Unlike the case of
entanglement entropy, the bit threads can no longer
end on horizons. Another simplifying aspect in the
case of negativity is that the bit threads do not have to
be directed. To account for nonspherically shaped
entangling surfaces and Rényi entropies, it would be
interesting to formulate bit threads in a language that
could account for backreaction.
A similar picture can be made when considering

entanglement of purification. This time, the horizons
represent the larger boundary Hilbert space needed to
purify ρAB. In the effective bulk, there are no more
horizons, so minimizing the maximum number of bit
threads connecting the purified spaces of A and B is
again proportional to the entanglement wedge cross
section. If we are forced to use the horizons as the
purifying Hilbert space, then the conjecture from
Ref. [37] would be proven, though this is a highly
nontrivial assumption.
Interestingly, explicit bit thread configurations in

the entanglement wedge have been constructed in
Ref. [75]. There, the bit threads were interpreted as the
maximum number of Bell pairs that can be distilled
from ρAB. This interpretation is extremely similar to
that of logarithmic negativity, which provides a bound
on the distillable entanglement of mixed states [54].

(c) Covariant conjecture A natural covariant generaliza-
tion may be considered in a way similar to the HRT
formula. Here, we would need to find the proper

0.0 0.2 0.4 0.6 0.8 1.0
0.8

1.0

1.2

1.4

1.6

1.8

FIG. 11. As we vary the cross-ratio, x, the proportionality
between the negativity and area of the entanglement wedge cross
section, E=S ¼ S1=2=S, is perturbed from the value of 3=2 known
for spherical entangling surfaces. Here, the Rényi entropy S1=2
was computed using the series expansion derived in Ref. [68].
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analytic continuation of extremal cosmic branes in the
entanglement wedge.
It would be fascinating to explore these general-

izations quantitatively in order to better understand the
connection between negativity and entanglement
wedge cross sections.
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APPENDIX A: OPERATOR-ALGEBRA QEC

It was shown in Ref. [8] that subsystem error-correcting
codes are not general enough to serve as a formal
framework for holography. This is because in subsystem
error-correcting codes the area operator is proportional to
the identity and is hence trivial. In AdS/CFT, the area
operator cannot be trivial. To remedy this, the codes are
generalized such that they require only the recovery of a
subalgebra of the observables onHcode. The subalgebras of
interest are von Neumann algebras. For finite-dimensional
Hilbert spaces, the von Neumann algebra M on Hcode
decomposes Hcode as

Hcode ¼ ⊕α ðHaα ⊗ HāαÞ ðA1Þ
such that all of the operators Õ ∈ M are block diagonal in α
and are decomposed in each block as Õaα ⊗ Iāα . The
orthonormal basis of states can be decomposed as

jgα; iji≡ jfα; ii ⊗ jfα; ji;
ρ̃αα ¼ jgα; ijihgα; ijj: ðA2Þ

Von Neumann entropy can now be decomposed into a
classical Shannon entropy and entanglement entropies
weighted by the block probabilities,

pαρ̃aα ≡ Trāα ρ̃αα;

Sðρ̃;MÞ≡ −
X
α

pα lnpα þ
X
α

pαSðρ̃aαÞ: ðA3Þ

Analogously to the section on conventional error correc-
tion, the code space is spanned by

jgα; iji ¼ UAðjα; iiAα
1
⊗ jχα;jiAα

2
;ĀÞ

¼ UĀðjα; jiĀα
1
⊗ jχα;iiĀα

2
;AÞ ðA4Þ

and thus simplifies to

jgα; iji ¼ UAUĀðjα; iiAα
1
jα; jiĀα

1
⊗ jχαiAα

2
;Āα

2
Þ: ðA5Þ

The resulting density matrices are

ρ̃A ¼ UAð⊕α ðpαρAα
1
⊗ χAα

2
ÞÞU†

A;

