Format | |
---|---|
BibTeX | |
MARCXML | |
TextMARC | |
MARC | |
DataCite | |
DublinCore | |
EndNote | |
NLM | |
RefWorks | |
RIS |
Files
Abstract
A causal vector autoregressive (CVAR) model is introduced for weakly stationary multivariate processes, combining a recursive directed graphical model for the contemporaneous components and a vector autoregressive model longitudinally. Block Cholesky decomposition with varying block sizes is used to solve the model equations and estimate the path coefficients along a directed acyclic graph (DAG). If the DAG is decomposable, i.e., the zeros form a reducible zero pattern (RZP) in its adjacency matrix, then covariance selection is applied that assigns zeros to the corresponding path coefficients. Real-life applications are also considered, where for the optimal order p≥1 of the fitted CVAR(p) model, order selection is performed with various information criteria.