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Abstract Protein function arises from a poorly understood pattern of energetic interactions

between amino acid residues. Sequence-based strategies for deducing this pattern have been

proposed, but lack of benchmark data has limited experimental verification. Here, we extend deep-

mutation technologies to enable measurement of many thousands of pairwise amino acid couplings

in several homologs of a protein family – a deep coupling scan (DCS). The data show that

cooperative interactions between residues are loaded in a sparse, evolutionarily conserved,

spatially contiguous network of amino acids. The pattern of amino acid coupling is quantitatively

captured in the coevolution of amino acid positions, especially as indicated by the statistical

coupling analysis (SCA), providing experimental confirmation of the key tenets of this method. This

work exposes the collective nature of physical constraints on protein function and clarifies its link

with sequence analysis, enabling a general practical approach for understanding the structural basis

for protein function.

DOI: https://doi.org/10.7554/eLife.34300.001

Introduction
The basic biological properties of proteins – structure, function, and evolvability – arise from the pat-

tern of energetic interactions between amino acid residues (Anfinsen, 1973; Gregoret and Sauer,

1993; Luque et al., 2002; Starr and Thornton, 2016; Weinreich et al., 2006). This pattern repre-

sents the foundation for defining how proteins work, for engineering new activities, and for under-

standing their origin through the process of evolution. However, the problem of deducing this

pattern is extraordinarily difficult. Amino acids act heterogeneously and cooperatively in contributing

to protein fitness, properties that are not simple, intuitive functions of the positions of atoms in

atomic structures (Alber et al., 1987). Indeed, the marginal stability of proteins and the subtlety of

the fundamental forces make it so that many degenerate patterns of energetic interactions could be

consistent with observed protein structures. The lack of knowledge of this pattern has precluded

effective mechanistic models for the relationship between protein structure and function.

In principle, an experimental approach for deducing the pattern of interactions between amino

acid residues is the thermodynamic double mutant cycle (Carter et al., 1984; Hidalgo and MacKin-

non, 1995; Horovitz and Fersht, 1990) (TDMC, Figure 1A). In this method, the energetic coupling

between two residues in a protein is probed by studying the effect of mutations at those positions,

both singly and in combination. The idea is that if mutations x and y at positions i and j, respectively,

act independently, the effect of the double mutation (DGxy
ij ) must be the sum of the effects of each

single mutant (DGx
i þ DG

y
j ). Thus, one can compute a coupling free energy between the two muta-

tions (DDGxy
ij ) as:
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DDG
xy
ij ¼ DGx

i þDG
y
j

� �

�DG
xy
ij ; (1)

the difference between the effect predicted by the independent effects of the underlying single

mutations and that of the actual double mutant. DDGxy
ij is typically proposed as an estimate for the

degree of cooperativity between positions i and j.

However, there are serious conceptual and technical issues with the usage of the TDMC formal-

ism for deducing the energetic architecture of proteins. First, DDGxy
ij is not the coupling between the

amino acids present in the wild-type protein (the ’native interaction’). It is instead the energetic

Figure 1. A deep coupling scan (DCS) for the PDZ binding pocket. (A), The thermodynamic double mutant cycle

(TDMC), a formalism for studying the energetic coupling of pairs of mutations in a protein. Given two mutations (x

at postion i and y at position j), the coupling free energy between them is defined as the extent to which the

effect of the double mutation (DGxy
ij ) is different from the summed effect of the mutations taken individually

(DGx
i þ DG

y
j ), a measure of the interaction (or epistasis) between the two mutations (see Equation 1, main text). (B),

Structural overlay of the five PDZ homologs used in this study (PSD95pdz3 (1BE9, white), PSD95pdz2 (1QLC, orange),

ZO1pdz (2RRM, yellow), Shank3pdz (5IZU, gray), and Syntrophinpdz (1Z86, blue)), emphasizing the conserved ab-fold

architecture of these sequence-diverse proteins (33% average identity, Table 1).Structural elements discussed in

this work are indicated. (C), The nine-amino acid a2-helix, which forms one wall of the ligand-binding site. (D–E),

The distribution of experimentally determined binding free energies, DGbind , for all single mutations (D, 855/855)

and nearly all double mutations (E, 56,694/64,980) in the a2-helix for the 5 PDZ homologs, with the affinity of wild-

type PSD95pdz3 indicated (wt). The red lines indicate the independently validated range of the assay (Figure 1—

figure supplement 1); essentially all measurements fall within this range. These data comprise the basis for a

deep analysis of conserved thermodynamic coupling in the PDZ family.

DOI: https://doi.org/10.7554/eLife.34300.002

The following figure supplements are available for figure 1:

Figure supplement 1. The bacterial two-hybrid assay for PDZ ligand binding.

DOI: https://doi.org/10.7554/eLife.34300.003

Figure supplement 2. Reproducibility and quality of the bacterial two-hybrid assay.

DOI: https://doi.org/10.7554/eLife.34300.004
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coupling due to mutation, a value that depends in complex and unknown ways on the specific choice

of mutations made (Faiman and Horovitz, 1996). Second, global application of the TDMC method

requires a scale of work matched to the combinatorial complexity of all potential interactions

between amino acid positions under study. For even a small protein interaction module such as the

PDZ domain (~100 residues, Figure 1B) (Hung and Sheng, 2002), a complete pairwise analysis com-

prising all possible amino acid substitutions at each position involves making and quantitatively mea-

suring the equilibrium energetic effect of nearly two million mutations. Finally, even if these two

technical issues were resolved, it is unclear how to go beyond the idiosyncrasies of one particular

model system to the general, system-independent constraints that underlie protein structure, func-

tion, and evolvability.

Recent technical advances in massive-scale mutagenesis of proteins open up new strategies to

address all these issues. In the PDZ domain, a bacterial two-hybrid (BTH) assay for ligand-binding

coupled to next-generation sequencing enables high-throughput, robust, quantitative measurement

of many thousands of mutations in a single experiment – a ’deep mutational scan’ (Fowler and

Fields, 2014; McLaughlin et al., 2012; Raman et al., 2016). Parameters of the BTH assay are tuned

such that the binding free energy between each PDZ variant x and cognate ligand (DGx
bind) is quanti-

tatively reported by its enrichment relative to wild-type before and after selection (DEx, Figure 1—

figure supplement 1 and Materials and methods). This relationship enables extension of single

mutational scanning to very large-scale double mutant cycle analyses – a ’deep coupling scan’ (DCS)

study (Olson et al., 2014). Indeed, the throughput of DCS is so high that it enables the study of dou-

ble mutant cycles in several homologs of a protein family in a single experiment. Thus, DCS provides

a first opportunity to deeply map the pattern and evolutionary conservation of interactions between

amino acid residues in proteins, a strategy to reveal the fundamental constraints contributing to pro-

tein function.

