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ABSTRACT 

The enterprise of modern science evolves alongside its underlying structure, encompassing 

interactions among scientists, institutions, and culture, as well as the development of scientific 

ideas and discoveries. The increasing availability of digitized scholarly data, coupled with 

enhanced computational power, offers unprecedented opportunities to characterize, critically 

examine, and untangle how these complex, intertwined entities shape the inner workings of 

science. Through three empirical studies, this dissertation investigates how underlying social and 

infrastructural elements can influence the production, diffusion, and consumption of scientific 

ideas and discoveries. The introduction outlines the three studies. The first chapter tackles the 

question of how tacitly encoded configurations and undocumented components can influence the 

estimates from randomized clinical trials, demonstrating the role of socio-epistemic bubbles in 

the production of scientific medical knowledge. The results suggest why meta-analyses may not 

mechanically resolve scientific disagreements and disputes, contrary to widespread expectations. 

The second chapter extends the analogy of bubbles to the realm of attention in biomedical 

scientific knowledge, reflecting the phenomenon of bubbles and collapses in financial asset 

markets. It reveals that restricted diffusion within social and scientific 'bubbles' can precede 

sudden collapses in scientific attention, offering a straightforward framework for identifying 

early signs of these bubbles in science. The third study explores how the presence of code 

repositories alongside machine learning research affects the citation rates of papers. It finds that 

the popularity of ML frameworks, such as PyTorch and TensorFlow, used in these repositories 

can have second-order network effects, underscoring the latent role of technological artifacts and 

infrastructure in scientific dissemination. The final chapter concludes the dissertation with 

reflections and outlines future research directions. 



1 

Introduction 

As a social institution, the modern enterprise of science is shaped not only by scientific ideas and 

discoveries but also by interactions among scientists, institutions, research infrastructure, and 

diverse research cultures. This complex interconnectedness has motivated systematic inquiries to 

understand operations, the social conditions underpinning them, and the individuals involved in 

sciences (Collins 1983; Ben-David and Sullivan 1975; Kim 1994; Bourdieu 2004). The 

abundance of digitized scholarly data, coupled with enhanced computational capabilities, offers 

unprecedented opportunities to characterize, analyze, and untangle how these intertwined 

associations of entities, leading to an emerging multidisciplinary field of Science of Science 

(Fortunato et al. 2018; Wang and Barabási 2021). The following chapters in the dissertation, 

which collectively explore the underlying latent structures of scientific communities and their 

impacts, aim to bridge computational large-scale analysis with theoretical insights from the 

sociology of knowledge and science to study the production, consumption, and diffusion of 

scientific knowledge at scale.  

Chapter 1 conceptualizes science as a field of knowledge characterized by overlapping 

socio-epistemic bubbles, within which scientific practices, tacit, knowledge, and implicit 

preferences, and heuristics are shaped and circulated by localized networks of scientists and 

researchers (Collins 2010; Knorr-Cetina 1999; Crane 1972). Doing so leads to a new theorization 

that tacit knowledge and scientific practices, typically seen as transferred through direct human 

interaction or embodied experiences, occur and reside across an epistemic field (Martin 2003; 

Bourdieu 2004). These socio-epistemic bubbles are socially constituted and reinforced (Knorr-

Cetina 1999), localized rather than universal, and can remain invisible (de Solla Price and Beaver 

1966; Crane 1972) to those within and outside them. This theorization leads to a hypothesis that 

https://paperpile.com/c/7W1ycd/jB23+Ey09+NQW6+5QWV
https://paperpile.com/c/7W1ycd/UMZb+Hk7d
https://paperpile.com/c/7W1ycd/0RLzd+EFdkk+oEhUN
https://paperpile.com/c/7W1ycd/4Itvg+5QWV
https://paperpile.com/c/7W1ycd/4Itvg+5QWV
https://paperpile.com/c/7W1ycd/EFdkk
https://paperpile.com/c/7W1ycd/EFdkk
https://paperpile.com/c/7W1ycd/bEp1+oEhUN
https://paperpile.com/c/7W1ycd/bEp1+oEhUN


2 

even estimates drawn from randomized clinical trials may also be influenced by these socio-

epistemic bubbles.  

To empirically test the influence of these socio-epistemic bubbles, the first chapter 

examines randomized clinical trials (RCTs) collected by Cochrane Systematic Reviews, one of 

the most authoritative sources of evidence-based medicine practices. To measure the socio-

epistemic fields and bubbles, a computational manifold embedding technique (Le and Mikolov 

2014) is adapted to inscribe relations among collaborating researchers and articles produced 

through co-authorship, trained on approximately 8.4 million disambiguated authors and 28.3 

million articles from Pubmed Knowledge Graph (Xu et al. 2020). Consequently, the embedding 

space produces similar vector positions for authors who frequently co-author papers and papers 

co-authored by frequent collaborators. Then, clinical trials curated within 1,962 Cochrane 

Systematic Reviews were projected to this measurable field of social relationships and scientific 

knowledge. The analysis reveals that clinical trials closer to each other within this social space 

exhibit a higher degree of homogeneity. Furthermore, I found that statistically significant results 

are more likely to be challenged by distant researchers, while early null findings tend to gain 

statistical support when later studied by researchers close to the initial study authors. These 

results underscore the role of collaborative relationships as a subtle but critical proxy for 

capturing socio-epistemic bubbles, unlabeled but latent sources of variation in RCTs that affect 

the production side of scientific biomedical knowledge. 

Chapter 2 draws on the analogy between bubbles in asset markets and the potential 

inflation of attention in the sciences, further extending the concept of social and epistemic 

bubbles. This conceptualization builds upon previous considerations from philosophers and 

observers of science, who suggest that agents in science can be viewed as vendors selling their 

https://paperpile.com/c/7W1ycd/Or8tj
https://paperpile.com/c/7W1ycd/Or8tj
https://paperpile.com/c/7W1ycd/3ZPZE
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research (Goldman and Shaked 1991) and that the scientific system as a whole is a social 

investment not immune to the phenomenon of bubbles—often recognized in financial markets 

(Pedersen and Hendricks 2014; Evans et al. 2011). Combining this with the widely held view 

that citation counts serve as a measure of the importance and impact of scientific work despite 

imperfection (Fortunato et al. 2018; Partha and David 1994), the chapter seeks to identify a 

leading signal associated with an abrupt drop in scientific attention towards seemingly promising 

subfields in biomedical science. Inspired by the case of cardiac regeneration research in 

biomedicine, it posits that a lack of genuine diffusion, not captured by citation counts—or 

indicative of scientific bubbles—may predict a rapid decline in popularity or the burst of 

scientific bubbles. 

Building on this, I introduce the ‘diffusion index,’ designed to quantify the degree of 

research diffusion across intellectual and social spaces. This was achieved by assigning distances 

within citation networks based on two embedding models: 1) the ‘social space’ that maps the 

collaboration network of biomedical scientists, and 2) the ‘scientific space’ that encodes the 

direct and indirect associations of Medical Subject Headings. Applying this framework to 28,504 

unique biomedical subfields (Azoulay, Fons-Rosen, and Zivin 2019), the analysis suggests that 

limited diffusion precedes a drastic decline in a given subfield’s popularity. This result indicates 

that restricted diffusion in science can effectively identify scientific bubbles and predict their 

collapse. Additional analyses explore the consequences of these collapses, such as the 

association between bubbles and the continuous funding of irrelevant biomedical projects or the 

impact of entering a field near a bubble’s burst on the long-term reputational damage to a 

scientific career. These findings further highlight the significance of findings and the importance 

of early detection of potential bubbles.  

https://paperpile.com/c/7W1ycd/X3jb
https://paperpile.com/c/7W1ycd/7bJIJ+UTzOU
https://paperpile.com/c/7W1ycd/UMZb+7cX7k
https://paperpile.com/c/7W1ycd/oYCtp
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Chapter 3 turns the attention to the domain of machine learning (ML) research and also 

another critical aspect of contemporary scientific endeavor: the code repositories associated with 

research papers. In recent years, scientists and researchers have been encouraged, expected, or 

often required to share scientific artifacts along with their manuscripts—such as data and model 

implementations—via publicly accessible platforms. This has prompted a strand of scholarship 

that investigates the incentives, motivations, and costs linked with research transparency (Kim 

and Adler 2015; Mukherjee and Stern 2009; Wilms et al. 2020), as well as the impact of data and 

material sharing on the citation trajectories of research articles and broader implications (Kwon 

and Motohashi 2021; Furman and Stern 2011; Christensen et al. 2019). Against this backdrop, 

Chapter 3 aims to evaluate the degree to which the availability of code repositories, particularly 

GitHub repositories associated with papers, affects the citation rates of ML research articles.  It 

also examines the impact of the choice of ML framework, such as PyTorch and TensorFlow, on 

the citations of research papers. 

To examine this, I established a comprehensive linkage between article records cataloged 

in Papers with Code (PwC), the largest platform through which ML research articles and codes 

are linked, and Microsoft Academic Graph (MAG). Then, utilizing a random sample of 

approximately 20,000 ML articles linked to GitHub repositories along with papers topically 

similar but without repositories, the first analysis demonstrates that papers with repositories, on 

average, have about 20% advantages in monthly citation rates after the creation of the first 

GitHub repositories. Subsequently, the second analysis shows that the popularity trends of ML 

frameworks influence the monthly citation rate of related ML papers, exerting second-order 

network effects (Economides and Salop 1992). Together, these findings suggest the importance 

of technological infrastructure and artifacts in the diffusion of research.  

https://paperpile.com/c/7W1ycd/XQt6Y+rfAzx+sfVqE
https://paperpile.com/c/7W1ycd/XQt6Y+rfAzx+sfVqE
https://paperpile.com/c/7W1ycd/YpN4v+FhtWv+ufyrk
https://paperpile.com/c/7W1ycd/YpN4v+FhtWv+ufyrk
https://paperpile.com/c/7W1ycd/El0as
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The Conclusion closes the dissertation with summaries and reflections on each chapter. I 

also discuss the stakes of computational analysis on the scientific system and outline some 

avenues for future research by highlighting potential affordance and challenges. 
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Chapter 1 

Socio-Epistemic Bubbles and Tacit Confidence in Randomized Clinical Trials* 

 

Abstract 

The paradigm of scientific medicine is among the most influential epistemic shifts in the past 

century, wherein randomized clinical trials (RCTs) represent the impartial arbiter of legitimate 

medical knowledge, a view prevalent among quantitative social scientists. Nevertheless, not all 

RCTs agree, and systematic reviews are invoked to reconcile them. These assume the wisdom of 

crowds, which hinges on diverse perspectives and data, across the distribution of analyzed 

studies, but socio-epistemic bubbles across them may reduce realized diversity. We theorize how 

tacit knowledge, beliefs, and expectations accumulate within these ‘socio-epistemic bubbles,’ 

continuous regions of latent social density that may decrease diversity and increase certainty 

about healthcare studied by RCTs. To assess our theory, we analyze the Cochrane systematic 

review repository, covering 20,117 meta-analyses extracted from 1,962 reviews. We find that 

being closer within ‘social space’ inscribed by scientific collaboration markedly increases 

agreement regarding RCT effect direction and size. Our analysis suggests that this amplified 

certainty can drive premature convergence and path-dependency affecting medical practice and 

population health. Moreover, our findings imply hidden limitations associated with unmeasured 

social influence across the policy sciences through which conflicting claims perpetuate and 

highlight the necessity of accounting for them to improve collective certainty

 
* Co-authored with James A. Evans, Department of Sociology, University of Chicago and Santa 

Fe Institute. I appreciate Daniel Yekutieli and Ruth Heller for discussions in the early stage of 

this work. I also thank the University of Chicago’s Knowledge Lab members for valuable 

feedback. This work was completed in part with resources provided by the University of 

Chicago’s Research Computing Center.  
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Introduction 

Scientific advances and certainties represent a major contribution to modern economic growth 

and collective prosperity (Jones and Summers 2020; Oreskes 2019). The largest scale of 

scientific investments with the most immediate impact on human health and happiness lies in 

biomedicine (Ahmadpoor and Jones 2017). In the 21st Century, however, concerns have grown 

regarding the reproducibility and replicability1 of published biomedical claims (Ioannidis 2005; 

Rzhetsky et al. 2006; Head et al. 2015; Krauss 2018), often characterized as the “reproducibility 

crisis” (Baker 2016). The first criticisms were raised about medical, pharmacological and genetic 

findings (Ioannidis 2005; Rzhetsky et al. 2006), but these soon spread to the behavioral sciences 

(Peterson and Panofsky 2021) and beyond (Baker 2016).  

The “reproducibility crisis” may represent just another conflict in a long history of 

scientific disagreements between defensive and upstart ideas. Scientific development and change 

are rarely smooth, as rendered in Kuhn’s well-known portrait of scientific revolutions (Collins 

2000; Shwed and Bearman 2010; Kuhn 1962). What makes the contemporary concern over 

scientific replication distinctive is that it transpired despite seeming consensus over the method 

of generating rigorous evidence among the disciplines that employ statistical inference: 

randomized controlled trials (RCTs).  

RCTs aim to minimize the impact of subjectivity by randomly assigning study subjects 

into control and treatment groups to offset confounding factors researchers cannot directly 

 
1 The 2019 report from the U.S. National Academies of Science, Engineering, and Medicine 

(NASEM) defines reproducibility as “obtaining consistent computational results using the same 

input data, computational steps, methods, and conditions of analysis,” while replicability as 

“obtaining consistent results across studies aimed at answering the same scientific question, each 

of which has obtained its data.” (NASEM 2019: 1) Nevertheless, as hinted from a replication 

project name, Reproducibility Project: Psychology (Open Science Collaboration 2015) and the 

title of a manifesto, A manifesto for reproducible science (Munafò et al. 2017), two concepts 

have been often used interchangeably. 

https://paperpile.com/c/7W1ycd/vi4Xp+fYrFw
https://paperpile.com/c/7W1ycd/vZol8
https://paperpile.com/c/7W1ycd/CTqtA+r4sPF+L6q5n+T8uGz
https://paperpile.com/c/7W1ycd/CTqtA+r4sPF+L6q5n+T8uGz
https://paperpile.com/c/7W1ycd/hzKOc
https://paperpile.com/c/7W1ycd/CTqtA+r4sPF
https://paperpile.com/c/7W1ycd/Aq9IJ
https://paperpile.com/c/7W1ycd/hzKOc
https://paperpile.com/c/7W1ycd/9daXi+wKlG5+LJWkB
https://paperpile.com/c/7W1ycd/9daXi+wKlG5+LJWkB
https://paperpile.com/c/7W1ycd/4zsht
https://paperpile.com/c/7W1ycd/4zsht
https://paperpile.com/c/7W1ycd/qJcDa
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control. This allows scientists to achieve “mechanical objectivity” (Eyal 2019) based on explicit 

and transparent protocols. RCTs can be viewed as a vessel of Mertonian norms, especially that of 

universalism demanding that “pre-established impersonal criteria” (Merton 1973) be used to 

validate scientific claims. What is expected from this methodological apparatus is immunity 

from subjective bias, bursting the self-reinforcing filter bubbles and shattering the echo-

chambers that persist in political and cultural domains (Bishop 2009; Pariser 2011; Sunstein 

2018). Even though the RCT is not the only method of scientific inquiry, it occupies a pinnacle 

position in science, especially in the biomedical and policy domains where interventions are 

systematically evaluated for their effectiveness. It has notably risen as an arbiter of causal 

knowledge in the social and policy sciences in recent years, with five of the last eight Nobel 

awardees in Economics actively developing social scientific RCTs.  

RCTs in reality, however, are more complex and uncertain than this aspiration allows. 

Consider the statistical properties of an RCT. A study can reject the null hypothesis or fail to do 

so simply by chance, a concern that looms large over studies of small sample sizes. A popular 

method to generalize across different RCTs is to conduct a meta-analysis, a secondary statistical 

evaluation pooling estimates from multiple primary studies.2 Meta-analysis is the methodological 

centerpiece of a growing field called metascience, focused on robust, reproducible scientific 

knowledge (Munafò et al. 2017). Meta-analyses became widely adopted in scientific fields using 

RCTs, especially in medicine with the rise of evidence-based medicine (EBM) in the 1980s and 

early 1990s. It has garnered additional attention in the wake of the perceived replication crisis as 

a crucial tool to produce scientific synthesis with accumulating evidence (Munafò et al. 2017). 

 
2 In principle, non-RCT based studies can be included in a meta-analysis.  

https://paperpile.com/c/7W1ycd/ZqB3L
https://paperpile.com/c/7W1ycd/nD8Df
https://paperpile.com/c/7W1ycd/JETwb+bK9cU+QK4xV
https://paperpile.com/c/7W1ycd/JETwb+bK9cU+QK4xV
https://paperpile.com/c/7W1ycd/qJcDa
https://paperpile.com/c/7W1ycd/qJcDa
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Meta-analysis relies upon an aggregation of individual studies analogous to “wisdom of 

crowds”—the phenomenon that aggregated judgments, decisions, and even speculations from a 

crowd of individuals give rise to better estimates than those made by a single one (Galton 1907). 

3 This hinges on the independence and diversity of crowd members’ information (Surowiecki 

2004) and approach (Page 2019). In scientific crowds, findings established by more diverse 

researchers and distinct methods are much more likely to replicate (Danchev, Rzhetsky, and 

Evans 2019; Belikov, Rzhetsky, and Evans 2022). In a meta-analysis, each study is assumed to 

be drawn from the pool of studies on the same study topic using comparable research methods 

but independent of each other to offset idiosyncratic variations. Studies have demonstrated that 

social influence can cause herding in collective estimates (Lorenz et al. 2011; Da and Huang 

2020), but subtle social and other factors have rarely been incorporated into meta-analyses.   

Science studies scholars have long documented the difficulty of exact experimental 

replication, knowledge transfer, and communication (Collins 1985, 2001; Doing 2004). Tacit, 

uncodified knowledge is critical in experimental successes (Knorr-Cetina 1999) and transfers 

through social interaction (Collins 1985, 2010). A similar concern has played out in medicine, 

with many practitioners claiming that their subtle understanding of the “whole patient” results in 

a skilled art of diagnosis and treatment that cannot be reduced to the shallow equivalences of 

scientific medicine where medical subjects are treated interchangeably (Montgomery 2006). This 

concern inspires the research question we pose here: Are RCT estimates more similar among 

socially proximate scientists than distant ones?  

Tacit knowledge has typically been discussed as only observable and transferable through 

direct human interaction or transferred as embodied experience. We broaden this phenomenon, 

 
3 Galton (1907) reported that the median value from the collective guessing of an ox’s weight 

made by laypeople was almost close to actual weight.  

https://paperpile.com/c/7W1ycd/nDcS3
https://paperpile.com/c/7W1ycd/s6ijk
https://paperpile.com/c/7W1ycd/s6ijk
https://paperpile.com/c/7W1ycd/7ZElw
https://paperpile.com/c/7W1ycd/VTNyG+GmBWQ
https://paperpile.com/c/7W1ycd/VTNyG+GmBWQ
https://paperpile.com/c/7W1ycd/WKPlq+8VVX7
https://paperpile.com/c/7W1ycd/WKPlq+8VVX7
https://paperpile.com/c/7W1ycd/BuiV+THpPc+BK1as
https://paperpile.com/c/7W1ycd/EFdkk
https://paperpile.com/c/7W1ycd/BuiV+0RLzd
https://paperpile.com/c/7W1ycd/3cGkI
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theorizing scientific practices as occurring across an epistemic field (Martin 2003; Bourdieu 

2004). Complex configurations of tacit expectations, often undocumented preferences, and 

differences in the logic of discovery and justification within a field form epistemic cultures 

(Knorr-Cetina 1999) that we call socio-epistemic bubbles. We append “socio” to “epistemic” 

because they are socially constituted and reinforced, and label them bubbles because they are 

often localized rather than universal and remain invisible to those inside and outside them. 

Scientific practices circulate within these bubbles through scientific habitus (Bourdieu 1975) to 

precisely shape bio-science experiments, beyond that which is documented in a research paper or 

protocol. In this paper, we demonstrate that such socio-epistemic fields and bubbles can be 

captured through a computational manifold embedding technique that inscribes relations among 

collaborating researchers manifest through co-authorship. Our evaluation demonstrates that 

RCTs conducted in healthcare settings are significantly and substantially more likely to report 

homogeneous estimates when within a socio-epistemic bubble—nearby in the measurable field 

of social relationships and scientific knowledge. These bubbles of agreement become reinforced 

by proximate insiders but can be burst by distant outsiders.  

This paper extends insights from the social studies of science and connects to the growing 

literature on metascience by bridging the long-documented importance of tacit components in 

scientific knowledge production and concerns regarding replication in science. We extend 

methods at the intersection of network analysis and manifold learning to demonstrate the role of 

collaborative relationships as a subtle but critical proxy for capturing unlabeled but latent sources 

of variation in RCTs. We argue that this is why RCTs and meta-analyses often do not meet 

expectations as an impartial adjudicator. We further discuss the need to cultivate a more diverse 

community of researchers and scientists productively engaging with each other in order to 

https://paperpile.com/c/7W1ycd/4Itvg+5QWV
https://paperpile.com/c/7W1ycd/4Itvg+5QWV
https://paperpile.com/c/7W1ycd/EFdkk
https://paperpile.com/c/7W1ycd/jU4B
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sustainably construct robust science with more widespread relevance (Danchev, Rzhetsky, and 

Evans 2019; Belikov, Rzhetsky, and Evans 2022).  

 

Socio-Epistemic Fields and Bubbles    

Tacit Knowledge and Replication in Science and Technology 

Unlike explicit knowledge that can be codified in words or mathematical symbols, tacit 

knowledge is formed through experience, making it elusive to articulate.4 Michael Polanyi 

famously illustrates its existence with bicycle riding: the rider cannot precisely articulate the 

process (Polanyi 1958); he“knows more than he can tell” (Polanyi and Sen 1966). Social studies 

of science have provided ample empirical evidence demonstrating the role of tacit knowledge in 

replication. Harry Collins notably showed that scientists could not build a TEA laser based on 

published information alone; essential information for the construction of the laser device 

traveled through migrating persons who had previously succeeded in building one (Collins 1985, 

1974). Later ethnographies highlighted the role of embodied knowledge in a physics lab (Doing 

2004), a molecular biology lab (Fujimura 1988), and a nuclear weapons program (MacKenzie 

and Spinardi 1995). Literature from science studies reveals that the complex nature of scientific 

inquiry often challenges clear and unambiguous forms of articulation, requiring interpersonal 

connections and immersive experience to render a discovery process observable and transferable.  

Tacit knowledge has also been a central topic in innovation and knowledge management 

studies. This strand of work shows how unspoken, or undocumented, “know-how” is stored, 

practiced and diffused across individuals and organizations (Cowan and Foray 1997; Becker et 

 
4 Even codification can be shaped by socially guided implicit preferences and expectations. For 

instance, Warwick's (2011)  study on the rise of mathematical physicists at Cambridge during the 

mid-19th to early-20th centuries offers a compelling illustration of how tacit knowledge and 

styles are passed down through teaching and academic training. 

https://paperpile.com/c/7W1ycd/VTNyG+GmBWQ
https://paperpile.com/c/7W1ycd/VTNyG+GmBWQ
https://paperpile.com/c/7W1ycd/BDMOA
https://paperpile.com/c/7W1ycd/PB6Cu
https://paperpile.com/c/7W1ycd/BuiV+pp0Qg
https://paperpile.com/c/7W1ycd/BuiV+pp0Qg
https://paperpile.com/c/7W1ycd/BK1as
https://paperpile.com/c/7W1ycd/BK1as
https://paperpile.com/c/7W1ycd/ZV9AV
https://paperpile.com/c/7W1ycd/iLO49
https://paperpile.com/c/7W1ycd/iLO49
https://paperpile.com/c/7W1ycd/1WJnf+jDVxk
https://paperpile.com/c/7W1ycd/1Nida/?noauthor=1
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al. 2005). Some tacit knowledge, like embodied know-how, may elude straightforward 

codification. Other forms of tacit knowledge, while in principle explicable, can remain 

uncodified for diverse reasons. Things may become taken-for-granted, or their value may not 

merit the prohibitive cost of formalization (Nelson 2003). Such observations underscore the 

importance of shared tacit knowledge in replication rates across science and technology.  

Reproduction is typically conceived as a successful attempt to produce the same answer 

by testing the same phenomena with the same methods on the same data. Replicability involves 

testing the same phenomena with the same methods and new data (NASEM 2019). Conceptual 

replication involves testing the same phenomena with different (while comparable) methods and 

different data, the hardest of the three (Belknap and Leonard 1991). Variation in reproduction or 

replication implies the existence of uncodified elements varying between them. The conditions 

of (conceptual) replication, by design, require tests conducted in different contexts, sometimes 

with different methods, such that they represent an attempt to vary uncodified elements from the 

original study, which were presumably non-critical to the claimed finding. The greater the 

distance between the original and the successfully replicated test, the more independent the 

evidence that replication provides. Deploying a new treatment regime from one patient, hospital, 

or country to another represents the critical (conceptual) replication hoped for by clinical 

medicine, generalizability simulated with random assignment in RCTs.    

 

From Tacit Knowledge to Socio-Epistemic Bubbles in Science 

Collins introduced a typology of tacit knowledge: somatic, relational, and collective 

(2010), which categorizes knowledge by where it resides. Exemplified with Polanyi’s original 

example of “bike balancing,” somatic tacit knowledge is encoded in bodies and brains, which 

https://paperpile.com/c/7W1ycd/1WJnf+jDVxk
https://paperpile.com/c/7W1ycd/YFNGn
https://paperpile.com/c/7W1ycd/CJg9k
https://paperpile.com/c/7W1ycd/0RLzd/?noauthor=1
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entails training to perform successful judgment and action. This encompasses cognitive skills 

such as chess-playing. Relational tacit knowledge is a matter of “how particular people relate to 

each other” (Collins 2010: 86). This may remain tacit due to intentional concealment, the 

practical costs of explication (Nelson 2003), or mismatched silence between insiders and 

outsiders (Collins 2010: 91-97). The last type, collective tacit knowledge, must be acquired 

through immersion in the collective practices and language of a community, as practical bike 

riding requires negotiating skills for right-of-passage with other vehicles and pedestrians from 

social cues, which makes it resistant to clear and decontextualized explication.   

 This distinction between somatic and the other two types where tacitness resides outside 

an individual is useful. But we argue for a new theoretical construct between relational and 

collective. Although Collins’ typology may suffice for bicycle riding, it is ill-suited to capture the 

tacit bubbles underlying science in action. The acquisition and diffusion of tacit knowledge 

within relational or collective spaces are framed as binary—only you and your intimates know 

something or everyone in the field knows it.  

The amateur epistemologist, General Donald Rumsfeld, who directed the Iraq War under 

U.S. President George W. Bush, articulated a related typology of knowns and unknowns 

involving the war. Like Collins, he too posited three categories: “known knowns” that the 

military could articulate and estimate, “known unknowns” that they could articulate but not 

estimate, and “unknown unknowns” about which they were entirely clueless. Scientific research 

often targets “unknowns,” phenomena of great uncertainty, but the assessment of what is 

“known” among researchers is partial and often contested. As such, tacitness is not discrete but 

continuous: things may be more or less known.  

https://paperpile.com/c/7W1ycd/YFNGn
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We conceptualize science as a field of knowledge, eddied by socio-epistemic bubbles 

where implicit preferences, unarticulated beliefs, and unstated heuristics become shared among a 

local network of scientists. Tacitness in science resides above the individual but is neither 

ubiquitous across the collective nor confined within a clique of scientists. This continualizes the 

notion of an epistemic culture, which Knorr-Cetina articulated in the discrete contexts of 

molecular biology and particle physics (Knorr-Cetina 1999). 

 With respect to Rumsfeld’s typology, note that his tripartite scheme missed a logical 

fourth category (Hann 2011): “unknown knowns” where knowledge is shared but 

unacknowledged and unrecognized. Within socio-epistemic bubbles, knowledge is obvious to 

those who populate that region of the scientific space, but obscure to those beyond it. Unlike a 

named discipline, the boundary of an epistemic bubble is typically invisible to both those on the 

in- and outside. What is more, these bubbles are continuous—each person experiences a different 

one as a function of their precise location and adjacencies.  

This notion of an epistemic bubble is reminiscent of an “Invisible College,” a dense 

community of “in-group” researchers who actively engage each other in studying a specialty (de 

Solla Price and Beaver 1966; de Solla Price 1961). Applying Collins’ typology, a single 

epistemic bubble would correspond to the social space where relational tacit knowledge is 

shared and new collaborations emerge through homophily of research orientation (C. Zhang et 

al. 2018). Nevertheless, science comprises a continuous space that transcends a single 

community and contains innumerable, overlapping bubbles defined by those who have attended 

the same conferences, read the same articles, sat through the same seminars or lectures, used the 

same methods, and been party to the same conversations. 

https://paperpile.com/c/7W1ycd/EFdkk
https://paperpile.com/c/7W1ycd/6e4fW
https://paperpile.com/c/7W1ycd/bEp1+tuRLI
https://paperpile.com/c/7W1ycd/bEp1+tuRLI
https://paperpile.com/c/7W1ycd/R6ji6
https://paperpile.com/c/7W1ycd/R6ji6
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The space underlying socio-epistemic bubbles equates with the scientific field 

characterized by Bourdieu. This field reflects the distribution of scientific and cultural capital 

that shapes the habitus of scientists (Bourdieu 1991, 2004, 1975). We expand Bourdieu’s 

discrete view of scientists’ habitus to involve continuous gradation from scientist to scientist that 

spans tacit assumptions, heuristics, expectations, and speculations critical for the replication of 

scientific work. Bubbles in the scientific field are maintained through self-reinforcement by 

scientists who conduct, document, and share research with the scientific habitus that ultimately 

influence what can be precisely reproduced and replicated in fields of science. 

Our analytical strategy turns this scientific field and associated socio-epistemic bubbles 

into a continuous metric space. The idea of deriving latent, abstract spaces from interdependent 

structured data for social research dates to Paul Lazarsfeld (Lazarsfeld and Henry 1968) and 

other network analysts who sought to capture latent representations of network data using 

algorithms like multidimensional scaling and block-models (Breiger, Boorman, and Arabie 

1975). More contemporary efforts include work by Hoff and colleagues (2002), in which they 

propose a statistical method to generate low-dimensional features that constitute a “latent social 

space” wherein the relative position of individuals governs the formation of new ties. In all this 

work, the focus has been to construct low-dimensional embedding spaces that preserve distances 

between all networked entities with minimal distortion (Smith, Asta, and Calder 2019). In the 

decade, however, efforts to create relational spaces from networks have been revolutionized in 

terms of their scalability, resolution, and predictive power by the emergence of neural 

embedding models, which learn continuous vector representations of network data (Cui et al. 

2019). Following this work, we use a neural embedding model to generate a manifold that 

succinctly encodes the complex relational structure underlying RCTs.  

https://paperpile.com/c/7W1ycd/rVYHu+5QWV+jU4B
https://paperpile.com/c/7W1ycd/iS869
https://paperpile.com/c/7W1ycd/0QXZM
https://paperpile.com/c/7W1ycd/0QXZM
https://paperpile.com/c/7W1ycd/L5UDc/?noauthor=1
https://paperpile.com/c/7W1ycd/PJOdR
https://paperpile.com/c/7W1ycd/thRbg
https://paperpile.com/c/7W1ycd/thRbg
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We use this approach, as detailed below, to represent the continuous latent space of 

socio-epistemic bubbles in which tacitness resides between the network of collaborating research 

scientists. Collaboration and co-authorship on a research project involve joint participation and 

can be derived from publication data following Breiger’s approach to conceptualizing the social 

duality between people and groups (Breiger 1974). Substantively, a socio-epistemic bubble can 

be represented by proximity in the vector space of research co-authorship, which captures not 

only similarity in the choice of research topics and strategies (Foster, Rzhetsky, and Evans 

2015), but also social obligations and cognitive preferences for certain approaches and answers 

(Teplitskiy et al. 2018). Recent research demonstrating that greater diversity in replication 

improves generalizability (Danchev, Rzhetsky, and Evans 2019; Belikov, Rzhetsky, and Evans 

2022) suggests that social connections increase the number of unmentioned conditions and 

controls remaining tacit or implicit in print. This suggests that social proximity increases the 

likelihood of co-presence within a socio-epistemic bubble and the number of unarticulated 

invariances within experiments that defy straightforward replication. 

 

The Rise of Evidence-Based Medicine  

Pre-EBM period 

The practice of RCTs sought to establish treatment efficacy and safety by eliminating potential 

confounding influences through random assignment. Popularized by Ronald A. Fisher during the 

first half of the 20th Century5 (Fisher 1925, 1935), RCTs were adopted in medical science during 

the post World War II era to evaluate the efficacy of streptomycin to cure tuberculosis (Hill 

 
5 Prior to Fisher, Charles Pierce and his student Joseph Jastrow in 1884 reported their cognitive 

experiments of perceiving differences in weights using a randomization process (Peirce and 

Jastrow 1884). But Fisher’s role in introducing and spreading the practice was essential (Hall 

2007; Hacking 1988).  

https://paperpile.com/c/7W1ycd/UdBqG
https://paperpile.com/c/7W1ycd/fiJvY
https://paperpile.com/c/7W1ycd/fiJvY
https://paperpile.com/c/7W1ycd/PiJtT
https://paperpile.com/c/7W1ycd/VTNyG+GmBWQ
https://paperpile.com/c/7W1ycd/VTNyG+GmBWQ
https://paperpile.com/c/7W1ycd/jvXwo+rP99C
https://paperpile.com/c/7W1ycd/hTdhf
https://paperpile.com/c/7W1ycd/SG2Cz
https://paperpile.com/c/7W1ycd/SG2Cz
https://paperpile.com/c/7W1ycd/8mCWj+woT9u
https://paperpile.com/c/7W1ycd/8mCWj+woT9u
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1952) and the polio vaccine (Meldrum 1998). In the 1950s, the German manufacturer Grünenthal 

introduced the animal-tested drug thalidomide for female morning sickness during pregnancy to 

the worldwide market. This was later linked to thousands of documented miscarriages and tens 

of thousands of severe congenital disorders worldwide. Even though a U.S. Food and Drug 

Administration (FDA) reviewer recommended against U.S. adoption, narrowly avoiding the 

tragedy, the event catalyzed U.S. regulation in the 1962 Kefauver-Harris amendments requiring 

drug manufacturers to obtain FDA approval based on multiple rounds of RCTs on drug efficacy 

and safety for human subjects before marketing them to U.S. physicians and the public (Junod 

2008).  

Despite the new regulation, diagnoses and interventions depended on individual 

physician’s judgments, shaped through education and clinical experience. To address the 

continuing flow of heterogeneous medical studies and experience—including conflicting 

RCTs—with an institutional apparatus, the U.S. National Institutes of Health (NIH) organized 

the Consensus Development Conference Program in the 1970s. These conferences adapted the 

idea of a “Science Court” proposed by engineer Arthur Kantrowitz (Kantrowitz 1967) and set 

guidelines for Breast Cancer Screening in 1977, Drugs and Insomnia in 1983, Prevention and 

Treatment of Kidney Stones in 1988, and many more. Conferences convened panels of 10-20 

experts on focused topics and engaged in deliberation (Solomon 2015). Despite the success of 

the consensus conference as a model and its diffusion around the world in the 1980s and 1990s 

(Solomon 2015), a wide variation of medical research and practices persisted in the U.S. and 

elsewhere (Wennberg 1984).   

 

Evidence-Based Medicine and Cochrane  

https://paperpile.com/c/7W1ycd/hTdhf
https://paperpile.com/c/7W1ycd/dPR2k
https://paperpile.com/c/7W1ycd/7Pnug
https://paperpile.com/c/7W1ycd/7Pnug
https://paperpile.com/c/7W1ycd/AK5QH
https://paperpile.com/c/7W1ycd/Q09Mi
https://paperpile.com/c/7W1ycd/Q09Mi
https://paperpile.com/c/7W1ycd/7b7yX
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“Evidence-based medicine” (EBM) entered the medical lexicon in the early 1990s (Eddy 1990; 

Evidence-Based Medicine Working Group 1992). Its origination and spread can be attributed to 

the collective efforts of a core group of medical researchers, especially clinical epidemiologists 

in Canada and the U.K., who unleashed a scientific movement (Frickel and Gross 2005). 

Archibald Cochrane was a pioneering figure who championed the importance of accessibility to 

RCT results and the critical role of research synthesis in guiding medical practices (Cochrane 

1972). His work inspired the founders of EBM, including Iain Chalmers, who led the Oxford 

Database of Perinatal Trials and the early Cochrane Collaboration, and David Sackett, who 

started the first EBM center at Oxford in 1994 and made methodological contributions with 

Gordon Guyatt and Brian Haynes at McMaster University in Canada (Au 2021). 

 Definitions of EBM emphasize the importance of incorporating “current best evidence” 

(Sackett et al. 1996) or “the best available scientific evidence” (Davidoff et al. 1995) in clinical 

decision making. Despite the rise of RCTs in medicine from the 1960s through the 1980s, the 

panelists of consensus conferences often favored their clinical experiences, delaying or negating 

the possibility of consensus (Daly 2005). The significant deviation of EBM from the previous 

approach, including the consensus conference model, was its prioritization of evidence obtained 

from RCTs. In other words, EBM prescribes a hierarchy of evidence, placing RCTs at the top, 

above observational studies, then conclusions from group deliberation with singular case studies 

at the bottom, subordinating judgment from experience and authority to numerical evidence 

generated from explicit experimental protocols. Under this evaluative regime, systematic 

reviews6 are produced and clinical practice guidelines prepared to standardize medical 

interventions (Timmermans and Berg 2003).   

 
6 The term “systematic review” was first introduced in 1994 (Dickersin, Scherer, and Lefebvre 

1994; Mulrow 1994), calling for combining traditional literature reviews with quantitative 

https://paperpile.com/c/7W1ycd/nnjr5+gvCWd
https://paperpile.com/c/7W1ycd/nnjr5+gvCWd
https://paperpile.com/c/7W1ycd/vpKuB
https://paperpile.com/c/7W1ycd/hXUwE
https://paperpile.com/c/7W1ycd/hXUwE
https://paperpile.com/c/7W1ycd/rujS
https://paperpile.com/c/7W1ycd/d56GA
https://paperpile.com/c/7W1ycd/nx723
https://paperpile.com/c/7W1ycd/CsAlO
https://paperpile.com/c/7W1ycd/1Aqrx
https://paperpile.com/c/7W1ycd/vR9BV+uaNe3
https://paperpile.com/c/7W1ycd/vR9BV+uaNe3
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A crucial statistical tool for research synthesis used by EBM has been meta-analysis. 

Given the probabilistic nature of estimates from RCTs, a systematic review typically includes 

meta-analysis whenever multiple RCT-based studies are available to synthesize different 

estimates and produce overall conclusions harnessing increased statistical power. A 

biostatistician, William G. Cochran formalized the early statistical model in 1954 (Cochran 

1954), but the term “meta-analysis” was coined by statistician Gene Glass (1976). The practice 

garnered attention in the 1980s and 1990s (Hunt 1997) and was adopted by biostatisticians in 

medical science (Shadish and Lecy 2015) and early advocates of EBM. The increased 

availability of electronic publication databases during the 1990s was essential in making meta-

analysis feasible (Gurevitch et al. 2018; Timmermans and Berg 2003). Figure 1.1 displays the 

growing annual proportion of publications indexed as systematic reviews and meta-analyses in 

PubMed from 1990 to 2019. 

The Cochrane Collaboration (now Cochrane) was founded in 1993 in London and named 

after Archibald Cochrane under the leadership of Iain Chalmers. Cochrane maintains 53 review 

groups across distinct medical areas such as pregnancy and childbirth, mental health, breast 

cancer, and many others, with more than 30,000 expert volunteers from health science 

worldwide (Cochrane, 2021). It has been the most prominent non-profit organization promoting 

EBM since its foundation (Salandra, Criscuolo, and Salter 2021; Jadad et al. 1998). The main 

channel of influence is their vast collection of systematic reviews on medical topics ranging from 

the efficacy of drugs to the effect of diagnosis, nutrients, exercise, and surgery to inform 

healthcare professionals, policymakers, and patients.  

 

evidence to handle the fast-growing number of publications to inform evidence-based medical 

practice. A systematic review refers to a scholarly genre synthesizing literature on the diagnosis 

and treatments of specific clinical conditions (e.g., comparing the efficacy of chemotherapy and 

radiotherapy on breast cancer). 

https://paperpile.com/c/7W1ycd/LGZLM
https://paperpile.com/c/7W1ycd/LGZLM
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Figure 1.1: The Growth of Systematic Reviews and Meta-Analysis in PubMed 

 
Socio-Epistemic Bubbles and RCTs 

Notably, a persistent criticism against EBM contends that the application of clinical 

knowledge necessitates embodied judgment and experience residing in healthcare providers, 

highlighting the duplexity of medicine as “science” and “art” (Montgomery 2006). The 

diminishing authority of physicians and other healthcare providers has been a recent topic of 

debate, but tacit knowledge underlying the art and craft of medicine continues to persist through 

social institutions ranging from hospital wards to medical conferences (Menchik 2021). 

