Go to main content
Format
BibTeX
MARCXML
TextMARC
MARC
DataCite
DublinCore
EndNote
NLM
RefWorks
RIS

Files

Abstract

Rapid advancements in technologies of text and image generation have increasingly put the perceived autonomy of human creativity under threat. Even before ChatGPT and other large-language models sent such anxieties into overdrive, literary critics were arguing for a hermeneutics of automatic writing and revisiting long-held assumptions about artistic originality. Few, however, gave much thought to these model's quirky cousins—a family branch that once ruled over the utopian dreams invested in AI: machine translation (MT). This essay reflects on why translation has been lost in all the recent talk about these models and offers a necessary corrective. It considers what a critical response to MT might look like when reframed around an understanding of current technologies and a vision of MT as potential collaborator rather than human replacement. First, it offers an overview of current neural-based MT and the theories of translation that underwrite it. It then uses literary texts as a limit case for surveying the technology's most visible gaps, providing a deep, qualitative analysis of Japanese literary texts machine translated into English. Finally, it takes a speculative turn and considers what "good enough" machine translation of a large corpus of world literature might be good for in a future of ubiquitous and ever more accessible MT. The results hint at more immediate ways that MT invites inquiry into the present conditions of world literature, but also to a future where the entanglement of human translation and agency with the material agency of the technology bring forth potentials in both.

Details

Actions

PDF

from
to
Export
Download Full History