Here, we apply DCS to several homologs of the PDZ domain family. The data show how to esti-

mate native couplings from mutagenesis, and demonstrate the existence of an evolutionarily con-

served network of cooperative amino acid interactions associated with ligand binding. We then use

these data as a benchmark to test the predictive power of sequence-based coevolution methods,

which if verified, would represent a general and scalable approach for defining the amino acid con-

straints underlying protein structure and function. We show that with different formulations, coevolu-

tion can indeed provide effective estimates of both structural contacts and cooperative functional

interactions between residues. This work establishes a path towards a unified practical approach for

understanding the design of natural proteins.

Results

A deep coupling scan in the PDZ family
To develop basic principles for high-throughput analysis of amino acid couplings, we focused on a

region of the binding pocket of the PDZ domain, a protein-interaction module that has served as a

powerful model system for studying protein energetics (Lockless and Ranganathan, 1999;

McLaughlin et al., 2012). PDZ domains are mixed ab folds that typically recognize C-terminal pep-

tide ligands in a binding groove formed between the a2 and b2 structural elements (Figure 1B). We

created a library of all possible single and double mutations in the nine-residue a2 helix of five

sequence-diverged PDZ homologs (PSD95pdz3, PSD95pdz2, Shank3PDZ, SyntrophinPDZ, and Zo-1PDZ,

Figure 1C) (36 position pairs � 5 homologs, with 171 single + 12,996 double mutations + wild-type

per homolog = 65,840 total variants) and measured the effect of every variant on binding its cognate

ligand (Figure 1D–E and Table 1). Independent trials of this experiment show excellent reproducibil-

ity (Figure 1—figure supplement 2), and propagation of errors suggests an average experimental

error in determining binding free energies of ~0.3 kcal/mol. Filtering for sequencing quality and

counting statistics, we were able to practically collect 56,694 double mutant cycles (87% of total) for

the a2 helix for all five homologs, with an average of 315 cycles per position pair per homolog

(Table 1). Thus, we can (1) analyze the distributions of double mutant cycle coupling energies for

nearly all pairs of mutations in the a2 helix and (2) study the divergence and conservation of these

couplings over the five homologs.
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We first addressed the problem of how to estimate native coupling energies from mutant cycle

data. In general, the effect of a mutation at any site in a protein is a complex perturbation of the ele-

mentary forces acting between atoms, with a net effect that depends on the residue eliminated, the

residue introduced, and on any associated propagated structural effects. Thus, the distribution of

thermodynamic couplings at any pair of positions over many mutation pairs could in principle be

arbitrary and difficult to interpret. However, we find surprising simplicity in the histograms of cou-

pling energies. In general, the data follow single or double-Gaussian distributions (Figures 2 and

3, Figure 2—figure supplements 1–5, and see Materials and methods), with most distributions cen-

tered close to zero and with just a few position pairs displaying two distinct populations. In general,

every mutation is associated with the full range of coupling energies, and the distributions of cou-

plings are not immediately obvious from known chemical properties of amino acids or secondary

structure propensities (Figure 3—figure supplement 1). For example, mutations to glycine and pro-

line might be expected to disrupt the a2 helix, and cause global large couplings with every other

mutation, but in fact we find that these substitutions show a broad range of coupling energies not

unlike other mutations. The data suggest that as an ensemble, mutations act as random perturba-

tions to the native state of proteins, with the population-weighted mean of the distribution of cou-

pling energies for each position pair (Figures 2–3, dashed lines) providing the best empirical

estimate of the native interaction between amino acids through mutagenesis.

Two technical points are worth noting. First, the spread of the distributions is large, generally

exceeding the estimated magnitude of the native interactions (Figures 2–3). This means (1) that tra-

ditional mutant cycle studies carried out with specific choices of mutations are more likely to just

reflect the choice of mutations rather than the native interaction, and (2) that the only way to obtain

good estimates of the native interaction between residues is to average over the effect of many dou-

ble mutant cycles per position pair. The lack of such averaging could lead to considerable variation

in the interpretation of mutant cycle data (Chi et al., 2008; Faiman and Horovitz, 1996;

Lockless and Ranganathan, 1999). Second, we find that the BTH/sequencing approach displays

such good reproducibility that it is possible to detect coupling energies with an accuracy that is on

par with the best biochemical assays. For example, the average standard deviation in mean coupling

energies for position pairs over four independent experimental replicates in PSD95pdz3 is ~0.06 kcal/

mol. Thus, we can map native amino acid interactions with high-throughput without sacrificing

quality.

Table 1. Summary of data collection.

For each PDZ homolog, we indicate the target ligand, the wild-type affinity, the top-hit sequence identity within the ensemble of

homologs, and the assay/sequencing statistics.

PDZ
homolog Ligand

Ligand
sequence Affinity

Top ID%
(PDZ)

No. of
single
mutants
(out of
171)

No. of double
mutants
(out of 12,996)

Mean cycles/
position pair
(out of 361)

Sequence
readsunsel/sel

PSD95pdz3 CRIPT TKNYKQTSV 0.8 mM
(McLaughlin et al.,
2012)

41.0
(Syntrophinpdz)

171 11,531 320 12,190,079/
14,358,962

PSD95pdz2 NMDAR2A KMPSIESDV 3.6 mM
(Stiffler et al.,
2006)

40.5
(PSD95pdz3)

171 12,072 335 9,402,209/
14,965,473

Shank3pdz Dlgap1/2/
3

YIPEAQTRL 0.2 mM
(Stiffler et al.,
2006)

25.0
(PSD95pdz2)

171 10,454 290 17,232,329/
6,429,999

Syntrophinpdz Scn5a
(Nav1.5)

PDRDRESIV 1.6 mM
(Stiffler et al.,
2006)

41.0
(PSD95pdz3)

171 10,757 298 8,227,200/
15,248,680

ZO-1pdz Claudin8 SIYSKSQYV 4.6 mM
(Zhang et al., 2006)

37.5
(PSD95pdz3)

171 11880 330 5,365,041/
11,523,044

DOI: https://doi.org/10.7554/eLife.34300.005
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Figure 2. Distributions of pairwise thermodynamic couplings in a single PDZ homolog (PSD95pdz3). Each subplot shows the distribution of coupling free

energies (DDG, see Equation 1, main text) for all measured mutants at one pair of positions in the a2-helix (numbering per Figure 1C) in PSD95pdz3.

