Files

Abstract

The ability to initiate and sustain trust is critical to health and well-being. Willingness to trust is in part determined by the reputation of the putative trustee, gained via direct interactions or indirectly through word of mouth. Few studies have examined how the reputation of others is instantiated in the brain during trust decisions. Here we use an event-related functional MRI (fMRI) design to examine what neural signals correspond to experimentally manipulated reputations acquired in direct interactions during trust decisions. We hypothesized that the caudate (dorsal striatum) and putamen (ventral striatum) and amygdala would signal differential reputations during decision-making. Twenty-nine healthy adults underwent fMRI scanning while completing an iterated Trust Game as trusters with three fictive trustee partners who had different tendencies to reciprocate (i.e., likelihood of rewarding the truster), which were learned over multiple exchanges with real-time feedback. We show that the caudate (both left and right) signals reputation during trust decisions, such that caudate is more active to partners with two types of “bad” reputations, either indifferent partners (who reciprocate 50% of the time) or unfair partners (who reciprocate 25% of the time), than to those with “good” reputations (who reciprocate 75% of the time). Further, individual differences in caudate activity related to biases in trusting behavior in the most uncertain situation, i.e. when facing an indifferent partner. We also report on other areas that were activated by reputation at p < 0.05 whole brain corrected. Our findings suggest that the caudate is involved in signaling and integrating reputations gained through experience into trust decisions, demonstrating a neural basis for this key social process.

Details

Actions

PDF

from
to
Export
Download Full History