Smooth pursuit eye movements are considered a well-established and quantifiable biomarker of sensorimotor function in psychosis research. Identifying psychotic syndromes on an individual level based on neurobiological markers is limited by heterogeneity and requires comprehensive external validation to avoid overestimation of prediction models. Here, we studied quantifiable sensorimotor measures derived from smooth pursuit eye movements in a large sample of psychosis probands (N = 674) and healthy controls (N = 305) using multivariate pattern analysis. Balanced accuracies of 64% for the prediction of psychosis status are in line with recent results from other large heterogenous psychiatric samples. They are confirmed by external validation in independent large samples including probands with (1) psychosis (N = 727) versus healthy controls (N = 292), (2) psychotic (N = 49) and non-psychotic bipolar disorder (N = 36), and (3) non-psychotic affective disorders (N = 119) and psychosis (N = 51) yielding accuracies of 65%, 66% and 58%, respectively, albeit slightly different psychosis syndromes. Our findings make a significant contribution to the identification of biologically defined profiles of heterogeneous psychosis syndromes on an individual level underlining the impact of sensorimotor dysfunction in psychosis.
Funding Information
Projekt DEAL
National Institute of Mental Health, MH103366
National Institute of Mental Health, MH096900
National Institute of Mental Health, MH103368
National Institute of Mental Health, MH077851
National Institute of Mental Health, MH096913
National Institute of Mental Health, MH078113
National Institute of Mental Health, MH096942
National Institute of Mental Health, MH077945
National Institute of Mental Health, MH096957
National Institute of Mental Health, MH077852
National Institute of Mental Health, MH077862
German Research Council (Deutsche Forschungsgemeinschaft, DFG), KI 588/14-1
German Research Council (Deutsche Forschungsgemeinschaft, DFG), KI 588/14-2
German Research Council (Deutsche Forschungsgemeinschaft, DFG), KR 3822/7-1
German Research Council (Deutsche Forschungsgemeinschaft, DFG), KR 3822/7-2
German Research Council (Deutsche Forschungsgemeinschaft, DFG), NE 2254/1-2
German Research Council (Deutsche Forschungsgemeinschaft, DFG), DA 1151/5-1
German Research Council (Deutsche Forschungsgemeinschaft, DFG), DA 1151/5-2
German Research Council (Deutsche Forschungsgemeinschaft, DFG), SCHW 559/14-1
German Research Council (Deutsche Forschungsgemeinschaft, DFG), SCHW 559/14–2
German Research Council (Deutsche Forschungsgemeinschaft, DFG), WO 1732/4-1
German Research Council (Deutsche Forschungsgemeinschaft, DFG), WO 1732/4-2
German Research Council (Deutsche Forschungsgemeinschaft, DFG), AL 1145/5-2
German Research Council (Deutsche Forschungsgemeinschaft, DFG), CU 43/9-2
German Research Council (Deutsche Forschungsgemeinschaft, DFG), GA 545/7-2
German Research Council (Deutsche Forschungsgemeinschaft, DFG), RI 908/11-2
German Research Council (Deutsche Forschungsgemeinschaft, DFG), WI 3439/3-2
German Research Council (Deutsche Forschungsgemeinschaft, DFG), NO 246/10-2
German Research Council (Deutsche Forschungsgemeinschaft, DFG), DE 1614/3-2
German Research Council (Deutsche Forschungsgemeinschaft, DFG), HA 7070/2-2
German Research Council (Deutsche Forschungsgemeinschaft, DFG), JA 1890/7-1
German Research Council (Deutsche Forschungsgemeinschaft, DFG), JA 1890/7-2
German Research Council (Deutsche Forschungsgemeinschaft, DFG), MU 1315/8-2
German Research Council (Deutsche Forschungsgemeinschaft, DFG), RE 737/20-2
German Research Council (Deutsche Forschungsgemeinschaft, DFG), PF 784/1-2
German Research Council (Deutsche Forschungsgemeinschaft, DFG), KI 588/17-1
German Research Council (Deutsche Forschungsgemeinschaft, DFG), CU 43/9-1
EU-FP7-HEALTH, 602152
University of Münster, Innovative Medical Research, ME 1 2 18 05
German Research Council (Deutsche Forschungsgemeinschaft, DFG), LE 1122/7-1