The distributions are fit to single or double Gaussians, using the Bayes Information Criterion to justify choice of model, and the position of zero

coupling is indicated by the solid line and circle above. Population-weighted mean values are represented by dashed lines. The data are remarkably

well defined by the fitted models. Most position pairs have distributions centered close to zero, with only eight pairs comprising all pairwise couplings

between positions 1, 4, 5, and 8, and 1-2, 1-9 showing deviations. For these pairs, distributions of mutational coupling follow either a single mode (1-2,

1-5) or two modes with one centered at zero (1-4, 1-8, 1-9, 4-5, 4-8, 5-8); population-weighted mean values for these pairs are indicated in red.

Figure 2—figure supplement 1–4 show similar data for each of the other homologs taken individually.

DOI: https://doi.org/10.7554/eLife.34300.006

The following figure supplements are available for figure 2:

Figure supplement 1. Distributions of double mutant cycles for each a2 helix position pair (numbering as in Figure 1C) for PSD95pdz2.

DOI: https://doi.org/10.7554/eLife.34300.007

Figure supplement 2. Distributions of double mutant cycles for each a2 helix position pair (numbering as in Figure 1C) for Shank3pdz.

DOI: https://doi.org/10.7554/eLife.34300.008

Figure 2 continued on next page
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A model for distributions of thermodynamic mutant cycle couplings
The uni/bi-modal character of distributions of thermodynamic mutant cycle couplings is striking in

two respects. First is the generality. The same distribution shapes are found in all the individual PDZ

homologs tested (Figure 2 and Figure 2—figure supplements 1–4), the average over homologs

(Figure 3), and even for DCS in an unrelated protein (GB1, Figure 2—figure supplement 5

[Olson et al., 2014]). Second, the distribution shapes seem to be defined more by position, rather

than by the character of mutations. For example, with a few exceptions, the same position-pairs in

every PDZ homolog display mean coupling energies close to zero and the same few position pairs

display bimodal or non-zero means (compare Figure 2 and Figure 2—figure supplements 1–4, and

see Figure 3). The sparse, position-specific character of bimodal distributions is also in the GB1 pro-

tein (Figure 2—figure supplement 5). These results imply a mechanism for the distributions of ther-

modynamic couplings in proteins that goes beyond local biophysical characteristics of the PDZ a2

helix or the average chemical properties of amino acids.

A simple mechanistic model for mutant cycle distributions is that the observed free energy of

ligand binding arises from a cooperative internal equilibrium between two distinct conformational

states of a protein (labeled 0 and 1, Figure 4A), with just a few sites defining this equilibrium. The

basic idea is that any chemical reaction Kx (here, binding) that is coupled to such an internal configu-

rational equilibrium Kc by a constant a will show an apparent equilibrium constant Kapp
x that is a dis-

tinct function of each of these three parameters. Specifically, Kapp
x depends linearly on Kx

(Figure 4B), displays a saturating relationship with non-trivial values of a (that is, for a >> 1)

(Figure 4D), and depending on the degree of internal cooperativity, can show a sigmoidal or even

ultrasensitive response to changes in Kc (Figure 4C). The key to the bimodality lies in the nonlinearity

of the relation between Kapp
x and the internal equilibrium Kc. With the wild-type value of Kc set near

to the non-linear region (that is, Kc ~ 1) and even without any intrinsic coupling in Kx and a, it is

straightforward to see that mutations perturbing only Kx and a will generate distributions of thermo-

dynamic couplings centered at zero (Figure 4E), but perturbations in Kc can evoke bimodal distribu-

tions with one mode centered at zero (Figure 4F) or a single distribution centered at a non-zero

value (Figure 4G). With slight variations in the wild-type value of Kc between homologs, this model

can account for all the observed distributions of pairwise thermodynamic coupling reported here. In

addition, the sparse, position-specific character of bimodal or non-zero couplings arises from the

constraint that only a few cooperative positions in the protein control the internal conformational

equilibrium (Kc).

We note that the model is intended at this stage as a hypothesis rather than proof of mechanism.

Nevertheless, we note that a cooperative two-state internal equilibrium involving the a2 helix has

been experimentally observed in a PDZ domain, and is part of an allosteric regulatory mechanism

controlling ligand binding (Mishra et al., 2007). Specifically, in the Drosophila InaD protein, redox-

dependent regulation of Kc in one PDZ domain switches the conformation of the ligand binding

pocket and controls the dynamics of visual signaling (Helms, 2011; Mishra et al., 2007). The find-

ings here of bimodality in mutational couplings in diverse PDZ homologs and in the GB1 protein sug-

gests that a two-state internal equilibrium may be a common feature of many proteins. If so, the

residues defining Kc may represent the mechanistic basis for classic thermodynamic concept of allo-

steric regulation in proteins through modulation of two-state conformational equilibria (Cui and Kar-

plus, 2008; Monod et al., 1965; Volkman et al., 2001).

Figure 2 continued

Figure supplement 3. Distributions of double mutant cycles for each a2 helix position pair (numbering as in Figure 1C) for Syntrophinpdz.

DOI: https://doi.org/10.7554/eLife.34300.009

Figure supplement 4. Distributions of double mutant cycles for each a2 helix position pair (numbering as in Figure 1C) for ZO1pdz.

DOI: https://doi.org/10.7554/eLife.34300.010

Figure supplement 5. Distributions of coupling in relative enrichment (DDE) for a sampling of position pairs in the GB1 domain of the immunoglobulin-

binding protein G.

