Go to main content
Format
BibTeX
MARCXML
TextMARC
MARC
DataCite
DublinCore
EndNote
NLM
RefWorks
RIS

Files

Abstract

Anomalies of global symmetries are important tools for understanding the dynamics of quantum systems. We investigate anomalies of non-invertible symmetries in 3+1d using 4+1d bulk topological quantum field theories given by Abelian two-form gauge theories, with a 0-form permutation symmetry. Gauging the 0-form symmetry gives the 4+1d “inflow” symmetry topological field theory for the non-invertible symmetry. We find a two levels of anomalies: (1) the bulk may fail to have an appropriate set of loop excitations which can condense to trivialize the boundary dynamics, and (2) the “Frobenius-Schur indicator” of the non-invertible symmetry (generalizing the Frobenius-Schur indicator of 1+1d fusion categories) may be incompatible with trivial boundary dynamics. As a consequence we derive conditions for non-invertible symmetries in 3+1d to be compatible with symmetric gapped phases, and invertible gapped phases. Along the way, we see that the defects characterizing Z4 ordinary symmetry host worldvolume theories with time-reversal symmetry T obeying the algebra T2 = C or T2 = (−1)FC, with C a unitary charge conjugation symmetry. We classify the anomalies of this symmetry algebra in 2+1d and further use these ideas to construct 2+1d topological orders with non-invertible time-reversal symmetry that permutes anyons. As a concrete realization of our general discussion, we construct new lattice Hamiltonian models in 3+1d with non-invertible symmetry, and constrain their dynamics.

Details

Actions

PDF

from
to
Export
Download Full History