Other critics of EBM have more directly raised questions about RCT’s promise as a bias-

free tool for evidence generation. At one extreme, the intrinsic impossibility of eradicating the 

effect of confounders due to RCT’s probabilistic nature is pointed out (Worrall 2002). While this 

criticism touches on the epistemic nature of scientific experiments based on randomization, a 

case study of ten highly cited RCT-based studies reports that clinical trials involve a plethora of 

subtle and tacit decisions, including the initial sampling, gathering the baseline information, and 

appropriate level of randomization, quantifying the treatment outcomes (Krauss 2018). When 

RCTs are performed to evaluate non-pharmaceutical medical interventions (e.g., exercise, 

https://paperpile.com/c/7W1ycd/qQoUy
https://paperpile.com/c/7W1ycd/x0hcb
https://paperpile.com/c/7W1ycd/T8uGz
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nutrition, surgery), it is often challenging to maintain double-blindness as both clinicians and 

patients know what they do, which suggests that subconscious expectations of an intervention’s 

therapeutic effect can play a role in conveying therapies and evaluating clinical outcomes 

(Worrall 2002). Moreover, it has also been reported that even the production of standardized 

clinical outcome measures and their interpretation in evaluating therapeutic effects can also be 

influenced by clinicians’ education and experience (Greenhalgh et al. 2008). All these 

discussions all point to the existence of tacitness in RCTs.   

We neither intend to argue that RCTs and meta-analysis using them are wrong (Ioannidis 

2005) nor to document the complete list of latent sources causing variations in RCT or quantify 

their individual impact. We posit, however, that tacit aspects not explicated through publications 

but implicitly shared in the space of socio-epistemic bubbles can shape the results of RCTs. 

Specifically, we will demonstrate that decreased social diversity leads to increased homogeneity 

in effect direction and size. We do this by projecting RCTs collected in meta-analyses from 

Cochrane systematic reviews to the ‘social space’ inscribed by collaborating scientists. Insofar as 

RCT evidence must transcend its study environment to impact widespread medical practice and 

population health, tacitly shared research knowledge underlying homogeneous results should be 

accounted for in meta-analyses so that the health value of those findings is available to the 

public. We also demonstrate that later researchers outside the socio-epistemic bubble of early 

research on a medical practice are much more likely to reverse our understanding of that 

practice’s medical value. These results suggest that tacit certainty may unintentionally decrease 

the RCT literature’s relevance for population health.  

 

 

https://paperpile.com/c/7W1ycd/x0hcb
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Data and Setup  

We construct our data from two sources for the following analyses: 1) RCT results collected in 

meta-analyses within Cochrane systematic reviews, 1997-2017, and 2) disambiguated author IDs 

and publication references identified in the PubMed Knowledge Graph (PKG). Using the PKG 

dataset, we construct a manifold vector space of the large biomedical literature and researchers 

using the collaboration of researchers manifested through co-authorship via authors and 

publication IDs.  

 

Cochrane Systematic Reviews 

Cochrane Database of Systematic Reviews (CDSR) is considered the most 

comprehensive and reliable systematic review for various healthcare settings and interventions 

(Salandra, Criscuolo, and Salter 2021; Jadad et al. 1998). CDSR was ranked 10th (among 165 

journals) and 11th (among 167 journals) in the Medicine General and Internal category on the 

journal citation report from Clarivate in 2019 and 2020, respectively. Cochrane has also 

maintained an official partnership with the World Health Organization (WHO) since 2011, and 

most of the WHO guidelines cite systematic reviews (75% in 2015 and 90% in 2016) published 

by CDSR (Cochrane 2016).  

 The authors of Cochrane systematic reviews are unpaid experts in a given healthcare 

topic. They first develop a protocol for a systematic review (such as narrowing the scope of the 

topic and refining keywords and terms for search), then perform a comprehensive query through 

diverse electronic databases (e.g., PubMed, Embase) to find relevant studies for a given research 

topic and question. Once a pool of candidate studies is collected, review authors evaluate the 

relevance and validity of collected studies and decide which should be included (and excluded) 
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in the review. Reasons for exclusion range from high risk of bias or invalid study designs to 

unavailability of relevant clinical outcomes due to different study aims. Following this process, 

review authors occasionally conclude that no trustworthy RCT is available on a given topic. 

Review authors conduct meta-analyses when appropriate studies exist, usually with multiple 

clinical outcomes, and report results with systematic, quantitative reviews. This process allows 

us to test our question by associating the social proximity or density of RCTs on specific 

healthcare topics with homogeneity among their results. 

Our subsequent analyses draw on 20,117 meta-analyses containing at least five studies 

we extracted from 1,962 Cochrane reviews published up to November 18, 2017. A single 

Cochrane Review typically covers multiple outcomes, such as different end time points, side-

effects, etc., in order to evaluate the overarching effect of an intervention. Cochrane reviews can 

be updated when new eligible studies are found, but the identifiers of each review remain the 

same. Our data is drawn from the latest version as of November 18, 2017.  

Reference sections from each review provide bibliographic information for studies listed 

under a “study heading,” where review authors identify multiple publications within the same 

clinical trials or trial arms through a process of manual association. For example, a Cochrane 

review titled “Cranberries for preventing urinary tract infections” (Jepson, Williams, and Craig 

2012)7 identifies a clinical study, “Wing 2008,” associated with two research articles published 

in 2008 and 2010. The 2008 article is titled “Comparison of urinary cytokines after ingestion of 

cranberry juice cocktail in pregnant subjects: a pilot study,” published in the Journal of Urology 

by Drs. Deborah Wing, Pamela Rumney and colleagues from obstetrics and gynecology at the 

University of California, Irvine, School of Medicine8 The 2010 article, “Daily cranberry juice for 

 
7 Cochrane Accession Number: CD001322 (Wilcken, Hornbuckle, and Ghersi 2003). 
8 PMID: 18707726. 

https://paperpile.com/c/7W1ycd/R20u7
https://paperpile.com/c/7W1ycd/R20u7
https://paperpile.com/c/7W1ycd/Y1QMt
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the prevention of asymptomatic bacteriuria in pregnancy: a randomized, controlled pilot study,” 

was also published in the American Journal of Perinatology by Drs. Wing, Rumney, and others.9 

The Cochrane review authors identified that the papers reported on the same underlying RCT 

and put them together. We harvested PMIDs associated with the associated studies and retrieved 

disambiguated author IDs and references for each article from the PKG dataset (Xu et al. 

2020).10 

Figure 1.2 displays an example meta-analysis from a Cochrane review, reporting the 

number of study participants, events, and estimates from seven trials comparing tumor response 

rates between endocrine therapy and chemotherapy on metastatic breast cancer.11  

Figure 1.2: Example Meta-Analysis from a Metastatic Breast Cancer Cochrane Review 

 

Following Cochrane conventions, we deem the subgroup meta-analyses for each clinical 

outcome as separate. Appendix Table A1.1 shows the number of systematic reviews and meta-

analyses across the 52 Cochrane review groups we use for analysis. The breakdown of meta-

 
9 PMID: 19562652. 
10 We use the second version of the PKG data for the disambiguated author IDs, covering 

MEDLINE indexed publications published by the end of 2019. We use the PMID-to-PMID 

citation table from the fourth version (C04_ReferenceList), which integrates PubMed's citation 

data, NIH's open citation collection, OpenCitations, and the Web of Science.  
11 Cochrane Accession Number: CD001322. 

https://paperpile.com/c/7W1ycd/3ZPZE
https://paperpile.com/c/7W1ycd/3ZPZE
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analyses by types of outcomes, measures, pooling methods, and model choices are documented 

in Appendix Table A1.2 (dichotomous outcomes) and A1.3 (continuous outcomes). 

 

Encoding Socio-Epistemic Bubbles: Vector Representations of Publications in Social Space 

Neural embedding models have become widely used to model and measure distance and 

change within language and networks. These models involve the construction of a 

dimensionalized vector space12 in which geometrically proximate words or network nodes 

frequently share local linguistic or network contexts from training data. These were initially 

validated in the context of human language, where word proximities reflected underlying cultural 

meanings (Garg et al. 2018; Kozlowski, Taddy, and Evans 2019; Mikolov et al. 2013). This 

approach to continuous vector estimation from neural models has more recently emerged as a 

major approach for network analysis, dominating the performance of discrete network models 

and measures for prediction (Mikolov et al. 2013) .  

Algorithmically, the accuracy and efficiency of Word2Vec’s skip-gram architecture, 

which approximates the factorization of a text’s word by context matrix (Levy and Goldberg 

2014), increased its widespread popularity for modeling language and culture in the social 

sciences (Kozlowski, Taddy, and Evans 2019; Arseniev-Koehler and Foster 2020; Nelson 2021; 

Boutyline and Soter 2021; Lix et al. 2022). This approach generalized to networks by treating 

proximity between network nodes as those sharing network neighbors in the Deepwalk model 

 
12 These representations are considered “low-dimensional” from the perspective of the data on 

which they are estimated—there may be hundreds of thousands of unique words in a corpus or 

nodes in a network. Nevertheless, through cross-validation they often perform optimally with 

tens, hundreds or even thousands of dimensions, which is considered very “high-dimensional” 

from the perspective of social (and any formal) theory. 

https://paperpile.com/c/7W1ycd/6mX9w+oYJqE+qNM1N
https://paperpile.com/c/7W1ycd/qNM1N
https://paperpile.com/c/7W1ycd/d3p5k
https://paperpile.com/c/7W1ycd/d3p5k
https://paperpile.com/c/7W1ycd/oYJqE+MBVSK+q41cM+2ejM5+4wFRd
https://paperpile.com/c/7W1ycd/oYJqE+MBVSK+q41cM+2ejM5+4wFRd
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and its borrowed skip-gram architecture (Perozzi, Al-Rfou, and Skiena 2014), yielding separate 

embedding vectors for each node.13 

Following Breiger’s approach to conceptualizing the social duality between people and 

groups (Breiger 1974), we model the scientific field as a duality between scientist authors and 

the scientific artifacts (i.e., published papers) they produce. This approach to encoding the field 

of socio-epistemic bubbles enables us to capture similarities in research topics, preferences, and 

strategies among researchers and the distribution of scientific habitus (Foster, Rzhetsky, and 

Evans 2015) . Shared authorship indicates that co-authors assume credit and responsibility 

together, manifesting association and shared orientation. Moreover, the prevalence of broad co-

authorship in medical research suggests collaborations are well-sampled. Nevertheless, this 

approach is limited in that it does not directly account for other social venues where socio-

epistemic bubbles can emerge and reproduce, such as pedagogical contexts (Warwick 2011), 

laboratories (Latour and Woolgar 1979), or medical conferences (Menchik 2021).  

We use the skip-gram approach that models such as Deepwalk also employs (Perozzi, Al-

Rfou, and Skiena 2014), but we here adapt the Doc2Vec architecture (Le and Mikolov 2014) that 

can be used atop skip-gram to estimate vectors not only for authors but also for the papers they 

write together. In this way, Doc2Vec, with its recurrent neural network, enables us to place 

articles in terms of the authors who collaborated to write them. Specifically, we build a 100-

dimensional social embedding space anchored by 8,359,189 disambiguated biomedical authors 

 
13 A subsequent node embedding approach, Node2vec (Grover and Leskovec 2016), propose 

alternative analytical approach that involves the generation of biased random walks across 

observed networks, flexibly allowing alternative parameterization to produce different metrics of 

similarity based on distinct hypotheses about the underlying topology of the network. Given the 

size and variability of our co-author network (~8M scientists across ~28M documents), we have 

no basis for specific hypotheses about network structure and so we use the assumption-free skip-

gram/DeepWalk architecture.  

https://paperpile.com/c/7W1ycd/MTUY6
https://paperpile.com/c/7W1ycd/UdBqG
https://paperpile.com/c/7W1ycd/fiJvY
https://paperpile.com/c/7W1ycd/fiJvY
https://paperpile.com/c/7W1ycd/1Nida
https://paperpile.com/c/7W1ycd/32EkX
https://paperpile.com/c/7W1ycd/qQoUy
https://paperpile.com/c/7W1ycd/MTUY6
https://paperpile.com/c/7W1ycd/MTUY6
https://paperpile.com/c/7W1ycd/Or8tj
https://paperpile.com/c/7W1ycd/hr2Bp
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with PKG, within which we assess the vector space position of 28,329,992 research indexed by 

PMID until the end of 2019. To include all the co-author and publication information in training, 

only authors who published more than one paper were considered.14 We built our vector 

representations directly using the observed publication-author network without generating 

random walks based on it, considering the size of the network.15 

We trained our vector space model with the Distributed Bag of Words (DBOW) 

approach, which uses the skip-gram architecture. The sliding window size that defines the size of 

training context for each author was set to 2,000—larger than the largest number of authors in a 

single published study. In this way, we ensure that in each training instance for each author and 

publication, the training context includes all co-authors, ignoring the sequential position of 

authors. This has the beneficial effect of linking first and last authors, who often work closely 

within a published project, no less closely than those arbitrarily beside one another in the author 

list. Consequently, the embedding learned by Doc2vec produces similar vector positions for 

authors who frequently co-author papers together. It also assigns similar vectors to articles co-

authored by overlapping collaborators who share substantial tacit knowledge. For example, two 

postdocs or graduate students may never co-author a paper but connect indirectly through a 

shared principal investigator or through principal investigators who collaborate frequently with 

one another. By contrast, a large-scale RCT involving a unique collaboration among many 

otherwise disconnected authors would project to a sparse area of our embedding space between 

and distant from authors’ prior work. This gap between the large RCT and author’s prior studies 

would reflect a low likelihood of tacit knowledge transmission. 

 
14 The number of disambiguated author IDs from PKG 2020 v2 is 15,530,165 but removing the 

author IDs that appear only once drops the number of unique author IDs to 8,359,189.  
15 Perozzi et al. (2014) also suggest that applying the skip-gram model to non-random walks 

would be appropriate for web-scale large graphs. 

https://paperpile.com/c/7W1ycd/MTUY6/?noauthor=1
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We trained the model using 100 epochs, or iterations of training. In sum, this produces 

continuous, 100-dimensional representations for 28,329,992 PMIDs and 8,359,189 author IDs.16 

We validate the quality of the vector representations by attempting to retrieve learned article 

vectors from their composing author vectors across 20 random samples of 1,000 publications 

each. To do this, we take the author vectors associated with each publication, infer the position 

of a hypothetical publication they could have authored, and test its proximity to the original 

vector representation of the article written by those authors. Because it is intrinsically impossible 

to distinguish publications written by the same author(s), we evaluate the 1, 5, 10, and 20 most 

similar PMIDs from the inferred vector using cosine similarity. We find that it is possible to 

retrieve the target PMIDs with the rate of 65.26% (SD= 1.73), 86.16% (SD=1.06), 90.27% 

(SD=0.74), 92.9% (SD=0.77) within the pools of the top 1, 5, 10, 20 most similar documents, 

respectively. The sharp increase in self-retrieval for relaxed conditions implies that documents 

sharing authors are located close together in the 100-dimensional social embedding space. This 

confirms that continuous proximity or distance derived from this social space can reflect direct 

and indirect pathways of connection, communication, and latent expectation between the authors 

of biomedical research, increasing the likelihood that they reside in a socio-epistemic bubble of 

shared but unarticulated assumptions. Using this, we measure the proximity and density of RCTs 

curated in Cochrane reviews by mapping them onto the vector space of collaborating researchers 

and publications.  

 

 

 

 
16 We used the Python Gensim package (version 4.0) (Radim Rehurek 2010) to train the model.  

https://paperpile.com/c/7W1ycd/OSVpo
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Analyses and Results 

We conduct four analyses to assess the influence of socio-epistemic bubbles underlying on 

published biomedical and healthcare RCTs. We first analyze the study-to-study pair. In this step, 

we examine the likelihood that estimates from two studies deviate from pooled estimates as a 

function of the proximity between the two studies measured across the social embedding space. 

In the second analysis, we examine the relationship between the overall heterogeneity of 

estimates at the meta-analysis level and density scores from author similarity across the studies. 

Thirdly, we perform a leave-one-out sensitivity analysis on all 20,117 meta-analyses to test 

whether the social density measure predicts conclusion invariance with the leave-one-out 

procedure. In our final analysis, we measure the distance between clusters of early versus later 

studies within the social embedding space and assess how social drift relates to contrasting 

conclusions. We present details of our analysis designs and results in the following subsections. 

We use the “metafor” package in R (Viechtbauer 2010) to compute heterogeneity 

statistics and conduct the leave-one-out analysis, replicating the settings implemented in RevMan 

5, the statistical software for meta-analysis supported by Cochrane (The Cochrane Collaboration 

2020; Deeks and Higgins 2010). 

 

Analysis 1: Social Proximity and Estimates Heterogeneity among Study Pairs  

Our analysis starts with 1,279,974 pairs of estimates extracted from the 20,117 meta-

analyses. The primary outcome is the level of heterogeneity among pairs of estimates. We 

employ Cochran’s Q test statistic, which measures the degree of variability among individual 

estimates as the weighted sum of squared differences between individual estimates and the 

combined pooled estimates. Formally, , where  are weights by 

https://paperpile.com/c/7W1ycd/FRi9C
https://paperpile.com/c/7W1ycd/qZQWa+53eia
https://paperpile.com/c/7W1ycd/qZQWa+53eia
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the pooling method, individual estimates, and the pooled estimate, respectively (Deeks and 

Higgins 2010). 

The type of outcome measure—like risk ratio, odds ratio, or mean difference—and 

pooling methods (e.g. Mantel-Haenszel method or inverse-variance method) for a given meta-

analysis are typically chosen by meta-analysts, the authors of Cochrane systematic reviews, 

reflecting characteristics of medical interventions and outcomes. We apply the identical set of 

outcome measures and pooling methods used for meta-analyses to compute Cochran’s  for 

each pair of estimates.  

Under the null hypothesis,  is assumed to be distributed following a chi-square statistic 

with  degrees of freedom, where  is the number of studies (thereby, the degree of freedom 

is always 1 for the pairwise analysis in this step). As  manifests low statistical power with the 

small number of studies for detecting heterogeneity, a higher threshold than the conventional .05 

is recommended for significance testing (West et al. 2011). Following the recommendation in the 

Cochrane handbook for systematic reviews of interventions (Higgins et al. 2019), we utilize a 

threshold of .10 (p < .10) to determine significant divergence in estimates between the two 

studies.17 In other words, we denote that estimates from a pair of studies significantly deviate 

from the pooled estimate when the p-value of Cochran’s  is less than .10, which renders 

184,007 of 1,279,974 pairs of estimates (14.38%) as highly heterogeneous following this 

procedure.  

We measure the social proximity between the two clinical studies using the cosine 

similarity between the two study vectors from the social embedding space described above. 

When multiple publications are linked to a single clinical study, we obtain the centroid of all 

 
17 The .10 threshold is still a conservative choice considering k = 2 in this setting.   

https://paperpile.com/c/7W1ycd/53eia
https://paperpile.com/c/7W1ycd/53eia
https://paperpile.com/c/7W1ycd/5eY7L
https://paperpile.com/c/7W1ycd/aV4Ee
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relevant publication vectors. The resulting study vector contains the mean value from all 

publication vectors along each dimension.  

We consider two control variables in this analysis. We first aim to account for the 

potential impact of knowledge explicated through publication by assessing the degree of 

reference overlap between studies. This overlap is measured using the overlap or Szymkiewicz–

Simpson coefficient, calculated as the number of references both studies cited (the size of 

intersection) divided by the smaller set of references from the two studies.18 (Formally, 

, where |X|=the size of set X.) When multiple publications are 

associated with a clinical trial, we assume the union of all referenced papers associated with all 

clinical trial publications indicates its prior knowledge stock.19 

The second control variable addresses the temporal gap between every pair of studies, or 

study year difference, by taking the absolute difference between the years of study. A study year 

is typically identified from the study heading (for instance, Goldenberg 1975 in Figure 1.2 

indicates 1975 as the study year), which is often the study's first or most substantial publication. 

In cases where a study heading lacks a specific year, we take the average of the publication years 

of associated research articles.  

Table 1.1 presents descriptive statistics of the variables from 328,285 unique study pairs 

from 1,279,974 pairs, suggesting that the same study pair is compared an average of 4 times 

within Cochrane reviews on different clinical outcomes. Considering the hierarchical structure 

that pairs of estimates nest in meta-analyses, which recursively nest in systematic reviews, we 

 
18 Our results are similar if we use the Jaccard coefficient, defined as the intersection over the 

union of references between the two studies. 
19 When either of the references of the two studies could not be retrieved, we impute zero. 



32 

estimate the effect of social proximity on the heterogeneity using the multilevel logistic 

regression model that allows random intercepts for higher levels.20 

Table 1.1: Descriptive Statistics of Variables from the 328,285 Unique Study Pairs  

Variable Name Mean SD 1Q Median 3Q Min Max* 

Social Proximity  .554 .183 .454 .549 .658 -.360 1 

Reference Overlap  .097 .150 0 .030 .146 0 1 

Study Year Difference 7.065 6.631 2 5 10 0 80 

Note: Social proximity and knowledge overlap become 1, which is the theoretical maximum 

when a systematic review makes a distinction between different trial arms reported in the same 

set of publications. The maximum value of 80 for the study year difference is observed in a 

systematic review that examined the effects of supplementation of vitamin A on maternal and 

newborn clinical outcomes (Cochrane accession number: CD008666), which includes a study 

published in British Medical Journal from 1931 (Green et al. 1931).  

 

Eq. (1.1) describes the full model. It contains , the review-level random intercepts 

and  , the random intercept for meta-analysis j nested in review k. Note that  if a 

pair of estimates exhibits high heterogeneity (i.e., p-value of Cochran’s  is under .10), 

otherwise 0. The interclass coefficient from the fully unconditional model with three-level 

random intercepts is .421. This suggests considerable variability in effect heterogeneity across 

the meta-analyses and systematic reviews, supporting the use of the hierarchical model. In 

addition, the model incorporates contextual effects of social density, reference density, and study 

year sparsity with terms , ,  by including the clustered means of each variable at the 

meta-analysis level. Before estimation, all variables are centered at their means and divided by 

the standard deviations reported in Table 1.1, which follows the logic of grand mean centering. 

𝐿𝑜𝑔𝑖𝑡(𝐻𝑖𝑗𝑘) =  𝜋0𝑗𝑘 + 𝜋1𝑆𝑜𝑐_𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦𝑖 + 𝜋2𝑅𝑒𝑓_𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑖 +  𝜋3𝑆𝑡𝑢𝑑𝑦_𝑌𝑒𝑎𝑟_𝐷𝑖𝑓𝑓𝑖   

 

𝜋0𝑗𝑘 = 𝛽00𝑘 + 𝛽01𝑆𝑜𝑐_𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑗 + 𝛽02𝑅𝑒𝑓_𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑗 + 𝛽03𝑆𝑡𝑢𝑑𝑦_𝑌𝑒𝑎𝑟_𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦𝑗  + 𝜂0𝑗𝑘 

 

𝛽00𝑘 = 𝜂000 + 𝜈00𝑘 

 
20 We use the “lme4” package in R (Bates et al. 2007)  for estimation. 

https://paperpile.com/c/7W1ycd/6tVRB
https://paperpile.com/c/7W1ycd/yacfy
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𝑆𝑜𝑐_𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑗 = 𝑆𝑜𝑐_𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦.𝑗𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

𝑅𝑒𝑓_𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑗  = 𝑅𝑒𝑓_𝑂𝑣𝑒𝑟𝑙𝑎𝑝.𝑗𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

𝑆𝑡𝑢𝑑𝑦_𝑌𝑒𝑎𝑟_𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦𝑗= 𝑆𝑡𝑢𝑑𝑦_𝑌𝑒𝑎𝑟_𝐷𝑖𝑓𝑓.𝑗𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                                             ∙∙∙ Eq. (1.1). 

 

Table 1.2. Multilevel Logistic Model Estimates from Analysis 1 

  Model 1 Model 2 Model 3 Model 4 Model 5 

Dependent Variable Two Estimates Revealing Significant Heterogeneity 

Level-1 (Pairwise) Effects           

(Intercept) 
-2.366*** 

(.029) 

-2.357*** 

(.030) 

-2.349*** 

(.029) 

-2.351*** 

(.030) 

-2.342*** 

(.030) 

Social Proximity  
-.045*** 

(.003) 
  

-.044*** 

(.003) 
  

-.037*** 

(.003) 

Reference Overlap   
-.043*** 

(.003) 
  

-.041*** 

(.003) 

-.034*** 

(.003) 

Study Year Difference     
.018*** 

(.003) 

.010** 

(.003) 

.009** 

(.003) 

Contextual Effects      

Social Density 
-.103*** 

(.026)  
 

-.086** 

(.026)  
 

-.086** 

(.027) 

Reference Density   
-.052* 

(.023)  
 

-.018 

(.026) 

-.007 

(.027) 

Study Year Sparsity     
.121*** 

(.031) 

.130*** 

(.032) 

.120*** 

(.032) 

Group Random Intercepts Standard Deviation 

Level-2: Meta-Analysis  

(Intercept) 
1.198 1.198 1.198 1.199 1.198 

Level-3: Review 

(Intercept) 
.981 .983 .976 .977 .978 

Deviance 898,504.5 898,504.4 898,453.5 898,476.5 898,341.2 

Num. Obs. 1,279,974 

Num. Meta-Analysis 20,117 

Num. Reviews 1,962 

Note: All continuous variables are centered at their means and divided by the standard deviations reported 

in Table 1.1 for standardization. Accordingly, coefficients indicate the change of log odds with the 

increase of unit standard deviation used to standardize each variable. Standard errors are in parentheses.  

* p < .05; ** p < .01; *** p < .001(two-tailed) 

 

Table 1.2 shows the results from five models evaluating the effects of variables on the log 

odds of a study pair reporting highly heterogeneous estimates. Model 1 and Model 2 focus on 

social proximity and reference overlap; Model 3 and Model 4 add the impact of the study year 
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difference; lastly, Model 5 presents the estimates with all variables as described in Eq. (1.1). Note 

that contextual effects capture the difference between the clustered effects of variables at the higher 

and pairwise levels. The coefficients at level-1 estimate the impact of variables at the study pair 

level on the likelihood a study pair manifests a high level of heterogeneity, controlling for the 

social density, reference density, and study year sparsity of studies included in a meta-analysis.  

Across all models listed in Table 1.2, the coefficients for level-1 variables suggest that 

closer social proximity or higher reference overlap decreases the odds that a pair of RCT-based 

estimates diverge. Unsurprisingly, study year difference increases the odds a pair of studies will 

significantly deviate from their pooled estimate. The positive correlation between social 

proximity and reference overlap (.327) and the negative correlation between study year 

difference and social proximity (-.194) and reference overlap (-.327) reduce the magnitude of 

estimates. Nonetheless, Model 5 demonstrates a significant impact of social proximity. 

Controlling for the covariates, the change of the social proximity from - 1 SD to + 1 SD 

translates21 to a 7.1% decrease of the odds (=exp[-.037*2] - 1 ≈ -.071) that a pair of studies 

significantly disagree. Estimates from the fixed-effect model (Appendix Table A1.4) that 

controls for unobserved heterogeneity at the meta-analysis level are consistent, as shown in 

Table 1.2.  

In Models 4 and 5, the contextual effect of reference overlap disappears, but other effects 

remain significant at the higher level. The coefficients blend higher-level effects of variables 

grouped at the meta-analysis (level 2) and systematic review (level 3). As the same study pair 

can appear multiple times across different meta-analyses within a review, we do not make a 

distinction between level-2 and level-3 contextual effects here. We note caution should be taken 

 
21 Using the mean and the standard deviation from Table 1.1, it would be from .371 (=.554 

- .183) to .737 (.554 + 183), which is within the empirically possible range.  
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as the dispersion of clustered means is less than what Table 1.1 posts: standard deviations of 

social density and study year sparsity are .104 and 3, respectively, approximately half of the 

level-1 dispersion. Nevertheless, the negative coefficient of the social density indicates that a 

study pair is less likely to report substantially heterogeneous estimates if included in a meta-

analysis containing clinical studies sourced from a socially dense research community. The 

positive coefficient of time sparsity tells a similar story: greater averaged time differences are 

associated with the likelihood of reporting more divergent RCT results.  

 

Analysis 2: Social Density and Homogeneity within Meta-Analyses  

We now zoom out from study pairs and investigate the association between increased 

social density and the overall heterogeneity of estimates collected in meta-analyses. To measure 

the overall dispersion of estimates, we employ the  statistic (Higgins et al. 2019). Formally, the 

statistic is:          

                                ⋯Eq. (1.2). 

 denotes the  statistics defined in Analysis 1, calculated as the sum of squared 

deviations of individual studies’ estimated effect sizes from the pooled estimate; df is the degree 

of freedom or k - 1 where k is the number of meta-analysis studies (Higgins et al. 2003; Higgins 

and Thompson 2002).  represents the “percentage of total variation across studies due to 

heterogeneity rather than chance” (Higgins et al. 2003; Higgins and Thompson 2002, 558). More 

intuitively, it captures the non-overlapping proportion of confidence intervals across estimates, 

independent of outcome measures type (e.g., odds ratios, risk ratios, mean differences) and 

number of studies included in the meta-analysis. The 25%, 50%, and 75% thresholds were 

initially proposed to mark low, moderate, and high levels of heterogeneity (Higgins et al. 2003), 

https://paperpile.com/c/7W1ycd/aV4Ee
https://paperpile.com/c/7W1ycd/YbGtJ+RH65h
https://paperpile.com/c/7W1ycd/YbGtJ+RH65h
https://paperpile.com/c/7W1ycd/YbGtJ+RH65h/?locator=,558
https://paperpile.com/c/7W1ycd/YbGtJ
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but the 2019 second edition of the Cochrane Handbook revised the original thresholds, 

suggesting that: (1) from 0% to 40%, heterogeneity “might not be important”; (2) 30% to 60% 

“may represent moderate heterogeneity”; (3) 50% to 90% “may represent substantial 

heterogeneity”; and (4) 75% to 100% suggest “considerable heterogeneity” (Higgins et al. 2019). 

With this guide, we construct the dependent variable for the following analysis by categorizing 

the meta-analyses into low-level heterogeneity and at least moderate heterogeneity with 30% and 

40% cutoffs. With the 30% and 40% cutoffs, 6,973 and 5,730 meta-analyses from the 20,117 

(34.66% and 28.48%, respectively) represent at least moderate outcome heterogeneity. (See 

Figure A1.1 for the histogram of raw  statistics across  all 20,117 meta-analyses.)   

The primary predictor for this analysis is social density, which we define as the average 

social proximity between unique study pairs within a meta-analysis as assessed in Analysis 1. 

This operationalization resembles a density measure for weighted undirected graphs, considering 

individual studies as nodes and social proximity as edge weights.  

 Similar to our previous analysis, we control for the impact of explicated knowledge by 

accounting for reference density, measured as the average reference overlap between study pairs 

per meta-analysis. This is comparable to our approach to measuring social density. We also 

account for time variation, assuming that greater temporal dispersion would lead to higher 

heterogeneity based on the result from Analysis 1. Unlike Analysis 1, in which we use the 

absolute differences of study years, here we employ the standard deviation of study years for 

each meta-analysis to control for the effect of study year dispersion. Additionally, we include the 

number of studies combined in a meta-analysis as a proxy for variability among study 

populations, although  was designed to be independent of the number of studies pooled in a 

meta-analysis. We also consider the impact of sample size dispersion on  by incorporating the 

https://paperpile.com/c/7W1ycd/aV4Ee
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standard deviation of the number of subjects across studies. Lastly, we account for the impact of 

types of outcome measure (i.e., risk ratio, odds ratios, risk difference, mean difference, 

standardized mean difference) on the level of heterogeneity. Table 3 provides descriptive 

statistics for the covariates.  

Table 1.3: Descriptive Statistics of the Variables from the 20,117 Meta-Analyses  

Variable Name Mean SD 1Q Median 3Q Min Max* 

Social Density .595 .125 .512 .582 .672 .099 .997 

Reference Density .154 .103 .077 .103 .167 0 .983 

Study Year Dispersion 5.17 2.99 3.04 4.55 6.57 0 33.27 

Number of Studies 9.09 7.33 5 7 10 5 141 

Sample Size Dispersion 482.29 2,732.38 50.14 106.39 235.12 2.05 122,815.3 

*Note: The theoretical maximum for social and reference density is 1 when a systematic review makes a 

distinction between different trial arms reported in the same set of publications. The maximum value of 

33.27 for study year dispersion is observed in a systematic review that examined the effects of 

supplementation of vitamin A on maternal and newborn clinical outcomes (Cochrane accession number: 

CD008666). The maximum value of 122815.3 for the sample size dispersion (i.e., standard deviation of 

the number of subjects) is from a review regarding the efficacy of the injected cholera vaccine (Cochrane 

accession number: CD000974), which includes multiple large-scale vaccination studies. The maximum 

value of 141 for the number of studies is from a Cochrane review studying the effects of placebos 

(Cochrane accession number: CD003974).   

 

We continue to use the multilevel modeling approach to assess the impact of social 

density on meta-analysis heterogeneity. The model in this step comprises two levels: the first 

representing each meta-analysis and the second level the systematic review. Formally, the full 

model estimated is as follows: 

𝐿𝑜𝑔𝑖𝑡(𝐿𝑖𝑗) =  𝜋0𝑗 + 𝜋1𝑆𝑜𝑐_𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖 + 𝜋2𝑅𝑒𝑓_𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖  +  𝜋3𝑆𝑡𝑢𝑑𝑦_𝑌𝑒𝑎𝑟_𝐷𝑖𝑠𝑝𝑖  +

 𝜋4𝑁𝑢𝑚_𝑜𝑓_𝑆𝑡𝑢𝑑𝑖𝑒𝑠𝑖 + 𝜋5𝑆𝑎𝑚𝑝𝑙𝑒_𝑆𝑖𝑧𝑒_𝐷𝑖𝑠𝑝𝑖 +  𝜋6𝑂𝑑𝑑𝑠_𝑅𝑎𝑡𝑖𝑜𝑖  + 𝜋7𝑅𝑖𝑠𝑘_𝐷𝑖𝑓𝑓𝑖 +
𝜋8𝑀𝑒𝑎𝑛_𝐷𝑖𝑓𝑓𝑖  +  𝜋9𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑_𝑀𝑒𝑎𝑛_𝐷𝑖𝑓𝑓𝑖                            

 

𝜋0𝑗 = 𝛽00 + 𝛽01 𝑆𝑜𝑐_𝐷𝑒𝑛𝑠𝑖𝑡𝑦.𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝛽02𝑅𝑒𝑓_𝐷𝑒𝑛𝑠𝑖𝑡𝑦.𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +    𝛽03𝑆𝑡𝑢𝑑𝑦_𝑌𝑒𝑎𝑟_𝐷𝑖𝑠𝑝.𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  + 

𝛽04𝑁𝑢𝑚_𝑜𝑓_𝑆𝑡𝑢𝑑𝑖𝑒𝑠.𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + + 𝛽05𝑆𝑎𝑚𝑝𝑙𝑒_𝑆𝑖𝑧𝑒_𝐷𝑖𝑠𝑝.𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  + 𝜂0𝑗           

    

𝐿𝑖𝑗 = 1 if 𝐼2 is lower than a threshold (i.e.,  𝐼2 < .3 or 𝐼2 < .4), otherwise 𝐿𝑖𝑗 = 0          ∙∙∙Eq. (1.3). 
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Eq. (1.3) allows variability among the estimates gathered in a meta-analysis to exhibit 

low heterogeneity with the systematic review level random intercept term  for each review j. 

The interclass coefficients for the unconditional models with .3 and .4 thresholds are .316 

and .336, respectively. The model includes contextual effects of the covariates at the systematic 

review level with , , , ,  terms capturing the effects of clustered means for each 

covariate at the systematic review level. Consistent with Analysis 1, all covariates are centered at 

their means and scaled by their standard deviation as reported in Table 1.3 before estimation. 

Table 1.4: Multilevel Logistic Model Estimates from Analysis 2 

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Dependent Variable Low Heterogeneity  

Threshold L = 1 if 𝑰𝟐 < 0.3, otherwise, L = 0   L = 1 if 𝑰𝟐 < 0.4, otherwise, L = 0  

Level-1 Fixed Effects            

(Intercept) 
.513*** 

(.048) 

.510*** 

(.048) 

.524*** 

(.048) 

.937*** 

(.051) 

.935*** 

(.051) 

.944*** 

(.051) 

Social Density  
.154*** 

(.034) 
 

.134*** 

(.035) 

.177*** 

(.036) 
 

.152*** 

(.037) 

Reference Density  
.095** 

(.032) 

.038 

(.034) 
 

.123*** 

(.034) 

.070 

(.036) 

Study Year Dispersion   
-.075* 

(.031) 
  

-.047 

(.032) 

Number of Studies 
-.150*** 

(.020) 

-.149*** 

(.020) 

-.143*** 

(.020) 

-.166*** 

(.021) 

-.164*** 

(.021) 

-.158*** 

(.021) 

Sample Size Dispersion 
-.071* 

(.034) 

-.069* 

(.033) 

-.073* 

(.038) 

-.132** 

(.041) 

-.127** 

(.040) 

-.134** 

(.041) 

Odds Ratio (OR) 
.171* 

(.081) 

.171* 

(.081) 

.155 

(.081) 

.235** 

(.086) 

.228** 

(.086) 

.219* 

(.086) 

Risk Diff. (RD) 
.362* 

(.154) 

.369* 

(.154) 

.339* 

(.154) 

.256 

(.161) 

.268 

(.161) 

.245 

(.161) 

Mean Diff. (MD) 
.440*** 

(.062) 

.431*** 

(.062) 

.423*** 

(.063) 

.274*** 

(.066) 

.266*** 

(.066) 

.263*** 

(.066) 

Standardized Mean Diff. 

(SMD) 

1.074*** 

(.092) 

1.071*** 

(.092) 

1.054*** 

(.092) 

.975*** 

(.097) 

.973*** 

(.097) 

.965*** 

(.098) 

Contextual Effects       

Social Density 
-.075 

(.053) 
 

-.076 

(.056) 

-.107 

(.056) 
 

-.108 

(.059) 
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Table 1.4 continued 

Reference Density  
-.067 

(.052) 

-.076 

(.057) 
 

-.060 

(.055) 

.052 

(.061) 

Study Year Dispersion   
-.050 

(.053) 
  

-.036 

(.056) 

Number of Studies 
-.072 

(.086) 

-.077 

(.088) 

-.083 

(.088) 

-.024 

(.091) 

-.012 

(.093) 

-.017 

(.093) 

Sample Size Dispersion 
.051 

(.047) 

.054 

(.047) 

.059 

(.048) 

.106 

(.056) 

.106 

(.055) 

.113* 

(.056) 

Group Random Intercepts Standard Deviation  

Review Level  1.194 1.197 1.189 1.265 1.266 1.261 

Deviance 22,967.7 22,982.7 22,950.4 21,142.9 21,154.9 21,131.2 

Num. Obs. 20,117  

Num. Reviews 1,962  

Note: All continuous variables are centered at means and divided by standard deviations in Table 1.3 for 

standardization. Accordingly, the coefficients indicate the change of log odds with the increase of unit 

standard deviation from Table 1.3. Standard errors are in parentheses.  

* p < .05; ** p < .01; *** p < .001 (two-tailed) 

 

Table 1.4 presents estimates from six models. The first three utilize the .3 threshold, and 

the remaining the .4 threshold. Across all six models, coefficient , representing the influence of 

the number of studies in a meta-analysis, is significantly negative. It suggests that as the number 

of studies in a meta-analysis increases, a higher level of heterogeneity in estimates is more likely, 

which we account for in this analysis. The impacts of sample size dispersion are consistently 

negative across all models, indicating that greater variation in study sample sizes within a meta-

analysis is associated with a higher likelihood of estimates from meta-analyses being 

heterogeneous. The choice of outcome measures in each Cochrane review is made by the review 

authors, not the original study authors.22 

 
22 The fixed effects model that employs review-level cluster-robust standard errors (presented in 

Table A1.5 in the Appendix) reports that only the standardized mean difference increases the 

likelihood of estimates being less heterogeneous. Thus, we do not provide a strong interpretation 

regarding the coefficients for the outcome measures.  
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The focal parameter in this analysis is , which traces the impact of social density on 

heterogeneity. Models 1 and 4 display significant positive effects of social density on increasing 

the likelihood meta-analysis estimates are homogeneous. The coefficient for reference density, 

, is positive and significant in Models 2 and 5, suggesting that higher reference density also 

predicts increased estimated homogeneity. Reference density’s correlation with social density 

is .369, and with study year dispersion -.384. Simultaneously including all three variables in 

models raises the specter of collinearity by inflating standard errors. Nevertheless, the impacts of 

social density hold consistent statistical significance across models.  