DOI: https://doi.org/10.7554/eLife.34300.011
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Idiosyncrasy and conservation in functional couplings in the PDZ
domain
What do the data tell us about the overall pattern of amino acid interactions? Figure 5A–E show

heat maps of the estimated native coupling energies between all pairs of amino acids within the a2

helix for each PDZ homolog. The data demonstrate both idiosyncrasy and conservation of amino

acid couplings in paralogs of a protein family. For example, helix positions 3–4 show moderate cou-

plings in two of the domains (PSD95pdz3 and SyntrophinPDZ, Figure 5A and D) but not in the other

Figure 3. Homolog-averaged pairwise thermodynamic couplings in the PDZ domain. Each subplot shows the distribution of coupling free energies

(DDG, see Equation 1, main text) for all measured mutants at one pair of positions in the a2-helix, but here averaged over the five homologs. As in

Figure 2, the distributions are fit to single or double Gaussians, using the Bayes Information Criterion to justify choice of model. The position of zero

coupling is indicated by the solid line and circle above and population-weighted mean values are represented by dashed lines. Averaging over

homologs reveals the conserved pattern of couplings; now, only six pairs comprising all pairwise couplings between positions 1, 4, 5, and 8 show

deviations from zero. For these pairs, distributions of mutational coupling follow either a single mode (1-4, 1-5) or two modes with one centered at zero

(1-8, 4-5, 4-8, 5-8); population-weighted mean values for these pairs are indicated in red.

DOI: https://doi.org/10.7554/eLife.34300.012

The following figure supplement is available for figure 3:

Figure supplement 1. Amino acid contributions to distributions of double mutant cycle coupling energies for the PDZ a2 helix.

DOI: https://doi.org/10.7554/eLife.34300.013
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homologs. Similarly, coupling between positions 7–8 is shared by PSD95pdz3, PSD95pdz2, and Zo1PDZ

(Figures 5A, B and E) but not in the other two homologs. In contrast, all pairwise interactions

between positions 1, 4, 5, and 8 show a systematic pattern of energetic coupling in all homologs

tested. Thus, each PDZ domain displays variations in the pattern and strength of amino acid ener-

getic couplings, but also includes a set of evolutionarily conserved couplings at a few positions. We

Figure 4. A basic model for observed distributions of double mutant cycle coupling energies. (A), A schematic

representation of two coupled equilibria in a protein molecule – a reaction with equilibrium constant Kx

corresponding to function (here, binding), an internal two-state conformational equilibrium defined by Kc, and a

coupling parameter a linking the two. The equation at right shows the general analytic solution for how the

apparent equilibrium constant Kapp
x depends on these three parameters, and panels (B–D) show graphs of these

relationships over a relevant range of values. Note that Kx (and aKx) are defined as dissociation constants, and

Kc � 0F½ �= 1F½ � and aKc � 0B½ �= 1B½ �. (B–D), Kapp
x shows a linear dependence on Kx, a saturating relationship with a,

and a sigmoidal relationship with Kc. For a range of Kc, K
app
x ranges between Kx and aKx, the two extreme limits

set by the reaction diagram in panel (A). (E–G), distributions of coupling energies for simulations in which we

choose a set of ’wild-type’ values of Kx, Kc, and a (red dots, panels B–D) and consider mutations that cause

random Gaussian perturbations of Kx and a, but either small or large perturbations of Kc (indicated in panel C). If

all mutations cause small effects in Kc, we obtain unimodal distributions centered at zero coupling energy (E), and

if all mutations cause large effects in Kc, we obtain unimodal distributions centered at a non-zero coupling energy

(G). However, if mutations cause a mix of small and large effects on Kc, we obtain bimodal distributions with one

mode centered at zero (F). These three types recapitulate all the observed distributions for all PDZ homologs

(main Figure 2 and Figure 1—figure supplement 1–4), for the GB1 protein (Figure 1—figure supplement 5),

and for the average over homologs (Figure 3). Note that higher order cooperativity between amino acids

specifying Kc (a plausible scenario), would further steepen the relationship shown in panel (C) and would cause the

all-or-nothing character of mutations with regard to Kc with even less distinction between large and small

perturbations. This model is not intended as a proof of mechanism for the observed distributions, but instead

provides a logical scheme that explains the observations in light of known two-state allosteric equilibria is some

PDZ domains (Mishra et al., 2007; Raman et al., 2016).

DOI: https://doi.org/10.7554/eLife.34300.014
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take the conserved couplings to represent the most fundamental constraints underlying PDZ func-

tion, with the homolog-specific couplings indicating more specialized or even serendipitous

couplings.

To isolate the fundamental couplings, we averaged all the double mutant cycle data over all

mutations and over the five PDZ homologs tested (Figure 3), resulting in a matrix of evolutionarily

conserved pairwise thermodynamic couplings (Figure 5G). This analysis reinforces the result that

positions 1, 4, 5, and 8 comprise a cooperative network of functional residues in the PDZ domain

family, and the remainder, even if in direct contact with each other or with ligand, contribute less

and interact idiosyncratically or not at all. The conserved couplings form a chain of physically contig-

uous residues in the tertiary structure that both contact (1, 5, 8) and do not contact (4) the ligand

(Figure 5H). Interestingly, position 4 is part of the distributed allosteric regulatory mechanism in the

InaD PDZ domain discussed above (Mishra et al., 2007), providing a biological role for its energetic

connectivity with binding pocket residues. Overall, the pattern of couplings does not just recapitu-

late all tertiary contacts between residues (compare Figure 5F with Figure 5G) or the pattern of

internal backbone hydrogen bonds that define this secondary structure element. Instead, conserved

amino acid interactions in the PDZ a2 helix are organized into a spatially inhomogeneous, coopera-

tive network that underlies ligand binding and allosteric coupling.

The salient point that emerges from these data is that the pattern of direct contacts that define

the protein structure and the pattern of cooperative amino acid interactions that define protein func-

tion are not the same. Both coexist and are relevant, but represent distinct aspects of the energetic

architecture of proteins.

