Files
Abstract
We develop, in this dissertation, a theoretical formalism for Fermi liquids by exploiting an underlying algebro-geometric structure described by the group of canonical transformations of a single particle phase space. This infinite-dimensional group governs the space of states of zero temperature Fermi liquids and thereby allows us to write down a nonlinear, bosonized action that reproduces Landau’s kinetic theory in the classical limit. Upon quantizing, we obtain a systematic effective field theory as an expansion in nonlinear and higher derivative corrections suppressed by the Fermi momentum pF , without the need to introduce artificial momentum scales through, e.g., decomposition of the Fermi surface into patches. We find that Fermi liquid theory can essentially be thought of as a non-trivial representation of the Lie group of canonical transformations, bringing it within the fold of effective theories in many-body physics whose structure is determined by symmetries. We survey the benefits and limitations of this geometric formalism in the context of scaling, diagrammatic calcu- lations, scattering and interactions, coupling to background gauge fields, etc. After setting up a path to extending this formalism to include superconducting and magnetic phases, as well as applications to the problem of non-Fermi liquids, we conclude with a discussion on possible future directions for Fermi surface physics, and more broadly, the usefulness of diffeomorphism groups in condensed matter physics.