Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DataCite
DublinCore
EndNote
NLM
RefWorks
RIS

Files

Abstract

Biopolymer network dynamics play a significant role in both biological and materials science. This study focuses on the dynamics of cellulose nanofibers as a model system given their relevance to biology and nanotechnology applications. Using large-scale coarse-grained simulations with a lattice Boltzmann fluid coupling, we investigated the reptation behavior of individual nanofibers within entangled networks. Our analysis yields essential insights, proposing a scaling law for rotational diffusion, quantifying effective tube diameter, and revealing release mechanisms during reptation, spanning from rigid to semiflexible nanofibers. Additionally, we examine the onset of entanglement in relation to the nanofiber flexibility within the network. Microrheology analysis is conducted to assess macroscopic viscoelastic behavior. Importantly, our results align closely with previous experiments, validating the proposed scaling laws, effective tube diameters, and onset of entanglement. The findings provide an improved fundamental understanding of biopolymer network dynamics and guide the design of processes for advanced biobased materials.

Details

Actions

Preview

from
to
Export
Download Full History