Coevolution-based inference of functional couplings
This result begins to expose the complex energetic couplings underlying protein function, but also

highlights the massive scale of experiments required to deduce this information for even a few

amino acid positions. How then can we practically generalize this analysis to deduce all amino acid

Figure 5. Conservation and idiosyncrasy in the pattern of energetic couplings over PDZ homologs. (A–E), Matrices of mutation averaged pairwise

thermodynamic couplings for the a2-helix in each PDZ homolog. The color scale is chosen to represent the full range of measured energetic couplings.

The data show that some couplings are specific to individual homologs or shared by a subset of homologs, but that couplings between positions 1, 4,

5, and 8 are conserved over homologs. (F), the pattern of direct tertiary contacts between amino acid positions in the PDZ a2 helix. By convention

(Morcos et al., 2011), trivial contacts between residues with sequence distance less than three are not shown. (G), The homolog and mutation

averaged couplings (corresponding to Figure 3), displaying the conserved interactions between amino acids in the PDZ a2-helix. (H), Two views of the

a2-helix, with the four interacting positions in the homolog-averaged dataset shown in transparent surface representation, and ligand in yellow stick

bonds. These include three positions in direct contact with ligand (1, 5, 8) and one allosteric position buried in the core of the protein (4).

DOI: https://doi.org/10.7554/eLife.34300.015
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interactions in a protein, and for many different proteins? There are potential strategies for pushing

deep mutational coupling to larger scale, but quantitative assays such as the BTH are difficult to

develop, mutation libraries grow exponentially with protein size, and the averaging over homologs

will always be laborious, expensive, and incomplete. In addition, the cooperative action of amino

acids could contribute both positive (McLaughlin et al., 2012) and negative design (Noivirt-

Brik et al., 2009) features in proteins, and it is often not easy to create high-throughput assays for

measuring all aspects of proteins that make up function.

A different approach is suggested by understanding the rules learned in this experimental study

for discovering relevant energetic interactions within proteins. The bottom line is the need to apply

two kinds of averaging. Averaging over many mutations provides an estimate of native interaction

energies between positions, and averaging the mutational effects over an ensemble of homologs

separates the idiosyncrasies of individual proteins from that which is conserved in the protein family.

Interestingly, these same rules also comprise the philosophical basis for a class of methods for esti-

mating amino acid couplings through statistical analysis of protein sequences. The central premise is

that the relevant energetic coupling of two residues in a protein should be reflected in the corre-

lated evolution (coevolution) of those positions in sequences comprising a protein family

(Göbel et al., 1994; Lockless and Ranganathan, 1999; Neher, 1994; Weigt et al., 2009). Statistical

coevolution also represents a kind of combined averaging over mutations and homologs, and if

experimentally verified, would (unlike deep mutational studies) represent a scalable and general

approach for learning the architecture of amino acid interactions underlying function in a protein.

The data collected here provides the first benchmark data to deeply test the predictive power of

coevolution-based methods.

One approach for coevolution is the statistical coupling analysis (SCA), a method based on mea-

suring the conservation-weighted correlation of positions in a multiple sequence alignment, with the

idea that these represent the relevant couplings (Halabi et al., 2009; Lockless and Ranganathan,

1999). In the PDZ domain family (~1600 sequences, pySCA6.0 [Rivoire et al., 2016]), SCA reveals a

sparse internal organization in which most positions evolve in a nearly independent manner and a

few (~20%) are engaged in a pattern of mutual coevolution (Halabi et al., 2009; Lockless and Ran-

ganathan, 1999; Rivoire et al., 2016). In this case, the coevolving positions are simply defined by

the top eigenmode (or principal component) of the SCA coevolution matrix. Extracting the corre-

sponding coevolution pattern for just the a2 helix (Figure 6), we find that coevolution as defined by

SCA strongly predicts the homolog-averaged experimental couplings collected here in a manner

robust to both alignment size and method of construction (r2 ¼ 0:82� 0:77, p ¼ 10
�14 � 10

�12 by

F-test, indicating the significance of the correlation coefficient, Figures 6B–D and Figure 6—figure

supplement 1). The predictions also hold for individual homologs (Figure 6—figure supplement 2),

consistent with the premise that the essential physical constraints underlying function are deeply

conserved. Importantly, the goodness of prediction depends strongly on both of the basic tenets

that underlie the SCA method – conservation-weighting (Figure 6E–F) and correlation (Figure 6G–

H) (Rivoire et al., 2016).

A basic result of the SCA method is that groups of coevolving positions form physically con-

nected networks of amino acids (termed protein ‘sectors’) that link the main functional site to dis-

tantly positioned allosteric sites (Halabi et al., 2009; Lockless and Ranganathan, 1999; Süel et al.,

2003). Indeed, in the PDZ domain, the protein sector represents a chain of amino acids the links the

b2-b3 loop with the a1-b4 surface through the binding pocket and the buried a1 helix (spheres and

surface, Figure 7). The a1-b4 surface is a known binding site for allosteric modifiers (Peterson et al.,

2004), and the b2-b3 loop contains positions where mutations can enable adaptation to new ligand

specificities (Raman et al., 2016). The four positions experimentally identified here as a cooperative

unit (1, 4, 5, 8, red spheres, Figure 7) represent the portion of the a2 helix that is contained in the

protein sector. Thus, these data argue that the sector correctly identifies the amino acids engaged

in cooperative interactions, but more importantly implies that these positions are just a part of a

more global cooperative unit within the PDZ domain that mediates allosteric communication.

Another approach for amino acid coevolution is direct contact analysis (DCA, [Marks et al., 2011;

Morcos et al., 2011]), a method developed for the prediction of tertiary contacts in protein struc-

tures. DCA uses classical methods in statistical physics to deduce a matrix of minimal pairwise cou-

plings between positions (Jij, Figure 8A) that can account for the observed correlations between

amino acids in a protein alignment, with the hypothesis that the strong couplings in Jij will be direct
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contacts in the tertiary structure. Indeed, studies convincingly demonstrate that the top L=2 (where L

is the length of the protein) couplings are highly enriched in direct structural contacts

(Anishchenko et al., 2017). Consistent with this, this method successfully identifies direct contacts in

the PDZ a2 helix (Figure 8A, compare heat map to white and black circles) to an extent that agrees

with the reported work. However, DCA model makes predictions of functional energetic couplings