Models 3 and 6 predict that a change of social density from -1 SD to +1 SD23 translates to 

a 30.7% (=exp[.134*2] - 1 ≈ .307) or 35.5% (exp[.152*2] - 1 ≈ .355) increase in the odds of 

meta-analysis estimates exhibiting low heterogeneity, after accounting for the covariates. 

Appendix Table A1.5 reports estimates from the fixed-effect logistic model with specification 

from Eq. (1.3) but without contextual effects, arriving at similar results. To give a more concrete 

sense, Figure 1.3 visualizes the effect of social density in the probability terms based on Model 

3, holding the values of other covariates at their global means shown in Table 1.3. 

 

 

 

 

 

 

 

 
23 With the mean and the standard deviation from Table 1.3, it would be from .470 (=.595 - .125) 

to .720 (=.595 + .125).  
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Figure 1.3: The Effect of Social Density on the Predicted Probability of the Estimates Combined 

in a Meta-Analysis Representing Low Heterogeneity (𝑰𝟐 < 0.3) 

 
Note: The solid lines show the marginal mean probabilities for a given meta-analysis to represent a low 

level of heterogeneity ( ) based on Model 3 in Table 1.4, holding values for other covariates held 

at their global means reported in Table 1.3. RR, OR, RD, MD, and SMD refer to Risk Ratio, Odds Ratio, 

Risk Difference, Mean Difference, and Standardized Mean Difference, respectively.  

 

Analysis 3: Social Density and Invariance using the Leave-One-Out Procedure 

 Sensitivity analysis for meta-analysis can take various forms. A meta-analyst may test 

and evaluate different models (e.g., fixed vs. random effects) using the same data. Furthermore, 

they may interrogate whether in/excluding studies disturbs the overall conclusion. The following 

applies a variant of the Leave-One-Out (LOO) analysis, akin to the approach initially proposed 

by Shenhav, Heller, and Benjamini (2015) as the meta-analysis r-value, with slight modifications 

we detail below. Suppose we have a meta-analysis comprising  studies, and the conclusion of 

the summary effect is statistically significant with the conventional 5% confidence level (p 

< .05). We then perform the same meta-analysis  times, iteratively excluding one study each 

time to maximize the p-value for the summary estimate with  studies. Conversely, if the p-

value of the summary estimate with  studies is statistically insignificant (p >= .05), the same 

https://paperpile.com/c/7W1ycd/1qMoW/?noauthor=1
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iterative leave-one-out procedures are performed N times, aiming to minimize the p-value of the 

summary effect with  studies.  

Note that Shenhav and colleagues (2015) primarily focus on the first p-value 

maximization but provide a generalized framework that allows more than a single study to be 

excluded (2015). While limiting the procedure to a leave-one-out scheme, we adapt their method. 

We operationalize that a meta-analysis manifests if (1) both the p-value of the original pooled 

estimate and the maximized p-value (comparable to the r-value) are below .05, or (2) both the 

original and the minimized p-values are equal to or above .05.  

In contrast, we consider a meta-analysis does not reveal invariance if (3) the initial p-

value is less than .05, but the maximized p-value is equal to or greater than.05, or (4) the original 

p-value is greater than or equal to .05, but the minimized p-value is less than .05. In other words, 

the procedure attempts to overturn the meta-analysis conclusion as much as possible through the 

removal of a single study.  

Table 1.5 The Results of Applying the Leave-One-Out Procedure for 20,117 Meta-Analyses 

 
Summary Estimate  

p >= 0.05 

Summary Estimate  

p < 0.05 
Total 

Invariant to LOO 
9,005 

(81.5%) 

6,235 

(68.2%) 

15,240 

(75.8%) 

Variant to LOO 
2,050 

(18.5%) 

2,827 

(31.2%) 

4,877 

(24.2%) 

Total 
11,055 

(100.0%) 

9,062 

(100.0%) 

20,117 

(100.0%) 

 

 Table 1.5 presents the results from this procedure applied to the 20,117 meta-analyses. 

We find that 18.5% of the meta-analyses with statistically insignificant summary estimates (p 

< .05) gain statistical significance, while 31.2% of those yielding statistically significant 

summary estimates (p < .05) becoming insignificant according to this procedure. This 

discrepancy is likely attributable to publication bias, wherein more statistically significant results 

https://paperpile.com/c/7W1ycd/1qMoW/?noauthor=1
https://paperpile.com/c/7W1ycd/1qMoW/?noauthor=1
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are published than insignificant ones. Regardless, the result suggests that the overall conclusion 

from a meta-analysis often hinges on in/exclusion of a single study.   

 An analogous hierarchical logistic regression framework is applied to assess the impact 

of social density on the invariance of meta-analysis to the LOO across 20,117 meta-analyses. We 

retain the same variables from Analysis 2 but introduce two additional controls: one indicator for 

model choice by review authors (i.e., random vs. fixed-effect model) and another to denote 

whether the p-value of the original summary estimate before the LOO is statistically significant 

(p < .05). The following equation, Eq. (1.4) describes our full model:  

𝐿𝑜𝑔𝑖𝑡(𝐼𝑖𝑗)  =  𝜋0𝑗 + 𝜋1𝑆𝑜𝑐_𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖  +𝜋2𝑅𝑒𝑓_𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖 + 𝜋3𝑆𝑡𝑢𝑑𝑦_𝑌𝑒𝑎𝑟_𝐷𝑖𝑠𝑝𝑖  +

 𝜋4𝑁𝑢𝑚_𝑜𝑓_𝑆𝑡𝑢𝑑𝑖𝑒𝑠𝑖 +  𝜋5𝑆𝑎𝑚𝑝𝑙𝑒_𝑆𝑖𝑧𝑒_𝐷𝑖𝑠𝑝𝑖 +  𝜋6𝑅𝑎𝑛𝑑𝑜𝑚_𝐸𝑓𝑓𝑒𝑐𝑡_𝑀𝑜𝑑𝑒𝑙 +
𝜋7𝑝_𝑣𝑎𝑙𝑢𝑒_𝑢𝑛𝑑𝑒𝑟_5% +   𝜋8𝑂𝑑𝑑𝑠_𝑅𝑎𝑡𝑖𝑜𝑖  + 𝜋9𝑅𝑖𝑠𝑘_𝐷𝑖𝑓𝑓𝑖 + 𝜋10𝑀𝑒𝑎𝑛_𝐷𝑖𝑓𝑓𝑖 +
 𝜋11𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑_𝑀𝑒𝑎𝑛_𝐷𝑖𝑓𝑓𝑖                         

 

𝜋0𝑗 = 𝛽00 + 𝛽01 𝑆𝑜𝑐_𝐷𝑒𝑛𝑠𝑖𝑡𝑦.𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝛽02𝑅𝑒𝑓_𝐷𝑒𝑛𝑠𝑖𝑡𝑦.𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +    𝛽03𝑆𝑡𝑢𝑑𝑦_𝑌𝑒𝑎𝑟_𝐷𝑖𝑠𝑝.𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 

𝛽04𝑁𝑢𝑚_𝑜𝑓_𝑆𝑡𝑢𝑑𝑖𝑒𝑠.𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  +  𝛽05𝑆𝑎𝑚𝑝𝑙𝑒_𝑆𝑖𝑧𝑒_𝐷𝑖𝑠𝑝.𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  + 𝜂0𝑗 

𝐼𝑖𝑗 = 1 if a meta-analysis is robust to the LOO procedure, otherwise 𝐼𝑖𝑗 = 0                 ∙∙∙ Eq. (1.4). 

 

Table 1.6 shows estimates from three models, with the last column reporting estimates 

for the full model defined in Eq. (1.4). Estimates for number of studies included in a meta-

analysis ( ) are positive across the models, reflecting the statistical property between sample 

size and results. The consistently negative coefficient for  reflects different sensitivities toward 

the LOO procedure between significant and insignificant meta-analyses, shown in Table 1.5—

significant summary estimates are more likely to be disturbed by the LOO procedure. Coefficient 

 across all three models estimate negative, reflecting the random-effects model’s production of 

larger standard errors than the fixed-effect model.  
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Table 1.6: Multilevel Logistic Model Estimates from Analysis 3 

  Model 1 Model 2 Model 3 

Dependent Variable Invariant by the LOO Procedure 

Level-1 Fixed Effects    

(Intercept) 
1.816*** 

(.054) 

1.806*** 

(.054) 

1.820*** 

(.054) 

Social Density  
.087* 

(.035) 
 

.091* 

(.037) 

Reference Density  
.001 

(.033) 

-.041 

(.036) 

Study Year Dispersion   
-.059 

(.032) 

Number of Studies 
.376*** 

(.031) 

.368*** 

(.032) 

.376*** 

(.032) 

Sample Size Dispersion 
-.060 

(.042) 

-.058 

(.042) 

-.061 

(.042) 

Initial p-value < .05 
-1.026*** 

(.040) 

-1.024*** 

(.040) 

-1.026*** 

(.040) 

Random Effect Model 
-.139** 

(.051) 

-.140** 

(.051) 

-.137** 

(.051) 

Odds Ratio (OR) 
-.091 

(.073) 

-.078 

(.074) 

-.100 

(.074) 

Risk Diff. (RD) 
.628*** 

(.164) 

.619*** 

(.165) 

.610*** 

(.165) 

Mean Diff. (MD) 
.476*** 

(.062) 

.469*** 

(.062) 

.467*** 

(.062) 

Standardized Mean Diff. 

(SMD) 

.218** 

(.083) 

.240** 

(.083) 

.211* 

(.083) 

Contextual Effects  

Social Density  
.095* 

(.049) 
 

.075 

(.051) 

Reference Density  
.072 

(.048) 

.038 

(.052) 

Study Year Dispersion   
-.002 

(.049) 

Number of Studies 
.128 

(.072) 

.128 

(.075) 

.133 

(.074) 

Sample Size Dispersion 
.124* 

(.059) 

.140* 

(.060) 

.129* 

(.059) 

Group Random Intercepts Standard Deviation 

Review Level  .803 .821 .803 

Deviance 20,731.4 20,761.8 20,724.6 

Num. Obs. 20,117 

Num. Reviews 1,962 

Note: All the variables are centered at the means and divided by the standard deviations in Table 1.3 for 

standardization. The coefficients indicate the change of log odds with the increase of unit standard 

deviation used to standardize each variable. Standard errors are in parentheses.  

* p < .05; ** p < .01; *** p < .001 (two-tailed). 
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 The impact of social density is again captured by . Model 1 indicates its positive effect 

on invariance of conclusions to our LOO. Controlling for all the covariates, Model 3 shows the 

estimated coefficients of the full model specified in Eq. (1.4), revealing that increasing social 

density from -1 SD to +1 SD24 can raise the odds of the pooled estimate being invariable to LOO 

by 20.0% (=exp[.091*2] - 1 ≈  .200). Fixed-effect model estimation using the cluster-robust 

standard error in Appendix Table A1.6 also demonstrates a similarly significant effect of social 

density on the invariance of meta-analysis pooled estimates.  

 Figure 1.4 displays the impact of social density on meta-analysis invariance to LOO in 

the probability terms based on Model 3, focusing on cases where meta-analyses were conducted 

by the random-effect model and pooled estimates are statistically significant (p < .05). 

Figure 1.4: Effect of Social Density on the Predicted Probability of Meta-Analysis Summary 

Estimates Being Invariant to the Leave-One-Out procedure 

 
Note: The focus is when the random-effects model is employed, and initial summary estimates are 

statistically significant (p < .05). The solid lines show the marginal mean probabilities for a given meta-

analysis to be invariable with the leave-one-out procedure based on Model 3 from Table 1.6. Covariates 

are held at their global means, shown in Table 1.3. RR, OR, RD, MD, and SMD refer to Risk Ratio, Odds 

Ratio, Risk Difference, Mean Difference, and Standardized Mean Difference, respectively.  

 
24 The range would be from .470 to .720, the same as footnote 23.   
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Analysis 4: Shifts in Social Space and Diverging Evidence  

 In our final analysis, we adopt a temporal lens to investigate the link between shifts in the 

social positions of RCTs within our embedding space and the likelihood of changes in 

conclusions derived from the pooled estimates over time. To this end, we divide RCT studies 

from each meta-analysis into two temporal groups, applying their study years’ ⅓ and ⅔ 

quantiles. For illustration, consider a hypothetical meta-analysis encompassing nine RCTs 

spanning each year from 1981 to 1989; we classify three studies from 1981 to 1983 as the ‘early 

period,’ and the last three from 1987 to 1989 as the ‘later period.’ Using this temporal slicing, we 

generate two summary estimates per meta-analysis—each exclusively pooling either ‘early’ or 

‘later’ period RCTs.25 We then assess whether the statistical conclusions from the later periods 

change or remain consistent compared to the early periods. (Seven meta-analyses were excluded 

for this analysis as they consist of RCTs with the same study year, rendering any temporal 

slicing impossible; hence, the subsequent analysis is based on 20,110 meta-analyses.) 

We operationalize the summary estimates from later periods as temporally inconsistent 

with those from early ones when: (1) both summary estimates are significant but point to 

opposite directions—0.2% of the 20,110 meta-analyses; (2) a significant early period summary 

estimate (p < .05) turns to be insignificant (p >= .05) when only later periods studies are 

combined—14.7% of the 20,110 meta-analyses; or (3) an insignificant early period summary 

 
25 We calculate the ⅓ and ⅔ quantiles of study years per meta-analysis with linear extrapolation. 

RCTs with the same study years with a threshold are included when we compute summary 

estimates for each period. This ensures that 20,036 meta-analyses contain the same number of 

RCTs across early and later third periods. Nonetheless, 74 cases do not allow us to allocate the 

same number of RCTs across the early and later third periods. Consider a meta-analysis 

combining 10 RCTs, two studies from 1981, and eight studies from 1990: both ⅓ and ⅔ 

quantiles of study years are 1990. For those cases, we consider RCTs with the study year earlier 

than the ⅓ quantiles as the early period studies, otherwise later studies. As for the example, two 

RCTs with study years 1981 are considered early period studies and the other eight as later 

period ones.    
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estimate (p >= .05) gains statistical significance (p <.05) when only later periods studies are 

pooled—11.4% among the 20,110 meta-analyses.  

In contrast, we categorize the cases as temporally consistent when: (4) both are 

statistically significant (p < .05), pointing in the same direction—17.3% of the 20,110 meta-

analyses; or (5) both summary estimates from early and later periods are statistically 

insignificant (p >= .05)—53.4% of the 20,110 meta-analyses. In essence, a meta-analyst would 

reach the same conclusion over time for a consistent case such as (4) and (5), irrespective of 

whether they muster early or later samples of studies, while arriving at contrasting conclusions 

for inconsistent cases like (1), (2), and (3).   

We aim to demonstrate how shifts in the position of RCTs in the social embedding space 

over time affect the consistency of statistical conclusions between early and later periods, which 

can yield conflicting healthcare recommendations. We obtain a centroid for the vector 

representation of RCTs for each period to characterize their positions in the social embedding 

space. Specifically, we compute the mean values for each dimension across all study vectors to 

locate centroids of early and later periods for each meta-analysis. We measure the cosine 

distance (1 - cosine similarity) between the early and later periods’ centroids. We test whether 

this centroid social distance can predict the divergence of statistical evidence drawn from the 

two periods. 

We utilize two-level logistic regression models again. In the full model, we consider 

controls similar to those from prior analyses—reference overlap proportion,26 mean study year 

 
26 We compute this by dividing the number of unique papers referenced at least once by both the 

earlier and later studies by the total number of unique papers referenced by any of the earlier 

studies.  
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difference between the early and later periods,27 number of studies, mean sample size 

difference,28 types of outcome measure, and the model used for meta-analysis (i.e., random effect 

or fixed effect model). We also consider the statistical significance of summary estimates from 

the early period, termed early significance, in our modeling. We investigate how social 

proximity shapes whether scientific certainty shifts over time. As detailed in our theory section 

above, our hypothesis is that social distance between early and late investigators of the same 

medical practice will substantially increase the difference in their conclusions about the efficacy 

of that practice.  

Specifically, we examine the effect of centroid social distance on statistical conclusions 

over time by interacting it with the variable early significance. If the interaction between social 

distance and early significance has a positive effect on temporal inconsistency, then greater 

social distance between early and later researchers will more likely reverse medical conclusions. 

If this is correct, then when early findings demonstrate decisive statistical significance about the 

benefits or drawbacks of a medical practice, later findings from distant researchers will more 

likely reverse early recommendations. Moreover, if the independent effect of social distance on 

temporal inconsistency also has a negative effect on temporal inconsistency, then social 

proximity between early and later researchers will more likely turn insignificant results into 

significant ones. If this is correct, when early findings about a medical practice are inconclusive, 

later results from socially proximate researchers will more likely confirm the early hunch, 

finding significant support for the practice. Table 1.7 presents the descriptive statistics for 

 
27 We obtain this by first taking averages of study years for early and later periods and then 

subtracting the earlier period’s average study year from that of the later period. 

28 We also take the average number of participants in RCT studies from early and later periods 

and then obtain the absolute difference between them.  
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centroid social distance, reference overlap proportion, and mean study year differences between 

the early and the later periods from 20,110 meta-analyses. 

Table 1.7: Descriptive Statistics of the Variables Based on the 20,110 Meta-Analyses 

Variable Name  Mean SD 1Q Median 3Q Min Max* 

Centroid Social Distance  .207 .112 .122 .191 .276 .002 1.195 

Reference Overlap Proportion .207 .149 .098 .183 .286 0 1 

Mean Study Year Difference 9.50 5.81 5.40 8.33 12.30 .42 46.50 

Mean Sample Size Difference 396.81 3,070.22 25.40 68.25 189.53 0 205,542 

Note: The theoretical maximum for centroid social distance is 2. The maximum sample size difference is 

again observed from the systematic review of the efficacy of the injected cholera vaccine (CD000974), 

the same review in which the maximum sample size dispersion is shown in Table 1.3.  

 

Eq. (1.5) describes the full model with the dependent variable indicating whether the 

statistical conclusions drawn from two periods differ (i.e., I = 1 for scenarios like (1), (2), and 

(3); otherwise, I = 0 for (4) and (5) detailed above). 

 

𝐿𝑜𝑔𝑖𝑡(𝐼𝑖𝑗)  =  𝜋0𝑗 + 𝜋1𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑_𝑆𝑜𝑐_𝐷𝑖𝑠𝑡𝑖  +𝜋2𝑅𝑒𝑓_𝑂𝑣𝑒𝑟𝑙𝑎𝑝_𝑃𝑟𝑜𝑝𝑖 + 

𝜋3𝑀𝑒𝑎𝑛_𝑆𝑡𝑢𝑑𝑦_𝑌𝑒𝑎𝑟_𝐷𝑖𝑓𝑓𝑖  +  𝜋4𝑁𝑢𝑚_𝑜𝑓_𝑆𝑡𝑢𝑑𝑖𝑒𝑠𝑖 +  𝜋5𝑀𝑒𝑎𝑛_𝑆𝑎𝑚𝑝𝑙𝑒_𝑆𝑖𝑧𝑒_𝐷𝑖𝑓𝑓𝑖 +
 𝜋6𝑅𝑎𝑛𝑑𝑜𝑚_𝐸𝑓𝑓𝑒𝑐𝑡_𝑀𝑜𝑑𝑒𝑙 +   𝜋7𝑂𝑑𝑑𝑠_𝑅𝑎𝑡𝑖𝑜𝑖  + 𝜋8𝑅𝑖𝑠𝑘_𝐷𝑖𝑓𝑓𝑖 + 𝜋9𝑀𝑒𝑎𝑛_𝐷𝑖𝑓𝑓𝑖 +
 𝜋10𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑_𝑀𝑒𝑎𝑛_𝐷𝑖𝑓𝑓𝑖  + 𝜋11𝐸𝑎𝑟𝑙𝑦_𝑆𝑖𝑔𝑖 + 𝜋12𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑_𝑆𝑜𝑐_𝐷𝑖𝑠𝑡𝑖  ∗ 𝐸𝑎𝑟𝑙𝑦_𝑆𝑖𝑔𝑖                          

 

𝜋0𝑗 = 𝛽00 + 𝛽01 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑_𝑆𝑜𝑐_𝐷𝑖𝑠𝑡.𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝛽02𝑅𝑒𝑓_𝑂𝑣𝑒𝑟𝑙𝑎𝑝_𝑃𝑟𝑜𝑝.𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +

            𝛽03𝑀𝑒𝑎𝑛_𝑆𝑡𝑢𝑑𝑦_𝑌𝑒𝑎𝑟_𝐷𝑖𝑓𝑓.𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 

            𝛽04𝑁𝑢𝑚_𝑜𝑓_𝑆𝑡𝑢𝑑𝑖𝑒𝑠.𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  +  𝛽05𝑀𝑒𝑎𝑛_𝑆𝑎𝑚𝑝𝑙𝑒_𝑆𝑖𝑧𝑒_𝐷𝑖𝑓𝑓.𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   + 𝜂0𝑗 

 

𝐼𝑖𝑗 = 1 if a meta-analysis is robust to the LOO procedure, otherwise 𝐼𝑖𝑗 = 0                 ∙∙∙ Eq. (1.5). 

 

Table 1.8 shows estimation results from three models using the variables described 

above. Model 1 demonstrated a significant positive effect of centroid social distance ( ) on the 

likelihood of divergence in statistical conclusions between early and later summary estimates. 

The review-level contextual effect of centroid social distance, 𝛽
𝟎𝟏

, is also significant and 

positive. The substantial coefficient for early significance implies that initial healthcare 
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recommendations, supported by statistical evidence, are more likely to be reconsidered by 

researchers later examining the same or similar claims (Fanelli, Costas, and Ioannidis 2017).    

 Model 2 shows a significant crossover effect of centroid social distance over early 

significance. It unveils that earlier significant results are more likely to be challenged by distant 

groups of researchers later on, while earlier non-significant claims tend to gain statistical 

significance when later studied by researchers close to early study authors. 

Table 1.8: Multilevel Logistic Model Estimates from Analysis 4 

  Model 1 Model 2 Model 3 

Dependent Variable Inconsistent Conclusions between Early and Later Periods  

Level-1 Fixed Effects    

(Intercept) 
-1.853*** 

(.049) 

-1.850*** 

(.050) 

-1.909*** 

(.051) 

Centroid Social Distance  
.057* 

(.035) 

-.111*** 

(.031) 

-.220*** 

(.034) 

Reference Overlap Proportion   
-.001 

(.033) 

Mean Study Year Difference   
.096** 

(.034) 

Number of Studies   
-.265** 

(.030) 

Mean Sample Size Difference   
-.015 

(.028) 

Random Effect Model 
.303*** 

(.049) 

.304*** 

(.050) 

.314*** 

(.050) 

Odds Ratio (OR) 
.094 

(.071) 

-.099 

(.072) 

.094 

(.072) 

Risk Diff. (RD) 
-.688*** 

(.167) 

-.700*** 

(.169) 

-.672*** 

(.170) 

Mean Diff. (MD) 
-.372*** 

(.060) 

-.368*** 

(.061) 

-.375*** 

(.061) 

Standardized Mean Diff. (SMD) 
-.241** 

(.082) 

-.216** 

(.083) 

-.198** 

(.083) 

Early Significance 
1.669*** 

(.040) 

1.692*** 

(.040) 

1.747*** 

(.041) 

Centroid Social Distance × 

Early Significance  
 

.383** 

(.039) 

.341*** 

(.050) 

Contextual Effects  

Centroid Social Distance  
.105* 

(.043) 

.111* 

(.044) 

.182*** 

(.049) 

https://paperpile.com/c/7W1ycd/fNHaw
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Table 1.8 continued 

Reference Overlap Proportion   
-.049 

(.050) 

Study Year Difference   
-.065 

(.052) 

Number of Studies   
.003 

(.073) 

Sample Size Difference   
.005 

(.038) 

Group Random Intercepts Standard Deviation 

Review Level  .732 .745 .738 

Deviance 20630.3 20530.2 20422.0 

Num. Obs. 20,110 

Num. Reviews 1,962 

Note: All continuous variables are centered at the means and divided by the standard deviations. The 

coefficients indicate the change of log odds with the increase of unit standard deviation used to 

standardize each variable. Standard errors are in parentheses. * p < .05; ** p < .01; *** p < .001 (two-

tailed) 

 

The last column of Table 1.8 presents the estimation results for Model 3, which estimates 

Eq. (1.5) incorporating all other control variables. Among controls, the mean study year 

difference ( ) significantly influences the inconsistency between early and later period summary 

estimates. Unsurprisingly, a negative coefficient of the number of studies ( ) implies that as a 

meta-analysis combines more studies, temporal inconsistency decreases. Importantly, the 

crossover effects of centroid social distance by early significance remain in the same direction as 

Model 2. Appendix Table A1.7 corroborates that employing review-level fixed effects yields 

similar results.   

Results from Model 3 suggest that when the inference drawn from early studies is not 

significant (p < .05), a shift in centroid social distance from +1 SD to -1 SD29 (i.e., increased 

social proximity between two periods) leads to a 55.3% (exp[-.220*-2] - 1 ≈ .553) increase in the 

odds of inconsistency between early and later period conclusions, with a statistically significant 

 
29 With the mean and the standard deviation from Table 1.7, it would be from .319 (=.207 + .112) 

to .095 (=.207 - .112).  
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later period estimate. Conversely, if the pooled estimate from early period studies is statistically 

significant (p < .05), an increase in centroid social distance from -1 SD to +1 SD raises the odds 

of inconsistency between the conclusions of early and later periods by 27.4% (exp[(-.220 + .341) 

* 2] - 1 ≈ .274) as summary estimates in the later period no longer maintain statistical 

significance. Based on Model 3, Figure 1.5 visualizes the varying effects of centroid social 

distance with early significance on the probability of inconsistency between evidence from the 

early and later periods, holding other continuous covariates at their global means and assuming a 

random-effects model is employed. 

Figure 1.5: The Effect of Centroid Social Distance on the Predicted Probability of Inconsistency 

in Statistical Conclusions Between Early (First Third) and Later (Last Third) Periods  

 
Note: The focus is when the random-effects model is employed. The solid lines show the marginal mean 

probabilities that a statistical conclusion from a later period manifests inconsistency to the early period for 

a given meta-analysis, based on Model 3 from Table 1.8. Covariates are held at their global means, shown 

in Table 1.7. RR, OR, RD, MD, and SMD refer to Risk Ratio, Odds Ratio, Risk Difference, Mean 

Difference, and Standardized Mean Difference.  

 

The first scenario depicted in the left panel of Figure 1.5—where early significant 

findings are more likely to be challenged by more distant researchers—invokes two possibilities. 
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One modest possibility could be that the later-period researchers might inadvertently fail to 

satisfy certain tacit conditions required for the accurate replication of the initial claims. A more 

critical interpretation suggests that re-evaluation of the purportedly significant claims are more 

likely to be undertaken by researchers maintaining a degree of social independence from early-

period researchers. Either interpretation confirms the expectation detailed above about how 

socio-epistemic bubbles might burst. 

The second scenario from the right panel of Figure 1.5 illustrates how early non-

significant claims tend to gain statistical significance when later examined by researchers close 

to early study authors. This reveals another implication of socio-epistemic bubbles. Socio-

epistemic bubbles transmit tacit assumptions, beliefs, and expectations that influence subsequent 

examination of initial claims. Researchers within them likely share pragmatic goals and 

epistemic positions. Because researchers tend to utilize RCTs to report significant rather than 

insignificant results, reflecting widespread bias against the publication of null results (Rosenthal 

1979; Pautasso 2010), later researchers close to the original studies eventually achieve evidence 

that early researchers sought unsuccessfully.  

 We select three cases that illustrate the role of social distance, each representing one of 

the three cases of temporal inconsistency in statistical conclusion as operationalized above as (1), 

(2), and (3). Rather than providing comprehensive validation with these cases, we seek to 

complement our quantitative analysis. The first illustrates the case in which both early and later 

period summary estimates manifest statistical significance but point in opposite directions. A 

Cochrane review entitled “Antibiotic prophylaxis versus no prophylaxis for preventing infection 

after cesarean section” (Smaill and Grivell 2014) evaluated the effects of various antibiotics.30 

 
30 Cochrane accession number: CD007482 

https://paperpile.com/c/7W1ycd/3VBU9+Uvmhd
https://paperpile.com/c/7W1ycd/3VBU9+Uvmhd
https://paperpile.com/c/7W1ycd/OzZeK
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One meta-analysis within the review focuses on the efficacy of Cefamycins in preventing 

maternal fever across nine studies. The conclusion drawn by combining early period studies (two 

studies from 1981 and another two from 1983) favors Cefamycins over no-antibiotics (p < 

0.001). When only the later period studies (each from 1989, 1990, and 2001) are pooled, 

however, the recommendation flips, supporting no-treatment (p < 0.01). The centroid social 

distance between the two periods is .317 (the upper 83.9 percentile of cosine distance), 

illustrating the association between distance in social space and diverging conclusions between 

early and late studies.  

 The second illustrates how early significant results may be challenged by distant 

researchers as estimates from later periods studies do not find statistical significance. In a review 

titled “Antidepressants versus placebo for depression in primary care” (Arroll et al. 2009), the 

authors evaluate the efficacy of antidepressants versus placebo.31 One analysis evaluates the 

efficacy of Tricyclic Antidepressants (TCAs) for depression symptoms 4 weeks after medication. 

Pooling three early period studies (1971, 1971, and 1979) would favor TCAs over placebo (p 

< .01) while three later period studies (1988, 1997, 1999) suggest no statistically meaningful 

differences between treatment and placebo groups (p=.119). Centroid social distances between 

early and late period studies is .310 (the upper 82.5 percentile of the centroid distance 

distribution). 

 Our final case illustrates a situation where early non-significant results gain statistical 

significance in later periods by researchers socially proximate to those who published early 

studies. In a review that assessed the side effects of Salmeterol in treating chronic asthma (Cates 

and Cates 2008), one meta-analysis estimates all drug-related adverse events.32 Pooling five early 

 
31 Cochrane accession number: CD007954 

32 Cochrane accession number: CD006363 

https://paperpile.com/c/7W1ycd/jQU0T
https://paperpile.com/c/7W1ycd/6veIB
https://paperpile.com/c/7W1ycd/6veIB
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period studies (1992, 1994, 1998, 1998, 1998) leads to a statistically insignificant summary 

estimate (p = .24). Doing so with four later period studies (1999, 1999, 2000, 2004) yields a 

statistically significant summary estimate (p < .05), suggesting that Salmeterol may increase the 

likelihood of experiencing drug-related adverse events compared with the placebo group. The 

centroid social distance between the two periods is extremely low at 0.01, with 31% or 9 of the 

29 authors involved in later studies overlapping those from the early ones. This suggests that 

later studies were performed by many of the same researchers to overcome the inclusiveness of 

early published findings. 

 

Discussion 

Summary of Results  

Building on the theory of tacit knowledge, we develop the notion of a scientific field defined by 

overlapping socio-epistemic bubbles that capture the latent assumptions required for successful 

experimental replication. We then operationalize this by harnessing scientific publications 

encoded within neural embedding models to construct a continuous space within which bubbles 

of biomedical tacitness can be measured. Guided by the wisdom of crowds, our analysis shows 

that social proximity across clinical trials predicts an otherwise scientifically unaccountable 

consistency in meta-analysis estimates. The problem with this consistency is precisely its 

tacitness, bound up in shared assumptions and expectations, similarities of technique and 

interpretation that allow groups of socially proximate researchers to “find the same thing.” This 

is a problem because shared tacit insight cannot transcend the particular RCTs performed and lift 

the efficacy of treatment in clinical practice. Instead, socio-epistemic bubbles may propagate 

false (un)certainty about medical efficacy and safety. Insofar as RCTs represent the pinnacle of 
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biomedical knowledge in the age of scientific medicine, unmeasured social proximity inscribing 

socio-epistemic bubbles wins the tribunals of science, but with less relevance to the clinic where 

lives hang in the balance.    

In our analysis, we adapt the Doc2vec model to generate representational vectors for 

articles to capture the continuous space of socio-epistemic bubbles by encoding the collaborative 

pattern underlying biomedical research. We connect similarity-based measures from the social 

embedding space to estimates curated by Cochrane Reviews.  

Our first analysis demonstrates that the closer pairs of clinical trials lie in social space, 

the lower the likelihood their estimates will deviate. In the second analysis, we investigate the 

relationship between social density, operationalized as the averaged cosine similarity between 

included studies, and the overall heterogeneity of meta-analysis estimates. We find that estimates 

collected from more dense social pools of publications tend to be markedly more homogeneous. 

In the third analysis, we apply a leave-one-out sensitivity analysis to assess the invariance of 

summary estimates. We test whether social density can predict the stability of statistical 

conclusions and find that summary estimates tend to be more invariable to sensitivity analysis 

when individual estimates are harvested from socially clustered publications. These results 

demonstrate the consistency of findings at the pairwise, aggregate, and marginal levels of 

analysis. Our final analysis offers a more nuanced picture of how socio-epistemic bubbles relate 

to shifting evidence from the research community. We demonstrate how early significant results 

are more likely to be later challenged by distant researchers than those close to early period 

researchers. Conversely, early null findings tend to gain support with statistical significance later 

when studied by researchers close to early studies authors.  

 In summary, we find that tacit knowledge consistently and substantially shapes certainty 



57 

regarding medical treatment from RCTs. This tacit confidence guides medical practices despite 

its inability to transcend the social-epistemic bubbles of research agreement that make it appear 

more efficacious and safef than can be communicated or impactfully diffused through clinical 

medicine for improved health. 

 

Limitations 

Our analyses have natural limitations. The first stems from the observational nature of 

our work. We repurposed existing data. While we have controlled for extensive covariates, our 

work admittedly remains associational. Nevertheless, we believe our results offer robust 

estimations across a range of modeling assumptions, including pairwise, aggregate, and marginal 

levels of analysis (i.e., analysis 1-3 above) and random vs. fixed-effect model implementations 

(see Appendix for Chapter 1).  

We also note that our evaluation is drawn from clinical trials described in journal articles 

cataloged by MEDLINE. Our measurement strategy does not directly consider broader scientific 

contexts such as classrooms and conferences wherein tacit knowledge can flow and socio-

epistemic bubbles grow. Moreover, our data did not cover results reported only in dissertations 

and unpublished work, which may manifest a higher proportion of failed studies (Goldacre 

2014). In a similar vein, we excluded trials reported via publications from which we could not 

retrieve authors’ identifiers from the PKG 2020 dataset. This is inevitable as the linkage between 

publications and systematic reviews depends on identifiers. Still, 89.83% (=30,660/34,133) of 

the unique RCT-review pairs from the 1,962 systematic reviews featuring 20,117 meta-analyses 

are linked with at least one PMID. Name-disambiguated author identifiers are available for most, 

but not all RCTs with PMIDs (96.07% of the 30,660 clinical trials). As publication bias may 

https://paperpile.com/c/7W1ycd/d1Eld
https://paperpile.com/c/7W1ycd/d1Eld
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nudge conclusions of published work toward greater significance, we suspect that a better 

linkage among clinical trials in social space would enhance the correlation between social 

proximity and estimates’ homogeneity. 

Another limitation stems from degrees of bias within clinical trials collected by Cochrane 

reviewers. For example, Cochrane reviews can include quasi-randomized clinical trials in which 

random allocation is conducted based on participants’ date of birth or case record number. The 

authors of Cochrane reviews apply a guideline (i.e., GRADE: the Grades of Recommendation, 

Assessment, Development, and Evaluation) to distinguish clinical studies eligible for inclusion 

within a meta-analysis from those with high risk of bias slated for exclusion.33 Our analysis 

assumes that assessments conducted by the Cochrane staff excluded clinical trials with a high 

risk of bias, but did not fully account for the proximity of studies in social space as we show 

here. That Cochrane Review authors already sought to cluster co-authored publications by 

identifying them as relevant to the same broader study, our analysis represents a conservative 

estimate of the effect of social proximity on published certainty. 

 

Conclusion 

RCTs have played a central role in contemporary medical science from the second half of the 

20th Century in evaluating the efficacy and risks of medical treatment. Proponents of Evidence-

Based Medicine legitimately embraced the idea of randomization to improve how medical 

interventions are assessed and practiced. The phrase “Evidence-Based” has gained authority not 

only in medicine but also in other social and policy-related sciences. Accordingly, the technique 

 
33 For instance, 1,962 reviews in our dataset initially identified 128,703 relevant studies, but 

58.33% of the trials were not qualified to be included in the meta-analyses. The reasons for 

exclusion are not limited to a high risk of bias but span others, such as the unavailability of 

relevant clinical outcomes due to different study aims.    
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of meta-analysis has become a popular approach from which to draw generalizations from 

multiple experimental studies. Building beyond theories where tacit knowledge is assumed to 

universally permeate scientific subfields, we develop a theory of socio-epistemic bubbles 

through which tacit knowledge in science is shared with those connected and nearby, and not 

fully articulated within publications. We then interrogate whether the degree of social proximity 

between medical and healthcare RCTs can predict their dispersion of estimates. Our finding 

provides evidence that increased social proximity and density among epistemic bubbles of 

researchers is associated with under-dispersed estimates, which makes the overall conclusions 

drawn from meta-analysis appear more robust despite their limited ability to transcend the tacit 

configurations of RCTs.  

We do not intend to argue that RCTs and meta-analysis are epistemologically weak or 

that they cannot contribute to better collective certainty regarding biomedical and other policy 

interventions. On the one hand, our analysis demonstrates the role of social embeddedness 

among researchers transferring tacit assumptions, techniques, and insights in the consensus-

making process, even within otherwise controlled RCT settings. Conceptualizing scientific fields 

as continuous spaces of socio-epistemic bubbles, clinical trials may remain silent on 

experimentally relevant assumptions and protocols without intentional malpractice. On the other 

hand, our paper suggests that maintaining and enforcing a diverse research community would 

benefit biomedical science in several ways. First, it would prevent potential overconfidence 

produced by researchers densely linked within bubbles of shared intentions, assumptions, 

practices, and even expectations that drive social pressures for conformity. Second, if diverse and 

independent groups of researchers report comparable results, it would signal greater reliability 

and trustworthiness. Finally, it would provide opportunities for diverse biomedical researchers 
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and scientists to engage one another—neither generating unsustainable bubbles nor collapsing 

them—to clarify tacit aspects when significant heterogeneity is observed. This would motivate 

further research, the explication of scope conditions, and improved transfer to clinical practice 

and improved population health.  

Our work makes distinctive contributions by bridging the social studies of scientific 

knowledge, metascience, and network science. Studies under the banner of “metascience” have 

uncovered critical, systematic sources like amplified effect sizes reported from early career 

researchers (Fanelli, Costas, and Ioannidis 2017) and scientists at U.S. institutions (Fanelli and 

Ioannidis 2013). While tacit knowledge has been articulated as playing an essential role in 

technology development (Collins 1974, 2010; Polanyi 1958), here we work out the sociological 

implication of its localization within socio-epistemic bubbles, especially regarding knowledge 

whose purported value lies in application outside the system in which tacit understanding is 

distributed and shared. We systematically demonstrate this phenomenon at scale in the context of 

healthcare RCTs. Our findings suggest that we may observe similar patterns in other fields 

ranging from fields of nonmedical biology to behavioral science, psychology, economics and 

related policy sciences that rely on randomized experiments to produce scientific and applied 

evidence.  

Moreover, our analysis highlights the potential problem of under-dispersion as 

widespread and a new target for the field of metascience and the practice of statistical meta-

analysis. These fields have historically focused on overdispersion and reducing upwardly biased 

confidence driven by low-powered studies. Our approach not only identifies the inflated 

certainty that may drive under-dispersion, but it enables the identification of socio-

epistemological bubbles and a reasoned discounting of overconfidence by weighting studies 

https://paperpile.com/c/7W1ycd/fNHaw
https://paperpile.com/c/7W1ycd/PVDSj
https://paperpile.com/c/7W1ycd/PVDSj
https://paperpile.com/c/7W1ycd/pp0Qg+0RLzd+BDMOA
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consistent not only with subject numbers, but potential social and epistemological proximity. We 

advocate for the use of network analytic concepts and methods within meta-analysis to account 

for latent social-epistemic structure within the realm of science. We hope that our approach can 

inspire further refinement and routine inclusion within meta-analyses to compensate for variation 

in agreement across RCTs.  

