Download
Filename Size Access Description License

Abstract

The Holometer is designed to test for a Planck diffractive-scaling uncertainty in long-baseline position measurements due to an underlying noncommutative geometry normalized to relate Black hole entropy bounds of the Holographic principle to the now-finite number of position states. The experiment overlaps two independent 40 meter optical Michelson interferometers to detect the proposed uncertainty as a common broadband length fluctuation. 150 hours of instrument cross-correlation data are analyzed to test the prediction of a correlated noise magnitude of 7e-21m/Hz^.5 with an effective bandwidth of 750kHz. The interferometers each have a quantum-limited sensitivity of 2.5e-18m/Hz^.5, but their correlation with a time-bandwidth product of 4e11 digs between the noise floors in search for the covarying geometric jitter. The data presents an exclusion of 5 standard deviations for the tested model. This exclusion is defended through analysis of the calibration methods for the instrument as well as further sub shot noise characterization of the optical systems to limit spurious background-correlations from undermining the signal.

Details

Additional Details

Actions

from
to
Download Full History