Figure 6. Coevolution-based inference of energetic couplings - SCA. (A), Coevolution of sequence positions

corresponding to the top eigenmode of the SCA matrix, derived from an alignment of 1656 eukaryotic PDZ

domains (the ’Poole’ alignment). The data show that a subset of positions coevolve within the PDZ a2-helix. (B–D),

The relationship between experimental homology-averaged energetic couplings ( DDGh i) and SCA-based

coevolution computed for three different alignments that differ in size and method of construction. The p-values

give the significance of the coefficient of determination (r2) by the F-test. (E–H), The basic calculation in SCA is to

compute a conservation-weighted correlation matrix C
~
ab

ij ¼ fa
i f

b
j f abij � f ai f

b
j

h i

, where f aI and f abij represent the

frequency and joint frequencies of amino acids a and b at positions i and j, respectively, in a multiple sequence

alignment. The term f abij � f ai f
b
j gives the correlation of amino acids at each pair of positions, and f represents a

weighting function for each amino acid at each position that is related to its conservation (Halabi et al., 2009;

Rivoire et al., 2016). We compared the relationship of the experimental energetic couplings ( DDGh i) with

measures of coevolution that leave out the conservation weights (E–F), or that leave out the correlations (G–H).

The analysis shows that both terms contribute to predicting native energetic couplings between amino acids.

DOI: https://doi.org/10.7554/eLife.34300.016

The following figure supplements are available for figure 6:

Figure supplement 1. Robustness of the SCA to alignment size.

DOI: https://doi.org/10.7554/eLife.34300.017

Figure supplement 2. The relationship between mutation-averaged couplings and predictions from SCA for

individual domains.

DOI: https://doi.org/10.7554/eLife.34300.018
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between mutations (Figure 8B) that are weakly or not at all related to the homolog-averaged experi-

mental data (r2 ¼ 0:33� 0:05, p ¼ 10
�3 � 0:09 by F-test, Figure 8C–E). Interestingly, the best predic-

tive power comes from one moderately-sized structure-based sequence alignment (Figure 8C)

rather than from the largest publicly available alignments (Figure 8D–E). These results are similar or

poorer for prediction of couplings in individual domains (Figure 8—figure supplement 2). Due to

inclusion of many unconserved correlations, DCA is quite sensitive to alignment size, with random

sub-samplings of the best performing alignment producing models with variable quality in terms of

predicting the data (Figure 8—figure supplement 1).

The top couplings in the Jij matrix identify local structural contacts between amino acids, but do

these direct couplings also underlie the partial ability of DCA to account for functional couplings? To

test this, we chose the best-case alignment (the ’Poole’ alignment, Figure 8C), and made an edited

DCA model in which only the top L/2 pairwise couplings in Jij that define tertiary contacts are

retained and the remaining weaker non-contacting couplings are randomly scrambled. While the full

model shows moderate association with experimental data (r2 ¼ 0:33, p ¼ 10
�3 by F-test, Figure 8C),

the edited model shows predictions that are now unrelated to the experimental data (r2 ¼ 0:02, p ¼

0:21 by F-test, Figure 8F). Thus, the many non-contact pairwise couplings in the DCA model, which

represent noise from the point of view of structure prediction, contribute significantly to prediction

of function. A similar result has been noted in the DCA-based prediction of protein-protein interac-

tions, where the quality of prediction depends on many weak couplings between residues not mak-

ing contacts at the interface (A.F. Bitbol and N. Wingreen, personal communication).

A recent study has shown that for the strong couplings in the DCA model (the top L/2 terms in

Jij, Figure 8B), cases of apparently non-contacting residues are often resolved as true contacts by

one of three explanations: (a) they are contacts induced by oligomerization, (b) they are contacts in

other conformational states or homologous structures, or (c) they are artifacts due to misalignment

of repeat regions (Anishchenko et al., 2017). With the presumption that all the weaker remaining

terms in Jij are irrelevant, this result has been interpreted to mean that all the evolutionary constraint

in protein structures is in direct physical contacts, with allosteric mechanisms not contributing to

Figure 7. Homolog-averaged thermodynamic couplings and protein sectors. Analysis of the top eigenmodes of

the SCA coevolution matrix exposes groups of coevolving amino acids that empirically are found to form

physically contiguous networks in the tertiary structure, often connecting the main functional site to remote

allosteric sites (Halabi et al., 2009; Lockless and Ranganathan, 1999; Rivoire et al., 2016; Süel et al., 2003). In

the PDZ family, the protein sector (shown as CPK spheres and transparent surface on three rotations of a

representative structure, PDB 1BE9) connects the ligand binding pocket to two known allosteric sites, one in the

a1-b4 loop (Peterson et al., 2004) and the other in the b2-b3 loop (Raman et al., 2016); the ligand is shown in

yellow stick bonds. The homolog-averaged thermodynamic couplings in the a2 helix (positions 1, 4, 5, and 8)

precisely correspond to the portion of the PDZ sector contributed by the secondary structure element. The

selective cooperative action of these residues is consistent with the idea that the sector represents a global

collective mode in the PDZ structure associated with function, embedded within a more independent

environment.

DOI: https://doi.org/10.7554/eLife.34300.019
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coevolution (Anishchenko et al., 2017). In one sense, the data shown here are fully consistent with

the results of this previous study; the top terms in Jij are indeed enriched in contacts (Figure 8A),

and in fact do not correspond to the experimental energetic couplings (Figure 8F), including long-

range ones such as 1-8 (Figure 5G). But, the finding that the weak, non-contacting couplings in Jij

contribute to predicting the experimental data argue that the origin of evolutionary constraints is

not strictly in direct physical interactions of amino acids. Furthermore, the finding that the SCA

coevolution matrix provides an improved prediction of experimental couplings (Figure 8B–D),

including long-range ones (e.g. 1-8, Figure 6A) argues that information about allosteric energetic

interactions are contained in the statistics of alignments and are therefore part of the total evolution-

ary constraint.

Figure 8. Coevolution-based inference of energetic couplings - DCA. (A), The matrix of direct couplings (Jij) from

the DCA method, with tertiary contacts in the PDZ structure (1BE9) indicated by white or black circles. By

convention (Morcos et al., 2011), trivial contacts between residues with sequence distance less than three are not

shown. The data show that all top direct couplings identified by DCA are indeed tertiary structural contacts. (B),

The DCA method involves the inference of a statistical energy function E sð Þ that for each sequence s, is

parameterized by a set of intrinsic constraints on amino acids (hi) and pairwise interactions between amino acids

(Jij). These parameters are optimized to reproduce the observed alignment frequencies and pairwise correlations.