Our work sheds light on an important but neglected reason why performing experiments 

and meta-analyses that aggregate them cannot mechanically resolve and harmonize scientific 

disagreement and dispute, contrary to popular expectations. This resonates with Karl 

Mannheim’s proposed “task of solving the problem of the social conditioning of knowledge by 

boldly recognizing these relations and drawing them into the horizon of science itself and using 

them as checks on the conclusions of our research” (Mannheim [1936] 1991, 237). By not 

ignoring latent social bubbles of self-reinforcing agreement, but measuring them, we illustrate 

how biomedical knowledge can be better calibrated and improve its translation into health. 

Furthermore, explicit measurement of the social landscape underlying current biomedical 

understanding can allow us to design the diversity required to improve it.   

 

 

 

 

 

 

 

 

https://paperpile.com/c/7W1ycd/lMRUO/?locator=237
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Appendix For Chapter 1 

Table A1.1: Distribution of the Number of Systematic Reviews across Disease Categories 

Category # Reviews # Meta-analysis 

Pregnancy and Childbirth 156 1,909 

Airways 109 1,058 

Neonatal 80 680 

Heart 78 1,300 

Common Mental Disorders 76 1,085 

Kidney and Transplant 75 858 

Pain, Palliative and Supportive Care 74 640 

Gynaecology and Fertility 73 515 

Stroke 72 559 

Hepato-Biliary 70 1,403 

Schizophrenia 63 646 

Anaesthesia 59 727 

Musculoskeletal 59 505 

Colorectal 55 415 

Acute Respiratory Infections 50 462 

Infectious Diseases 47 428 

Metabolic and Endocrine Disorders 45 690 

Emergency and Critical Care 38 394 

Gynaecological, Neuro-oncology and  

Orphan Cancer 
38 408 

Upper GI and Pancreatic Diseases 38 346 

Vascular 37 293 

Injuries 36 420 

Tobacco Addiction 35 306 

Wounds 32 99 

Bone, Joint and Muscle Trauma 31 288 

Drugs and Alcohol 31 328 

Eyes and Vision 29 116 

Hypertension 28 408 

Oral Health 28 96 

Breast Cancer 27 229 

Developmental, Psychosocial and 

 Learning Problems 
25 399 

Dementia and Cognitive Improvement 24 110 
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Table A1.1 continued 

Effective Practice and Organisation of Care 22 121 

Incontinence 21 103 

Inflammatory Bowel Disease 21 146 

Back and Neck 19 191 

Consumers and Communication 17 191 

ENT 16 86 

Haematology 15 342 

Skin 15 65 

Epilepsy 14 170 

Urology 12 66 

HIV 10 71 

Movement Disorders 10 121 

Fertility Regulation 9 53 

Multiple Sclerosis and 

 Rare Diseases of the CNS 
8 33 

Neuromuscular 8 49 

Sexually Transmitted Infections 7 19 

Lung Cancer 6 111 

Work 6 12 

Cystic Fibrosis and Genetic Disorders 4 14 

Public Health 4 33 

Total 1,962 20,117 

Note: The categories were classified according to the Cochrane Review Groups that specialize in each 

disease category. The names of the groups have been evolving. The most up-to-date group name in April 

2021 is used in Table A1.1. For example, the “Back and Neck” group was first registered as the “Back 

Review Group for Spinal Disorders” in Dec 1998, and the group changed its name as “Cochrane Back 

Review Group” in 1999 and started to use the current name, “Cochrane Back and Neck”, in 2015. 
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 Table A1.2: Breakdowns of Dichotomous Outcomes 

Outcome Measure Pooling Method 
Model 

Total 
Fixed-Effect Random-Effect 

Odds Ratio 
M-H 1,016 950 1,966 

Inverse Variance 9 41 50 

Peto Odds Ratio PETO 973 - 973 

Risk Ratio 
M-H 5,050 5,169 10,219 

Inverse Variance 117 327 444 

Risk Difference 
M-H 170 296 466 

Inverse Variance - 2 2 

Total 7,335 6,785 14,180 

 

 

Table A1.3: Breakdowns of Continuous Outcomes. 

Outcome Measure 

Model 

Total 

Fixed-Effect Random-Effect 

Mean Difference 1,312 2,652 3,964 

Standardized Mean Difference 489 1,484 1,973 

Total 1,801 4,136 5,937 
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Table A1.4: Fixed Effects Model Estimates of Eq. (1.1), with Level-1 Effects 

  Model 1 Model 2 Model 3 Model 4 Model 5 

Social Proximity  
-.046*** 

(.009) 
  

-.045*** 

(.009) 
  

-.037*** 

(.010) 

Reference Overlap   
-.044*** 

(.008) 
  

-.041*** 

(.008) 

-.035*** 

(.009) 

Study Year Difference     
.018* 

(.009) 

.010 

(.009) 

.009 

(.009) 

Num. Obs. 1,279,974 

Num. Meta-Analysis 20,117 

Num. Reviews 1,962 

Note: The coefficients indicate the change of log odds with the increase of unit standard deviation used to 

standardize each variable. Standard errors inside the parentheses indicate cluster-robust standard errors at 

the meta-analysis and the unique study pairs in a review.  

* p < .05; ** p < .01; *** p < .001 (two-tailed t-tests). 

 

 

 

Table A1.5: Fixed Effects Model Estimates of Eq. (1.3) 

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Threshold L = 1 if 𝑰𝟐 < 0.3, otherwise, L = 0   L = 1 if 𝑰𝟐 < 0.4, otherwise, L = 0  

Social Density  
.160** 

(.052) 
 

.138* 

(.055) 

.184*** 

(.053) 
 

.157** 

(.056) 

Reference Density  
.101* 

(.048) 

.042 

(.054) 
 

.130* 

(.053) 

.074 

(.058) 

Study Year Dispersion   
-.082 

(.054) 
  

-.053 

(.055) 

Num. of Studies 
-.158** 

(.055) 

-157** 

(.055) 

-.150** 

(.055) 

-.174*** 

(.050) 

-.171*** 

(.050) 

-.165*** 

(.050) 

Sample Size Dispersion 
-.082 

(.059) 

-.079 

(.057) 

-.084 

(.059) 

-.152* 

(.077) 

-.147* 

(.075) 

-.154* 

(.076) 

Odds Ratio  
.146 

(.264) 

.135 

(.264) 

.139 

(.265) 

.224 

(.272) 

.206 

(.273) 

.216 

(.274) 

Risk Diff. 
.324 

(.414) 

.336 

(.414) 

.321 

(.413) 

.166 

(.399) 

.181 

(.398) 

.166 

(.398) 

Mean Diff. 
.265 

(.154) 

.255 

(.152) 

.257 

(.153) 

.090 

(.154) 

.078 

(.152) 

.083 

(.153) 

Standardized Mean Diff. 
1.068*** 

(.310) 

1.054*** 

(.309) 

1.059*** 

(.307) 

.943** 

(.306) 

.925** 

(.306) 

.935** 

(.305) 

Num. Obs. 20,117  

Num. Reviews 1,962  

Note: The coefficients indicate the change of log odds with the increase of unit standard deviation used to 

standardize each variable. Standard errors inside the parentheses indicate cluster-robust standard errors at 

the systematic reviews. * p < .05; ** p < .01; *** p < .001 (two-tailed t-tests) 
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Table A1.6: Fixed-Effects Model Estimates of Eq. (1.4) 

  Model 1 Model 2 Model 3 

Dependent Variable Invariant by the LOO Procedure 

Social Density  
.093* 

(.046) 
 

.098* 

(.47) 

Reference Density  
.003 

(.044) 

-.046 

(.045) 

Study Year Dispersion   
-.065 

(.044) 

Num. of Studies 
.406* 

(.163) 

.398* 

(.163) 

.407* 

(.165) 

Sample Size Dispersion 
-.072 

(.068) 

-.069 

(.067) 

-.072 

(.068) 

Initial P-value < .05 
-1.191*** 

(.082) 

-1.191*** 

(.082) 

-1.191*** 

(.082) 

Random Effect Model 
-.193* 

(.093) 

-.195* 

(.093) 

-.190* 

(.092) 

Odds Ratio  
-.302 

(.195) 

-.306 

(.195) 

-.304 

(.195) 

Risk Diff. 
.598* 

(.302) 

.605* 

(.302) 

.592 

(.303) 

Mean Diff. 
.393*** 

(.118) 

.387** 

(.118) 

.390*** 

(.118) 

Standardized Mean Diff. 
.552** 

(.182) 

.550** 

(.181) 

.552** 

(.181) 

Num. Obs. 20,117 

Num. Reviews 1,962 

Note: The coefficients indicate the change of log odds with the increase of unit standard deviation used to 

standardize each variable reported in Table 1.3. Standard errors inside the parentheses indicate cluster-

robust standard errors at the systematic reviews.  * p < .05; ** p < .01; *** p < .001 (two-tailed t-tests). 
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Table A1.7: Fixed-Effects Model Estimates of Eq. (1.5) 

  Model 1 Model 2 Model 3 

Dependent Variable Inconsistent Conclusions between Early and Later Periods   

Centroid Social Distance  
.062 

(.040) 

-.142** 

(.055) 

-.260*** 

(.059) 

Reference Overlap Proportion   
-.004 

(.039) 

Mean Study Year Difference   
.102* 

(.045) 

Number of Studies   
-.277** 

(.085) 

Mean Sample Size Difference   
-.021 

(.047) 

Random Effect Model 
.286** 

(.101) 

.294** 

(.104) 

.303** 

(.104) 

Odds Ratio (OR) 
.232 

(.180) 

.241 

(.177) 

.225 

(.176) 

Risk Diff. (RD) 
-.733* 

(.321) 

-.728* 

(.299) 

-.718* 

(.302) 

Mean Diff. (MD) 
-.264* 

(.128) 

-.256* 

(.129) 

-.275* 

(.119) 

Standardized Mean Diff. (SMD) 
-.333 

(.197) 

-.297 

(.195) 

-.272 

(.188) 

Early Significant 
1.763*** 

(.118) 

1.815*** 

(.118) 

1.870*** 

(.111) 

Centroid Social Distance × 

Early Significant   
 

.474*** 

(.089) 

.431*** 

(.090) 

Num. Obs. 20,110 

Num. Reviews 1,962 

Note: The coefficients indicate the change of log odds with the increase of unit standard deviation used to 

standardize each variable. Standard errors inside the parentheses indicate cluster-robust standard errors at 

the systematic reviews.  * p < .05; ** p < .01; *** p < .001 (two-tailed t-tests). 
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Figure A1.1: Histogram of 𝐼2 Statistics from 20,117 Meta-Analyses 
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Chapter 2 

Limited Diffusion of Scientific Knowledge Forecasts Collapse 

 

Abstract 

Market bubbles emerge when asset prices are driven unsustainably higher than asset values and 

shifts in belief burst them. We demonstrate the same phenomenon for biomedical knowledge 

when promising research receives inflated attention. We predict deflationary events by 

developing a diffusion index that captures whether research areas have been amplified within 

social and scientific bubbles or have diffused and become evaluated more broadly. We illustrate 

our diffusion approach contrasting the trajectories of cardiac stem cell research and cancer 

immunotherapy. We then trace the diffusion of unique 28,504 subfields in biomedicine 

comprising nearly 1.9M papers and more than 80M citations and demonstrate that limited 

diffusion of biomedical knowledge anticipates abrupt decreases in popularity. Our analysis 

emphasizes that restricted diffusion, implying a socio-epistemic bubble, leads to dramatic 

collapses in relevance and attention accorded to scientific knowledge. 
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Introduction 

Market bubbles emerge when widespread opinions about an asset, such as housing or securities, 

create self-reinforcing information that drives its price much higher than its value to society 

(Arthur 1995). These bubbles are characterized by a swift surge in popularity, fueled by beliefs 

that the value may continue to rise and persist, leading to speculation. Such bubbles burst when 

shifts in opinion, often catalyzed by new data or events, precipitate radical discounts in pricing 

(Harras and Sornette 2011). Science observers and researchers themselves have drawn parallels 

in science (Goldman and Shaked 1991; Pedersen and Hendricks 2014; Evans et al. 2011), which 

involves considerable investment in capital, attention, and other resources based on highly 

uncertain knowledge about the outcomes of research. This exposes science to the risk of forming 

bubbles analogous to financial markets (Pedersen and Hendricks 2014; Evans et al. 2011). Here, 

we operationalize the concept of scientific bubbles and their collapse, proposing a measurement 

framework and demonstrating that ideas and findings in science can experience abrupt booms 

and busts of popularity and credibility that may yield adverse consequences for science and 

scientists alike.  

In the system of biomedical knowledge, citation counts have come to function as an 

operational currency (Fortunato et al. 2018; Partha and David 1994), serving as a measure of the 

importance and impact of scientific work. This is also reflected by increasing interest in the 

development of indicators tracing emergent, disruptive, or breakthrough science and technology 

(Small, Boyack, and Klavans 2014; Funk and Owen-Smith 2016; Klavans, Boyack, and Murdick 

2020; Weis and Jacobson 2021; Lin, Evans, and Wu 2022), which typically incorporate citation 

counts as key components. The citation metric manifests some distortion, however, from the 

inflation of citation counts with historical growth in articles (Petersen et al. 2019) and the 

https://paperpile.com/c/7W1ycd/BHMrl
https://paperpile.com/c/7W1ycd/1GnDO
https://paperpile.com/c/7W1ycd/X3jb+7bJIJ+UTzOU
https://paperpile.com/c/7W1ycd/7bJIJ+UTzOU
https://paperpile.com/c/7W1ycd/UMZb+7cX7k
https://paperpile.com/c/7W1ycd/8oYA0+uhYg7+7xMcC+YUQTn+zHtE7
https://paperpile.com/c/7W1ycd/8oYA0+uhYg7+7xMcC+YUQTn+zHtE7
https://paperpile.com/c/7W1ycd/NWWBl
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unequal size of fields (Hutchins et al. 2016). Inspired by the analogy between financial and 

scientific bubbles, here we forecast substantial and dramatic declines in the popularity of 

research ideas—the bursting epistemic bubbles—as the degree to which those ideas remain 

concentrated within the same collection of authors, institutions, and biomedical subfields, failing 

to diffuse across social and scientific space despite initial popularity. We argue that this limited 

diffusion may indicate inflated attention to particular ideas that may not generalize or withstand 

broader scrutiny, ultimately leading to disappointment and disillusionment within the scientific 

community. 

 Consider the extreme but illuminating case of cardiac regeneration in biomedicine. Dr. 

Piero Anversa and collaborators led research in cardiac regeneration at the turn of the 21st 

Century by asserting the possibility of damaged heart muscle tissue after myocardial infarction 

with stem cells and progenitor cells drawn from the bone marrow or within the heart (Taylor and 

Heath 2022). During Anversa and collaborators’ peak productivity, they also exercised 

significant influence over the research narrative, sitting on editorial boards of high-profile 

American Heart Association journals like Circulation Research (Dr. Anversa alone reviewed 

hundreds of papers for Circulation Research, more than any other researcher in this period), 

serving on the NIH National Institute on Aging’s Board of Scientific Counselors (2008-2013) 

and an interlocking matrix of NIH grant review panels. Nevertheless, findings from early cardiac 

regeneration work not only failed to generalize, but the experiments could not be replicated by 

other researchers (Murry et al. 2004). This resulted in a dramatic breach of trust, the retraction of 

more than 30 related papers from leading journals, a marked discount in citations to the subfield, 

diminished confidence in the near-term prospects of cardiac regeneration, and Anversa’s forced 

departure from Harvard. This, in turn, adversely impacted even those researchers who had been 

https://paperpile.com/c/7W1ycd/syvuy
https://paperpile.com/c/7W1ycd/5hc1l
https://paperpile.com/c/7W1ycd/5hc1l
https://paperpile.com/c/7W1ycd/tQL2U
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studying cardiac regeneration using more rigorous scientific approaches who had identified 

reproducible mechanisms underlying the phenomenon (Osafune et al. 2008). 

Our approach, however, aims to generalize beyond the severe research misconduct of an 

individual or a team of scientists. Accurate and honestly reported medical findings can still fail to 

generalize beyond the specific context of their initial investigation, despite optimism and hype 

regarding their transformative potential for medicine. More critically, as highlighted by science 

commentators (Harris 2017) and biomedical researchers (Neimark 2015; Hughes et al. 2007), 

unintended collective failures can also occur, as exemplified by the widespread use of 

misidentified or contaminated cell lines contributing to unjustified hype and misdirected 

attention and resources in the field. This phenomenon suggests the need for a more refined and 

multi-faceted framework to better model and evaluate the trajectories of scientific attention.  

In this study, we demonstrate that fragile and overhyped biomedical findings could have 

been anticipated by analyzing their diffusion through the system of science. Utilizing PubMed 

Knowledge Graph (Xu et al. 2020), a large-scale bibliographical database, we provide a 

framework that considers distances between publications and their citing papers within the 

“scientific space” constituted by co-investigated biomedical entities and the “social space” 

constituted by collaborating scientists. Specifically, we develop a diffusion index to capture 

whether ideas have been amplified within social and scientific bubbles (Teplitskiy et al. 2018), or 

diffused more widely and tested for robustness across diverse research communities (Belikov, 

Rzhetsky, and Evans 2022). This approach allows us to gain insight into the diffusion of research 

ideas and their impact, ultimately helping us more rapidly assess the value and potential of 

scientific findings. 

https://paperpile.com/c/7W1ycd/461z8
https://paperpile.com/c/7W1ycd/rj3k3
https://paperpile.com/c/7W1ycd/o30aj+6ND2w
https://paperpile.com/c/7W1ycd/3ZPZE
https://paperpile.com/c/7W1ycd/PiJtT
https://paperpile.com/c/7W1ycd/GmBWQ
https://paperpile.com/c/7W1ycd/GmBWQ
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Our work demonstrates how a lack of diffusion measured by this framework—indicative 

of the existence of a scientific bubble—can anticipate a rapid decline in popularity as confidence 

bubbles burst. Applying the conceptual and measurement tools detailed below (Methods), we 

first compare two distinct trajectories from cardiac stem cell and cancer immunotherapy research 

papers. The upper panels of Figure 2.1 illustrate the approach with two contrasting papers. 

Figure 2.1.a and 2.1.b depict the diffusion and citation trajectories of an early paper (Quaini et al. 

2002) from Dr. Anversa’s group on cardiac muscle regeneration using bone-marrow-derived 

cells and a seminal paper on cancer immunotherapy conducted by Dr. Honzo (Freeman et al. 

2000) within scientific and social spaces, respectively. Figure 2.1.a suggests that while cardiac 

stem cell research like this paper gained massive early attention, this did not sustain, manifesting 

fragile, overhyped ideas that could not withstand broader scrutiny across the scientific 

community or application across science. This is contrasted in Figure 2.1.b with the case of 

cancer immunotherapy, where research gradually diffused to distant research groups and topics 

before garnering significant attention.   

Beyond papers, we trace the diffusion trajectories of 28,504 unique subfields in 

biomedicine (Azoulay, Fons-Rosen, and Zivin 2019), encompassing nearly 1.9 million papers 

and more than 80 million citations. Our analysis reveals that limited diffusion of biomedical 

knowledge is systematically associated with an early rise and abrupt drop in popularity. The 

bottom panels of Figure 2.1 display the average trajectories of subfields by distinguishing those 

that experienced a sharp decline or collapse in scientific attention from those that did not by the 

end of 2019. Furthermore, our post-hoc analyses show that the likelihood of collapses of 

subfields is positively associated with the concentration of publications from superstar 

biomedical researchers, echoing aspects of the Dr. Anversa case.  

https://paperpile.com/c/7W1ycd/zC1Fq
https://paperpile.com/c/7W1ycd/zC1Fq
https://paperpile.com/c/7W1ycd/X9BxU
https://paperpile.com/c/7W1ycd/X9BxU
https://paperpile.com/c/7W1ycd/oYCtp
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Figure 2.1: Representation of Different Diffusion Levels and Contrasting Diffusion Trajectories  

 
Note: Panels a and b illustrate 3D kernel density plots of diffusion indices and citations for PMID 

11777997 (Cardiac Stem Cell) and PMID 11015443 (Cancer Immunotherapy) in scientific and social 

spaces, respectively. Publication years associated with each article are aligned to zero for comparison. 

Annual diffusion indices and citation counts are computed using a two-year rolling average. Panels c and 

d show kernel density plots based on average diffusion indices and citations, standardized within subfield 

ages. These plots contrast subfields that experienced collapse below the 0.5% threshold (blue) with those 

that did not (red), across scientific and social spaces respectively. 

 

 

In this way, our work highlights that restricted diffusion in science can effectively capture 

socio-epistemic bubbles. Complementing citation dynamics with diffusion patterns enriches our 
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identification of robust insight in biomedical science, which can be readily improved by 

discounting bubbles and promoting convergent results sourced through social and topical 

diversity.  

 

Methods 

Manifold Representations of Social and Scientific Space 

 To assess the diffusion of ideas in science from biomedicine, we train two high-

dimensional vector representations using neural embedding models (Le and Mikolov 2014) for 

publications cataloged in the PubMed Knowledge Graph (PKG) (Xu et al. 2020). The PKG 

provides 15,530,165 disambiguated author IDs and 481,497 unique combinations of Medical 

Subject Headings (MeSH) from 29,339 MeSH descriptors and 76 qualifiers, each assigned to 

28,329,992 and 26,666,615 MEDLINE-indexed publications, respectively, by the end of 2019. 

Each document in the PubMed database is assigned a unique document identifier, PMID. The 

database also contains the publications to the publication reference records, which integrates 

PubMed’s citation data, NIH’s open citation collection, OpenCitations, and the Web of Science.   

We specifically adapt the Doc2vec model (Le and Mikolov 2014), a variant of the 

Word2vec model (Mikolov et al. 2013), originally developed to produce dense vector 

representations for documents or paragraphs from the words that compose them. This approach 

has previously been extended to generate high-dimensional representational vectors 

geometrically proximate to the degree that entities frequently share neighbors, contexts (Mikolov 

et al. 2013; Kozlowski, Taddy, and Evans 2019; Garg et al. 2018), or are connected via social 

ties (Perozzi, Al-Rfou, and Skiena 2014; Grover and Leskovec 2016). 

https://paperpile.com/c/7W1ycd/Or8tj
https://paperpile.com/c/7W1ycd/3ZPZE
https://paperpile.com/c/7W1ycd/Or8tj
https://paperpile.com/c/7W1ycd/qNM1N
https://paperpile.com/c/7W1ycd/qNM1N+oYJqE+6mX9w
https://paperpile.com/c/7W1ycd/qNM1N+oYJqE+6mX9w
https://paperpile.com/c/7W1ycd/MTUY6+hr2Bp
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We consider that a biomedical research article can be characterized by a list of: 1) MeSH 

terms and 2) research collaborators. Consequently, we build two separate representational vector 

spaces  to capture “scientific space” and “social space”, respectively. For training our vector 

representations, we utilize the Python Gensim package (Radim Rehurek 2010). We specifically 

use the Distributed Bag of Words (DBOW) model, analogous to the skip-gram model from the 

Word2vec framework, and simultaneously train the vector position of constituting elements 

(MeSH terms or author IDs) along with document vectors. This results in two spaces trained on 

100-dimensional vector representations for PMIDs and their constituent elements. Training and 

validation procedures are detailed in the Appendix (Measuring Knowledge Diffusion Through 

Document Embedding Spaces). 

  

Delineating Biomedical Subfields 

Biomedical knowledge obtains influence when others recognize and build on it (Bourdieu 

1975; Foster, Rzhetsky, and Evans 2015). In this work, we seek to understand the dynamics of 

diffusion and shifting attention at the level of biomedical subfields, which we define as a group 

of biomedical publications tightly related to a medically and biologically relevant research topic, 

identified through the PubMed Related Algorithm (PMRA) (Lin and Wilbur 2007). This method 

has been previously employed in studies examining the impact of publication retraction 

(Azoulay, Furman, and Murray 2015), repercussions of scientific scandal on careers (Azoulay, 

Bonatti, and Krieger 2017), shifts in research focus by scientists in response to NIH funding 

changes (Myers 2020), negative impacts from prize-winning on recipient competitors (Reschke, 

Azoulay, and Stuart 2018), and consequences of the premature death of elite life scientists 

(Azoulay, Fons-Rosen, and Zivin 2019) on subfields.  

https://paperpile.com/c/7W1ycd/OSVpo
https://paperpile.com/c/7W1ycd/jU4B+fiJvY
https://paperpile.com/c/7W1ycd/jU4B+fiJvY
https://paperpile.com/c/7W1ycd/5J9cl
https://paperpile.com/c/7W1ycd/CcNZN
https://paperpile.com/c/7W1ycd/g9uYF
https://paperpile.com/c/7W1ycd/g9uYF
https://paperpile.com/c/7W1ycd/hQlzW
https://paperpile.com/c/7W1ycd/DCmNu
https://paperpile.com/c/7W1ycd/DCmNu
https://paperpile.com/c/7W1ycd/oYCtp
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We specifically use the 28,504 unique seed articles curated by the Azoulay team. (2019), 

derived from publications by “superstar” biomedical scientists. Applying the PMRA-powered 

similar article function in PubMed enables us to capture over 1.9 million unique articles 

associated with these subfields published through 2019. We then extract ~86.8 million paper-to-

paper citations identified by PKG based on them. A more comprehensive illustration of the 

original data source and our extension is available in the Appendix (Delineating Biomedical 

Subfield). To ensure robustness, we perform complementary analyses that redefine subfields 

based on the position of papers within our scientific embedding space, resulting in the same 

pattern of findings. Details and results are reported in the Appendix (Alternative Identification of 

Subfields).   

 

Outcome Event: Bubble bursting 

Our primary outcome of interest is the event of socio-epistemic bubbles bursting, 

characterized by an abrupt decline in popularity of a given subfield that we measure in the 

decline of citation counts as illustrated in Figure 2.1. Specifically, we time bubble bursts based 

on when the standardized citation count difference of a given year from a subfield falls below 

extreme cutoffs within the life cycle of each subfield. This requires distinguishing subfields that 

experienced deflationary bursting, or collapse, from those that did not. We achieve this through 

the following steps. 

We first compute , where  is the citations that a subfield  

garnered during year  across 1970 to 2019. Unlike the approach taken by Azoulay et al. (2019) 

that uses publications indexed both in Web of Science and MEDLINE, we use all PMID to 

PMID citation links identified in PKG 2020 data to compute citation counts. (We include all 

https://paperpile.com/c/7W1ycd/oYCtp/?noauthor=1
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MEDLINE indexed publications, even when MeSH terms or author disambiguated IDs are not 

assigned to them.) Then, we standardize  within the life cycle of each subfield to make the 

 values comparable across 28,504 subfields. This is achieved by transforming  to  by 

subtracting the mean of , , from  and dividing it by the standard deviation 

of  computed within a subfield. By doing so, we obtain the distribution of the standardized 

two-year citation difference, , across 28,504 subfields. The distribution of , with the range 

of [-5.2, 5.52], is presented in Figure 2.2. 

Figure 2.2: Distribution of  from 28,504 Subfields 

 

Note: The cutoff value for bubble burst here is set to -2.64, the bottom 0.5% percentile. The range of  

is [-5.2, 5.52]. 

 

We operationalize bubble bursts as when the standardized citation count difference for a 

given year in a subfield, , falls below extreme cutoffs, such as 0.5%, 0.25%, or 0.1% of the 

distribution. To qualify a decline as a burst, we require that the average of  after the drop must 

be negative, ensuring a continued loss of attention. Additionally, the peak citation count at the 
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subfield level should not occur in 2019, the final year of our dataset. If a subfield experiences 

more than one sharp decline, we consider the year with the most substantial one as the time of 

the burst. We note that bursts are preceded by bubbles: fields that experience these extreme drops 

also manifest greater than expected citations prior to collapse.    

 Using the 0.5% cutoff (i.e., ) identifies 4,480 subfields (15.7% of 28,504 

subfields) that experienced a sharp decline in collective scientific attention relative to other 

subfields. Applying the 0.25% ( ) and 0.1% ( ) cutoffs return 2,297 and 

918 subfields with the bubble bursting events, respectively. Figure 2.3 contrasts three examples 

of subfields that did not experience these bubbles and bursts (top panels) with three examples 

that exhibited substantial declines in attention (bottom panels), according to our procedure 

described above. 

Figure 2.3: Six Examples of Subfields 

 
Note: Annual citation counts aggregated at the subfield level, using forward citations to related 

publications. Top panels (a, b, c): Subfields represented by three PMIDs, illustrating cases without bubble 

bursting events. Bottom panels (d, e, f): Subfields that experienced bubble bursting, corresponding to the 

cutoffs closest to the 0.5%, 0.25%, and 0.1% thresholds of  value.  
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Key Indicator: Knowledge Diffusion  

The key leading indicator for our analysis is subfield-level knowledge diffusion. We 

measure the knowledge diffusion by employing a 2-year rolling window approach. For each 

year, we identify papers published either in that year or the preceding year referencing at least 

one article published within a given subfield. We then separately calculate the average cosine 

distances (or 1-cosine similarity) between these focal articles in the subfield and the citing papers 

in our scientific and social spaces. This consideration leads us to measure two diffusion indices: 

1) Diffusion across Scientific Space and 2) Diffusion across Social Space. In our model, we 

incorporate a one-year lag to assess the association between diffusion dynamics and the 

subsequent decline in citations. 

 

Further Characterization of Subfield Dynamics  

A. Time Effect 

- Subfield Age. The difference between calendar years and the year seed articles were 

published is captured using subfield age dummies, included for each subfield up to the 

end of 2019. This approach controls for trends related to the age of the subfield without 

imposing a functional form. 

 

B. Subfield Growth Pattern   

- Cumulative Subfield Size. The total number of articles published in a subfield up to a 

given year. This measure controls for the potential impact of a subfield’s size on citation 

dynamics. We apply a logarithmic transformation to address skewness for robust 

statistical comparisons between subfields of varying sizes. 
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- Two Rolling-Years Marginal Growth. The proportion of articles published in the current 

year and the previous year, divided by cumulative subfield size. This metric provides a 

normalized indicator of how actively a subfield is growing, shrinking, or remaining 

stagnant, adjusting for short-term fluctuations in publication activity that might affect 

outcomes of interest, such as citation dynamics. 

 

C. Citation Dynamics 

- Total Cumulative Citations. Aggregate citation counts that publications within a subfield 

have received up until a specified year. We include this variable to control for the overall 

academic impact of a subfield, which may influence the likelihood of sudden changes in 

citation patterns. A natural logarithmic transformation is applied to address skewness. 

 

- Two-year Rolling Citation Counts. Citations a subfield accumulates during the given 

year and the past year. We take the natural logarithm of the raw counts. This variable 

controls for the recent volume of citations, separate from long-term trends. 

 

- Gini Coefficient of Citation Counts. The Gini coefficient measures the degree of 

centralization in citation counts within a subfield. The coefficient ranges from 0 (where 

every article in a subfield receives the same number of citations) to 1 (where a single 

article receives all citations). Annually, we compute the Gini coefficients for 1) Total 

Cumulative Citations and 2) Two-year Rolling Citation to control for the potential impact 

of citation concentration. 
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D. Other Controls 

- Article Retraction Notification. Indicator variable that switches from 0 to 1 once a 

retraction notification is observed in a subfield. It controls for the potential impact that 

experiencing a retraction event in the subfield level might have on overall attention the 

subfield receives. 

 

- After the Death (of Superstar Scientists). Indicator variable that switches from 0 to 1 

with the death of superstar scientists (Supplementary Information 3.1). This attempts to 

capture any residual temporal effects of star death on citation dynamics. 

 

- After Death (of Superstar Scientists) * Subfields Associated with Premature Death of 

Superstar Scientists. The first term is as previously described. The latter is an indicator 

variable that differentiates subfields associated with the premature deaths of elite 

scientists from those that are not. This controls for the impact of the sudden death of star 

scientists on citation dynamics, reflecting how the data set was originally constructed and 

the finding that star death is positively associated with increases in subfield citation 

(Azoulay, Fons-Rosen, and Zivin 2019). 

 

- Calendar Year Fixed-Effect. Year dummies to account for potential effects of the 

calendar year from 1970 and 2019. We include this to ensure that any time-specific 

external influences are controlled across all subfields. 

 

- Strata ID. 3,076 “strata” IDs identified from the subfields associated with publications of 

https://paperpile.com/c/7W1ycd/oYCtp
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prematurely deceased superstars (Azoulay, Fons-Rosen, and Zivin 2019). These IDs are 

assigned to comparable “within strata” subfields not experiencing a loss of star scientists. 

These comparable subfields are matched with those experiencing a star death based on 

key metrics such as 1) publication years, 2) team sizes, 3) ages of associated scientists, 

and 4) long-run citation impact. 

 

Model  

Using a nonparametric Cox model and discrete-time event history model, we relate the 

annual diffusion indices for each subfield calculated across social and scientific spaces with an 

abrupt decline in the relevance of a given subfield, or “bubble burst,” as illustrated in Figure 

2.1.a. Formally, the discrete-time event history analysis model can be written as: 

                                   ⋯Eq. (2.1). 

 denotes the probability of event happens at  for subfield ,  

 denotes time dummies corresponding to  with coefficients , 

 is vector for covariates (time varying and constant over time) with coefficients . 

 

Results 

Contrasting Trajectories of Cardiac Stem Cell Research and Cancer Immunotherapy 

Applying neural embedding models to MEDLINE data enables us to project all 

biomedical research articles onto scientific and social manifolds. As detailed in Methods and 

Supplementary Information (S2), this allows us to locate their relative positions within 

collaborative networks of scientists and biomedical entities through research. The cosine or 

angular distances between citing and cited research measured over social and scientific spaces 

aggregate into straightforward, continuous metrics of diffusion. To demonstrate the effectiveness 

https://paperpile.com/c/7W1ycd/oYCtp
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of our approach utilizing these scientific and social spaces, we examine trajectories of two highly 

cited publications at the individual paper level, each drawn from Cardiac Stem Cell and Cancer 

Immunotherapy research, respectively. 

Our first case is a research article published (PMID: 11777997) in the New England 

Journal of Medicine in 2002 (Quaini et al. 2002). Led by Dr. Piero Anversa, this research 

supported the existence of substantial numbers of endogenous myocardial stem and progenitor 

cells, proposing their potential to regenerate heart muscle. This line of research initially received 

outsized attention because it suggested new possibilities for heart regeneration after severe 

myocardial infarctions involving massive tissue loss. This claim was later called into question by 

several researchers outside the Anversa network, however, eventually leading to the retraction of 

more than 30 papers by 2018 from claims of data fabrication and scientific malpractice(Chien et 

al. 2019).  

Conversely, the second example, an article (PMID: 11015443) published in the Journal 

of Experimental Medicine in 2000 (Freeman et al. 2000) represents a study by a team of 

pioneering researchers in the field of cancer immunotherapy. Their work focuses on the 

inhibition of negative immune regulation and its implications for cancer treatment. The 

publication and subsequent work spurred the development of a broad spectrum of cancer 

immunology and immunotherapy research initiatives across many research groups and countries 

globally, laying the groundwork for what has become one of the most impactful innovations in 

cancer treatment. 

The upper panels (a and b) of Figure 2.1 visualize the contrasting temporal trajectories of 

these two publications in size of attention and diffusion within the scientific and social space, 

respectively, with 3D kernel density estimation. Figure 2.4 projects the estimated density onto 

https://paperpile.com/c/7W1ycd/zC1Fq
https://paperpile.com/c/7W1ycd/NRAl5
https://paperpile.com/c/7W1ycd/NRAl5
https://paperpile.com/c/7W1ycd/X9BxU
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2D heatmaps. Annual diffusion indices are computed using citation data from the given and 

previous year. This rolling two-year window averages cosine distances between the focal and 

forward citing papers across social and scientific space, providing a dynamic measure of 

diffusion over time. 

Figure 2.4: 2D Heatmaps for the Upper Panels of Figure 2.1 

 

Note: Values are derived from the identical kernel density estimations graphed in Figure 2.1 for 

the distribution of diffusion indices in scientific (panels a and b) and social spaces (panels c and 

d), respectively. 

 

Dr. Anversa’s publication experienced a meteoric rise in total citations during the first 

five years following debut. However, our measures indicate limited diffusion across the scientific 

space of distinct subfields and the social space of author teams citing the paper, which preceded 
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a sharp decline in attention toward the paper, resembling the burst of market bubbles. In contrast, 

the article on Cancer Immunotherapy, which demonstrated the potential to inhibit negative 

immune regulation in treating cancer, gained early attention at a much slower pace. Nevertheless, 

the ideas ultimately diffused much more broadly, becoming one of the most influential 

innovations in recent cancer treatment and research. This culminated in awarding the 2018 

Physiology and Medicine Nobel Prize to Drs. Tasuku Honjo and James P. Allison for advancing 

the scientific understanding of Cancer Immunotherapy. These contrasting cases demonstrate how 

our diffusion metric accounting for epistemic bubbles offers a more nuanced understanding of 

scientific influence than traditional citation counts, capturing the complex dynamics of diffusion 

through social and scientific spaces and its potential consequences.  

 

Knowledge Concentration Anticipates Collapse  

We elevate our analysis to the level of scientific subfields to systematically test the 

generalizability of our approach. We apply our framework to 28,504 unique biomedical subfields 

curated by Azoulay et al. (2019). Each subfield encompasses a compactly defined set of 

biomedical research articles using the PubMed Related Article (PMRA) algorithm (Lin and 

Wilbur 2007) applied to a given seed article. This algorithm underpins the official PubMed 

interface, serving as a pivotal tool for researchers to locate articles related to a focal research 

paper, which has been fruitfully used in various studies, such as repercussions of scientific 

scandal on careers (Azoulay, Bonatti, and Krieger 2017), shifts in research focus among 

scientists responding to NIH funding changes (Myers 2020), and the negative impact of winning 

prizes for recipient competitors (Reschke, Azoulay, and Stuart 2018). The subfields this 

approach allows us to identify enable us to analyze diffusion dynamics, epistemic bubbles, and 

https://paperpile.com/c/7W1ycd/oYCtp/?noauthor=1
https://paperpile.com/c/7W1ycd/5J9cl
https://paperpile.com/c/7W1ycd/5J9cl
https://paperpile.com/c/7W1ycd/g9uYF
https://paperpile.com/c/7W1ycd/hQlzW
https://paperpile.com/c/7W1ycd/DCmNu
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collapses of scientific attention beyond selective, high-profile papers. Specifically, if work from 

a focal subfield is predominantly cited by research in close social and scientific proximity, the 

subfield’s insights may not diffuse despite its seeming popularity and could retain inflated value 

due to local reinforcement. In other words, we anticipate that substantial and dramatic declines in 

the popularity of research ideas, conceptualized as knowledge ‘bubbles bursting,’ can be 

predicted by the degree to which these ideas, despite their apparent popularity, have failed to 

diffuse across the social and scientific space via citations.  

Our primary outcome of interest is ‘bubble bursting’ or collapse, defined as an abrupt 

decline in the relevance of a given subfield for science. We time a bubble burst by comparing the 

standardized citation difference that a subfield garners in a given year to its performance two 

years prior, marking if it falls below an extreme threshold. This approach allows us to distinguish 

subfields that experienced deflationary bursts from those that did not by basing each 

standardized citation count difference against the values derived from 28,504 unique subfields. 

We use the bottom 0.5% of the distribution of standardized citation differences as our threshold, 

which captures 4,480 out of 28,504 unique subfields as experiencing a collapse. To ensure the 

robustness of our results, we also apply thresholds of 0.25% and 0.1%, identifying 2,297 and 918 

collapsed subfields respectively, and report the results from parallel analyses using these 

thresholds throughout the following analyses and in the Supplementary Information. Across 

these operationalizations, the subfields that experience a collapse also experienced a significant 

positive deviation from expected citation rates preceding collapse (Table 2.5). Fields that 

experience a disproportionate deflation experienced a previous inflation. In short, bubbles burst. 

We compute our knowledge diffusion indices, our main predictors, for each subfield 

across scientific and social spaces. We identify papers published that reference at least one 
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article within each subfield. We then calculate the average cosine distances between the 

referenced articles in each subfield and the citing papers with 2y rolling windows, separately for 

scientific and social spaces to measure scientific and social diffusion (Methods).  

Using a nonparametric Cox survival model to predict the probability of bubble bursting, 

our estimation reveals the knowledge diffusion index as a strong leading signal preceding a 

sudden collapse in attention. We employ a one-year lag for our diffusion measures when 

associating them with the outcome of interest, collapse of attention. 

Figure 2.5: Survival Probability against Bubble Bursting as a Function of Knowledge Diffusion 

in Social Space 

 
Note: Events are defined as a sharp decline of 2-year citation counts at the subfield level with 0.5% cutoff 

(Method). Survival refers to the converse, i.e., not experiencing a subfield-level extreme deflationary 

event. Subfield ages are set to 0 in the year when the focal seed article spanning a subfield was published. 

