Files

Abstract

Microbes contribute biologically available nitrogen to the ocean by fixing nitrogen gas from the atmosphere and by mineralizing organic nitrogen into bioavailable dissolved inorganic nitrogen (DIN). Although the large concentration of plants and algae in marine coastal environments provides ample habitat and reliable resources for microbial communities, the role of the microbiome in host-microbe nitrogen cycling remains poorly understood. We tested whether ammonification by epiphytic microbes increased water column ammonium and improved host access to nitrogen resources by converting organic nitrogen into inorganic nitrogen that is available for assimilation by hosts. When bull kelp (Nereocystis luetkeana) in the northeast Pacific was incubated with 15N labelled amino acid tracers, there was accumulation of 15N in kelp tissue, as well as accumulation of 15NH4 in seawater, all consistent with the conversion of dissolved organic nitrogen to ammonium. Metagenomic analysis of surface microbes from two populations of Nereocystis indicated relative similarity in the percentage of genes related to ammonification between the two locations, though the stressed kelp population that had lower tissue nitrogen and a sparser microbiome had greater ammonification rates. Microbial communities on coastal macrophytes may contribute to the nitrogen requirements of their hosts through metabolisms that make ammonium available.

Details

Actions

Preview

from
to
Export
Download Full History