ρ̃Ā ¼ UĀð⊕α ðpαρĀα
1
⊗ χĀα

2
ÞÞU†

Ā
: ðA6Þ

A new area operator is then defined,

LA≡ ⊕α SðχAα
2
ÞIaαāα ; ðA7Þ

where χAα
2
≡ TrĀα

2
jχαihχαjAα

2
;Āα

2
. This leads to an expression

for the entropies,

Sðρ̃AÞ ¼ Tr ρ̃LA þ Sðρ̃;MÞ;
Sðρ̃ĀÞ ¼ Tr ρ̃LA þ Sðρ̃;M0Þ; ðA8Þ

where M0 is the commutant of M, i.e., all operators on
Hcode that commute with all operators in M. Happily, the
area operator is no longer trivial.

1. Negativity

Repeating an exercise similar to that in Sec. II B,
we perform Schmidt decompositions on the entangling
resources,

jχα;jiAα
2
;Ā ¼

X
a

ffiffiffiffiffiffiffiffi
Pa;α

p jaiAα
2
jaiĀ;

jχβ;jiĀβ
2
;A ¼

X
b

ffiffiffiffiffiffiffiffi
Pb;β

p jbiĀβ
2
jbiA; ðA9Þ

which lead us to the (equal) negativities of A and Ā,

EðρAÞ ¼
X
α

pα

�X
a

ffiffiffiffiffiffiffiffi
Pa;α

p �
2

þ Eðρ̃;MÞ

¼ Tr ρ̃
�X

a

ffiffiffiffiffiffiffiffi
Pa;α

p �
2

þ Eðρ̃;MÞ;

EðρĀÞ ¼
X
α

pβ

�X
b

ffiffiffiffiffiffiffiffi
Pb;β

p �
2

þ Eðρ̃;MÞ

¼ Tr ρ̃

�X
b

ffiffiffiffiffiffiffiffi
Pb;β

p �
2

þ Eðρ̃;MÞ: ðA10Þ

If the χAα
2
’s are maximally mixed, then we maintain a

generalized area formula,

EðρĀÞ ¼ EðρAÞ ¼ hLAi þ Eðρ̃;MÞ: ðA11Þ

This representation of negativity shows a weighted sum of
the negativities of each block. This feature appears more
broadly for density matrices of block diagonal form, not
just for error-correcting codes. When the density matrix is
of block diagonal form,
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ρAA0 ¼

0
BBBBB@

p1ρA1A0
1

0 … 0

0 p2ρA2A0
2

… 0

..

. ..
. ..

.

0 0 … pmρAmA0
m

1
CCCCCA; ðA12Þ

its partial transpose is

ρTA
AA0 ¼

0
BBBBBBBB@

p1ρ
TA
A1A0

1
0 … 0

0 p2ρ
TA
A2A0

2
… 0

..

. ..
. ..

.

0 0 … pmρ
TA
AmA0

m

1
CCCCCCCCA
: ðA13Þ

This simply leads us to the negativity

EðρAA0 Þ ¼
X
i

piEðρAiA0
i
Þ: ðA14Þ

It is interesting to note that, unlike von Neumann entropy,
the negativity does not contain a classical Shannon-like
term representing the entropy between the sectors.

APPENDIX B: OPTIONAL REMOVAL OF
HORIZON TENSORS

We explain how to remove an additional layer of our
tensor network and when this procedure is valid. We
introduce the decompositions of the Hilbert spaces (both
bulk and boundary) as follows. The boundary Hilbert space
is decomposed into two parts,HAB ⊗ HC. As for the bulk,
there are d.o.f. defined for the dangling points in the tensor
network, as well as those living on bonds. The latter d.o.f.
correspond to jχi in the generic descriptions of subsystem
QEC with complementary recovery. As for the “dangling”
d.o.f., we decompose them as HbAB ⊗ HbC , where bAB
represents the dangling Hilbert space on the entanglement
wedge of AB, whereas bC lives on the entanglement wedge
of C. We further decompose bAB into b̃AB and bh, where bh
represents dangling d.o.f. living on the “horizon”; namely,
we identify by the greedy algorithm the minimal surface
which cuts bonds connecting the entanglement wedge ofAB
and C. bh are defined just inside of the horizon. We have a
similar decomposition of the Hilbert space associated to the
bulk link d.o.f.HlC ⊗ HlAB ⊗ Hle , where lAB represents the
link Hilbert space on the entanglement wedge of AB,
whereas lC lives on the entanglement wedge of C, and
finally, le represents all links cut by the minimal surface.
In Sec. II C 2, We are interested in the reduced density

