Files
Abstract
Forecasting bifurcations such as critical transitions is an active research area of relevance to the management and preservation of ecological systems. In particular, anticipating the distance to critical transitions remains a challenge, together with predicting the state of the system after these transitions are breached. In this work, a new model-less method is presented that addresses both these issues based on monitoring recoveries from large perturbations. The approach uses data from recoveries of the system from at least two separate parameter values before the critical point, to predict both the bifurcation and the post-bifurcation dynamics. The proposed method is demonstrated, and its performance evaluated under different levels of measurement noise, with two ecological models that have been used extensively in previous studies of tipping points and alternative steady states. The first one considers the dynamics of vegetation under grazing; the second, those of macrophyte and phytoplankton in shallow lakes. Applications of the method to more complex situations are discussed together with the kinds of empirical data needed for its implementation.