Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DataCite
DublinCore
EndNote
NLM
RefWorks
RIS

Files

Abstract

The cardiac conduction system (CCS) orchestrates the electrical impulses that enable coordinated contraction of the cardiac chambers. The T-box transcription factors TBX3 and TBX5 are required for CCS development and associated with overlapping and distinct human CCS diseases. We evaluated the coordinated role of Tbx3 and Tbx5 in the murine ventricular conduction system (VCS). We engineered a compound Tbx3:Tbx5 conditional knockout allele for both genes located in cis on mouse chromosome 5. Conditional deletion of both T-box transcriptional factors in the VCS, using the VCS-specific MinKCreERT2, caused loss of VCS function and molecular identity. Combined Tbx3 and Tbx5 deficiency in the adult VCS led to conduction defects, including prolonged PR and QRS intervals and elevated susceptibility to ventricular tachycardia. These electrophysiological defects occurred prior to detectable alterations in cardiac contractility or histologic morphology, indicative of a primary conduction system defect. Tbx3:Tbx5 double-knockout VCS cardiomyocytes revealed a transcriptional shift toward non-CCS-specialized working myocardium, indicating a change to their cellular identity. Furthermore, optical mapping revealed a loss of VCS-specific conduction system propagation. Collectively, these findings indicate that Tbx3 and Tbx5 coordinate to control VCS molecular fate and function, with implications for understanding cardiac conduction disorders in humans.

Details

Preview

from
to
Export
Download Full History