matrix ρAB onHAB (or ρ̃AB in the notation we used in QEC
section). This is obtained from the total density matrix ρABC
on HABC by taking partial trace

ρAB ¼ TrCρABC: ðB1Þ

(For our situation, ρABC is pure.)
By using the isometry W from HbC ⊗ Hle to HC, the

reduced density matrix can be written as

ρAB ¼ TrCWρABCW† ¼ TrbC;leρAB;bCle ; ðB2Þ

where ρAB;bC;le is the result of the isometric map. The d.o.f.
bh are straightforward to trace over because ρAB;bC;le is a
separable state,

ρAB;bC;le ¼
X
i

piρ
i
AB;le

⊗ ρibC : ðB3Þ

For example, if ρAB;bC;le is pure,

ρAB;bC;le ¼ jψAB;bC;leihψAB;bC;le j ðB4Þ

with jψAB;bC;lei ¼ jψAB;lei ⊗ jψbCi, then ρAB is given by

ρAB ¼ Trle jψAB;leihψAB;le j: ðB5Þ

For our purpose, we want to write ρAB using the d.o.f.
living on bh. We find this is possible under a certain
condition, but not in general. To state the condition, we
focus on (for simplicity) the case where both the bulk state
that we feed in to the QEC and the boundary states are pure,
and given by jψib and jψiABC, respectively.
Recall that the tensor network (QEC) acts as an isometry

from the (dangling) bulk to the boundary; i.e., there is an
isometry relating jψbi and jψABCi. This means, in particu-
lar, if we Schmidt decompose jψbi as

jψbi ¼
X
i

cijψ i
b̃AB;bC

i ⊗ jψ i
bh
i; ðB6Þ

each term in the decomposition is mapped to a correspond-
ing state jψ i

ABCi, and hence we have a decomposition,

jψABCi ¼
X
i

cijψ i
ABCi: ðB7Þ

We engineer the state

jϕABC;bhi ¼
X
i

cijψ i
ABCi ⊗ jψ i

bh
i ðB8Þ

and assume it is a product state,

jϕABC;bhi ¼ jψABCi ⊗ jψbhi: ðB9Þ

This is our condition for removing the “horizon layer” of
the tensor network. Then, in this case, ρABC can be
represented as a partial trace over bh,

ρABC ¼ Trbh jϕihϕjABC;bh ; ðB10Þ
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where jϕABC;bhi is given by

jϕABC;bhi ¼ jψiABC ⊗ jψibh : ðB11Þ

Now, for the case of this “special class” of bulk states, the
tensor removal procedure by isometry can be repeated, to
reach (B5), but since ρABC can now be written with a partial
trace over bh of the engineered state jϕiABC;bh ,

ρAB ¼ TrbhTrle jϕihϕjAB;le;bh ; ðB12Þ

where jϕAB;le;bhi is obtained from jϕABC;bhi by applying the
isometry W.
Applying an additional isometry, we can now remove

d.o.f. in bh and le. After taking these partial traces, we are
now left with the description of ρAB as the effective bulk
state fed into the (remaining) effective tensor network. In
particular, the part of the effective tensor network that
previously connected b̃AB and bh can now be regarded as a
horizon in the sense that we described before around Fig. 7;
after removing bh, these links are now dangling.
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