Using the model, the matrix shows mutation- and homolog-averaged energetic couplings, computed precisely as

for the experimental data; see Materials and methods for details. (C–E), The relationship between experimental

( DDGh i) and DCA-inferred ( DDEh i) couplings in the PDZ a2-helix, for three PDZ alignments that differ in size and

method of construction. The p-values give the significance of the coefficient of determination (r2) by the F-test. (F),

The relationship between experimental and DCA-inferred couplings from Jij in which top couplings defining

contacts are preserved and all non-contact couplings are randomly scrambled. The DCA model used for this

analysis is from the Poole alignment, as in panel D. The data show that pairwise couplings in the DCA model

between non-contacting positions contribute significantly to prediction of protein function.

DOI: https://doi.org/10.7554/eLife.34300.020

The following figure supplements are available for figure 8:

Figure supplement 1. Robustness of DCA to alignment size.

DOI: https://doi.org/10.7554/eLife.34300.021

Figure supplement 2. The relationship between mutation-averaged couplings and predictions from DCA for

individual domains.

DOI: https://doi.org/10.7554/eLife.34300.022
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Taken together, these findings provide a set of important clues for now extending the statistical

physics approach to produce models for proteins that accurately predict interactions that define

both local structural contacts and the global, collective actions of residues that underlie function.

Discussion
Defining the pattern of cooperative interactions between amino acids is essential for understanding

the evolutionary design of protein structure and function. Here, we use very high-throughput next-

generation sequencing based mutagenesis to experimentally probe the pattern of functional interac-

tions between residues. We show that averaging thermodynamic couplings over many pairs of muta-

tions provides an estimate of the native interactions between amino acids, and exposes an

architecture in which most pairs of amino acids are uncoupled and a few significantly interact to

make a cooperative network underlying function. Further averaging over homologs refines the pat-

tern of cooperativity, revealing an evolutionarily conserved network of cooperative amino acid inter-

actions that includes both direct and allosteric influences on ligand binding. This pattern is distinct

from the pattern of local contacts between residues that defines secondary structure elements and

the tertiary structure, indicating that a full understanding of proteins requires inference of both

direct local structural contacts and the network of cooperative interactions that underlies function.

While the DCS method represents a productive extension of ‘deep mutagenesis’ methods to

probe second-order cooperative interactions between amino acids, the combinatorial complexity of

cooperative amino acid interactions is so vast that no experiment can exhaustively probe the global

pattern of amino acid interactions within proteins. In this regard, we suggest that DCS serves mainly

to provide a critical benchmark to explore other strategies that have the generality and scalability to

learn the global pattern. Such a strategy is statistical coevolution, the concept that the relevant ener-

getic interactions between amino acids contributing to structure and function should be reported in

the correlations of amino acid outcomes at pairs of positions in a large sampling of homologous

sequences comprising a protein family. In fact, we show that two different approaches for coevolu-

tion – DCA and SCA – effectively report the experimentally determined pattern of structural contacts

and functional couplings, respectively. While prediction of structural contacts are easily verified by

comparison with published protein structures (Kamisetty et al., 2013; Marks et al., 2012), datasets

for evaluating the prediction of protein function have been limited (Lockless and Ranganathan,

1999; McLaughlin et al., 2012; Teşileanu et al., 2015). In this regard, DCS represents a necessary

step for collecting the kind of data to refine and test models for protein function.

The finding that SCA can effectively predict the conserved thermodynamic couplings allows us to

propose a deeper hypothesis about the meaning and role of protein sectors (Halabi et al., 2009).

The coupled equilibrium model described above (Figure 4A) postulates the existence of a coopera-

tive two-state internal equilibrium Kc within proteins, where only perturbations of Kc can generate

non-zero mutational couplings. Since significant conserved couplings in the a2 helix are exclusively

within positions 1, 4, 5, and 8 and since these positions are contained within the protein sector, it is

logical to propose that the sector represents the structural unit underlying Kc – a distributed cooper-

ative amino acid network through which allosteric effects can be transmitted by modulation of the

internal conformational equilibrium. Consistent with this, introduction of new molecular interactions

at sector edges has been shown to be a route to engineering new allosteric control in protein mole-

cules (Lee et al., 2008; Reynolds et al., 2011). In future work, it will be interesting to rigorously test

the hypothesis that the sector underlies Kc through global or sector-directed DCS experiments.

Overall, our findings clarify the current state of sequence-based inference of protein structure

and function (Figliuzzi et al., 2016; Hopf et al., 2017). DCA successfully predicts contacts in protein

structures in the top couplings, but in its current form, does not appear to capture the cooperative

constraints that underlie protein function well. In contrast, SCA does not predict direct structural

contacts well, but instead seems to accurately capture the energetic couplings that contribute to

protein function. As explained previously, these two approaches sample different parts of the infor-

mation contained in a sequence alignment (Cocco et al., 2013; Rivoire, 2013), and therefore are

not mutually incompatible. These results highlight the need to unify the mathematical principles of

contact prediction and SCA-based energetic predictions towards a more complete model of infor-

mation content in protein sequences.

Salinas and Ranganathan. eLife 2018;7:e34300. DOI: https://doi.org/10.7554/eLife.34300 14 of 20

Research article Biochemistry and Chemical Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.34300


In summary, the collection of functional data for some 56,000 mutations in a sampling of PDZ

homologs demonstrates an evolutionarily conserved pattern of amino acid cooperativity underlying

function. This pattern is well-estimated by statistical coevolution based methods, suggesting a pow-

erful and (given the scale of experiments necessary) uniquely practical approach for mapping the

architecture of couplings between amino acids. Indeed, the remarkable implication is that with a suf-

ficient ensemble of sequences comprising the evolutionary history of a protein family and the further

technical advancements suggested above, the pattern of relevant amino acid interactions can be

inferred without any experiments.

