Files
Abstract
This paper obtains a measure-theoretic restriction that must be satisfied by a prior probability measure for posteriors to be computed in limited time. Specifically, it is shown that the prior must be factorizable. Factorizability is a set of independence conditions for events in the sample space that allows agents to calculate posteriors using only a subset of the dataset. The result has important implications for models in mathematical economics and finance that rely on a common prior. If one introduces the limited time restriction to Aumann’s famous Agreeing to Disagree setup, one sees that checking for factorizability requires agents to have access to every event in the measure space, thus severely limiting the scope of the agreement result.