Diffusion percentile is ranked within calendar years and subfield ages. Bands depict 95% confidence 

intervals. 

 

By splitting our observations into three groups with diffusion percentiles ranked by 

calendar year and subfield age—the bottom 10th percentile, the top 10th percentile, and the 

middle between them—Figure 2.5 visualizes that diffusion in the social space forecasts the 

bursting of attention bubbles captured by the 0.5% threshold. The result indicates that low 
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diffusion rates may signal poor long-term subfield survival. Conversely, high diffusion is related 

to subfield survival in the long term, avoiding extreme subfield-level deflationary events. We 

confirm this pattern, presented in Figure 2.5, with discrete-time event history models that allow 

us to consider temporal covariates, including field size and growth rate, total cumulative 

citations, citation concentration across papers, paper retractions, and unexpected deaths of elite 

scientists. 

Our analysis consistently shows that the lower a paper’s diffusion of influence, the 

greater the hazard that the subfield will experience an abrupt collapse of attention (Table 2.1 and 

Table A.2.1). For example, as diffusion in social space reduces from one standard deviation 

above to one below the mean, it translates into a 74.02% (95% CI: 43.61%–110.85%) increase in 

the odds of experiencing a major reduction in scientific attention, accounting for subfield age, 

calendar year, and other covariates. Tables A2.2 and A2.3 show the estimations based on 0.25% 

and 0.1% thresholds to identify burst subfields.  

Overall, we observe a more pronounced impact of limited social diffusion than scientific 

diffusion on the likelihood of subfield collapse. We posit that this likely stems from tacit 

confounders in research that emerge when conducted by a concentrated, connected group of 

scientists. When close-knit groups perform research under uniform assumptions, methodologies, 

and even shared resources, their findings are less likely to replicate among outsiders (Danchev, 

Rzhetsky, and Evans 2019; Belikov, Rzhetsky, and Evans 2022). By contrast, the applicability of 

verified scientific findings across different biomedical domains may vary. A therapy’s 

effectiveness for treating breast cancer is undiminished by its irrelevance for heart disease. But 

the failure of findings to diffuse across different groups of scientists in the same area indicates a 

limitation of their published scientific knowledge.  

https://paperpile.com/c/7W1ycd/VTNyG+GmBWQ
https://paperpile.com/c/7W1ycd/VTNyG+GmBWQ
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Table 2.1: Model Estimates with the Bottom 0.5% Cutoff for Citation Differences in the Two-

Year Rolling Period  

Dependent Variable Substantial Decline of Citations 

 Estimate 
Std. 

Error 
t p-value 95% C.I. 

Diffusion      

Scientific Space -0.204 0.039 -5.228 < 0.001 [-0.280, -0.128] 

Social Space -0.277 0.049 -5.598 < 0.001 [-0.373, -0.181] 

Subfield Growth Pattern      

Cum. Subfield Size (logged) 0.499 0.084 5.923 < 0.001 [0.334, 0.664] 

2-year Subfield Marginal Growth -0.217 0.010 -21.543 < 0.001 [-0.237, -0.197] 

Citation Dynamics      

Cum. Citations (logged) -2.472 0.164 -15.003 < 0.001 [-2.793, -2.151] 

2-year Citations (logged) 2.772 0.146 18.942 < 0.001 [2.486, 3.058] 

Gini Coef. of Cum. Citations 0.012 0.006 1.843 0.065 [0.000, 0.024] 

Gini Coef. of 2-year Citations -0.026 0.006 -4.710 0.001 [-0.038, -0.014] 

Other Controls    

Retraction Notice Published 0.062 0.199 0.313 0.754 [-0.328, 0.452] 

After Death 0.152 0.129 1.186 0.236 [-0.101, 0.405] 

After Death * Superstar Death -0.138 0.086 -1.601 0.109 [-0.307, 0.031] 

Log-Likelihood -26,289.5 

Total Observations 1,313,433 

Note: Coefficients for fixed effects of field age, calendar year, and strata ID dummies are omitted. 

Variables under Knowledge Diffusion, Subfield Growth Pattern, and Citation Dynamics are all one-year 

lagged. The diffusion indices are standardized within field ages and calendar years across 28,504 

subfields. Standard errors are clustered with strata ID and calendar years.  

 

Post-Hoc Analysis  

To gain further insights into the phenomenon of scientific bubbles, we conduct a series of 

subsequent analyses to gain deeper insight into characteristics of socio-epistemic bubbles and 

consequences of their collapse with augmented data, including subfield characteristics provided 

by the Azoulay team (2019) and information extracted from the NIH’s iCite system (Hutchins et 

al. 2019, 2016).   

https://paperpile.com/c/7W1ycd/ItlB0+syvuy
https://paperpile.com/c/7W1ycd/ItlB0+syvuy
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Stars’ Importance 

In exploring the mechanisms associated with the likelihood of scientific bubbles bursting, 

as suggested by the Stem Cell Cardiac regeneration case, we examine the relationship between 

‘Star Importance to the Subfield’ and the likelihood of subfield collapses. To do so, we draw on 

the replication data provided by the Azoulay team, defining ‘Star Importance to the Subfield’ as 

the fraction of papers authored by superstar scientists within the subfield (variable name: 

‘imprtnc’). Utilizing logistic regression, we assess whether this measure can predict the 

likelihood of collapses versus uncollapsed subfields. As detailed in the Appendix (Delineating 

Biomedical Subfield), while the original dataset contains 28,504 unique seed articles, it yields 

34,218 pairs of subfield strata and seed articles for subfield identification. Thus, we applied 

clustered standard errors at the Strata IDs.  

Table 2.2: Star’s Importance to the Subfield and Collapse 

Dependent Variable Collapsed versus Not Collapsed 

Threshold 0.5% 0.25% 0.1% 

(Intercept) 

-1.862*** 

[-1.922, -1.802] 

(p < 0.001) 

-2.636*** 

[-2.706, -2.565] 

(p < 0.001) 

-3.627*** 

[-3.725, -3.528] 

(p < 0.001) 

Star’s Importance to the 

Subfield 

1.222*** 

[1.001, 1.443] 

(p < 0.001) 

1.299*** 

[1.038, 1.560] 

(p < 0.001) 

1.320*** 

[0.961, 1.680] 

(p < 0.001) 

Log-Likelihood -14,899.2 -9,588.9 -4,814.2 

Total Observations 

(# of Unique 

Seed Article-Strata Pairs) 

34,218 

Note: The 95% confidence intervals and p-values are based on the standard errors clustered at strata ID.  

* p < .05; ** p < .01; *** p < .001 (two-tailed) 
 

Table 2.2 shows a significant association between the stars’ importance and the 

likelihood of collapse; Figure 2.6 visualizes the estimation reported in Table 2.2, which suggests 

the association between concentration of scientific capital and the probability of a subfield 

collapsing. 
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Our analysis revealed that the importance of superstar scientists within a subfield, as 

quantified by the proportion of their publications per subfield, is positively correlated with the 

likelihood of collapse compared to subfields that did not burst. “Star scientists” whose work 

dominates a subfield (Azoulay, Fons-Rosen, and Zivin 2019) are more likely to have their early 

findings overhyped, and subsequently “burst”, than subfields without a star.  

Figure 2.6: Predicted Probability of Collapse by the Star’s Importance to the Subfield, Based on 

the Estimates in Table 2.2 

 
Note: The range of Star’s Importance to the Subfield extends up to 3 standard deviations from the 

distribution of the variable. The mean and standard deviation of the variable, Star’s Importance to the 

Subfield, are 0.151 and 0.127, respectively. The bands represent the 95% confidence intervals, calculated 

based on the standard errors reported in Table 2.2.  

 

Subfield Funding Accounted by Star’s Collaborators 

 We additionally examine the relationship between the ‘Fraction of Subfield Funding 

Accounted by Star’s Collaborators’ and the likelihood of subfield collapses, using the same 

approach used for ‘Star’s Importance.’ This analysis assesses the association between the 

‘fraction of subfield funding accounted for by collaborators’ (variable name: 

‘frac_collabs_field_nih_fndg’) and collapses. Table 2.3 demonstrates a significant association 

between the concentration of funding among star scientists’ collaborators and the collapse.  

https://paperpile.com/c/7W1ycd/oYCtp
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Table 2.3: Fraction of Subfield Funding Accounted by Star’s Collaborators 
Dependent Variable Collapsed versus Not Collapsed 

Threshold 0.5% 0.25% 0.1% 

(Intercept) 

-1.734*** 

[-1.791, -1.676] 

(p < 0.001) 

-2.484*** 

[-2.556, -2.412] 

(p < 0.001) 

-3.481*** 

[-3.581, -3.381] 

(p < 0.001) 

Fraction of Subfield 

Funding Accounted by 

Star’s Collaborators 

0.224*** 

[0.110, 0.337] 

(p < 0.001) 

0.194* 

[0.037, 0.350] 

(p = 0.015) 

0.231* 

[0.004, 0.458] 

(p = 0.046) 

Log-Likelihood -14,899.2 -9,588.9 -4,814.2 

Total Observations 

(# of Unique 

Seed Article-Strata Pairs) 

34,218 

Note: The 95% confidence intervals and p-values are based on the standard errors clustered at strata ID.  

* p < .05; ** p < .01; *** p < .001 (two-tailed) 

 

Figure 2.7 visualizes the estimation reported in Table 2.3, further suggesting an 

association between the concentration of scientific capital and the probability of a subfield 

collapsing. 

Figure 2.7: Predicted Probability of Collapse by Fraction of Subfield Funding Accounted by 

Star’s Collaborators, Based on the Estimates in Table 2.3

 

Note: The mean and standard deviation of the variable, Fraction of Subfield Funding Accounted by Star’s 

Collaborators, are 0.283 and 0.293, respectively. The bands represent the 95% confidence intervals, 

calculated based on the standard errors reported in Table 2.3.  

We find a positive association between the fraction of NIH funding allocated to 

collaborators of these star scientists and the likelihood of attentional collapse. This suggests that 

limited diffusion and subsequent collapses may be correlated with the concentration of 
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“scientific capital” in terms of reputation and resources (Bourdieu 1975), as exemplified by the 

Stem Cell Cardiac case discussed above. 

 

Approximate Potential for Clinical Translation  

We further augmented our dataset with the Approximate Potential for Clinical 

Translation (APT) modules (Hutchins et al. 2019) from PubMed’s iCite system. This module 

evaluates the likelihood of a paper’s research being applied and cited in subsequent clinical 

studies. We extracted APT values for each publication in our dataset from the iCite bulk data. 

These values were then aggregated at the subfield level by calculating the average APT for 

articles cited at least once up to a specific calendar year. We selected the year when collapsed 

subfields experienced collapses and matched this time to the calendar year (and consequently the 

field age) of subfields that did not collapse within the strata initially established by the Azoulay 

team. The subsequent logistic regression, using average APT values aggregated by calendar year 

and field age as predictors, indicates that a higher potential for clinical translation may prevent a 

drastic collapse, as Table 2.4 and Figure 2.8 report. 

Table 2.4: Approximate Potential to Clinical Translation 
Dependent Variable Collapsed versus Not Collapsed 

Threshold 0.5% 0.25% 0.1% 

(Intercept) 

0.124*** 

[0.09, 0.158] 

 (p < 0.001 

0.142*** 

[0.097, 0.188] 

(p < 0.001) 

0.136*** 

[0.059, 0.213] 

(p < 0.001) 

Approximate Potential to 

Clinical Translation 
-0.509*** 

[-0.672, -0.347] 

(p < 0.001) 

-0.650*** 

[-0.875, -0.424] 

(p < 0.001) 

-0.658*** 

[-1.047, -0.268] 

 (p < 0.001) 

Log-Likelihood -6,073.3 -3,348.3 -1,365.8 

Total Observations 

(# of Unique 

Seed Article-Strata Pairs) 

8,773 4,840 1,974 

Note: The 95% confidence intervals and p-values are based on the standard errors clustered at strata ID-

Field age pair. * p < .05; ** p < .01; *** p < .001 (two-tailed) 

 

https://paperpile.com/c/7W1ycd/jU4B
https://paperpile.com/c/7W1ycd/ItlB0
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Figure 2.8: Predicted Probability of Collapse by the Average Approximate Potential to Clinical 

Translation of Cited Papers within the Subfield, Based on the Estimates in Table 2.4. 

Note: The range of Average Approximate Potential to Clinical Translation of Cited Papers within the 

Subfield extends up to 3 standard deviations from the distribution. The bands represent the 95% 

confidence intervals, calculated based on the standard errors reported in Table 2.4.  

 

Comparing Actual vs. Expected Citations in Collapsed and Uncollapsed Subfields. 

To further support the concept of bubble as ‘inflated’ attention and our operationalization 

of it, we investigate how the citation counts that a subfield garners before collapse deviate from 

expected citations, comparing these discrepancies between collapsed and uncollapsed subfields.  

We utilized the NIH’s iCite Influence Module, which provides an annual ‘expected 

citation count’ for each MEDLINE-indexed paper. This system offers a benchmark for the 

number of citations a typical (median) MEDLINE-indexed paper, identified from the co-citation 

network and published in the same year, would receive (Hutchins et al. 2016). After extracting 

the expected annual citation count for all publications in our dataset, we summed these expected 

citation counts for each subfield across each calendar year for the articles published up to those 

years.  

This approach enabled us to compute the difference between the actual citations a 

subfield garnered and the expected count. We then focused on the one and two years before the 

collapse of subfields. We matched these years with subfields that did not collapse within the 

https://paperpile.com/c/7W1ycd/syvuy
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same strata (i.e., same publication year, similar long-term citation counts, similar star-scientist 

age, distinct intellectual location), analogous to the previous analysis for clinical translation. 

Using logistic regressions, with average deviation from expected citation counts 

aggregated by calendar year and strata to capture the degree of “inflation” as a predictor, the 

analysis presented below in Table 2.5 and Figure 2.9 suggests that a greater degree of deviation 

from expected citation counts is positively associated with the likelihood of a subfield 

experiencing a collapse in the subsequent year. This pattern represents a positive indication of 

the attention bubble that may subsequently burst. When combined with results from the main 

analysis, this indicates that positive deviations, or the indication of bubbles, are inversely 

correlated with diffusion. 

Table 2.5: Difference between Actual and Expected Citations before Collapse (2y) 
Dependent Variable Collapsed versus Not Collapsed 

Threshold 0.5% 0.25% 0.1% 

(Intercept) 

-0.238*** 

[-0.273, -0.203] 

 (p < 0.001) 

-0.270*** 

[-0.317, -0.223] 

(p < 0.001) 

-0.273*** 

[-0.346, -0.199] 

(p < 0.001) 

Difference between Actual 

and Expected Citations 

Before Collapse (2y) 

0.002*** 

[0.002, 0.002] 

(p < 0.001) 

0.002*** 

[0.002, 0.003] 

(p < 0.001) 

0.002*** 

[0.002, 0.003] 

(p < 0.001) 

Log-Likelihood -6,016.7 -3,314.1 -1,352.8 

Total Observations 

(Matched Year-Field Age-

Strata) 

8,773 4,840 1,974 
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Figure 2.9: Predicted Probability of Collapse by the Difference Between Actual and Expected 

Citation, Based on the Estimates in Table 2.5  

 

Note: The range of Difference Between Actual and Expected Citation, extends up to 3 standard deviations 

from the distribution. The bands represent the 95% confidence intervals, calculated based on the standard 

errors reported in Table 2.5.  
 

Implications of Bubble Burst 

To evaluate the implications of epistemic bubbles and bursts, we compare the 

productivity of authors who published their articles close to the time of collapse (e.g., authors 

who published in 2001, 2002, or 2003 when the collapse was measured in 2003) with those who 

published in the same subfield at an earlier time (e.g., in or before 2000). As shown in Table 2.6 

and Figure 2.10, findings suggest that those who entered right before collapse were significantly 

less productive in the mean number of publications both 5 and 10 years after collapse, compared 

to early entrants. This suggests that subfield collapse may shape researchers’ reputations and 

career outcomes. 
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Table 2.6: Pairwise t-test Comparing Average Productivity Differences Between Near-Collapse 

Actives (≤2 Years Before Collapse) and Early Entrants 

 Threshold Estimate t p-value (df) 95% C.I. 

5 Years 

0.5% -3.030 -20.67 < 0.001 (3,910) [-3.317, -2.743] 

0.25% -3.075 -13.48 < 0.001 (1,983) [-3.522, -2.628] 

0.1% -2.841 -11.13 < 0.001 (773) [-3.342, -2.340] 

10 Years  

0.5% -4.754 -24.45 < 0.001 (3,605) [-5.136, -4.373] 

0.25% -4.590 -17.17 < 0.001 (1,818) [-5.114, -4.066] 

0.1% -4.707 -10.87 < 0.001 (711) [-5.558, -3.857] 

Note: Subfields that collapsed after 2015 were excluded from the 5-year productivity 

comparison. Likewise, for the 10-year productivity, only subfields that collapsed on or before 

2011 were included, considering the observation windows.  

 

 

Figure 2.10: Comparing Author Productivity in Collapsed Subfields 5- and 10-Years Post-

Collapse 

 
Note: The error bars represent the 95% confidence intervals for the mean differences in average 

publication numbers. Comparisons are drawn between authors who entered the field early and those 

active near the collapse, based on paired t-tests. 

 

 We also consider the implications of bubbles for the allocation of research funding. We 

trace the average number of new grants acknowledged per year in papers across subfields. Our 

analysis shows that more than 80% of the subfields, which experienced a substantial decrease in 
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scientific attention, acknowledged new grants after collapse. By the end of 2019, the median 

number of such grants was 6, as detailed in Table 2.7.  

 

Table 2.7: Proportion of Subfields with Newly Acknowledged Grants After Collapse, and the 

Mean, 1st Quantile, Median, and 3rd Quartile of the Number of New Grants Post-Collapse 

Threshold 

% of Subfields  

with New Grants Acknowledged  

After Collapse  

Mean  Q1 Median Q3 

0.5% 83.12% 11.8 2 6 16 

0.25% 82.93% 11.3 2 6 15 

0.1% 81.70% 10.1 1 6 13 

Note: Subfields that collapsed after 2015 were excluded from the 5-year productivity comparison. For the 

10-year productivity analysis, only subfields that collapsed on or before 2011 were included, in 

consideration of the observation windows. 

 

Figure 2.11: The Average Number of New Grants Acknowledged in Collapsed Subfields by 

Years Relative to Burst 

 
Note: The quadratic fit is applied to data from years -15 to 0 relative to the burst year, with dotted lines 

representing extrapolations starting from year 0 onwards. 

 

Figure 2.11 illustrates the trends from 15 years before to 10 years after the collapse. It 

shows that while peaks of new funding precede collapse, the rate at which funding decreases 
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after a burst is markedly slower than the trend observed before it. This pattern suggests a 

substantial lag by which money continues to support research that the broader biomedical 

community may perceive as less scientifically and clinically relevant. 

 

Discussion 

Current metrics of scientific attention and confidence pay scant attention to patterns of research 

consumption and diffusion across diverse people, institutions, disciplines, regions, and beyond. 

This lack of consideration can lead to an incomplete understanding of a research field’s true 

impact and potential. Our knowledge diffusion index contrasts with and complements citation 

counts, the conventional unit of scientific credit. Citations alone are blind to who, where, and 

how far across the landscape of science those building on research reside, but our diffusion index 

provides a more comprehensive view. 

A constriction in diffusion identifies an epistemic bubble or echo chamber that represents 

a leading indicator of future collapse in relevance and attention accorded to scientific and 

biomedical knowledge. Researchers can anticipate the collapse of biomedical approaches years 

prior to their occurrence by systematically tracking the diffusion of their ideas across scientists 

and biomedical areas. Additionally, science and biomedical policy that analyzes knowledge 

diffusion patterns can anticipate such collapses and may reduce their occurrence by incentivizing 

and accounting for diverse, disconnected support for robust scientific and medical claims 

(Belikov, Rzhetsky, and Evans 2022).  

Like other methods aimed at quantitatively evaluating research impact, our framework 

for measuring diffusion and its implementation should not replace the holistic judgment of 

research quality. Furthermore, while we draw on the concept of ‘bubbles’ in science, analogous 

https://paperpile.com/c/7W1ycd/GmBWQ
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to those in financial markets, it is worthwhile to recognize their unique aspects in the context of 

science. For example, small, dense research networks may be crucial for initiating high-risk 

projects at early stages despite a high probability of failure. In addition, scientific bubbles may 

not always arise from speculation, but could result from authentic scientific enthusiasm or 

localized beliefs in a promising research direction.   

Nevertheless, our finding holds strong implications for biomedical researchers, science-

based industries, and science policymakers. By accounting for diffusion and diversity, funding 

agencies can spot bubbles and adjust resource allocation by diversifying groups of researchers 

sponsored for a particular research topic. Research information platforms like PubMed, 

OpenAlex, the Web of Science, or Google Scholar could also incorporate strong, leading signals 

from which analysts can anticipate the future relevance of current research. A high diffusion 

index indicates that trending insights are more likely robust than fragile. Regular self-

assessments of knowledge diffusion could enable individual researchers, teams, and labs to better 

gauge the robustness and future impact of their work. Further, documenting associations between 

scientific knowledge diffusion and its applications, as in the translation of biomedical research 

from bench to clinic, can better inform science policy. 

Our results draw on subfields identified in academic science using a particular delineation 

of research subfields. Nevertheless, our analysis demonstrates clear evidence for the wisdom of 

diverse crowds in science and technology to sustain advance. It underscores the importance of 

both social and scientific diversity for robust evaluation of an idea’s relevance to science as a 

whole. Moreover, our proposed framework for measuring diffusion may extend to other domains 

of knowledge, such as the spread of misinformation, by allowing us to measure diversity in 

information consumption (Kim et al. 2023). In social media, algorithmic metrics that account for 

https://paperpile.com/c/7W1ycd/SoLBn
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diversity in diffusion would be far less susceptible to strategic, concentrated efforts seeking to 

misclassify information as a legitimate, widespread trend (e.g., on Facebook’s Newsfeed), just as 

they would decrease the intentional or unintentional illusion of scientific support.   

In this way, we demonstrate the importance of idea diffusion for advancing scientific 

knowledge, its ability to transfer across broad science communities, and the relevance of these 

signals for forecasting robust ideas upon which to build novel and critical scientific and 

biomedical knowledge. Ultimately, our analysis underscores the relative importance of 

identifying the path of an idea’s consumption over its point of production for predicting lasting, 

far-reaching impact. Accounting for this will enable the design of wise and diverse research, 

development, and clinical crowds, leading to improved research policy, greater reproducibility, 

and more sustained impact on future knowledge. 
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Appendix for Chapter 2 

Table A2.1: Model Estimates with the Bottom 0.5% Cutoff, with and without Controls 
Dependent Variable Substantial Decline of Citation 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Knowledge Diffusion   

Scientific Space 

-0.217*** 

[-0.293, -0.141] 

(p < 0.001) 

-0.271*** 

[-0.350, -0.192] 

(p < 0.001) 

-0.137*** 

[-0.207, -0.068] 

(p < 0.001) 

-0.138*** 

[-0.208, -0.069] 

(p < 0.001) 

-0.204*** 

[-0.28, -0.127] 

(p < 0.001) 

Social Space 

-0.218*** 

[-0.303, -0.134] 

(p < 0.001) 

-0.277*** 

[-0.369, -0.184] 

(p < 0.001) 

-0.248*** 

[-0.339, -0.158] 

(p < 0.001) 

-0.245*** 

[-0.336, -0.155] 

(p < 0.001) 

-0.277*** 

[-0.374, -0.180] 

(p < 0.001) 

Subfield Growth 

Cum. Subfield Size (logged)  

0.240*** 

[0.168, 0.313] 

(p < 0.001) 

0.726*** 

[0.602, 0.851] 

(p < 0.001) 

0.739*** 

[0.613, 0.864] 

(p < 0.001) 

0.499*** 

[0.334, 0.664] 

(p < 0.001) 

2-year Subfield Growth  

-0.116*** 

[-0.130, -0.103] 

(p < 0.001) 

-0.197*** 

[-0.214, -0.179] 

(p < 0.001) 

-0.197*** 

[-0.215, -0.180] 

(p < 0.001) 

-0.217*** 

[-0.237, -0.198] 

(p < 0.001) 

Citation Dynamics 

Cum. Citations (logged)   

-2.437*** 

[-2.675, -2.199] 

(p < 0.001) 

-2.458*** 

[-2.700, -2.215] 

(p < 0.001) 

-2.472*** 

[-2.794, -2.149] 

(p < 0.001) 

2-year Citations (logged)   

2.378*** 

[2.128, 2.629] 

(p < 0.001) 

2.386*** 

[2.134, 2.638] 

(p < 0.001) 

2.772*** 

[2.485, 3.058] 

(p < 0.001) 

Gini Coef. of Cum. Citation   

0.011 

[0.000, 0.022] 

(p = 0.050) 

0.012* 

[0.001, 0.023] 

(p = 0.04) 

0.012 

[-0.001, 0.024] 

(p = 0.065) 

Gini Coef. of 2-year Citation    

-0.018*** 

[-0.028, -0.009] 

(p < 0.001) 

-0.018*** 

[-0.028, -0.009] 

(p < 0.001) 

-0.026*** 

[-0.037, -0.015] 

(p < 0.001) 

Other Controls      

Retraction Notice Published    

-0.035 

[-0.405, 0.335] 

(p = 0.853) 

0.062 

[-0.328, 0.453] 

(p = 0.754) 

After Death    

0.288 

[0.012, 0.563] 

(p = 0.041) 

0.152 

[-0.100, 0.404] 

(p = 0.236) 

After Death * Superstar Death    

-0.186** 

[-0.322, -0.05] 

(p = 0.007) 

-0.138 

[-0.306, 0.031] 

(p = 0.109) 

Fixed Effects      

Calendar Year  N N N N Y 

Strata ID N N N N Y 

Log-Likelihood -31,686.1 -30,832.3 -28,989.6 -28,978.4 -26,289.5 

Total Observations 1,313,433 

Note: Knowledge Diffusion indices are standardized within field ages and calendar years across 28,504 

subfields. The 95% confidence intervals inside brackets are computed based on the standard errors 

clustered at strata ID and calendar years. * p < .05; ** p < .01; *** p < .001 (two-tailed) 
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Table A2.2: Model Estimates with the Bottom 0.25% Cutoff, with and without Controls 

Dependent Variable Substantial Decline of Citation 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Knowledge Diffusion   

Scientific Space 
-0.234*** 

[-0.323, -0.145] 

(p < 0.001) 

-0.289*** 

[-0.382, -0.196] 

(p < 0.001) 

-0.140*** 

[-0.220, -0.061] 

(p < 0.001) 

-0.141*** 

[-0.221, -0.061] 

(p < 0.001) 

-0.221*** 

[-0.302, -0.139] 

(p < 0.001) 

Social Space 
-0.260*** 

[-0.363, -0.156] 

(p < 0.001) 

-0.323*** 

[-0.438, -0.209] 

(p < 0.001) 

-0.289*** 

[-0.400, -0.178] 

(p < 0.001) 

-0.285*** 

[-0.396, -0.174] 

(p < 0.001) 

-0.313*** 

[-0.431, -0.196] 

(p < 0.001) 

Subfield Growth  

Cum. Subfield Size 

(logged) 
 

0.276*** 

[0.190, 0.361] 

(p < 0.001) 

0.830*** 

[0.681, 0.979] 

(p < 0.001) 

0.846*** 

[0.697, 0.995] 

(p < 0.001) 

0.649*** 

[0.408, 0.890] 

(p < 0.001) 

2-year Subfield 

Growth 
 

-0.126*** 

[-0.145, -0.107] 

(p < 0.001) 

-0.211*** 

[-0.234, -0.189] 

(p < 0.001) 

-0.212*** 

[-0.234, -0.19] 

(p < 0.001) 

-0.240*** 

[-0.266, -0.214] 

(p < 0.001) 

Citation Dynamics 

Cum. Citations 

(logged) 
  

-2.624*** 

[-2.900, -2.347] 

(p < 0.001) 

-2.648*** 

[-2.927, -2.370] 

(p < 0.001) 

-2.739*** 

[-3.098, -2.380] 

(p < 0.001) 

2-year Citations 

(logged) 
  

2.545*** 

[2.253, 2.836] 

(p < 0.001) 

2.555*** 

[2.263, 2.847] 

(p < 0.001) 

2.976*** 

[2.652, 3.301]  

(p < 0.001) 

Gini Coef. of Cum. 

Citation 
  

0.011 

[-0.005, 0.028] 

 (p = 0.172) 

0.012 

[-0.004, 0.029]  

(p = 0.153) 

0.011 

[-0.007, 0.029] 

(p = 0.241) 

Gini Coef. of 2-year 

Citation  
  

-0.021** 

[-0.035, -0.008] 

(p = 0.002) 

-0.021** 

[-0.035, -0.008] 

(p = 0.002) 

-0.029*** 

[-0.044, -0.013] 

(p < 0.001) 

Other Controls      

Retraction Notice 

Published 
   

-0.166 

[-0.653, 0.321] 

(p = 0.503) 

-0.069 

[-0.594, 0.456] 

(p = 0.796) 

After Death    

0.404* 

[0.026, 0.782] 

(p = 0.036) 

0.263 

[-0.078, 0.604] 

(p = 0.130) 

After Death *  

Superstar Death 
   

-0.205* 

[-0.380, -0.031] 

(p = 0.021) 

-0.150 

[-0.371, 0.071] 

(p = 0.182) 

Fixed Effects      

Calendar Year  N N N N Y 

Strata ID N N N N Y 

Log-Likelihood -18,129.3 -17,635.5 -16,532.5 -16,523.1 -14,527.7 

Total Observations 1,366,970 

Note: Knowledge Diffusion indices are standardized within field ages and calendar years across 28,504 

subfields. The 95% confidence intervals inside brackets are computed based on the standard errors 

clustered at strata ID and calendar years. * p < .05; ** p < .01; *** p < .001 (two-tailed) 
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Table A2.3: Model Estimates with the Bottom 0.1% Cutoff, with and without Controls 

Dependent Variable Substantial Decline of Citation 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Knowledge Diffusion   

Scientific Space 

-0.209** 

[-0.342, -0.076] 

(p = 0.002) 

-0.263*** 

[-0.404, -0.122] 

(p < 0.001) 

-0.105 

[-0.228, 0.017] 

 (p = 0.091) 

-0.107 

[-0.23, 0.016] 

(p = 0.090) 

-0.179** 

[-0.297, -0.060] 

(p = 0.003) 

Social Space 

-0.344*** 

[-0.506, -0.183] 

(p < 0.001) 

-0.419*** 

[-0.603, -0.235] 

(p < 0.001) 

-0.376*** 

[-0.550, -0.203] 

 (p < 0.001) 

-0.371*** 

[-0.544, -0.197] 

(p < 0.001) 

-0.435*** 

[-0.642, -0.229] 

(p < 0.001) 

Subfield Growth  

Cum. Subfield Size 

(logged) 
 

0.323*** 

[0.197, 0.448] 

(p < 0.001) 

0.967*** 

[0.791, 1.142] 

(p < 0.001) 

0.992*** 

[0.814, 1.169] 

(p < 0.001) 

0.980*** 

[0.683, 1.278] 

(p < 0.001) 

2-year Subfield 

Growth 
 

-0.139*** 

[-0.171, -0.107] 

(p < 0.001) 

-0.227*** 

[-0.258, -0.196] 

(p < 0.001) 

-0.228*** 

[-0.26, -0.197] 

(p < 0.001) 

-0.271*** 

[-0.308, -0.234] 

(p < 0.001) 

Citation Dynamics 

Cum. Citations 

(logged) 
  

-2.751*** 

[-3.100, -2.401] 

(p < 0.001) 

-2.793*** 

[-3.147, -2.44] 

(p < 0.001) 

-3.117*** 

[-3.545, -2.689] 

(p < 0.001) 

2-year Citations 

(logged) 
  

2.612*** 

[2.232, 2.992] 

(p < 0.001) 

2.626*** 

[2.246, 3.006] 

(p < 0.001) 

3.111*** 

[2.684, 3.538]  

(p < 0.001) 

Gini Coef. of Cum. 

Citation 
  

0.011 

[-0.022, 0.043] 

(p = 0.515) 

0.012 

[-0.021, 0.044] 

(p = 0.482) 

0.017 

[-0.015, 0.05] 

(p = 0.298) 

Gini Coef. of 2-year 

Citation  
  

-0.019 

[-0.047, 0.009] 

(p = 0.178) 

-0.019 

[-0.047, 0.009] 

(p = 0.179) 

-0.025 

[-0.058, 0.008] 

(p = 0.131) 

Other Controls      

Retraction Notice 

Published 
   

0.224 

[-0.469, 0.916] 

(p = 0.527) 

0.385 

[-0.377, 1.147] 

(p = 0.322) 

After Death    

0.764*** 

[0.318, 1.211]  

(p < 0.001) 

0.556* 

[0.073, 1.039] 

(p = 0.024) 

After Death *  

Superstar Death 
   

-0.289 

[-0.584, 0.005] 

(p = 0.054) 

-0.163 

[-0.574, 0.249] 

(p = 0.438) 

Fixed Effects      

Calendar Year  N N N N Y 

Strata ID N N N N Y 

Log-Likelihood -8,107.5 -7,879.7 -7,405.3 -7,395.6 -6,010.4 

Total Observations 1,401,037 

Note: Knowledge Diffusion indices are standardized within field ages and calendar years across 28,504 

subfields. The 95% confidence intervals inside brackets are computed based on the standard errors 

clustered at strata ID and calendar years. * p < .05; ** p < .01; *** p < .001 (two-tailed) 



106 

Measuring Knowledge Diffusion Through Document Embedding Spaces 

We train vector representation models for biomedical science publications from PKG 

2020 to locate positions of scientific publications based on their contents and to measure the 

similarity/distance between papers linked through citations. We adapt the Doc2vec model (Le 

and Mikolov 2014), a variant of the Word2vec model (Mikolov et al. 2013; Garg et al. 2018), 

which was initially developed to produce dense vector representations for documents or 

paragraphs from the words that compose them. Word embedding models generate a high-

dimensional vector space in which geometrically proximate word vectors correspond to words 

that frequently share local linguistic contexts in the training data (Mikolov et al. 2013; Garg et al. 

2018; Kozlowski, Taddy, and Evans 2019). This approach has previously been extended to 

generate representational vectors for entities connected in networks by substituting connections 

among entities as shared contexts (Perozzi, Al-Rfou, and Skiena 2014; Grover and Leskovec 

2016).  

We consider that a research article can be characterized by 1) a list of MeSH terms and 2) 

researchers authoring it. Accordingly, we build two separate representational vector spaces — 

“scientific space” and “social space.” We employ the Python Gensim package (version 4.0) 

(Radim Rehurek 2010) to train our vector representations. We specifically use the Distributed 

Bag of Words (DBOW) model, analogous to the skip-gram model from the Word2vec 

framework to train document vectors and constituting elements (MeSH terms and author IDs) 

simultaneously. This approach enables us to conduct document retrieval tasks using the vector 

representations of MeSH terms and author IDs to validate the resulting spaces. Detailed 

implementation procedures are as follows.  

 

https://paperpile.com/c/7W1ycd/Or8tj
https://paperpile.com/c/7W1ycd/Or8tj
https://paperpile.com/c/7W1ycd/qNM1N+6mX9w
https://paperpile.com/c/7W1ycd/qNM1N+6mX9w+oYJqE
https://paperpile.com/c/7W1ycd/qNM1N+6mX9w+oYJqE
https://paperpile.com/c/7W1ycd/MTUY6+hr2Bp
https://paperpile.com/c/7W1ycd/MTUY6+hr2Bp
https://paperpile.com/c/7W1ycd/OSVpo
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Scientific Space from MeSH Descriptors 

We posit the MeSH terms as constituting words to build a “scientific space” for the 

biomedical literature. Because nominal terminologies are subject to change, we use MeSH terms’ 

unique IDs from the National Library of Medicine. For instance, a MeSH descriptor, 

Mesenchymal Stem Cells (Descriptor ID: D059630), was indexed as Mesenchymal Stromal Cells 

from 2012 to 2018. However, it began to be reindexed as Mesenchymal stem cells in 2019, while 

its uniquely assigned descriptor ID, D059630, remains the same.  

Figure A2.1: MeSH terms assigned to PMID 28376884 

 

  When a MeSH qualifier is attached to a MeSH descriptor, we consider both a descriptor 

with a qualifier and without it. Note that Figure A2.1 displays MeSH terms assigned to “Cancer 

immunotherapies targeting the PD-1 signaling pathway” (PMID 28376884), published in the 

Journal of Biomedical Science in 2017, authored by Iwai, Hamanishi, Chamoto, and Honjo(Iwai 

et al. 2017). The second term, Antineoplastic Agents / metabolism, can be broken down into the 

primary MeSH descriptor, Antineoplastic Agents, and the qualifier, metabolism, narrowing down 

the scope. The third term, Antineoplastic Agents / pharmacology*, also has a qualifier, 

pharmacology. (The asterisk denotes that the given term is a major topic of the publication.) For 

this case, we include 1) Antineoplastic Agents, 2) Antineoplastic Agents / metabolism, and 3) 

Antineoplastic Agents / pharmacology for our model training. We do this to reflect that PubMed 

search queries using only MeSH terms (without qualifiers), Antineoplastic Agents, for this case, 

https://paperpile.com/c/7W1ycd/NE2dW
https://paperpile.com/c/7W1ycd/NE2dW
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capture publications like PMID 28376884. We exclude the asterisks for the same reason, taking 

into consideration co-searchability. As a result, the final list of MeSH terms fed into the training 

process for PMID 28376884 is Antibodies, Monoclonal, Antibodies, Monoclonal / therapeutic 

use, Antineoplastic Agents, Antineoplastic Agents / metabolism, Antineoplastic Agents / 

pharmacology, Humans, Immunologic Factors, Immunologic Factors / therapeutic use, 

Immunotherapy, Neoplasms, Neoplasms / therapy, Programmed Cell Death 1 Receptor, 

Programmed Cell Death 1 Receptor / therapeutic use, Signal Transduction.   

With these MeSH combinations, we train 100-dimensional vectors for 26,666,615 PMIDs 

and 303,492 MeSH combinations that appear at least ten times with 100 training epochs. The 

mean number of MeSH terms (after the procedure detailed above) per PMID from our dataset is 

16.34 (std=9.04). However, we set the sliding window size that defines the boundary of the 

training context as 110, the maximum number from the data, to ensure that each training instance 

includes all the other MeSH combinations on a given article without splitting them up by 

imposing arbitrary contexts.  

We validate the resulting vector representations by attempting to retrieve resulting 

publication vectors using MeSH combination vectors across 20 random samples, each containing 

1,000 publications. We first take the vectors of MeSH terms assigned to each publication, infer 

the position of a document combining the MeSH terms, and check its proximity to the original 

vector representation of the article containing those MeSH terms. It is, for instance, a test to see 

if we can retrieve PMID 28376884 in Figure A2.1 by inferring the position of a document 

combining the vectors of MeSH terms assigned to it. Because it is impossible to differentiate 

publications with the same set of MeSH terms with this model, we consider the 1, 5, and 10 most 

similar documents from the inferred vector, using cosine similarity. We find that it is possible to 
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retrieve the target PMIDs with the rate of 92.48% (SD= .81), 96.14% (SD=.59), and 97.18% 

(SD=.52) from the top 1, 5, and 10 most similar documents, respectively, which suggests 

documents sharing MeSH terms are located close together in the 100-dimensional embedding 

space. 

An advantage of using this Doc2vec model is that it reflects the high-order proximity of 

constituting words beyond their direct co-occurrence in a context. Consider two documents, 

PMID 23142641, a review article titled “Challenges measuring cardiomyocyte renewal,” 

published in 2013 (Soonpaa, Rubart, and Field 2013), and PMID 11287958, an original research 

article, “Bone marrow cells regenerate infarcted myocardium,” published in 2001 (Orlic et al. 

2001). The former review article cited the latter article. A simple but popular similarity metric 

would be the Jaccard coefficient ranging from 0 to 1, computed by dividing the number of MeSH 

terms that two articles share by the size of the union set of all MeSH terms assigned to the two 

publications.  

The MeSH terms assigned to PMID 23142641 are Animals; Bromodeoxyuridine; Cell 

Differentiation; Cell Nucleus / metabolism; Cell Nucleus / ultrastructure; Cell Proliferation; 

Cell Tracking; Genes, Reporter; Integrases; Mice; Mice, Transgenic; Myocardium / cytology*; 

Myocardium / metabolism; Myocytes, Cardiac / cytology*; Myocytes, Cardiac / metabolism; 

Regeneration; Stem Cells / cytology*; Stem Cells / metabolism; beta-Galactosidase.  

