Files

Abstract

The viscous fingering instability, which forms when a less-viscous fluid invades a more-viscous one within a confined geometry, is an iconic system for studying pattern formation. For both miscible and immiscible fluid pairs the growth dynamics change after the initial instability onset and the global structures, typical of late-time growth, are governed by the viscosity ratio. Here we introduce an experimental technique to measure flow throughout the inner and outer fluids. This probes the existence of a new length scale associated with the local pressure gradients around the interface and allows us to compare our results to the predictions of a previously proposed model for late-time finger growth.

Details

Actions

PDF

from
to
Export
Download Full History