Files
Abstract
Electrochemistry has enabled a wide range of important energy technologies such as fuel cells and batteries, emerging as a powerful tool to achieve active materials and devices with novel applications. In this Perspective, we highlight the great potential of electrochemistry in propelling the next generation of dynamic thermal metamaterials with a focus on thermal radiation applications. After a brief introduction of the mechanisms of electrochemistry to change material properties, we discuss the possibilities of achieving highly tunable thermal radiation features by electrochemically manipulating the carrier densities of plasmonic materials. Recent studies in the intersections between electrochemistry, metamaterials, and thermal radiation applications are reviewed, indicating an emerging research direction incorporating these three fields — electrochemically dynamic thermal metamaterials. Towards this direction, we anticipate a promising pathway of employing conducting polymers and point out its remarkable opportunities and potential challenges. We hope this perspective could encourage more researchers to contribute to the development of this interdisciplinary field targeting the next energy technologies and applications.