The MeSH terms assigned to PMID 11287958 are as follows: Animals; Bone Marrow 

Transplantation*; Cell Differentiation; Connexin 43 / metabolism; DNA-Binding Proteins / 

metabolism; Female; Green Fluorescent Proteins; Ki-67 Antigen / metabolism; Luminescent 

Proteins / metabolism; MEF2 Transcription Factors; Male; Mice; Mice, Inbred C57BL; Mice, 

Transgenic; Myocardial Infarction / therapy*; Myocardium / cytology; Myocardium / 

https://paperpile.com/c/7W1ycd/xLufx
https://paperpile.com/c/7W1ycd/YvNEa
https://paperpile.com/c/7W1ycd/YvNEa
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pathology*; Myogenic Regulatory Factors; Proto-Oncogene Proteins c-kit / metabolism; 

Transcription Factors / metabolism. 

The Jaccard coefficient of the two publications based on the MeSH terms is .133 despite 

the close relationship between the two articles. However, the cosine similarity between the two 

documents on our trained model is .844, which better reflects the overall topic similarity between 

the two publications.  

 

 

Social Space with Disambiguated Author IDs 

Analogous to the content embedding space from MeSH terms, we also build a 100-

dimensional social embedding space using Doc2vec, anchored by 8,359,189 disambiguated 

biomedical authors, within which we locate the vector space position of 28,329,992 PMIDs 

published by the end of 2019. In other words, we consider the author IDs as constituting 

document units. To inscribe the co-author information per publication, we included only authors 

that appeared more than once. The mean number of authors per publication from 28,329,992 

PMIDs is 3.97 (std=5.01) with a median of 3. However, we set the window size for the training 

context as 2000 – arbitrarily larger than the maximum number of authors in the dataset – to 

include all author IDs in the training process for a given publication. We do this to ensure that 

the resulting article embedding model assigns similar vectors to articles co-authored by the same 

groups of overlapping co-authors who are directly or indirectly close in the social space of 

biomedical research collaboration. We trained our social embedding space using 100 epochs (or 

training iterations). 

We validate the quality of vector representations in the same manner we did for the 

MeSH content space across 20 random samples of 1,000 publications each. We take the author 
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vectors for each publication, infer the position of a hypothetical publication those authors could 

have written within the 100-dimensional embedding space, and check its proximity to the vector 

representation written by the same author(s). Considering the impossibility of distinguishing 

publications written by the same author(s), we also assess the 1, 5, 10, and 20 most similar 

PMIDs from the inferred vector using cosine similarity. The target PMIDs could be retrieved 

with the rate of 65.26% (SD= 1.73), 86.16% (SD=1.06), 90.27% (SD=0.74), 92.9% (SD=0.77) 

from the top 1, 5, 10, 20 most similar documents, respectively. The sharp increase in self-

retrieval for relaxed conditions demonstrates that papers written by the same author(s) are 

contiguous in the resulting 100-dimensional social embedding space.   

 

 

Aggregated Pattern for Diffusion for Highly Cited Articles Published in 1980, 1990, 2000, 2010 

Here, we provide an aggregate-level description of how our diffusion indices temporally 

evolve using highly cited papers (top 5% percent in citation counts by the end of 2019) from four 

cohorts of research articles published in 1980, 1990, 2000, and 2010. We first make subsets of 

publications that the raw citation obtained by the end of 2019 fall over the 5% percentile in each 

cohort year (10,967 of 219,358 in 1970; 14,031 of 280,622 in 1980; 20,527 of 410,555 in 1990; 

26,513 of 530,271 in 2000; 41,156 /823,129 in 2010), also accordingly extract cosine distances 

between the focal papers and citing papers measured in social and scientific space. With data 

from two rolling years, medians of cosine distances from two spaces each calendar year are 

computed. For example, the median cosine distance assigned to 1991 for the 1990 cohort is 

computed using all the citations observed in 1990 and 1991.  

Figure A2.2 shows the temporal evolution of diffusion metrics from scientific and social 

space. As the universe of biomedical entities and scientists expands, distances between focal 
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papers and citing papers tend to increase in both scientific and social spaces by 2019. Then, the 

pattern, especially from the scientific space, indicates that our 100-dimensional representational 

spaces may allocate publications in some years (e.g., 2004 and 2005) in relatively distant 

locations within a trained manifold in the training process. Together, these suggest a necessity to 

consider the calendar year effect when a research article was published for the following 

analysis. 

Figure A2.2: Temporal pattern of diffusion from highly cited articles (Top 5%) published in 

1980, 1990, 2000, 2010 

 
Note: Median cosine distances for each year (t) are computed based on a two-year rolling (t and t-1) 

window.  

 

Delineating Biomedical Subfield 

Science is a social enterprise: like any other intellectual product, biomedical science 

attains its significance when others recognize and build upon it (Bourdieu 1975; McMahan and 

McFarland 2021; Crane 1972). Hence, we seek to understand the dynamics of diffusion and 

shifting attention beyond individual publications at the subfield level. We utilize the ‘Similar 

Article’ (or ‘Related Articles’) function provided by PubMed (Lin and Wilbur 2007), powered 

https://paperpile.com/c/7W1ycd/jU4B+Bzjes+oEhUN
https://paperpile.com/c/7W1ycd/jU4B+Bzjes+oEhUN
https://paperpile.com/c/7W1ycd/5J9cl
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by the Pubmed Related Article algorithm (PMRA) (Lin and Wilbur 2007), which uses words in 

the abstracts, titles, and MeSH terms to capture a set of intellectually neighboring articles from a 

given seed article. This approach has been employed to study the repercussions of scientific 

scandals on careers (Azoulay, Bonatti, and Krieger 2017), shifts in research focus among 

scientists responding to NIH funding changes (Azoulay, Bonatti, and Krieger 2017; Myers 

2020), and the negative impact of winning prizes for recipient competitors (Reschke, Azoulay, 

and Stuart 2018).  

We apply this method to seed articles curated by Azoulay and their colleagues (2019), 

which consist of research papers from U.S. elite life scientists published between 1970 and 2002 

(inclusive). The authors deemed scientist’s elite if they satisfied one or more of the following 

criteria: they were (i) highly funded, (ii) highly cited, (iii) top patents, (iv) members of the 

National Academy of Sciences, (v) the National Academy of Medicine, or (vi) early career prize 

winners (i.e., NIH MERIT awardees, Howard Hughes Medical Investigators). To estimate the 

effects of the premature death of elite biomedical researchers, the study first identified 3,076 

seed articles authored by 452 researchers who died prematurely. These 452 researchers represent 

a subset of a larger pool of 12,935 star scientists, with a median (and mean) age at death of 61. 

Within this group, 229 passed away following a protracted illness, while 185 died suddenly and 

unexpectedly (e.g., in a car crash). Forty percent of these stars held an M.D. rather than a Ph.D.; 

90 percent were male, and each received an average of $16.6 million in NIH grants and 

published 138 papers, garnering 8,341 citations over their careers.  

The study then performed ‘coarsened exact matching’ to identify a control group of 

publications from elite scientists who did not experience premature death, taking into account 

factors such as 1) publication years, 2) team sizes, 3) the ages of the elite scientists, and 4) long-

https://paperpile.com/c/7W1ycd/5J9cl
https://paperpile.com/c/7W1ycd/g9uYF
https://paperpile.com/c/7W1ycd/g9uYF+hQlzW
https://paperpile.com/c/7W1ycd/g9uYF+hQlzW
https://paperpile.com/c/7W1ycd/DCmNu
https://paperpile.com/c/7W1ycd/DCmNu
https://paperpile.com/c/7W1ycd/oYCtp/?noauthor=1
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run citation impact. This process allows a subfield to be matched to several subfields associated 

with the early death of eminent scientists, leading to overlaps. Consequently, 4,180 subfields 

were matched to more than one subfield with the premature death of associated superstar 

scientists, leading to duplicates when counted individually. This results in 34,218 unique pairs of 

subfield strata and seed articles for subfield identification, for 28,504 unique seed articles 

spanning subfields. We repurpose this dataset to investigate a different question from the original 

study in our work.  

Consistent with the original approach, we assume each seed article represents distinct 

subfields in biomedicine, but we extended the period to the end of 2019 as their subfield panel 

data stopped in 2006. We identify 1,941,680 unique publications (including the seed articles) 

spanning 28,504 unique subfields. By the end of 2019, the mean and median size of subfields is 

122.52 and 102, respectively, with a standard deviation of 91.5. Table A2.4 below shows the 

subfield sizes at the 1st, 10th, 25th (1Q), 50th (median), 75th (3Q), 90th, and 99th percentiles at 

the end of 2019. Table A2.5 shows the distribution of citations garnered by 28,504 subfields by 

the end of 2019. 

Table A2.4: Distribution of Subfield Size in 2019 

Percentile 1st 10th 25th 50th 75th 90th 99th 

Subfield Size  

in 2019 
40 68 89 102 125 184 484 

 

 

Table A2.5: Distribution of Cumulative Citations per Subfield at the End of 2019 

Percentile 1st 10th 25th 50th 75th 90th 99th 

Cumulative  

# of citations by 

the end of 2019 

1,015 2,319 3,423 5,097 7,506 11,065 24,312 

 

We extract research articles that have cited any 1,941,680 publications from the PKG 

2020 citation database, which returns 11,421,194 publications and 86,804,637 paper-to-paper 

citations. Not all publications are associated with MeSH or Author IDs from PKG. We identify 
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10,894,779 publications that PKG assigns author IDs, constituting 84,389,548 citations from 

social space and 10,454,104 publications associated with MeSH terms linked through 82,228,828 

citations.  

 

Alternative Identification of Subfields  

 While PMRA underpins the PubMed interface, serving as a crucial tool for researchers to 

locate information related to focal research papers and study the operation of biomedical 

science(Azoulay, Bonatti, and Krieger 2017; Azoulay, Fons-Rosen, and Zivin 2019; Myers 

2020; Reschke, Azoulay, and Stuart 2018), our analysis relies on this specific method of subfield 

identification. To ensure the robustness of our results, we have undertaken the following steps: 1) 

Using the same set of 28,504 seed article PMIDs and the scientific embedding space trained on 

MeSH terms, we redefined subfields by selecting the top N most similar articles to the seed 

articles based on cosine similarity within the scientific space, where ‘N’ corresponds to the 

original subfield size as determined by PMRA. For the 82 out of 28,504 seed articles without 

assigned MeSH terms, we substituted each with a PMRA-identified similar article that ranked in 

the top 10 in similarity and had the smallest difference in publication years; 2) As an additional 

robustness check, we doubled the size of each subfield to assess the sensitivity of our results to 

changes in subfield sizes identified by PMRA.  

With these two alternatively defined systems of subfields, we recalculated subfield-level 

variables consistent with our original analysis. We applied the same approach using three 

thresholds (i.e., 0.5%, 0.25%, 0.1%) to identify the sudden declines from two alternative 

subfields of the same and doubled sizes defined within our scientific embedding space. The 

following Tables report a pattern of results similar to the main findings. 

https://paperpile.com/c/7W1ycd/g9uYF+oYCtp+hQlzW+DCmNu
https://paperpile.com/c/7W1ycd/g9uYF+oYCtp+hQlzW+DCmNu
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Table A2.6: Estimates with Alternative Subfields using the Same Size of the Originals  

Dependent Variable Substantial Decline of Citation 

 Model 1 (0.5%) Model 2 (0.25%) Model 3 (0.1%) 

Knowledge Diffusion    

Scientific Space 

-0.250*** 

[-0.312, -0.188] 

(p < 0.001) 

-0.289*** 

[-0.364, -0.213] 

(p < 0.001) 

-0.358*** 

[-0.445, -0.270] 

(p < 0.001) 

Social Space 

-0.098** 

[-0.167, -0.03] 

(p = 0.005) 

-0.113* 

[-0.205, -0.02] 

(p = 0.017) 

-0.150* 

[-0.293, -0.006] 

(p = 0.041) 

Log-Likelihood -33,501.0 -19,308.5 -8,780.9 

Total Observations 1,324,948 1,385,980 1,425,731 

Note: Knowledge Diffusion indices are standardized within field ages and calendar years across 28,504 

subfields. The 95% confidence intervals inside brackets are computed based on the standard errors 

clustered at strata ID and calendar years. * p < .05; ** p < .01; *** p < .001 (two-tailed) 

 

Table A2.7: Estimates with Controls for Alternative Subfields using the Same Size 

Dependent Variable Substantial Decline of Citation 

 Model 1 (0.5%) Model 2 (0.25%) Model 3 (0.1%) 

Knowledge Diffusion    

Scientific Space 

-0.258*** 

[-0.321, -0.194] 

(p < 0.001) 

-0.276*** 

[-0.356, -0.196] 

(p < 0.001) 

-0.339*** 

[-0.471, -0.208] 

(p < 0.001) 

Social Space 

-0.121** 

[-0.204, -0.038] 

(p = 0.004) 

-0.157** 

[-0.263, -0.052] 

(p = 0.003) 

-0.201* 

[-0.360, -0.043] 

(p = 0.013) 

Subfield Growth     

Cum. Subfield Size (logged) 

0.686*** 

[0.539, 0.833] 

 (p < 0.001) 

0.781*** 

[0.561, 1.000] 

(p < 0.001) 

0.716*** 

[0.388, 1.043] 

(p < 0.001) 

2-year Subfield Growth 

-0.237*** 

[-0.256, -0.217] 

(p < 0.001) 

-0.244*** 

[-0.269, -0.218] 

(p < 0.001) 

-0.258*** 

[-0.291, -0.225] 

(p < 0.001) 

Citation Dynamics    

Cum. Citations (logged) 

-2.113*** 

[-2.426, -1.800] 

(p < 0.001) 

-2.291*** 

[-2.648, -1.933] 

(p < 0.001) 

-2.443*** 

[-2.863, -2.024] 

(p < 0.001) 

2-year Citations (logged) 

2.152*** 

[1.881, 2.422] 

(p < 0.001) 

2.278*** 

[1.960, 2.595] 

(p < 0.001) 

2.440*** 

[2.042, 2.838] 

(p < 0.001) 

Gini Coef. of Cum. Citation 

0.262 

[-0.986, 1.510] 

(p = 0.680) 

0.341 

[-1.466, 2.148] 

(p = 0.711) 

-0.261 

[-3.222, 2.700] 

(p = 0.863) 

Gini Coef. of 2-year Citation  

-0.598 

[-1.688, 0.492] 

(p = 0.282) 

-0.748 

[-2.457, 0.961] 

(p = 0.391) 

-1.046 

[-3.976, 1.883] 

(p = 0.484) 
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Table A2.7 continued 

Other Controls    

Retraction Notice Published 

-0.494  

[-1.062, 0.074] 

(p = 0.088) 

-0.262 

[-1.22, 0.696] 

(p = 0.592) 

0.299 

[-0.873, 1.471] 

(p = 0.617) 

After Death 

0.191* 

[0.034, 0.348] 

(p = 0.017) 

0.420*** 

[0.221, 0.619] 

(p < 0.001) 

0.413 

[-0.005, 0.831] 

(p = 0.053) 

After Death * Superstar Death 

0.017 

[-0.143, 0.177] 

(p = 0.836) 

0.027 

[-0.169, 0.222] 

(p = 0.788) 

-0.094 

[-0.428, 0.240] 

(p = 0.581) 

Fixed Effects    

Calendar Year Y Y Y 

Strata ID Y Y Y 

Log-Likelihood -27,714.8 -15,542.6 -6,594.8 

Total Observations 1,324,948 1,385,980 1,425,731 

Note: Knowledge Diffusion indices are standardized within field ages and calendar years across 28,504 

subfields. The 95% confidence intervals inside brackets are computed based on the standard errors 

clustered at strata ID and calendar years. * p < .05; ** p < .01; *** p < .001 (two-tailed) 

 

 

 

 

 

 

Table A2.8: Estimates with Subfields from Scientific Space with Doubled Size of the Originals 

Dependent Variable Substantial Decline of Citation 

 Model 1 (0.5%) Model 2 (0.25%) Model 3 (0.1%) 

Knowledge Diffusion    

Scientific Space 

-0.268*** 

[-0.359, -0.177] 

(p < 0.001) 

-0.344*** 

[-0.442, -0.247] 

(p < 0.001) 

-0.395*** 

[-0.536, -0.255] 

(p < 0.001) 

Social Space 

-0.144*** 

[-0.215, -0.073] 

(p < 0.001) 

-0.141** 

[-0.247, -0.034] 

(p = 0.009) 

-0.196* 

[-0.360, -0.031] 

(p = 0.02) 

Log-Likelihood -34,063.1 -19,601.3 -8,827.1 

Total Observations 1,389,103 1,446,414 1,484,148 

Note: Knowledge Diffusion indices are standardized within field ages and calendar years across 28,504 

subfields. The 95% confidence intervals inside brackets are computed based on the standard errors 

clustered at strata ID and calendar years. * p < .05; ** p < .01; *** p < .001 (two-tailed) 
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Table A2.9: Estimates with Controls for Alternative Subfields using the Double Size 

Dependent Variable Substantial Decline of Citation 

 Model 1 (0.5%) Model 2 (0.25%) Model 3 (0.1%) 

Knowledge Diffusion    

Scientific Space 

-0.288*** 

[-0.364, -0.212] 

(p < 0.001) 

-0.345*** 

[-0.432, -0.258] 

(p < 0.001) 

-0.355*** 

[-0.523, -0.186] 

(p < 0.001) 

Social Space 

-0.178*** 

[-0.258, -0.097] 

(p < 0.001) 

-0.208*** 

[-0.323, -0.093] 

(p < 0.001) 

-0.265** 

[-0.439, -0.091] 

(p = 0.003) 

Subfield Growth     

Cum. Subfield Size (logged) 

0.603*** 

[0.422, 0.784] 

(p < 0.001) 

0.679*** 

[0.447, 0.91] 

(p < 0.001) 

0.883*** 

[0.487, 1.279] 

(p < 0.001) 

2-year Subfield Growth 

-0.307*** 

[-0.332, -0.282] 

(p < 0.001) 

-0.320*** 

[-0.347, -0.293] 

(p < 0.001) 

-0.352*** 

[-0.401, -0.304] 

(p < 0.001) 

Citation Dynamics    

Cum. Citations (logged) 

-2.542*** 

[-2.880, -2.204] 

(p < 0.001) 

-2.738*** 

[-3.126, -2.349] 

(p < 0.001) 

-3.204*** 

[-3.583, -2.825] 

(p < 0.001) 

2-year Citations (logged) 

2.532*** 

[2.241, 2.824] 

(p < 0.001) 

2.678*** 

[2.334, 3.022] 

(p < 0.001) 

3.029*** 

[2.649, 3.409] 

(p < 0.001) 

Gini Coef. of Cum. Citation 

1.989** 

[0.671, 3.306] 

(p = 0.003) 

2.409* 

[0.52, 4.298] 

(p = 0.012) 

2.447 

[-1.217, 6.111] 

(p = 0.191) 

Gini Coef. of 2-year Citation  

-1.634* 

[-2.951, -0.317] 

(p = 0.015) 

-1.896 

[-3.932, 0.141] 

(p = 0.068) 

-2.831 

[-6.915, 1.252] 

(p = 0.174) 

Other Controls    

Retraction Notice Published 

-0.193 

[-0.606, 0.221] 

(p = 0.362) 

-0.102 

[-0.76, 0.556] 

(p = 0.762) 

0.290 

[-0.776, 1.356] 

(p = 0.594) 

After Death 

0.200 

[0.006, 0.393] 

(p = 0.043) 

0.188 

[-0.101, 0.477] 

(p = 0.202) 

0.306 

[-0.185, 0.797] 

(p = 0.222) 

After Death * Superstar Death 

-0.104 

[-0.252, 0.043] 

(p = 0.166) 

-0.115 

[-0.316, 0.087] 

(p = 0.264) 

-0.152 

[-0.45, 0.145] 

(p = 0.315) 

Fixed Effects    

Calendar Year Y Y Y 

Strata ID Y Y Y 

Log-Likelihood -27,851.1 -15,571.3 -6,521.8 

Total Observations 1,389,103 1,446,414 1,484,148 

Note: Knowledge Diffusion indices are standardized within field ages and calendar years across 28,504 

subfields. The 95% confidence intervals inside brackets are computed based on the standard errors 

clustered at strata ID and calendar years. * p < .05; ** p < .01; *** p < .001 (two-tailed) 

 



119 

Robustness Check with Mutually Exclusive Subfields 

The PMRA-based subfield identification method allows a paper to be included in more 

than one subfield. The Azoulay team explored the extent of shared articles between pairs of 

PMRA-delineated subfields, focusing on 21,661 subfield pairs where a deceased superstar was 

last author on both associated source articles (see Figure C6 at 

aeaweb.org/content/file?id=10303). We conducted our investigation, noting that 1) the Azoulay 

team’s analysis focused only on subfields associated with scientists who died prematurely, and 2) 

we extended the analysis window up to 2019. Our analysis shows that 64.1% of papers are 

predominantly associated with a single subfield. 

Figure A2.3: Proportion of Papers by Number of Subfield Associated  

 
We conducted additional analyses by reassigning overlapping papers to a single seed 

article, ensuring each subfield is mutually exclusive. We did this by leveraging distances within 

our scientific space. Specifically, for papers associated with more than one seed article, we 

compute cosine similarities between each paper and its seed articles and select the seed article 

with the highest similarity. After this procedure, we recomputed all subfield-level variables, 

including diffusion metrics, outcomes, and controls, in the same manner as in our original 

analyses. Results confirmed the robustness of our findings, as detailed below. 

http://aeaweb.org/content/file?id=10303
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Table A2.10: Model Estimates after Reassignment Using the Bottom 0.50% Cutoff  
Dep. Var. Substantial Decline of Citation 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Know. Diff.    

Scientific Space 

-0.204*** 

[-0.267, -0.140] 

(p < 0.001) 

-0.232*** 

[-0.293, -0.170] 

(p < 0.001) 

-0.128*** 

[-0.171, -0.086] 

(p < 0.001) 

-0.129*** 

[-0.171, -0.088] 

(p < 0.001) 

-0.182*** 

[-0.233, -0.131] 

(p < 0.001) 

-0.218*** 

[-0.277, -0.160] 

(p < 0.001) 

Social Space 

-0.131*** 

[-0.185, -0.077] 

(p < 0.001) 

-0.189*** 

[-0.249, -0.129] 

(p < 0.001) 

-0.150*** 

[-0.211, -0.089] 

(p < 0.001) 

-0.148*** 

[-0.208, -0.088] 

(p < 0.001) 

-0.163*** 

[-0.229, -0.096] 

(p < 0.001) 

-0.161*** 

[-0.227, -0.095] 

(p < 0.001) 

Subfield Growth   

Cum. Subfield 

Size (logged) 
 

0.309*** 

[0.249, 0.369] 

(p < 0.001 

0.563*** 

[0.466, 0.661] 

(p < 0.001) 

0.572*** 

[0.471, 0.673] 

(p < 0.001 

0.151* 

[0.014, 0.287] 

(p = 0.031) 

0.049 

[-0.071, 0.170] 

(p = 0.421) 

2-year Subfield 

Growth 
 

-0.094*** 

[-0.104, -0.084] 

(p < 0.001 

-0.143*** 

[-0.157, -0.129] 

(p < 0.001) 

-0.143*** 

[-0.157, -0.130] 

(p < 0.001 

-0.136*** 

[-0.150, -0.122] 

(p < 0.001) 

-0.142*** 

[-0.158, -0.127] 

(p < 0.001) 

Citation Dynamics  

Cum. Citations 

(logged) 
  

-1.895*** 

[-2.154, -1.637] 

(p < 0.001) 

-1.906*** 

[-2.168, -1.645] 

(p < 0.001) 

-1.650*** 

[-1.955, -1.345] 

(p < 0.001) 

-1.673*** 

[-1.957, -1.389] 

(p < 0.001) 

2-year Citations 

(logged) 
  

1.909*** 

[1.655, 2.163] 

(p < 0.001) 

1.914*** 

[1.658, 2.169] 

(p < 0.001) 

2.210*** 

[1.941, 2.479] 

(p < 0.001) 

2.426*** 

[2.154, 2.698] 

(p < 0.001) 

Gini Coef. of 

Cum. Citation 
  

0.432 

[-0.225, 1.089] 

(p = 0.198) 

0.461 

[-0.196, 1.119] 

(p = 0.169) 

0.025 

[-0.741, 0.791] 

(p = 0.949) 

0.180 

[-0.597, 0.957] 

(p = 0.65) 

Gini Coef. of 2-

year Citation  
  

-0.511 

[-1.131, 0.110] 

(p = 0.107) 

-0.516 

[-1.139, 0.108] 

(p = 0.105) 

-1.420*** 

[-2.096, -0.745] 

(p < 0.001) 

-1.593*** 

[-2.230, -0.956] 

(p < 0.001) 

Other Controls       

Retraction 

Notice 

Published 

  

-0.237 

[-0.649, 0.175] 

(p = 0.26) 

-0.077 

[-0.531, 0.376] 

(p = 0.738) 

0.01 

[-0.54, 0.56] 

(p = 0.972) 

-0.237 

[-0.649, 0.175] 

(p = 0.26) 

After Death   

0.080 

[-0.121, 0.28] 

(p = 0.437) 

0.121 

[-0.031, 0.274] 

(p = 0.118) 

0.200* 

[0.032, 0.369] 

(p = 0.02) 

0.08 

[-0.121, 0.28] 

(p = 0.437) 

After Death *  

Superstar Death 
  

-0.149* 

[-0.283, -0.015] 

(p = 0.029 

-0.002 

[-0.168, 0.165] 

(p = 0.984) 

-0.510** 

[-0.895, -0.125] 

(p = 0.009) 

-0.149* 

[-0.283, -0.015] 

(p = 0.029) 

Fixed Effects       

Calendar Year  N N N N Y Y 

Strata ID N N N N Y N 

Star ID N N N N N Y 

Log-Likelihood -30,045.0 -29,187.9 -27,699.2 -27,694.0 -25,118.1 -22,709.7 

Total Obs. 1,252,242 

Note: Knowledge Diffusion indices are standardized within field ages and calendar years across 28,504 

subfields. The 95% confidence intervals inside brackets are computed based on the standard errors 

clustered at strata ID and calendar years. * p < .05; ** p < .01; *** p < .001 (two-tailed) 
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Table A2.11: Model Estimates after Reassignment Using the Bottom 0.25% Cutoff  
Dep. Var. Substantial Decline of Citation 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Know. Diff.    

Scientific Space 

-0.195*** 

[-0.273, -0.116] 

(p < 0.001) 

-0.217*** 

[-0.295, -0.14] 

(p < 0.001) 

-0.102*** 

[-0.159, -0.045] 

(p < 0.001) 

-0.103*** 

[-0.159, -0.046] 

(p < 0.001) 

-0.142*** 

[-0.211, -0.074] 

(p < 0.001) 

-0.171*** 

[-0.244, -0.098] 

(p < 0.001) 

Social Space 

-0.168*** 

[-0.231, -0.105] 

(p < 0.001) 

-0.236*** 

[-0.308, -0.164] 

(p < 0.001) 

-0.195*** 

[-0.268, -0.121] 

(p < 0.001) 

-0.193*** 

[-0.266, -0.12] 

(p < 0.001) 

-0.196*** 

[-0.276, -0.117] 

(p < 0.001) 

-0.193*** 

[-0.272, -0.114] 

(p < 0.001) 

Subfield Growth   

Cum. Subfield 

Size (logged) 
 

0.357*** 

[0.288, 0.427] 

(p < 0.001) 

0.696*** 

[0.581, 0.811] 

(p < 0.001) 

0.701*** 

[0.583, 0.819] 

(p < 0.001) 

0.289*** 

[0.116, 0.461] 

(p = 0.001) 

0.155 

[-0.023, 0.333] 

(p = 0.089) 

2-year Subfield 

Growth 
 

-0.097*** 

[-0.109, -0.086] 

(p < 0.001) 

-0.15*** 

[-0.166, -0.135] 

(p < 0.001) 

-0.151*** 

[-0.166, -0.136] 

(p < 0.001) 

-0.144*** 

[-0.16, -0.129] 

(p < 0.001) 

-0.151*** 

[-0.167, -0.135] 

(p < 0.001) 

Citation Dynamics  

Cum. Citations 

(logged) 
  

-2.090*** 

[-2.347, -1.833] 

(p < 0.001) 

-2.097*** 

[-2.353, -1.84] 

(p < 0.001) 

-1.850*** 

[-2.153, -1.547] 

(p < 0.001) 

-1.921*** 

[-2.241, -1.601] 

(p < 0.001) 

2-year Citations 

(logged) 
  

2.046*** 

[1.795, 2.297] 

(p < 0.001) 

2.049*** 

[1.798, 2.300] 

(p < 0.001) 

2.357*** 

[2.079, 2.635] 

(p < 0.001) 

2.658*** 

[2.360, 2.956] 

(p < 0.001) 

Gini Coef. of 

Cum. Citation 
  

0.665 

[-0.110, 1.439] 

(p = 0.092) 

0.681 

[-0.090, 1.452] 

(p = 0.083) 

0.082 

[-0.790, 0.955] 

(p = 0.854) 

0.503 

[-0.419, 1.424] 

(p = 0.285) 

Gini Coef. of 2-

year Citation  
  

-0.759* 

[-1.48, -0.038] 

(p = 0.039) 

-0.763* 

[-1.485, -0.04] 

(p = 0.039) 

-1.650*** 

[-2.449, -0.852] 

(p < 0.001) 

-2.077*** 

[-2.848, -1.305] 

(p < 0.001) 

Other Controls       

Retraction 

Notice 

Published 

  

-0.193 

[-0.725, 0.339] 

(p = 0.476) 

0.079 

[-0.451, 0.609] 

(p = 0.771) 

-0.007 

[-0.7, 0.685] 

(p = 0.983) 

-0.193 

[-0.725, 0.339] 

(p = 0.476) 

After Death   

0.050 

[-0.218, 0.318] 

(p = 0.713) 

0.049 

[-0.224, 0.321] 

(p = 0.727) 

0.064 

[-0.200, 0.328] 

(p = 0.634) 

0.050 

[-0.218, 0.318] 

(p = 0.713) 

After Death *  

Superstar Death 
  

-0.090 

[-0.294, 0.115] 

(p = 0.391) 

0.115 

[-0.129, 0.359] 

(p = 0.356) 

-0.151 

[-0.652, 0.349] 

(p = 0.554) 

-0.09 

[-0.294, 0.115] 

(p = 0.391) 

Fixed Effects       

Calendar Year  N N N N Y Y 

Strata ID N N N N Y N 

Star ID N N N N N Y 

Log-Likelihood -16,969.8 -16,495.6 -15,626.5 -15,625.3 -13,682.5 -12,015.4 

Total Obs. 1,304,469 

Note: Knowledge Diffusion indices are standardized within field ages and calendar years across 28,504 

subfields. The 95% confidence intervals inside brackets are computed based on the standard errors 

clustered at strata ID and calendar years. * p < .05; ** p < .01; *** p < .001 (two-tailed) 
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Table A2.12: Model Estimates after Reassignment Using the Bottom 0.10% Cutoff 
Dep. Var. Substantial Decline of Citation 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Know. Diff.    

Scientific Space 

-0.243*** 

[-0.373, -0.113] 

(p < 0.001 

-0.265*** 

[-0.400, -0.129] 

(p < 0.001) 

-0.139* 

[-0.251, -0.028] 

(p = 0.014) 

-0.140* 

[-0.251, -0.028] 

(p = 0.014) 

-0.161* 

[-0.310, -0.013] 

(p = 0.033) 

-0.229*** 

[-0.367, -0.091] 

(p = 0.001) 

Social Space 

-0.198*** 

[-0.298, -0.098] 

(p < 0.001 

-0.271*** 

[-0.384, -0.158] 

(p < 0.001) 

-0.229*** 

[-0.344, -0.114] 

(p < 0.001) 

-0.226*** 

[-0.341, -0.111] 

(p < 0.001) 

-0.238*** 

[-0.368, -0.109] 

(p < 0.001) 

-0.186* 

[-0.331, -0.040] 

(p = 0.012) 

Subfield Growth   

Cum. Subfield 

Size (logged) 
 

0.385*** 

[0.294, 0.475] 

(p < 0.001) 

0.778*** 

[0.613, 0.943] 

(p < 0.001) 

0.786*** 

[0.618, 0.954] 

(p < 0.001) 

0.326* 

[0.052, 0.601] 

(p = 0.020) 

0.225 

[-0.099, 0.55] 

(p = 0.173) 

2-year Subfield 

Growth 
 

-0.097*** 

[-0.114, -0.079] 

(p < 0.001) 

-0.151*** 

[-0.170, -0.132] 

(p < 0.001) 

-0.151*** 

[-0.171, -0.132] 

(p < 0.001) 

-0.146*** 

[-0.167, -0.125] 

(p < 0.001) 

-0.154*** 

[-0.175, -0.133] 

(p < 0.001) 

Citation Dynamics  

Cum. Citations 

(logged) 
  

-2.178*** 

[-2.514, -1.843] 

(p < 0.001) 

-2.188*** 

[-2.525, -1.850] 

(p < 0.001) 

-1.940*** 

[-2.350, -1.529] 

(p < 0.001) 

-2.125*** 

[-2.594, -1.656] 

(p < 0.001) 

2-year Citations 

(logged) 
  

2.101*** 

[1.760, 2.443] 

(p < 0.001) 

2.109*** 

[1.765, 2.453] 

(p < 0.001) 

2.435*** 

[2.068, 2.803] 

(p < 0.001) 

2.849*** 

[2.444, 3.253] 

(p < 0.001) 

Gini Coef. of 

Cum. Citation 
  

0.411 

[-0.928, 1.751] 

(p = 0.547) 

0.425 

[-0.911, 1.762] 

(p = 0.533) 

-0.053 

[-1.657, 1.552] 

(p = 0.949) 

0.594 

[-0.958, 2.147] 

(p = 0.453) 

Gini Coef. of 2-

year Citation  
  

-0.822 

[-2.041, 0.396] 

(p = 0.186) 

-0.838 

[-2.061, 0.386] 

(p = 0.180) 

-1.742** 

[-3.049, -0.435] 

(p = 0.009) 

-2.515*** 

[-3.858, -1.172] 

(p < 0.001) 

Other Controls       

Retraction 

Notice 

Published 

  

 -1.018 

[-2.166, 0.13] 

(p = 0.082) 

-0.614 

[-1.912, 0.684] 

(p = 0.354) 

-0.551 

[-2.007, 0.905] 

(p = 0.458) 

After Death   

 0.172 

[-0.231, 0.575] 

(p = 0.402) 

0.289 

[-0.123, 0.701] 

(p = 0.170) 

0.232 

[-0.168, 0.633] 

(p = 0.255) 

After Death *  

Superstar Death 
  

 -0.124 

[-0.402, 0.154] 

(p = 0.381) 

-0.024 

[-0.395, 0.346] 

(p = 0.898) 

0.297 

[-0.948, 1.542] 

(p = 0.64) 

Fixed Effects       

Calendar Year  N N N N Y Y 

Strata ID N N N N Y N 

Star ID N N N N N Y 

Log-Likelihood -7,706.9 -7,511.0 -7,141.6 -7,138.5 -5,858.2 -4,901.2 

Total Obs. 1,337,848 

Note: Knowledge Diffusion indices are standardized within field ages and calendar years across 28,504 

subfields. The 95% confidence intervals inside brackets are computed based on the standard errors 

clustered at strata ID and calendar years. * p < .05; ** p < .01; *** p < .001 (two-tailed) 
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Figure A2.4: Comparing Author Productivity in Collapsed Subfields 5- and 10-Years Post-

Collapse after Reassignment 

 
Note: Error bars represent 95% confidence intervals for the mean differences in average publication 

numbers. Comparisons are drawn between authors who entered the field early and those active near the 

collapse, based on paired t-tests. 

 

 

Table A2.13: Pairwise t-test Comparing Average Productivity Differences between Near-

Collapse Active Scientists (≤2 years before Collapse) and Early Entrants after Reassignment 

 Threshold Estimate t p-value (d.f.) 95% C.I. 

5 Years 

0.5% -2.607 -15.60 < 0.001 (3,236) [-2.280, -2.935] 

0.25% -2.731 -11.57 < 0.001 (1,673) [-2.269, -3.195] 

0.1% -2.303 -6.72 < 0.001 (655) [-1.631, -2.976]  

10 Years  

0.5% -4.077 -13.87 < 0.001 (2,972) [-3.500, -4.653] 

0.25% -4.222 -10.25 < 0.001 (1,547) [-3.415, -5.030] 

0.1% -3.078 -5.45 < 0.001 (603) [-1.968, -4.187] 

Note: Subfields that collapsed after 2015 were excluded from the 5-year productivity comparison. 

Likewise, for the 10-year productivity, only subfields that collapsed on or before 2011 were included, 

considering the observation windows.  
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Figure A2.5: Average Number of New Grants Acknowledged in Collapsed Subfields by Years 

Relative to Burst after Reassignment 

 
Note: The quadratic fit is applied to data from years -15 to 0 relative to the burst year, with dotted lines 

representing extrapolations starting from year 0 onwards. 

 

 

 

 

Table A2.14: Proportion of Subfields with Newly Acknowledged Grants After Collapse, and the 

Mean, 1st Quantile, Median, and 3rd Quartile of the Number of New Grants Post-Collapse after 

Reassignment 

Threshold 

% of Subfields  

with New Grants Acknowledged  

After Collapse  

Mean  Q1 Median Q3 

0.5% 68.45% 6.0 0 2 7 

0.25% 68.79% 5.9 0 2 7 

0.1% 68.68% 5.8 0 2 6 

Note: Subfields that collapsed after 2015 were excluded from the 5-year productivity comparison. For the 

10-year productivity analysis, only subfields that collapsed on or before 2011 were included, in 

consideration of the observation windows. 
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Chapter 3 

Papers With Code or Without Code?  

Impact of GitHub Repository Usability on the Diffusion of Machine Learning Research 

 

Abstract 

Open Science initiatives prompt machine learning (ML) researchers and experts to share source 

codes - "scientific artifacts" - alongside research papers via public repositories such as GitHub. 

Here we analyze the extent to which 1) the availability of GitHub repositories influences paper 

citation and 2) the popularity trend of ML frameworks (e.g., PyTorch and TensorFlow) affects 

article citation rates. To accomplish this, we connect ML research publications indexed by 

Papers with Code (PwC) to Microsoft Academic Graph (MAG) and collect repository-level 

metadata using the GitHub API. Applying nearest-neighbor matching and econometric 

considerations, we estimate that papers enjoy approximately 20% advantages in monthly citation 

rates after the creation of the first GitHub repositories, accounting for paper-level fixed effects 

and ages. We also find that the temporal popularity trends for frameworks used in the first 

associated repositories could influence the monthly citation rate for papers. The results highlight 

the importance of technological artifacts and infrastructure underlying the diffusion of research. 

 

 

 

 Co-authored by TaeYoung Kang and Junkyu Jang, the College of Business at the Korea 

Advanced Institute of Science and Technology. This chapter has been published in Information 

Processing & Management (Kang, Kang, and Jang 2023) and is reprinted with permission from 

Elsevier. 

https://paperpile.com/c/7W1ycd/VLin
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Introduction  

In recent years, scientists and researchers have been encouraged, expected, or often required to 

share scientific artifacts along with their manuscripts—such as data and model 

implementations—via publicly accessible platforms. This desideratum is in line with the 

scientific movement (Frickel and Gross 2005; Peterson and Panofsky 2021) of Open Science, 

which has been fueled as a response to concerns regarding the reproducibility of various fields of 

research, ranging from medicine (Ioannidis 2005) to social sciences (Peterson and Panofsky 

2021; Baker 2016). Recent commentaries have also suggested that the machine learning (ML) or, 

more broadly, artificial intelligence (AI) research community is not immune to these issues 

(Kapoor and Narayanan 2022; Hutson 2018; Haibe-Kains et al. 2020; Pineau et al. 2021). These 

concerns underscore the importance of research transparency, resonating with the ideal vision of 

modern science (Merton 1973).  

 While public sharing of research artifacts might not ultimately guarantee the 

reproducibility of a research product, consider a counterfactual where an ML research paper does 

not have an accompanying implementation. In such cases, results would not be readily testable, 

validated, and extended due to information asymmetry between knowledge initiators and the 

audience (Pavitt 1987). A multitude of procedures and complex computing environments are 

often latent in the codified descriptions in a research paper (Fonseca Cacho and Taghva 2018). 

