Files
Abstract
When released to the biosphere, mercury (Hg) is very mobile and can take millennia to be returned to a secure, long-term repository. Understanding where and when Hg was released as a result of human activities allows better quantification of present-day reemissions and future trajectories of environmental concentrations. In this work, we estimate the time-varying releases of Hg in seven world regions over the 500 year period, 1510–2010. By our estimation, this comprises 95% of all-time anthropogenic releases. Globally, 1.47 Tg of Hg were released in this period, 23% directly to the atmosphere and 77% to land and water bodies. Cumulative releases have been largest in Europe (427 Gg) and North America (413 Gg). In some world regions (Africa/Middle East and Oceania), almost all (>99%) of the Hg is relatively recent (emitted since 1850), whereas in South America it is mostly of older vintage (63% emitted before 1850). Asia was the greatest-emitting region in 2010, while releases in Europe and North America have declined since the 1970s, as recognition of the risks posed by Hg have led to its phase-out in commercial usage. The continued use of Hg in artisanal and small-scale gold mining means that the Africa/Middle East region is now a major contributor. We estimate that 72% of cumulative Hg emissions to air has been in the form of elemental mercury (Hg0), which has a long lifetime in the atmosphere and can therefore be transported long distances. Our results show that 83% of the total Hg has been released to local water bodies, onto land, or quickly deposited from the air in divalent (HgII) form. Regionally, this value ranges from 77% in Africa/Middle East and Oceania to 89% in South America. Results from global biogeochemical modeling indicate improved agreement of the refined emission estimates in this study with archival records of Hg accumulation in estuarine and deep ocean sediment.