As such, the lack of available code and repositories would diminish the value and relevance of 

ML research for other researchers and practitioners who build upon prior studies. Sharing 

scientific artifacts with research papers can yield social benefits by facilitating replication and 

validation (Mueller-Langer et al. 2019), and individual researchers can also increase the visibility 

https://paperpile.com/c/7W1ycd/vpKuB+Aq9IJ
https://paperpile.com/c/7W1ycd/CTqtA
https://paperpile.com/c/7W1ycd/Aq9IJ+hzKOc
https://paperpile.com/c/7W1ycd/Aq9IJ+hzKOc
https://paperpile.com/c/7W1ycd/tCW7t+ZWSAA+YsXqt+ktWbC
https://paperpile.com/c/7W1ycd/nD8Df
https://paperpile.com/c/7W1ycd/0RpPI
https://paperpile.com/c/7W1ycd/zNTRy
https://paperpile.com/c/7W1ycd/ahBut
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of research publications and garner more scientific credits by sharing associated scientific 

artifacts publicly (McKiernan et al. 2016).  

The diffusion of research outputs and the allocation of academic credits, often assessed 

through the citation dynamics, represent a complex phenomenon influenced by numerous social 

and institutional factors (McMahan and McFarland 2021; Fortunato et al. 2018; Y. Huang et al. 

2022; Min et al. 2021). Recent scholarship has investigated the incentives, motivations, and costs 

linked with research transparency (Kim and Adler 2015; Mukherjee and Stern 2009; Wilms et al. 

2020), as well as the consequences of data and material sharing on the citation trajectories of 

research articles and associated implications (Kwon and Motohashi 2021; Furman and Stern 

2011; Christensen et al. 2019). Building on this strand of literature, we aim to evaluate the 

degree to which the availability of code repositories, particularly GitHub repositories associated 

with papers, affects the citation rates of ML research articles by applying a combination of causal 

inference techniques (Dong et al. 2022).   

Apart from emphasizing the importance of research transparency, we also aim to explore 

another critical aspect that could potentially influence the dissemination of ML research papers: 

the impact of ML framework choice for model development and implementation on citations of 

research papers. In recent years, frameworks such as PyTorch and TensorFlow have become 

essential tools for researchers and practitioners in the rapidly developing field of ML. Yet, to the 

best of our knowledge, their effect on research diffusion has rarely been systematically 

examined. 

 Motivated by the literature on the network effects (Katz and Shapiro 1986; Kauffman, 

McAndrews, and Wang 2000) and connecting the theory of cognitive shortcuts in decision-

making (Tversky and Kahneman 1974) with the technology acceptance model (Davis 1989), we 

https://paperpile.com/c/7W1ycd/ye2DK
https://paperpile.com/c/7W1ycd/Bzjes+UMZb+xfPS1+Zfo8r
https://paperpile.com/c/7W1ycd/Bzjes+UMZb+xfPS1+Zfo8r
https://paperpile.com/c/7W1ycd/XQt6Y+rfAzx+sfVqE
https://paperpile.com/c/7W1ycd/XQt6Y+rfAzx+sfVqE
https://paperpile.com/c/7W1ycd/YpN4v+FhtWv+ufyrk
https://paperpile.com/c/7W1ycd/YpN4v+FhtWv+ufyrk
https://paperpile.com/c/7W1ycd/VR5j6
https://paperpile.com/c/7W1ycd/tYYuP+a6Deh
https://paperpile.com/c/7W1ycd/tYYuP+a6Deh
https://paperpile.com/c/7W1ycd/oUZrR
https://paperpile.com/c/7W1ycd/6zxEd
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probe whether the popularity of ML frameworks utilized in the first accompanying GitHub 

repositories for code implementation could affect the subsequent citation rates of ML research 

papers. We posit that the popularity of ML frameworks at the macro-level can generate a second-

order network effect by invoking cognitive shortcuts for researchers under information overload, 

driven by the rapidly increasing volume of prior research. Extending this line of reasoning, we 

hypothesize that the popularity of a particular ML framework shapes the perceived ease of use 

and usefulness of research articles, thus boosting the citation rates of ML research papers whose 

models are implemented with more popular frameworks. To test this, we measure the monthly 

popularity of used frameworks, analogous to the “market shares” of these frameworks at the 

monthly interval within the code repositories cataloged by Papers with Code (PwC), and estimate 

the extent to which the popularity influences paper-level citations.  

Our first analysis demonstrates a notable positive shift in citation rates after the first 

GitHub repositories associated with ML papers became publicly accessible. This finding 

underscores the importance of code repository availability in enhancing the visibility and impact 

of ML research papers. Subsequently, we reveal the effect of a framework's popularity on the 

paper citation stream. To do so, we link records from PwC to Microsoft Academic Graph (MAG) 

(Wang et al. 2019; Sinha et al. 2015), gather relevant repository-level information using GitHub 

API for approximately ~20K randomly selected papers, and apply the nearest-neighbor matching 

and two-ways fixed effects. Our estimation from the first analysis reveals that ML research 

papers, on average, enjoy about 20% advantages in monthly citation rates after the creation of 

the first GitHub repositories. The second analysis shows that the temporal popularity trends for 

frameworks used in the first associated repositories may influence the monthly citation rate of 

related ML papers.       

https://paperpile.com/c/7W1ycd/f3MDg+QyvWm
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By analyzing the impact of code repositories for ML research on citation rates, our work 

contributes to a deeper understanding of the techniques and methodologies employed by 

researchers. On the one hand, our findings provide empirical evidence and insights that further 

support Open Science practices, consistent with prior studies. On the other hand, our analysis 

also emphasizes the nuanced role of ML frameworks in research dissemination and recognition 

beyond the focus on benchmark datasets (Koch et al. 2021; Paullada et al. 2021).  

 

Related Literature and Hypotheses 

Open Science, Code Availability, and Research Impact 

The ideal of modern science envisions the unreserved open distribution of novel discoveries and 

findings from scientific research (Merton 1973). However, actual scientific practices have not 

always hewed to this normative characterization. Numerous factors interplay, including rewards 

and recognition toward priority (Merton 1957), the tension between the norm of communality—

dictating that research products should belong to the scientific community—and the desire to 

secure control of discoveries (Mitroff 1974) for warding off potential competitors (Latour and 

Woolgar 1979). 

Despite the recent advancements of protocols and guidelines, it has been consistently 

highlighted that the current reward structure in science does not sufficiently incentivize 

replication endeavors (Heesen 2018). For instance, the review process may prioritize theoretical 

novelty and model performance over the quality of supplementary materials (e.g., data, code 

implementation, and documentation), which are essential for ensuring research replicability. 

However, many factors, including incomplete documentation in research papers, diverse 

computing environments, and deprecated or mismatched auxiliary tools and functions used in 

https://paperpile.com/c/7W1ycd/Vovn6+YcXFI
https://paperpile.com/c/7W1ycd/nD8Df
https://paperpile.com/c/7W1ycd/eqMyr
https://paperpile.com/c/7W1ycd/Ex1ZJ
https://paperpile.com/c/7W1ycd/32EkX
https://paperpile.com/c/7W1ycd/32EkX
https://paperpile.com/c/7W1ycd/fOhqG
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model implementations, can remain tacit despite the written descriptions presented in ML 

research papers (Fonseca Cacho and Taghva 2018). This implies that a research paper, despite its 

prominence, is but one among many sharable scientific artifacts. 

Empirical analyses have documented the impact of research data sharing. In the context 

of biological science, Furman & Stern (2011) demonstrated that transferring biomaterials used in 

research to the Biological Resource Center increased the visibility of publications, measured in 

article citation counts. Likewise, an analysis focusing on genomics reported substantial citation 

benefits from data sharing (Piwowar and Vision 2013). Studies examining other scientific 

domains, such as astrophysics (Dorch, Drachen, and Ellegaard 2015) and astronomy (Henneken 

and Accomazzi 2011), also suggest positive effects of transparent data sharing on citations. This 

is not limited to natural sciences. Christensen et al. (2019), employing changes in data-sharing 

policy among economics and political science journals, revealed that publications that adhered to 

the policy shift and shared research data accumulated more citations than those that did not. 

In addition to the data-sharing practices, scholarly attention has increasingly been 

directed to the role of code repositories, particularly in the context of ML research. Code 

repositories, hosted on platforms like GitHub, enable researchers to share their model 

implementations from research articles, making them readily accessible and executable. These 

repositories, at the very least, signal researchers’ confidence in the robustness and validity of 

their work, suggesting that the work merits consideration within the research community. More 

practically, the availability of well-documented code and implementation can substantially 

reduce the time and effort required by other researchers to reproduce, validate, or build upon 

existing research (Tennant et al. 2017). The accessible and executable implementation shared via 

code repositories can help clarify any ambiguities that might arise from the written descriptions 

https://paperpile.com/c/7W1ycd/zNTRy
https://paperpile.com/c/7W1ycd/FhtWv/?noauthor=1
https://paperpile.com/c/7W1ycd/PwUgY
https://paperpile.com/c/7W1ycd/goHEu
https://paperpile.com/c/7W1ycd/RFGSx
https://paperpile.com/c/7W1ycd/RFGSx
https://paperpile.com/c/7W1ycd/ufyrk/?noauthor=1
https://paperpile.com/c/7W1ycd/dU9t7
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alone (Stodden et al. 2016). This increased clarity and accessibility, which aligns with the tenet 

of the open-source software (von Krogh et al. 2012), can render the research more convincing 

and appealing to other scientists and practitioners, thereby leading to a greater research impact.  

 Several studies have examined the relationship between the availability of code 

repositories and the citation rates for ML research papers published at specific ML and AI 

conferences. Vandewalle (2012) analyzed the impact of code availability on citation rates of 

articles published in IEEE Transactions on Image Processing (TIP) from 2004 to 2006. The 

findings revealed that approximately 10% of papers shared their code online, and these papers 

received significantly more citations. Vandewalle’s follow-up study (2019) on TIP papers 

published in 2017 showed that the proportion of papers increased to 24%, and they received, on 

average, double the citations of papers without code implementation online. Bonneel et al.  

analyzed 374 conference proceedings circulated in 2014, 2016, and 2018 SIGGRAPH, an 

Association for Computing Machinery (ACM) computer graphics conference and found a 

significant correlation between code availability and citation counts. Similarly, an analysis from 

Bhattarai et al. (2022) on proceedings from eight computer science conferences also showed a 

significant correlation between code repository availability and paper-level citation. 

Building on previous research, we also posit that the availability of code repositories, 

particularly repositories in GitHub—a platform initially designed to host open-source software 

and social coding (Peng 2019)—now also serving as the most popular venue for sharing 

research-related artifacts, positively impacts the citation trajectory of research papers 

(Hypothesis 1). However, our study aims to do more than show associations (Dong et al. 2022). 

We seek to evaluate the extent to which public code repositories impact the citation trajectories 

of ML research articles. To accomplish this, we employ causal inference techniques, including 

https://paperpile.com/c/7W1ycd/d40aB
https://paperpile.com/c/7W1ycd/vYWnj
https://paperpile.com/c/7W1ycd/LfQO8/?noauthor=1
https://paperpile.com/c/7W1ycd/KkVmp/?noauthor=1
https://paperpile.com/c/7W1ycd/cZneb/?noauthor=1
https://paperpile.com/c/7W1ycd/0ailh
https://paperpile.com/c/7W1ycd/VR5j6
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nearest-neighbor matching and two-way fixed effects, allowing us to generate a more precise 

estimate of the influence of code repository availability on citation rates. 

 

Network Effects of Technological Infrastructure 

The evolving landscape of scholarly communication has introduced a variety of factors 

that can influence the diffusion—or citation rates—of research products. In addition to the 

impact of the availability of GitHub repositories, our study attempts to examine a more nuanced 

aspect: whether the popularity of ML frameworks, such as PyTorch and TensorFlow, deployed 

in implementation can enhance the citation rates of ML research papers. While developed and 

maintained by corporations such as Meta (previously Facebook) and Google, these open-source 

frameworks are utilized by researchers and practitioners to facilitate their model development. 

However, to our best knowledge, their impact on research diffusion has not been systematically 

investigated. 

The notion of network effect offers a critical theoretical lens for conceiving the influence 

of ML frameworks on paper citation rates. The network effect refers to a phenomenon wherein 

the value or utility of a technological product or service transcends its inherent quality, affected 

by the size of its user base or its compatibility with complementary goods and services (Katz and 

Shapiro 1985). Such effects can occur in any technological domain requiring a certain level of 

training (Katz and Shapiro 1986) and even lead to standardization in extreme cases, as often 

exemplified by the QWERTY keyboard layout (Arthur 1989; David 1985). Informed by this 

perspective, we consider that ML frameworks are subject to network effects, where their value is 

determined by the size of their user base and the level of compatibility and community support. 

More importantly, as technological infrastructures, these ML frameworks also can induce 

https://paperpile.com/c/7W1ycd/ixVf2
https://paperpile.com/c/7W1ycd/ixVf2
https://paperpile.com/c/7W1ycd/tYYuP
https://paperpile.com/c/7W1ycd/PnllR+UZH9Q
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secondary or indirect network effects (Economides and Salop 1992), implying a potential 

spillover of the popularity from a particular technological component to other interconnected 

entities across a broader system. Following this line of reasoning, we expect that the popularity 

of ML frameworks can influence the diffusion of ML research, especially when authors share 

their implementation for their papers deploying ML frameworks.  

We also deem that the rapidly growing volume of academic papers (Fortunato et al. 

2018) can cause cognitive overload for individual researchers and scientists (Chu and Evans 

2021). The vast amounts of information may lead to “technostress,” or the pressure to 

continually stay up-to-date (Ragu-Nathan et al. 2008) with the fast-evolving technological 

environment. The theory of cognitive shortcuts, such as heuristics (Tversky and Kahneman 

1974), suggests that researchers confronted with information overload may attempt to alleviate 

cognitive stress by applying strategies to simplify the process. The technology acceptance model 

(Davis 1989; Venkatesh et al. 2003) proposed from the literature in information management 

systems also supports this view by highlighting cognitive factors—perceived usefulness of 

technologies and ease of use. Empirical studies demonstrated the importance of cognitive and 

perceptual dimensions in various settings ranging from fostering trust for new technologies in the 

case of the national identity system (Li, Hess, and Valacich 2008) to the adoption of mobile 

internet services (H.-W. Kim, Chan, and Gupta 2007). In our study context, we extend this view 

that the popularity of ML frameworks deployed in code implementation can serve as a cue for 

researchers to filter related literature, irrespective of its actual significance and citability. With 

cognitive restriction, researchers who attempt to build upon previous work or situate their work 

in the web of literature may attempt to avoid additional burdens posed by research products that 

https://paperpile.com/c/7W1ycd/El0as
https://paperpile.com/c/7W1ycd/UMZb
https://paperpile.com/c/7W1ycd/UMZb
https://paperpile.com/c/7W1ycd/oLcNL
https://paperpile.com/c/7W1ycd/oLcNL
https://paperpile.com/c/7W1ycd/ipi3R
https://paperpile.com/c/7W1ycd/oUZrR
https://paperpile.com/c/7W1ycd/oUZrR
https://paperpile.com/c/7W1ycd/6zxEd+fSm9G
https://paperpile.com/c/7W1ycd/SpfDd
https://paperpile.com/c/7W1ycd/roPAZ
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cannot be easily validated or extended because no or less popular framework is used in the 

implementation.  

In sum, we posit that the popularity of research tools—in this context, ML frameworks— 

may induce an indirect network effect. We specifically hypothesize that the popularity of various 

ML frameworks could generate a network effect on the relevance and perceived value of 

individual ML research articles. This, in turn, leads to a positive impact of the popularity of an 

ML framework deployed in code implementation (and shared via GitHub) on the citation rate of 

research articles (Hypothesis 2). We test this by linking monthly shares of different ML 

frameworks collected by Papers with Code to the subsequent citation rates of ML research 

papers. Details are discussed in the later sections.  

 

Data 

The data for our analysis joins three different data sources, (1) Microsoft Academic Graph, (2) 

Papers with Code (PwC), and (3) repository-level metadata from the GitHub API. Figure 3.1 

summarizes the data processing and the analyses we will present in the following sections.   

 

Figure 3.1: Data Processing and Analysis Steps 
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Microsoft Academic Graph 

We utilized the Microsoft Academic Graph (MAG) (Wang et al. 2019; Sinha et al. 2015), 

a large-scale database that indexes the metadata of scholarly documents and citations. MAG has 

been widely employed in scientometric and information science studies, such as evaluating the 

transdisciplinary impact of research (Y. Huang et al. 2022), characterizing career patterns of 

researchers and scientists (Zhao, Bu, and Li 2021), and modeling the topic selection behaviors of 

scientists (S. Huang et al. 2022).  

This study used complete snapshot files from the December 2021 version of MAG 

(released on December 4th, 2021). This final official release, downloaded and housed within the 

data storage of the Knowledge Lab at the University of Chicago allocated by the Research 

Computing Center, includes approximately 270.7 million documents and nearly 19.5 billion 

citations. We queried MAG with arXiv identifiers and titles of ML papers indexed by Papers 

with Code. For the first analysis, we use metadata of research articles identified by MAG, 

including authors’ information and field of study (FoS) tags assigned to each paper to match 

papers with code to those without code. We also leverage a feature from MAG called ‘paper 

families,’ which groups different versions of nearly identical articles appearing across various 

academic venues, such as preprint repositories like arXiv and conferences. This feature allowed 

us to trace the citation counts of a given ML research article from its very first public debut in 

any form.  

 

Papers with Code 

Our work used the Papers with Code (PwC) database. Maintained by the Meta AI 

research team and also in official partnership with arXiv since October 2020, PwC is the largest 

https://paperpile.com/c/7W1ycd/f3MDg+QyvWm
https://paperpile.com/c/7W1ycd/xfPS1
https://paperpile.com/c/7W1ycd/AkgFH
https://paperpile.com/c/7W1ycd/razah
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platform linking ML research articles with their corresponding repositories (Martínez-Plumed et 

al. 2021). The PwC team checks code availability in GitHub1 for every open-access ML paper 

and further invites community contributions. They also integrate other data sources such as NLP 

Progress (http://nlpprogress.com/), EFF AI metrics (https://www.eff.org/es/ai/metrics), SQuAD 

(https://rajpurkar.github.io/SQuAD-explorer/). The PwC dataset has been used to examine the 

research activities of the ML community, including benchmark practices (Martínez-Plumed et al. 

2021) and dataset life cycles (Koch et al. 2021). We downloaded two snapshot files from PwC 

(licensed under CC BY-SA 4.0) on March 31st, 2022: 1) metadata records of 285,964 papers in 

the machine learning domains and 2) 90,084 papers-to-repository linkage. We additionally used 

the monthly framework-level popularity data identified by PwC for our analysis as detailed in 

our second analysis. 

Our work concentrates on PwC records indexed between November 1st, 2014, and May 

31st, 2021. The start date corresponds with when the PwC website provided the proportion of 

papers with codes. We chose May 31st, 2021, as the endpoint to ensure at least six months of 

paper citation windows for papers, given that the last MAG we used was released in Dec 2021. 

After applying this timeframe, we retained 208,243 records from PwC. Then, as detailed in 

Appendix, we connected these PwC records with corresponding MAG document instances using 

the papers’ arXiv IDs and titles. We successfully matched 99.04% of 208,243 records from PwC 

 
1 Despite the existence of alternative platforms such as GitLab and Bitbucket, our work focuses 

on GitHub, the dominant platform for hosting repositories for ML papers. Accordingly, we found 

that most of these repositories (~99.1%) were hosted on GitHub within the PwC dataset obtained 

on March 31, 2022, which we use for this work. We also found that 98.7% of repositories' URLs 

referred to GitHub (GitLab and Bitbucket were ~0.72% and ~0.38%, respectively) in the PwC 

snapshots in June 2023. Nonetheless, we acknowledge the limitation of our approach and the 

dataset mainly focusing on GitHub, which suggests exciting directions for future research to 

explore the dynamics of ML research sharing on other platforms. 
 

https://paperpile.com/c/7W1ycd/iMSwy
https://paperpile.com/c/7W1ycd/iMSwy
http://nlpprogress.com/
https://www.eff.org/es/ai/metrics
https://rajpurkar.github.io/SQuAD-explorer/
https://paperpile.com/c/7W1ycd/iMSwy
https://paperpile.com/c/7W1ycd/iMSwy
https://paperpile.com/c/7W1ycd/Vovn6
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with MAG. This further allowed us to identify and remove duplicated records from the PwC 

dataset (i.e., instances where multiple PwC records were linked to the same MAG document). 

We were left with 204,645 unique papers recognized by PwC between November 1st, 2014, and 

May 31st, 2021, with 51,933 of these ML papers linked to at least one GitHub repository.  

 

GitHub Repository Metadata 

GitHub is the leading platform for hosting and distributing open-source software 

(Cosentino, Cánovas Izquierdo, and Cabot 2017). GitHub’s popularity extended into the ML 

research community, with its capacity for data sharing and accessibility of model 

implementations based on ML papers; thus, the metadata of GitHub repositories and the 

activities of its users have provided an invaluable resource to empirically investigate the 

processes and practices of code development, sharing, and usage within the ML community 

(Gonzalez, Zimmermann, and Nagappan 2020; Bhattarai, Ghassemi, and Alhanai 2022; Färber 

2020). 

 

Sampling of Papers with Code 

We extracted a random sample of 20,000 papers from the PwC database, all indexed 

between November 1st, 2014, and May 31st, 2022, and with at least one code implementation 

recognized by PwC. Applying the GitHub API2 to repository URLs from PwC, we crawled the 

metadata of corresponding GitHub repositories, including the creation dates and repository node 

IDs. We note that our following analysis pivots on 19,109 papers with GitHub repositories. The 

reasons for exclusion were papers’ actual debut dates identified by MAG were outside 

 
2 https://docs.github.com/en/rest 

https://paperpile.com/c/7W1ycd/tS52j
https://paperpile.com/c/7W1ycd/8XgCu+cZneb+nu69Q
https://paperpile.com/c/7W1ycd/8XgCu+cZneb+nu69Q
https://docs.github.com/en/rest
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November 1st, 2014, and May 31st, 2022 range; GitHub repositories were inactive or private and 

thus inaccessible through API. We collected the metadata of 39,782 unique GitHub repositories 

linked to 19,109 papers, which we eventually used to determine the first repository for each 

paper by comparing the creation dates of repositories.  

 

Analysis I: Impact of First Repository on Paper Citation Rate  

The primary aim of Analysis I is to assess the change of rate in the monthly citation after 

the first GitHub repositories accompanied with papers become available. Based on 19,109 papers 

with codes sampled as outlined above, we constructed a control group of papers without code by 

employing a nearest-neighbor matching, which we will detail in the following subsection. 

Subsequently, we apply the conditional fixed-effects Poisson model (Hausman, Hall, and 

Griliches 1984; Azoulay, Furman, and Murray 2015; Azoulay, Fons-Rosen, and Zivin 2019) to 

the matched samples of papers with code and papers without code, allowing us to estimate the 

impact of the first GitHub repositories on monthly citation rates of the papers.   

 

Nearest-Neighbor Matching from Papers with Code to without Code 

 Diverse inferential methodologies have been adopted in the field of information science 

and management recently, such as mediation analysis applied to observational data (Díaz-

Rodríguez et al. 2023; Jiang, Zhang, and Pian 2022), decomposition of time-variant effects (Xie 

et al. 2023) and spatial factors (Choe, Baek, and Kim 2023).  

In this work, we employ a matching method, a widely used technique for constructing a 

control group that is statistically comparable to a treatment group, excluding the presence of 

treatments. This approach aims to mitigate bias arising from confounders that could affect the 

https://paperpile.com/c/7W1ycd/E0bkW+CcNZN+oYCtp
https://paperpile.com/c/7W1ycd/E0bkW+CcNZN+oYCtp
https://paperpile.com/c/7W1ycd/ymb5N+98o32
https://paperpile.com/c/7W1ycd/ymb5N+98o32
https://paperpile.com/c/7W1ycd/zf9fo
https://paperpile.com/c/7W1ycd/zf9fo
https://paperpile.com/c/7W1ycd/aFdhu
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estimation of treatment effects on outcomes (Angrist and Krueger 1999). We conducted nearest-

neighbor matching to select a control group of papers (i.e., papers without code within the pool 

of papers indexed by PwC) comparable to 19,109 papers with code. We leveraged three types of 

information from papers for our matching process: 1) research topics of the papers captured by 

Fields of Study (FoS) tags assigned by MAG; 2) affiliation types of authors; 3) debut time of 

papers, as indicated by year-month pairs. 

 In line with recent information science literature harnessing textual information from 

scholarly documents (Cai et al. 2023; Chen et al. 2023; Zhang et al. 2022; Wang et al. 2022), our 

analysis leverages Field of Study (FoS) tags in MAG in our matching process to effectively 

construct a control group of papers. The FoS tags system delineates the research topics of a given 

publication with a neural network model trained on texts (e.g., titles and abstracts) and network 

topologies of authors, outlets, citations, and references from the entire publications indexed by 

MAG (Shen, Ma, and Wang 2018). This system has been adopted in bibliometric research, such 

as tracing the evolution of citation networks from AI and ML research (Frank et al. 2019) and 

modeling the topical search behavior of research scientists (S. Huang et al. 2022).  

In order to characterize papers’ fine-grained research topics, we first tokenized FoS tags. 

(the average number of FoS tags assigned to 204,645 articles is 10.38, with a standard deviation 

of 2.79 and a median of 10). We specifically applied the pre-trained Glove embedding model 

(Pennington, Socher, and Manning 2014; Young et al. 2018) to extract corresponding 50-

dimensional vector representations for these tokens. Then, we computed the average values of 

each dimension from the token vectors, producing centroids that locate each paper’s research 

agenda within the 50-dimensional space.  

https://paperpile.com/c/7W1ycd/dpTkm
https://paperpile.com/c/7W1ycd/hT9VZ+yACjK+5lnbL+cwvZe
https://paperpile.com/c/7W1ycd/GPuhD
https://paperpile.com/c/7W1ycd/n191m
https://paperpile.com/c/7W1ycd/razah
https://paperpile.com/c/7W1ycd/90T03+tDh4f
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We also labeled 204,645 papers with three indicators to denote whether the list of Fos 

tags for a given paper includes 1) Math or Computer Science (95.2%), 2) Computer 

Vision/Pattern Recognition (19.6%), or 3) Natural Language Processing (12.5%). These FoS tags 

are directly related to these fields, as Math and Computer Science form the foundation of ML, 

while Computer Vision/Pattern Recognition and Natural Language Processing represent two 

major application areas of ML techniques. Moreover, including them makes the matching result 

more interpretable, as presented below.  

We additionally considered the number of total authors (the average number of authors 

across 204,645 papers was 3.86 with a standard deviation of 2.79) and affiliation types of 

authors. Especially regarding the affiliation types, we labeled whether all the authors were 

affiliated with universities (58.4%) or all affiliated with commercial companies (3.6%).  

In this way, each paper is characterized by a vector of size 56, and after standardizing 56-

dimensional vector representations for papers, we selected the most similar papers without code 

matched to 19,109 papers with code, only when their debut dates were in the range of the same 

month of the same year to account for articles’ birth times (Furman and Stern 2011). By doing 

so, we selected a control group of 16,833 papers without code, matched to papers with code. 

Figure 2 shows that the balance of six covariates plus the articles’ first available dates from 

papers with code and without code improved after our matching procedure. Figure Ashows the 

standardized mean difference across the 50 dimensions resulting from the Glove embedding 

model markedly reduced after the matching.    

 

 

 

https://paperpile.com/c/7W1ycd/FhtWv
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Figure 3.2: Standard Mean Differences of Six Covariates Used in Matching Plus the First 

Available Dates of Research Articles 

 
 

 

Variables and Model  

Dependent Variable. We compiled our dependent variable, MonthlyCiteit (where i and t 

represent the paper ID and the monthly age of the paper since its debut, respectively), the 

monthly citation counts for every 30 days from the date of the papers’ debut. In cases where the 

Microsoft Academic Graph (MAG) contained multiple instances of the same paper (e.g., pre-

prints on arXiv), we compared publication dates and traced citation trajectories from the earliest 

appearance of the paper in any format. Likewise, if a citing paper had multiple publication 

records in the MAG, we chose the earliest publication date of these records to determine the time 

of citation occurrence. This allowed us to comprehensively observe the monthly citation counts 

for each paper. Table 3.1 presents the descriptive statistics of monthly citation counts for two 
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groups of papers—those with an associated repository and those without— and for the combined 

sample. 

Table 3.1: Global Distribution of Monthly Citation Count, MonthlyCiteit. 

Sample Category Mean SD 1Q Median 3Q Max # Paper (i) 

Papers with Repo 4.39 28.46 0 1 3 3344* 19,109 

Papers without Repo 0.54 1.84 0 0 0 162 16,833 

All 2.60 20.91 0 0 1 3344 35,942 

*The paper titled “Deep residual learning for image recognition” from He et al. (2015)  garnered 3,344 

citations between 2020-12-13 and 2021-1-12 within MAG.  
 

For our analyses, we exclude papers that received outsized academic attention; these 

outliers may represent papers that introduced groundbreaking techniques or exceptionally 

influential algorithms in the field of ML. Including them could overshadow the underlying trends 

and relationships between the usability of the GitHub repository and forward citations. Thus, we 

attempt to minimize the impact of these outliers that potentially skew the estimation, thereby 

enhancing the robustness and reliability of the following analysis.  

Instead of applying a single threshold to define outliers within our dataset, we employ 

multiple values. To do so, we first assigned cumulative citation rank percentiles measured at the 

end of November 2021 among the 204,645 papers linked from PwC to MAG. Then, we define 

papers falling within the top 0.1%, 0.5%, or 1% percentiles in the cumulative citation distribution 

as outliers (corresponding to cumulative citations exceeding 1,879, 604, and 370 by the end of 

November 2021, respectively). Tables A3.1–A3.3 in Appendix present the distribution of 

MonthlyCiteit across samples without outliers of the top 0.1%, 0.5%, and 1% cited papers, 

respectively. With these multiple thresholds for outlier exclusion, we aim to demonstrate the 

robustness and consistency of our analyses. 

 

https://paperpile.com/c/7W1ycd/ww0I8/?noauthor=1
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Treatment. To estimate the change of rate in the monthly citation after papers’ first 

GitHub repositories become publicly available, we constructed an indicator variable, AfterRepoit. 

This variable switches from 0 to 1 a month after the creation of a GitHub repository linked to an 

article, capturing the main effect of our interest. For instance, if a repository was created four 

months after a paper’s debut, AfterRepo at t = 0, 1, 2, 3 is denoted as 0, switching at t = 4 to 1 

and for the subsequent periods. 

To dynamically illustrate the effect of GitHub repositories, we also created 

MonthDiffRepoit. It represents the differences (in months) relative to the time of the creation of 

the first GitHub repositories. This means that for a paper whose first repository was made 

available four months after the paper’s debut, MonthDiffRepoit at t = 0, 1, 2, 3 are assigned as  -3, 

-2, -1, 0, respectively, and at t = 4 changes to 1, then increases to 2 at t = 5, and to 3 at t = 6 ⋯ 

for the following periods.  

 

Further Controls. As we trace the citation history of articles from their initial public 

appearance in any form, we also seek to control the effects of conference and journal 

publications on citation rates with two additional terms: AfterConfPub and AfterJourPub. 

Analogous to AfterRepo, these terms switch from 0 to 1 a month after publication in their 

respective formats. 

For our estimation, we additionally account for two fixed effects: 𝛾 and 

Φ(MonthAfterDebut). The former, 𝛾, denotes paper-level fixed effects, controlling for 

unobserved individual paper-level characteristics that may affect citation rates. The latter, 

Φ(MonthAfterDebut), refers to a function designed to model the life-cycle effects of articles on 

citation rates. To account for this effect of the ages of a given paper in a flexible manner, we use 
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86 indicator variables that represent the monthly ages of papers after the debut date of each 

article.  

Model. We employed the fixed-effects Poisson model (Hausman, Hall, and Griliches 

1984; Azoulay, Furman, and Murray 2015; Azoulay, Fons-Rosen, and Zivin 2019) to estimate 

the impact of the availability of GitHub repositories on the citation rate, as written below in Eq. 

(3.1). Formerly, the model can be expressed as:  

 

       𝐸[𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝐶𝑖𝑡𝑒𝑖𝑡|𝑋𝑖𝑡]  =  𝑒𝑥𝑝[𝛽0 + 𝛽1𝐴𝑓𝑡𝑒𝑟𝑅𝑒𝑝𝑜𝑖𝑡 +   
                               𝛽2𝐴𝑓𝑡𝑒𝑟𝐶𝑜𝑛𝑓𝑃𝑢𝑏𝑖𝑡 + 𝛽3𝐴𝑓𝑡𝑒𝑟𝐽𝑜𝑢𝑟𝑃𝑢𝑏𝑖𝑡 + 
                                                                 𝛾𝑖 + Φ(𝑀𝑜𝑛𝑡ℎ𝐴𝑓𝑡𝑒𝑟𝐷𝑒𝑏𝑢𝑡𝑖𝑡)]                            ⋯ Eq. (3.1). 

 

The coefficient for AfterRepoit (𝛽1) holds particular interest. As introduced before, we 

define AfterRepoit to switch from 0 to 1, one month after the creation of the first GitHub 

repositories linked to papers. The coefficient, 𝛽1, captures the average effect of having a GitHub 

repository on the citations garnered by the corresponding paper across monthly ages of the given 

paper since its debut. The controls, AfterConfPubit,, AfterJourPubit Φ(MonthAfterDebutit) are as 

discussed above.  

 We further explore the effects of the first GitHub repositories dynamically by 

incorporating MonthDiffRepo in the estimation. In Eq. (3.2), we denote this effect as 

δ(MonthDiffRepoit) and model it flexibly as indicator variables. And it is worth noting that while 

we include AfterRepoit in Eq. (3.2), it is technically omitted in estimation due to perfect 

multicollinearity. 

 

      𝐸[𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝐶𝑖𝑡𝑒𝑖𝑡|𝑋𝑖𝑡]  =  𝑒𝑥𝑝[𝛽0 + 𝛽1𝐴𝑓𝑡𝑒𝑟𝑅𝑒𝑝𝑜𝑖𝑡  +   
                             𝛽

2
𝐴𝑓𝑡𝑒𝑟𝐶𝑜𝑛𝑓𝑃𝑢𝑏𝑖𝑡 + 𝛽3𝐴𝑓𝑡𝑒𝑟𝐽𝑜𝑢𝑟𝑃𝑢𝑏𝑖𝑡 + 

         𝛿(𝑀𝑜𝑛𝑡ℎ𝐷𝑖𝑓𝑓𝑅𝑒𝑝𝑜𝑖𝑡)  + 
                                                                𝛾𝑖 + 𝛷(𝑀𝑜𝑛𝑡ℎ𝐴𝑓𝑡𝑒𝑟𝐷𝑒𝑏𝑢𝑡𝑖𝑡)]                             ⋯Eq. (3.2). 

https://paperpile.com/c/7W1ycd/E0bkW+CcNZN+oYCtp
https://paperpile.com/c/7W1ycd/E0bkW+CcNZN+oYCtp
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Result  

Table 3.2 presents the estimated coefficients of AfterRepo (𝛽1) across the three samples 

(excluding papers that received an outsized number of citations). Overall, the results suggest a 

positive effect of having a GitHub repository on the subsequent citation trajectories. The 

estimated coefficients are consistent across the three samples, each with a different threshold for 

removing outliers, from .211 in the first column to .198 in the third column, with statistical 

significance (p < .001). The magnitude of 𝛽1 indicates that following the creation of their 

GitHub repositories, papers with codes had a substantial advantage in citations, from 21.9% 

(=exp[.198] - 1; Table 2, column 3) to 23.5% (=exp[.211] - 1; Table 2, column 1) compared to 

the monthly citations accrued by papers without code. 

Table 3.2: Estimates from the Conditional Fixed-Effects Poisson Model in Eq. (3.1) 

 (1) Without 0.1% (2) Without 0.5% (3) Without 1.0% 

Dependent Variable Monthly Citation Counts 

AfterRepo (𝛽1) 
.211*** 

(.018) 

.200*** 

(.016) 

.198*** 

(.017) 

AfterConfPub (𝛽2) 
.319*** 

(.028) 

.288*** 

(.026) 

.275*** 

(.026) 

AfterJourPub (𝛽3) 
.314*** 

(.033) 

.307*** 

(.027) 

.325*** 

(.027) 

Num. Obs. 1,085,047 1,052,127 1,023,087 

Num. Papers 35,760 35,187 34,637 

Num. Month-Time 86 86 86 

Note: Standard errors are clustered at individual papers and month-times. Without 0.1%, 0.5%, and 1.0% 

in columns mean that we excluded articles whose cumulative citations by the end of November 2021 fall 

under 0.1%, 0.5%, and 1% of the citation rank percentiles from all the papers cataloged in PwC and 

debuted between November 1st, 2014, to May 31st, 2021, for estimation.  

* p < .05; ** p < .01; *** p < .001 (two-tailed).  

 

Figure 3.3 visualizes this effect dynamically using the samples that yielded estimates 

from column 2 in Table 3.2. The upper and lower ends of the bars represent the 95% confidence 

interval (with standard errors clustered at papers and month-time) surrounding the estimates from 

6 months before and 24 months after the creation of the initial GitHub repositories associated 



146 

with the papers. (Figures A3.4 and A3.5 in the Appendix show the dynamics estimated from the 

samples corresponding to columns 1 and 3 in Table 3.2.) Figure 3.3 reveals no clear pre-trend in 

citation rates from 6 to 1 month before the earliest GitHub repositories associated with the 

articles become available, suggesting the balance between the treatment and the control groups. 

The graph also indicates that the benefit in monthly citation rates of post-first repositories 

escalate over time. 

Figure 3.3: Dynamics Effects of Pre-and-Post First GitHub Repository on Citations 

 
Note: The dots in the figure represent coefficients for 𝛿(MonthDiffRepo), where 𝛿 is a function that maps 

the number of months after the first GitHub repositories became available into indicator variables. The 

interaction terms are included on top of other fixed effects and two covariates described in Eq. (3.1) using 

articles whose rank percentile for citation counts under 99.5% (raw cumulative citation counts by the end 

of November 2021 within MAG fewer than 604) corresponding to the data used for the second column in 

Table 2. The upper and lower ends of the bars show the 95% confidence interval (using robust standard 

errors clustered at papers and month-time) around the estimates.  

 

Robustness Check 

We provide estimation results applying the least square model, including the same 

controls and fixed effects as Eq. (3.2), to logged monthly citation counts, ln(MonthlyCiteit + 1). 

The results shown in Table A3.4 in the Appendix yield similar estimations. 
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Analysis II - Effect of Framework Popularity on Monthly Paper Citation  

In our second analysis, we examine the extent to which the popularity of ML frameworks 

affects the monthly citation rates of ML papers (H2). This necessitates us to focus on the citation 

trajectories of papers with GitHub repositories, as it is inherently impossible to estimate the 

impact of a framework's popularity on the citation stream of articles without repositories. In 

other words, this analysis investigates whether the temporal shifts in the popularity of various 

frameworks, such as PyTorch and TensorFlow, employed in the first repository, affect the 

monthly citation rates within the pool of ML papers linked to GitHub repositories. 

 

Variables and Model  

Dependent variable. The definition of the dependent variable in the second analysis, 

MonthlyCiteit, remains the same as the first analysis. However, as mentioned previously, we here 

concentrate on papers with code, the samples corresponding to the first row of Table 3.1. 

 

Treatment. The second analysis aims to evaluate the impact of the popularity of ML 

frameworks employed in GitHub repositories on citation rates. To accomplish this, we retrieved 

the monthly shares of ML frameworks used in GitHub repositories that PwC compiles. Figure 

3.4 illustrates the temporal trends of the popularity of selected ML frameworks from November 

2014 to December 2021 based on the two-month rolling averages of the shares of frameworks 

used in GitHub repositories indexed by PwC. We calculated FramePopularityit after the creation 

of the first repositories per paper, corresponding to the type of framework used in those 

repositories and calendar time (i.e., the year-month pair). This allowed us to join the time-

varying popularities of frameworks to our observation. For instance, FramePopularityit in April 
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2021 for a paper with a GitHub repository using PyTorch is set to be 60.54%, a two-month 

rolling average from the end of March (63.17%) and April (57.91%). Eventually, we interact 

this, FramePopularityit, and AfterRepoit to investigate the impact of framework popularity on 

citation rates. 

Figure 3.4: Two-Month Rolling Averages of Framework Shares in Code Implementation from 

Papers with Code 

 
Note: The records for minor frameworks such as Caffe2, JAX are combined for visualization. Other 

languages and frameworks include cases in which Python was used with packages such as numpy and 

scikit-learn.  

 

Note that we do not consider commonly used Python libraries, such as Numpy, Pandas, 

SciPy, or Scikit-learn, as ML frameworks. Although these libraries support and facilitate 

scientific computing, numerical operations, and even some rudimentary machine learning tasks, 

specialized frameworks like PyTorch and TensorFlow are designed to provide extensive support 

for model development, training, and deployment. These cater to the advanced requirements and 

needs of researchers and practitioners working on more cutting-edge areas and domains. An 

inherent drawback of concentrating on ML-specialized frameworks is that it may introduce a 



149 

downward bias, as the interaction term will remain zero when a specialized framework is not 

used in a repository even after it becomes available. Nevertheless, we posit that by adopting this 

conservative approach, our analysis is better positioned to assess the influence of ML framework 

popularity on the paper-level citation rates within the context of contemporary ML research. 

 

Further Controls. The same set of control variables used in the first analysis is 

incorporated. We employ AfterConfPub and AfterJourPub, which switch from 0 to 1 one month 

following publication in a conference or a  journal. We also use two fixed effects, 𝛾 and 

Φ(MonthAfterDebut), which represent paper-level fixed effects and month-age effects modeled 

with indicator variables, respectively.  

 

Model. We used the fixed-effects Poisson regression model again to estimate the impact 

of the popularity of the ML framework deployed in the first GitHub repositories linked to papers 

on citation rates, as shown in Eq. (3.3): 

 

𝐸[𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝐶𝑖𝑡𝑒𝑖𝑡|𝑋𝑖𝑡] = 𝑒𝑥𝑝[𝛽0 + 𝛽1𝐴𝑓𝑡𝑒𝑟𝑅𝑒𝑝𝑜𝑖𝑡  +  𝛽2𝐴𝑓𝑡𝑒𝑟𝑅𝑒𝑝𝑜𝑖𝑡 ∗
                                                        𝐹𝑟𝑎𝑚𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑖𝑡 +        
                                                  𝛽

3
𝐴𝑓𝑡𝑒𝑟𝐶𝑜𝑛𝑓𝑃𝑢𝑏𝑖𝑡 +  𝛽4𝐴𝑓𝑡𝑒𝑟𝐽𝑜𝑢𝑟𝑃𝑢𝑏𝑖𝑡 +                             

                                                  𝛾𝑖 + 𝛷(𝑀𝑜𝑛𝑡ℎ𝐴𝑓𝑡𝑒𝑟𝐷𝑒𝑏𝑢𝑡𝑖𝑡)]                                ⋯Eq. (3.3). 

 

Result 

Table 3.3 lists the estimation results for our model described in Eq. (3.3). The coefficients 

for AfterRepo*FramePopularity (𝛽2) in Table 3.3 indicate a statistically significant advantage of 

approximately 0.143% to 0.157% in monthly citation rates per 1% increase in shares of a given 

framework. These results are consistent across the three samples, each with a different threshold 

for excluding outliers (equivalent to samples of the papers with code used in the first analysis). 



150 

Table 3.3: Estimates from the Conditional Fixed-Effects Poisson Model in Eq. (3.3) 

 (1) Without 0.1% (2) Without 0.5% (3) Without 1.0% 

Dependent Variable Monthly Citation Counts 

AfterRepo (𝛽1) 
.111*** 

(.022) 

.097*** 

(.020) 

.098*** 

(.020) 

AfterRepo* 

FramePopularity (𝛽2) 

.144*  

(.057) 

.156***  

(.048) 

.153***  

(.047) 

AfterConfPub (𝛽3) 
.295***  

(.029) 

.263***  

(.027) 

.249***  

(.028) 

Num. Obs. 573,289 541,697 514,910 

Num. Papers 18,929 18,375 17,861 

Num. Month-Time 86 86 86 

Note: Standard errors in parentheses are clustered at individual papers and month-times. 

* p < .05; **p < .01; *** p < .001 (two-tailed).  

 

Although the unit magnitude of the effect size may appear modest at best or even trifling 

at worst, considering the recent gap between the two frameworks, PyTorch and TensorFlow (as 

depicted in Figure 3.4), provides a more tangible sense of the effect. For example, in April 2021, 

the two-month rolling averages for the shares of code implementations in PyTorch and 

TensorFlow were 60.54% and 13.19%, resulting in a difference of 47.35%, according to PwC 

data. When this gap is applied to the estimated model based on the sample excluding the top 

0.5% cited papers (column 2 in Table 3), it translates to a 7.67% (= exp[.156*.4735] - 1 ≈ 

0.0767) (dis) advantages in the monthly citation rate associated with the type of framework used 

in the first code implementation. We believe that such an effect deserves attention. And we note 

again that our estimation may be conservative because of the focus on specialized ML 

frameworks. 

 

Robustness Check  

Analogous to Analysis I, we provide the estimation results using the least square model, 

incorporating the same controls and fixed effects for the logged monthly citation counts. The 
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resulting estimates for AfterRepo* FramePopularity (𝛽2), as shown in Table A3.5 in Appendix 

are positive once again. 

 

Discussion and Conclusion  

The growing emphasis on research transparency has led ML researchers to share their 

model implementations via public repositories. In this study, we aim to assess the extent to 

which ML research articles gain advantages in citation rates after their GitHub repositories 

become available. Additionally, we investigate the relationship between the popularity of ML 

frameworks used in code implementation and the citation rates of ML research papers, drawing 

upon the theory of network effects and cognitive shortcuts. We conducted a linkage across 

Papers with Code (PwC), Microsoft Academic Graph (MAG), and repository-level metadata 

collected through GitHub API. Our findings reveal that ML papers experience a significant 

increase of approximately 20% in monthly citation rates following the creation of their first 

accompanying GitHub repositories, compared to papers without such repositories. Furthermore, 

our analysis demonstrates that the popularity trends over time for different ML frameworks 

employed in these initial repositories exhibit a second-order network effect, which influences the 

monthly citation rate of the associated research articles. 

Our study provides several implications. First, aligned with the call from the Open 

Science movement for research transparency, our results highlight that the extra efforts 

researchers put into preparing replication materials, whether required by journals and 

conferences or not, is not in vain. These endeavors can potentially increase academic impact 

when researchers make such scientific artifacts publicly accessible. However, our result should 

not be interpreted as encouraging researchers to devote intense amounts of time and effort to 
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establish and sustain a repository purely for the sake of visibility. Instead, we suggest 

maintaining clear documentation and shareable implementation throughout research projects, so 

researchers save time and cognitive resources. Our result implies that this not only helps them to 

respond to the institutional desideratum but also to benefit themselves. Relatedly, it is also worth 

noting that while common for corporations to showcase their technological prowess in academic 

venues, decisions at the firm-level regarding the extent to which they follow the principle of 

open-source software (and science) may require striking the delicate balance between the 

protection of core technology and the pursuit of increased credibility, impact, and reputation—all 

of which should be in line with strategic objectives (McIntyre and Srinivasan 2017).  

Second, our analysis provides broader implications. Take, for example, the recent 

proliferation of Large Language Models (LLMs) following the release of the ChatGPT interface 

in late November 2022.  Within less than a year, a wave of functionally similar and comparable 

models and services, such as Llama, Alpaca, Langchain, Pinecone, have emerged, each vying for 

a stake in the domain. Our result provides insights into how this LLM landscape might evolve; 

researchers, practitioners, and organizations may stand to enhance their visibility and impact by 

aligning their work with more popular and widely supported and endorsed models However, as 

the competition intensifies, researchers and developers may find that it is increasingly crucial to 

keep pace with the most popular and widely adopted tools to ensure their work remains relevant 

and accessible. 

Third, while our analysis underscores the advantage of utilizing widespread technological 

infrastructure in disseminating research outputs, the contrasting disadvantages stemming from 

deploying less popular technological infrastructure deserve attention. Historical precedents, such 

as the widespread acceptance of the QWERTY keyboard layout, remind us that technical 

https://paperpile.com/c/7W1ycd/YhAD9
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consensus does not necessarily equate to progress or optimality but can be viewed as an outcome 

of path dependency. This perspective suggests that innovative research and ideas may face 

challenges if built on less prevalent technological platforms, despite their advanced technical 

capability and value. Hence, our results also suggest caution against a technological monoculture 

for a research community, despite the benefits of consensus in reducing individual and collective 

cognitive burdens. 

Our study is not without limitations. First, we acknowledge that the data used in this 

study is anchored to ML research papers indexed by Papers with Code (PwC). Despite its public 

accessibility and comprehensive coverage, prior research (Martínez-Plumed et al., 2021) noted 

that PwC tends to be inclusive for recent articles posted on arXiv and proceedings published in 

major ML/AI venues and conferences, such as the International Conference on Learning 

Representations (ICLR), Neural Information Processing Systems (NIPS), and the Conference on 

Computer Vision and Pattern Recognition (CVPR) than less prominent venues. As such, the 

estimated effect sizes may vary when a different data source is used. However, we maintain that 

this would not necessarily invalidate the overall findings of this study, considering the 

importance of these venues within the contemporary ML research community.  

Second, the scope of the analysis is limited to GitHub repositories rather than other 

platforms such as BitBucket and GitLab. While the choice admittedly reflects the prevalence of 

GitHub within the PwC dataset, we acknowledge the potential limitations introduced due to this 

focus. Distinct features and interfaces other platforms provide could influence how research is 

disseminated. While our analyses provide meaningful insights into the role of technological 

infrastructure on research diffusion, we believe that future studies can explore the heterogeneous 

effects of different hosting services on research diffusion. For instance, we could enrich the 
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understanding of the multi-layered network effects created through the interactions between the 

types of repository hosting services and ML frameworks.    

Third, it is crucial to note that the changes in the popularity of frameworks primarily 

manifest through the shifts in code implementation shares between TensorFlow and PyTorch. 

The record from PwC indicates a smooth handover from TensorFlow to PyTorch in the ML 

research community without abrupt transitions (at the time of this writing, TensorFlow still 

maintains a substantial user base). As our observation may primarily reflect the bilateral dynamic 

between the two major frameworks, we admit that competitions involving more than a dyad may 

yield different outcomes.  

Lastly, our analysis does not explicitly distinguish between long-term and short-term 

effects, nor does it consider the variations in the prestige of different academic venues. For 

instance, Kwon & Motohashi (2021) showed that papers disclosing data attract more citations in 

the short term, but the advantages often wane over time; and this tendency is particularly 

pronounced for papers published in low-reputation journals. Our study design that hinges on 

paper-level fixed effects admittedly makes it challenging to explore this dynamic thoroughly. 

However, we note that these represent exciting directions for future research to paint a more 

nuanced picture of scholarly communication.  

Scientific artifacts beyond research manuscripts—particularly code repositories—have 

gained increasing importance. By combining metadata of ML research articles and code 

repositories, this study addressed the enduring issue that academic impact could be shaped not 

only by the merit of research but also by various factors. While we do not conclusively 

adjudicate why researchers may choose (or not) to post their code implementation and use 

specific ML frameworks, our analysis provides insights into the unintended consequences amid 

https://paperpile.com/c/7W1ycd/YpN4v/?noauthor=1
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intense competition. As the research community continues to embrace the principle of Open 

Science, it is critical to understand the complexities and challenges posed by these dynamics to 

more effectively support and balance different objectives of research transparency, innovation, 

and scientific rigor.  
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Appendix for Chapter 3 

Data Linkage between PwC and MAG 

Matching PwC records with arXiv ID. Out of 208,243 PwC records, 174,265 had arXiv 

IDs. We used this information to query the PaperURL table in MAG with two conditions: a URL 

containing 1) “arxiv.org” and 2) the queried arXiv ID. To avoid false matches like ‘1606.0365’ 

being matched to ‘1606.03657’, we double-checked if returned URLs contained the exact same 

queried arXiv ID. This step matched 99.94% of records with arXiv IDs to at least one MAG 

paper ID, leaving 108 unmatched. For the remaining 107 records, we queried MAG papers’ raw 

titles using PwC-indexed raw titles, matching 62 records and leaving 45 unmatched. For these 45 

records, we normalized PwC paper titles, removed whitespaces and non-alphanumeric 

characters, and finally converted texts to lowercase. Then, we queried the MAG Papers table 

using MAG-provided normalized titles, capturing MAG paper IDs for 9 out of 45 records. 

 

Matching 33,978 PwC records without arXiv ID. For 33,978 PwC records without arXiv 

ID, we queried the MAG PaperURL using two URL types from PwC records: one for abstracts 

and another for PDF files. This step linked 5,420 records to at least one MAG paper ID, leaving 

28,558 unmatched. For these 28,558 records, we conducted a raw title search similar to A1, 

linking 22,670 records to MAG paper IDs and leaving 5,888 unmatched. Using title 

normalization and querying for the remaining 5,888 records, we connected 3,553 to at least one 

MAG paper ID, leaving 2,335 without linkage. 

 

Fuzzy title matching for unmatched records. Steps in A1 and A2 left 2,371 PwC records 

without MAG paper ID linkage (36 after A1 plus 2,335 unmatched records after A2). For these 
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records, we applied fuzzy title matching. We first restricted the search space using MAG's field 

of study tags: 'Artificial intelligence,' 'Computer vision,' 'Pattern recognition,' 'Machine learning,' 

'Natural language processing,' and 'Artificial neural network.' We compared the normalized 

MAG publication titles with the PwC-identified publication within the same year and calculated 

the Levenshtein distance similarity score. With a threshold of 90, we flagged matching 

candidates, capturing 373 records' MAG titles. This method identified cases where minor typos 

prevented exact raw or normalized title matching, such as "weakly supervised deep functional 

maps for shape matching" in PwC to "weakly supervised deep functional map for shape 

matching" in MAG. By performing the multiple steps of record linkage from A1 and A3, we link 

the 206,245 (99.04% of 208,243 PwC records between Nov 1st, 2014, and May 31st, 2021) to at 

least one MAG paper ID.  

 

Inspecting duplicates. After the initial linkage between the PwC records to MAG paper 

IDs, we examine record duplication within PwC records matched to MAG paper IDs. Among 

206,245 PwC records, we found 2,789 had overlapping MAG paper IDs with others. We iterated 

through the 1,569 MAG paper IDs and preserved one of multiple PwC records sharing MAG 

paper IDs by prioritizing records matched through arXiv ID (A1) and selecting the earliest 

records in the PwC database when arXiv ID was not available. This process removed 1,398 out 

of 206,245 PwC records, keeping 204,847. At this stage, the number of unique MAG paper IDs 

linked to 204,847 PwC records was 272,037. 

 

Update MAG paper IDs by MAG paper family. MAG defines a “paper family” when the 

same paper appears in multiple venues such as a repository (e.g., arXiv), conference proceedings, 
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and journals. In this case, MAG assigns unique paper IDs for each publication but designates one 

of the papers as a primary publication (called “family ID”). We leveraged this feature to update 

the MAG paper IDs linked to PwC records to include all relevant IDs. We queried the primary 

publications’ MAG paper IDs based on the papers captured so far, updating the PwC-MAG 

matching result. This process updated 49,152 PwC records’ MAG paper ID sets, expanding the 

number of unique MAG paper IDs from 272,037 to 321,363. We then queried the list of all 

publications associated with those primary papers and updated the MAG paper IDs linked to the 

PwC records again. This step updated 5,233 PwC records’ MAG paper ID sets, increasing the 

number of MAG paper IDs from 321,363 to 327,135. 

 

Double-check PwC records sharing MAG paper IDs and remove duplicates. After 

updating the PwC records to MAG paper IDs linkage, we reexamined the linkage expansion for 

additional duplicate records, as in A4. Among 204,847 PwC records, we find 409 of them have 

overlapping MAG paper with other PwC records (through 419 MAG paper IDs). Typical 

duplicate records included cases where conference proceedings or journal article titles slightly 

differed from those posted in repositories. For example, “Bilinear CNNs for Fine-grained Visual 

Recognition” was published as “Bilinear CNN Models for Fine-Grained Visual Recognition” in 

ICLR 2018. (Note that those duplicate records were only identifiable after updating MAG paper 

ID through MAG family ID). Iterating through the 419 MAG paper IDs causing duplicates, we 

selected one of multiple PwC records sharing MAG paper IDs, prioritizing records matched 

through arXiv ID. This resolved 409 cases with overlapping MAG paper IDs. For the remaining 

10 cases, we manually checked duplicates. In the end, we removed 202 PwC records. Finally, we 
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confirmed that none of the remaining 204,645 PwC records shared MAG paper IDs by ensuring 

each 327,131 MAG paper IDs appeared only once across 204,645 PwC records. 

 

Authors’ Affiliation Type Assignment. With 327,131 MAG paper IDs mapped to 

204,645 PwC records, we queried MAG’s Paper Author Affiliations table and extracted 

1,282,249 records of MAG paper ID - author ID - affiliation ID - Affiliation Name. Initially, we 

used MAG’s lookup table (Affiliation.txt) linking affiliation ID to Global Research Identifier 

Database (GRID) ID and their affiliation types, connecting 801,455 of 1,285,582 records to 

GRID affiliation types (‘Archive,’ ‘Company,’ ‘Education,’ ‘Facility,’ ‘Government,’ 

‘Healthcare,’ ‘Nonprofit,’ ‘Other’), leaving 480,794 records’ affiliation types unidentified.  

Among the 480,794 unidentified records, 119,457 records contained institution names, 

while 361,337 records had no further affiliation information directly available from MAG. To 

impute affiliation types for these records, we employed rule-based dictionaries to map institution 

names to types (Table A3.1), applied to 1) original full affiliation names and 2) normalized 

affiliation names from MAG, mapping 65,659 records to affiliation types.  

For the remaining 361,337 records without affiliation names, we extracted publications 

associated with a given author ID and filtered them within two years of the focal paper’s 

publication date (i.e., 365 days <= publication date difference <= 365 days). We then recursively 

extracted the paper-author-affiliation table with the collected paper IDs and imputed the given 

author IDs’ affiliation ID and GRID affiliation type with the record with the smallest publication 

date difference (avg. publication date difference: 51.04 days, standard deviation: 74.53). This 

assigned affiliation to types for 247,926 records.  
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Within the two-year range, we applied the same institution names-types dictionaries for 

records with institution names available but without GRID affiliation types, connecting 24,454 

records to affiliation types. This left affiliations for 88,957 records of paper ID - author ID 

(6.94% of 1,282,249) unavailable due to a lack of affiliation information in MAG or 

unidentifiable affiliation types based on our dictionary. However, this still suggests that we 

successfully assigned affiliation types to approximately 93% of 1,282,249 records. 

 

Table A3.1: Affiliation Types for Keywords 

Affiliation Types Keywords 

Nonprofit/Company 

("alibaba" or "bell labs" or "bloomberg" or "bytedance" or "company" 

or "corp." or "corporation" or "deepmind" or "didi" or "disney" or 

"dji" or "facebook" or "google" or "ibm" or "inc" or "jd.com" or 

"kakao" or "lg" or "limited" or "linkedin" or "llc" or "ltd" or "lyft" or 

"mitsubishi" or "jp morgan" or "naver" or "netflix" or "nokia" or 

"openai" or "salesforce" or "samsung" or "sense time" or "sensetime" 

or "sony" or "spotify" or "uber" or "walmart" or "allen institute" or 

"foundation")  

Education 
("academy" or "college" or "department" or "dept."” or 

"polytechnique" or "school" or "u of" or "u. of" or "univ") 

Government ("national" or "federal" or "nasa") 

Healthcare ("hospital") 
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Table A3.2: Distribution of Monthly Citation Count, MonthlyCiteit
 , Excluding Outliers - 0.1% 

Sample Category Mean SD 1Q Median 3Q Max # Paper (i) 

Papers with Repo 2.68 6.23 0 0 3 198 18,929 

Papers without Repo 0.53 1.66 0 0 0 89 16,831 

All 1.67 4.79 0 0 1 198 35,760 

 

 

 

 

 

 

Table A3.3: Distribution of Monthly Citation Count, MonthlyCiteit
 , Excluding Outliers - 0.5% 

Sample Category Mean SD 1Q Median 3Q Max # Paper (i) 

Papers with Repo 1.81 3.55 0 1 2 77 18,375 

Papers without Repo 0.50 1.42 0 0 0 52 16,812 

All 1.17 2.81 0 0 1 77 35,187 

 

 

 

 

 

 

Table A3.4: Distribution of Monthly Citation Count, MonthlyCiteit
 , Excluding Outliers - 1.0% 

Sample Category Mean SD 1Q Median 3Q Max # Paper (i) 

Papers with Repo 1.43 2.73 0 0 2 75 17,861 

Papers without Repo 0.47 1.29 0 0 0 52 16,776 

All 0.96 2.19 0 0 1 75 34,637 
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Table A3.5: Estimates from Fixed-Effects the Least Square Model for Eq. (3.1)  

 (1) Without 0.1% (2) Without 0.5% (3) Without 1.0% 

Dependent Variable Monthly Citation Counts 

AfterRepo (𝛽1) 
.263***  

(.017) 

.218***  

(.015) 

.187***  

(.013) 

AfterConfPub (𝛽3) 
.237***  

(.018) 

.204***  

(.015) 

.183***  

(.014) 

AfterJourPub (𝛽4) 
.102***  

(.012) 

.100***  

(.010) 

.101***  

(.010) 

Num. Obs.  1,085,047  1,052,127 1,023,087 

Num. Papers 35,760 35,187 34,637 

Num. Month-Time 86 86 86 

Note: Standard errors are clustered at individual papers and month-times. Without 0.1%, 0.5%, and 1.0% 

in columns mean that we excluded articles whose cumulative citations by the end of November 2021 fall 

under 0.1%, 0.5%, and 1% of the citation rank percentiles from all the papers cataloged in PwC and 

debuted between November 1st, 2014, to May 31st, 2021, for estimation.  

* p < .05; **p < .01; ***p < .001 (two-tailed).  

 

 

Table A3.6: Estimates from Fixed-Effects the Least Square Model for Eq. (3.3) 

 (1) Without 0.1% (2) Without 0.5% (3) Without 1.0% 

Dependent Variable Monthly Citation Counts 

AfterRepo (𝛽1) 
.008 

(.011) 

-.002 

(.010) 

-0.009 

(.010) 

AfterRepo* 

FramePopularity (𝛽2) 

.362***  

(.034) 

.337***  

(.033) 

.320*** 

(.033) 

AfterConfPub (𝛽3) 
.226***  

(.020) 

.187***  

(.016) 

.165***  

(.015) 

Num. Obs. 573,289 541,697 514,910 

Num. Papers 18,929 18,375 17,861 

Num. Month-Time 86 86 86 
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Figure A3.1: Standard Mean Differences of 50 Embedding Features from Glove Embedding 

Model Used for Matching, Before and After 
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Figure A3.2: Dynamics Effects of Pre-and-Post First GitHub Repository on Citations after 

Excluding Articles with Rank Percentile for Citation Counts above 0.01% 

 
Note: The dots in the figure represent coefficients for interaction terms 𝛿(MonthDiffRepo), where 𝛿 is a 

function that maps the number of months after the first GitHub repositories became available into 

indicator variables. The interaction terms are included on top of other fixed effects and two covariates 

described in Eq. (3.1) using articles whose rank percentile for citation counts under 99.9% (raw 

cumulative citation counts the end of Nov within MAG fewer than 1,879), which corresponds to the data 

used for the first column in Table 3.2. The upper and lower ends of the bars show the 95% confidence 

interval (using robust standard errors clustered at papers and month-time) around the estimates. 
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Figure A3.3: Dynamics Effects of Pre-and-Post First GitHub Repository on Citations after 

Excluding Articles with Rank Percentile for Citation Counts above 1% 

  
Note: The dots in the figure represent coefficients for interaction terms 𝛿(MonthDiffRepo), where 𝛿 is a 

function that maps the number of months after the first GitHub repositories became available into 

indicator variables. The interaction terms are included on top of other fixed effects and two covariates 

described in Eq. (3.1) using articles whose rank percentile for citation counts under 99% (raw cumulative 

citation counts by the end of Nov 2021 within MAG fewer than 371), which corresponds to the data used 

for the third column in Table 3.2. The upper and lower ends of the bars show the 95% confidence interval 

(using robust standard errors clustered at papers and month-time) around the estimates.  
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Conclusion 

Summary and Reflective Notes 

Chapter 1 

Chapter 1 conceptualizes the circulation of potentially latent sources of variation as 

“social-epistemic bubbles.” This conceptualization aims not only to transcend the conventional 

discussion of tacit knowledge as know-how residing within individuals (Collins 2010, 2007) but, 

more importantly, to envision the field of science as a continuous space. Tacit knowledge in this 

space is neither required to be ubiquitous across the collective nor confined to localized networks 

of scientists, as suggested by the “Invisible College” (Crane 1972). In this vein, Chapter 1 posits 

that overlapping socio-epistemic bubbles can span individuals, any single community, and across 

communities. 

The chapter maps the continuous space of socio-epistemic bubbles by applying a neural 

embedding model to a large-scale network data of author-publication. The resulting embedding 

model generates similar vector positions to authors who frequently co-author papers, as well as 

to articles co-authored by overlapping collaborators sharing considerable tacit knowledge. More 

importantly, as an autoencoder, the network embedding model locates two researchers 

adjacently, even if they have never collaborated directly but only share a common principal 

investigator or collaborate through other principal investigators. Conversely, a single large-scale 

study conducted by otherwise unconnected scientists would be represented in a less dense region 

of the space, indicating potentially low levels of tacit knowledge sharing. With this approach, I 

attempt to bridge network embedding models for a representational space of scientific 

collaborations and insights derived from the literature of social studies of sciences.  

The association between social density, measured within the social embedding space, and 

https://paperpile.com/c/7W1ycd/0RLzd+NzII
https://paperpile.com/c/7W1ycd/oEhUN
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the outcomes reported in scientific publications is evaluated by analyzing RCTs that were 

collected, filtered, and clustered within Cochrane Systematic Reviews for meta-analysis, one of 

the most authoritative sources in evidence-based medicine (Au 2021; Salandra, Criscuolo, and 

Salter 2021). This empirical setting represents a conservative setting to test the proposed 

hypothesis — there is systematic association between the proximity of RCTs measured in the 

continuous social space and their estimates. The analysis supports this proposition. Nonetheless, 

it is important to emphasize that the intention is not to cast unsubstantiated skepticisms against 

RCTs or the practice of meta-analysis. As discussed in the conclusion section of Chapter 1, the 

findings aim to elicit conversations to explicate tacit elements, such as a more precise scope 

conditions under which an experiment was conducted.  

This raises the question of the extent to which experimental conditions can be codified—

reminiscent of the debate between Collins (1985) and Franklin (1989) on “experimenters’ 

regress,” particularly within the context of gravitational waves and physics. Their debate 

eventually led to a mutual acknowledgment that scientific claims are, in principle, not an 

infallible enterprise and that social elements substantially play a role in scientific endeavors. 

However, this does not necessarily have to invoke global skepticism towards scientific practice 

(Franklin and Collins 2016). Nonetheless, this agreement centers on validation and justification 

of scientific claims, without necessarily resolving many of the lingering questions on what 

remains tacit during the creation stage of scientific knowledge (Knorr-Cetina 1981).  

This issue is particularly pronounced in experiments involving many environmental and 

natural variations in social, behavioral, biomedical, and health sciences. These often require 

experimenters to devise operationalizations that allow modification of relevant experimental 

parameters (Feest 2016) and also involve implicit rules that “do not contain rules for their own 

https://paperpile.com/c/7W1ycd/rujS+bWOB
https://paperpile.com/c/7W1ycd/rujS+bWOB
https://paperpile.com/c/7W1ycd/BuiV/?noauthor=1
https://paperpile.com/c/7W1ycd/2c3v/?noauthor=1
https://paperpile.com/c/7W1ycd/MdTp
https://paperpile.com/c/7W1ycd/E9ED
https://paperpile.com/c/7W1ycd/yN3n
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application” (Collins 1985, 14). A methodological approach to address this has been 

randomization and, again, , mustered to synthesize estimates through meta-analysis techniques. 

However, as demonstrated by conflicting conclusions from meta-analyses on the association 

between violent games and behaviors (Hilgard, Engelhardt, and Rouder 2017; Anderson et al. 

2010; Kepes, Bushman, and Anderson 2017), even verdicts from this approach do not 

necessarily guarantee to resolve scientific controversies, yet evidencing tacit sources of 

disagreements (Vrieze 2018).   

Findings reported in Chapter 1 do not necessarily affirm the “strong” version of tacit 

knowledge, as initially proposed by Collins (1985). Instead, the implications from Chapter 1 

resonate with the call for “operational analysis” that Feest (2016) advocates. This approach 

suggests that scientists can productively leverage uncertainty about experimental results to 

scrutinize and uncover the underlying tacit assumptions. The methodology introduced in Chapter 

1 offers a means to identify specific loci, socio-epistemic bubbles, to prompt this type of 

investigation, which I hope to be fruitfully further exploited. However, this does not imply again 

that I recommend all such bubbles should be collapsed; this would eliminate reservoirs of 

diverse, tacit perspectives and conditions. As highlighted in the concluding remarks of Chapter 1, 

maintaining a balance is critical, as not only ‘overdispersion’ but ‘underdispersion’ or 

insufficient variability may present challenges to achieving robust science.   

Lastly, I suspect that one would obtain comparable or more salient results if RCT-based 

social and policy science studies are analyzed. I posit several reasons for this likelihood. Not to 

mention, laboratory experiments conducted in social psychology have historically heavily 

depended on well-educated Western populations. More importantly, a significant portion of field 

experiments in social science have been conducted in villages in Sub-Saharan African countries. 

https://paperpile.com/c/7W1ycd/BuiV/?locator=14
https://paperpile.com/c/7W1ycd/5KHw+EufR+QDDx
https://paperpile.com/c/7W1ycd/5KHw+EufR+QDDx
https://paperpile.com/c/7W1ycd/IT7c
https://paperpile.com/c/7W1ycd/BuiV/?noauthor=1
https://paperpile.com/c/7W1ycd/yN3n/?noauthor=1
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Of course, these locations are chosen for various reasons, including targeting populations to 

improve poverty, health, and educational outcomes as part of the quest for causality under the 

banner of the ‘randomista’ movement. However, as a Nobel-laureate economist and a proponent 

of the randomista, Esther Duflo, once noted, “Randomized controlled trials are challenging to 

execute because they require rapid decision-making, and these decisions carry consequences” 

(Stoughton 2022)  It suggests that those quick decisions made may remain tacit within socio-

epistemic bubbles. Of course, the implication warrants cautious interpretation as the intention 

here is not to foster anti-RCT cynicism but to encourage reflection. 

 

Chapter 2 

Chapter 2 extends the concept of “bubbles” in science, likening them to bubbles 

pronounced in financial and asset market bubbles with inflated attention. This analogy is 

grounded in several key considerations. Although the chapter introduces two high-profile 

cases—cardiac stem cell research and cancer immunotherapy—one of the essential motivations 

aligns with concern about the dominant measure to determine scientific work’s importance and 

impact (Fortunato et al. 2018; Partha and David 1994). This, in turn, undermines the relationship 

between short-term popularity and long-term significance. Accordingly, one critical aim is to 

introduce weighting methods that can better reflect the nuances in citations, which have 

traditionally been uniformly accounted for in bibliometric databases. 

To this end, the weight/distance between two papers linked through citations was 

measured with two embedding spaces trained on the PubMed Knowledge Graph (Xu et al. 2020). 

The first is the ‘social space,’ the same model employed to measure the “socio-epistemic 

bubbles” in Chapter 1. The second space, ‘scientific space,’ aims to capture the direct and 

https://paperpile.com/c/7W1ycd/O6Uk
https://paperpile.com/c/7W1ycd/UMZb+7cX7k
https://paperpile.com/c/7W1ycd/3ZPZE
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indirect associations of Medical Subject Headings (MeSH) and vector positions of publications 

associated with MeSH combinations. While the need for distinguishing such spaces—such as the 

differentiation of ‘cultural’ and ‘structural’ holes (Pachucki and Breiger 2010)—has been 

acknowledged, direct and large-scale measurement of these differing spaces has seldom been 

attempted to my knowledge. But it is important to note that these spaces—those of people and 

ideas—are here considered distinct, yet not orthogonal; instead, they are oblique to each other. 

The main analysis applies this measurement scheme to 28,504 unique biomedical 

subfields (Azoulay, Fons-Rosen, and Zivin 2019), relating the degree of social and scientific 

diffusion with a drastic decline in the given subfield’s popularity. This decline is operationalized 

by considering the first-order difference of the standardized citation counts within a given 

subfield across two-year intervals, falling below extreme cutoffs. As the study title suggests, the 

result shows that limited diffusion anticipates collapses of biomedical subfields, highlighting the 

importance of tracing pathways through which scientific ideas are disseminated within and 

across the scientific community.  

An immediate and valid criticism of this study would be that the analogy of financial 

bubbles might not seamlessly apply to the realm of science; analogies can be overstretched. This 

can particularly be the case given the premise that underlying book values support the market 

values of financial assets, whereas the fundamental values of scientific inquiry and outcomes are 

less certain. Nonetheless, resources channeled into scientific research represent social 

investments, yielding research outputs primarily in the form of publications. In this sense, 

Parallels between scientific idea markets and financial markets have been repeatedly drawn. For 

instance, Goldman and Shaked (1991, 31) noted: “scientific agents act in some ways like 

vendors, trying to sell their findings, theories, analyses, or arguments to an audience of 

https://paperpile.com/c/7W1ycd/xo0o
https://paperpile.com/c/7W1ycd/oYCtp
https://paperpile.com/c/7W1ycd/X3jb/?locator=31&noauthor=1
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prospective buyers.” Similarly, philosophers of science, Pedersen and Hendricks (2014, 507), in 

their article entitled “Science Bubbles” stated, “Science, like any other investment, is prone to 

bubble formations and overinvestment…Overly optimistic investments in specific areas of 

research, methodologies, and technologies generate states comparable to the ones financial 

markets experience prior to crashing.” The chapter links these propositions to the observation 

that the impact or return in science has been predominantly evaluated by the degree of attention 

they garner, typically quantified through citation counts. This reasoning guided the study to 

conceive that inflated attention, or bubbles, within the scientific community can be identified by 

examining whether certain research areas attract a disproportionate amount of attention, lacking 

a comparable level of genuine diffusion, and subsequently if collective attention sharply declines 

with corrected perception. 

This criticism led to a series of post hoc analyses through which I examined further 

relevant patterns associated with these collapses to bolster the analogy. First, I explore the 

potential impact imposed by the concentration of “scientific capital” (Bourdieu 1975) by 

showing that the likelihood of subfield collapse is positively associated with 1) the proportion of 

papers authored by superstar scientists within the subfield and 2) the fraction of subfield funding 

accounted for by collaborators of these star scientists. Furthermore, the analyses show that 

collapsed subfields are collectively less clinically translatable than those that have not collapsed 

but garnered disproportionately more citations than expected. Additionally, authors who 

published their articles close to the collapse were significantly less productive 5 or 10 years after 

the collapse compared to those who entered the field earlier, reminiscent of investors losing 

money after buying assets at peak prices during bubbles. 

https://paperpile.com/c/7W1ycd/7bJIJ/?locator=507&noauthor=1
https://paperpile.com/c/7W1ycd/jU4B


172 

I believe the findings may inform how the scientific community, policymakers, and 

funding bodies conceptualize and measure the impact and value of research. By highlighting the 

limitations of current bibliometric indicators and the potential for inflated attention to distort the 

scientific landscape, the result, on the one hand, underscores the importance of multidimensional 

assessment criteria. This reconceptualization could lead to a more effective allocation of research 

funding, encouraging investment in areas that may lead to long-term contributions to knowledge 

rather than short-term visibility. Moreover, by fostering a diverse and pluralistic understanding 

of scientific worth, policymakers and funding agencies can better support emerging fields in 

scientific research by discounting immediacy of attention. 

Lastly, the issue of circularity may be at this point unavoidable, even with the addition of 

further evidence from data analysis that aligns with the initial analogy of attention bubbles. This 

challenge is further compounded by reliance on a newly proposed measurement scheme. Such 

circularity, though, is not an anomaly but a common occurrence at the nascent stages of any 

measurement system development. For example, as Chang (2004) persuasively illustrates, the 

fixed points in early thermometry—like the freezing and boiling points of water—relied on 

observable phenomena that were assumed to be consistent. However, the definition and 

measurement of these points were contingent on the very notion of temperature scientists were 

trying to establish.  

Overcoming this challenge demands “epistemic iteration” (Chang 2004) through which 

tools are refined iteratively in tandem with the evolving comprehension of the phenomenon 

under study. Thus, with both optimism and caution, I look forward to future research that may 

refine the concept of bubbles in science and improve measurements. 

 

https://paperpile.com/c/7W1ycd/4H6y/?noauthor=1
https://paperpile.com/c/7W1ycd/4H6y


173 

Chapter 3  

 Chapter 3’s interest shifts from biomedical science to the domain of machine learning 

research. Despite this transition, the chapter further explores the overarching theme of the 

dissertation in revealing the role of underlying structures in the contemporary scientific 

enterprise. The study conducted two strands of analysis. I first examine the extent to which the 

existence of code repositories, particularly GitHub repositories linked to papers, can enhance the 

monthly citation rates of focal research papers. This extends the previous literature studying the 

impact of data sharing on paper-level citations in the context of the open science movement. The 

second analysis is motivated by the observation that ML research increasingly relies on 

frameworks that allow the abstraction of technical details, thereby enabling researchers to deploy 

and experiment with their ideas more efficiently. Multiple open-source frameworks have been 

developed by various entities such as Google and Facebook (Meta) and compete with each other 

for so-called market shares. Drawing on the concept of second-order network effects (Katz and 

Shapiro 1986; Kauffman, McAndrews, and Wang 2000), this analysis investigates whether and 

to what extent the popularity of a particular ML framework boosts the citation rates of ML 

research papers. 

With more straightforward research questions than the first and second chapters, the 

chapter aims to rigorously identify statistical patterns with a thorough linkage of the best 

available datasets: paper-repository records maintained by Papers with Code (PwC), Microsoft 

Academic Graph (MAG) and repository-level metadata collected from GitHub. The linkage 

process required substantial efforts and attention, as detailed in the chapter's appendix. The first 

analysis employs several statistical techniques: 1) random samples of papers accompanied with 

GitHub repositories, and 2) nearest neighbor matching for papers without repositories. The 

https://paperpile.com/c/7W1ycd/tYYuP+a6Deh
https://paperpile.com/c/7W1ycd/tYYuP+a6Deh
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machine particularly leverages vector representations of papers using the pre-trained embedding 

model applied to research topic keywords assigned by MAG, along with author affiliation 

information and team size. The results suggest an approximate 20% monthly citation advantage 

for papers with Github repositories compared to those without after the first repository became 

publicly available. The second analysis, evaluating the relationship between the popularity of 

ML frameworks and citation rates, reveals a modest unit magnitude of effect size that can lead to 

substantial (dis)advantages, depending on the framework used in code implementations. Overall, 

the findings underscore the significance of technological artifacts and infrastructure in research 

dissemination. 

For this study, I initially planned to investigate the impact of a battery of repository-level 

characteristics—such as data folders, shell script files, inline codes, and code blocks within 

README files, alongside the inclusion of links to further resources and BibTeX references for 

easier citation—on academic paper citation rates. Working hypotheses included the dynamics of 

repository maintenance, authorship patterns, and their potential correlation with citation counts, 

for example, the effect of a paper’s number of authors on repository quality, the influence of 

authors affiliated with tech companies on maintenance standards, and the overall relationship 

between repository maintenance quality and citation rates. However, it quickly became apparent 

that GitHub repositories manifest a substantial degree of uniformity, indicative of a broader trend 

toward standardization or isomorphism in documentation practices. This homogeneity reduces 

the variability required for meaningful analysis within the study’s framework, and the final 

model approach uses fixed effects designed to absorb time-invariant characteristics present. As a 

result, despite the initial promise of these hypotheses to provide insights into the relationship 

between efforts for repository maintenance and citation trends, they were not directly tested. 
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Nonetheless, this uniformity has emerged as an interesting area for future research, signaling a 

broader shift towards standardized documentation practices that may merit detailed exploration. 

A methodological consideration may challenge whether the study design accurately 

captures the “causal” effects of treatments— the presence of GitHub repositories and the 

popularity of ML frameworks—in a conventional manner. Ideally, field-level randomized 

controlled experiments would be employed. However, the feasibility of conducting such 

experiments or expecting two instances of a paper with the same context, title, and 

benchmarks—differing only in code availability—would be substantially limited. Nonetheless, I 

believe the study utilizes the best available data to quantify the impact of GitHub repositories 

and the association between the popularity of ML frameworks and citation rates, which has not 

been systematically studied before, contributing to the existing body of literature. It is crucial, 

however, to reemphasize here that the findings should not be interpreted as advocating for a 

monoculture in research, as discussed in the last section of the chapter. 
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