Materials and methods

Library generation
For each PDZ homolog, a library of all single and pairwise mutations in the a2-helix was generated

using a set of 36 mutagenic forward primers (50-60mers, IDT), each with two codons randomized as

NNS (IUPAC code). Each primer was used in a separate inverse PCR reaction with a constant reverse

primer, a PZS22 plasmid containing the wildtype PDZ variant as template, and Q5 polymerase

(NEB). The primers amplify the entire plasmid, introducing mutations only on one strand, a strategy

that reduces library bias and over-representation of the wildtype allele that occurs with methods

such as overlap-extension PCR (Jain and Varadarajan, 2014). Both forward and reverse primers are

designed with BsaI sites in the 5’ region, permitting scarless unimolecular ligation of the PCR prod-

ucts. All 36 PCR products per PDZ homolog are quantified by Qubit and Nanodrop (Thermo Fisher

Scientific), mixed in an equimolar ratio, and used for a one-pot digestion-ligation reaction to make

the library of all single and double mutants (Engler and Marillonnet, 2013).

The bacterial two-hybrid assay
The bacterial two-hybrid assay is based on the triple-plasmid system reported in Raman et al.

(Raman et al., 2016) (Figure 1—figure supplement 1). The PDZ variants are expressed as fusions

with the lcI DNA-binding domain under control of a lac promoter (in PZS22 plasmid, low-copy

SC101 origin, trimethioprim (Tm) resistance), the PDZ ligand is expressed as a fusion with the RNA

polymerase a-subunit under control of a tet promoter (in PZA31 plasmid, low-copy p15A origin,

kanamycin (Kan) resistance), and the reporter gene is cat (coding for the enzyme chloramphenicol

acetyltransferase), encoded by the pZE1RM plasmid (medium-copy number ColE1 origin and ampi-

cillin (Amp) resistance).

Libraries of PDZ variants are transformed into electrocompetent pZE1RM+pZA31+ MC4100Z1

cells that harbor chromosomal copies of the lac repressor lacIq and the tet repressor TetR

(Tan et al., 2009). After recovery in SOC medium, the culture is used to inoculate 50 mL of LB media

(1:50 dilution) supplemented with 50 mg/mL Amp, 40 mg/mL Kan, and 20 mg/mL Tm and incubated

overnight at 37˚C with shaking. After ~12 hr, a 1:1000 dilution of the culture is made into fresh LB

media with the three antibiotics and allowed to grow at 37˚C to bring the cells into exponential

growth (OD600 = 0.1), at which point another 1:100 dilution is made into LB supplemented with the

three antibiotics and 50 ng/mL of doxycycline hydrochloride (dox) to induce expression of the PDZ

ligand fusion. Cells are incubated at 25˚C for 2 log-orders of growth (~6.7 doublings) to allow pro-

tein expression to reach steady-state (Poelwijk et al., 2011). Growth at 25˚C appears to represent

an optimum in maximizing dynamic range whole also focusing assay sensitivity to binding affinity

rather than protein stability. After induction, cells are 1:100 diluted into fresh LB media supple-

mented with all antibiotics and dox, and also chloramphenicol at a final concentration of 150 mg/mL

for selection. Cells are grown at 25˚C and harvested at OD600 = 0.1, and plasmids are purified. The

region covering the a2 helix is PCR amplified and Truseq barcodes and sequencing adapters (Illu-

mina) are appended in two sequential PCR reactions. Truseq barcodes permit multiplexing different

experiments in a single sequencing run.

Deep sequencing
To analyze allele distributions, samples are combined and sequenced on either the Illumina Miseq or

Hiseq2500 instruments (University of Texas Southwestern Medical Center Genomics and Microarray

Core) and subsequently de-multiplexed, with allele counts extracted from sequencing files using
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FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) and BioPython (Cock et al., 2009) and con-

verted to frequencies before and after selection in Matlab or Python.

To relate sequencing data to binding free energies, we compute the relative frequency of each

allele x after (s) and before (u) selection: zx ¼ f xs =f
x
u . Since selection has the property that frequencies

of alleles will exponentially diverge as a function of time, we take the logarithm after normalizing zx

over all alleles to define the ’relative enrichment’: DEx ¼ ln zx=
P

i z
i

� �

. Since selection in the BTH is

designed to be proportional to the fraction bound of each PDZ variant to the target ligand

(McLaughlin et al., 2012; Raman et al., 2016), we have that DEx ¼ a ln f xb Þ þ C
� �

(Equation 2), where

in the pseudo first-order limit f xb ¼ L= Lþ Kx
d

� �

. L (the free ligand concentration in vivo), a, and C are

free parameters determined by fitting DEx measured for a library of 45 mutants of PSD95 with known

equilibrium binding constants (Fig. S1B). This ’standard curve’ for the BTH shows excellent dynamic

range in reporting binding free energies over the full range of values for essentially all mutants in all

homologs (Figure 1D–E). To determine binding energies for data acquired in different sequencing

experiments, we use the known binding affinity of the wild-type alleles to apply a correction to DEx

scores to match the values determined for the standard curve experiment. Given the fitted parame-

ters and a set of corrected DEx scores, we compute equilibrium binding constants and correspond-

ing free energies using Equation 2.

Data analysis and statistical comparisons
Distributions of thermodynamic coupling energies for each pair of positions in each homolog were

plotted and fitted to single or double Gaussian models using the Gaussian mixture modeling tools in

MATLAB (Mathworks Inc.). For each position pair, the choice between these two models was made

by selecting the model with the minimum Bayes Information Criterion (BIC), which appropriately

penalizes more complex models in accounting for the data. For correlation analyses comparing the

experimental data with coevolution-based predictions (Figures 6 and 8), linear models were fit in

MATLAB. The significance of the fitted Pearson’s coefficient of determination (r2) is given by the

F-test, with the null hypothesis that there is no correlation.

Statistical coupling analysis (SCA)
SCA was performed using pySCA 6.0 as recently described (Rivoire et al., 2016) using two manually

adjusted, structure-based alignments of 240 (’Lockless’) or 1689 (’Poole’) eukaryotic PDZ domains,

or using a publicly available alignment from PFAM (9610 seqs, [Finn et al., 2016]). Briefly, SCA

involves computing a conservation weighted correlation matrix C
~
ab

ij ¼ fa
i f

b
j f abij � f ai f

b
j

� �

, where f ai and

f abij represent the frequency and joint frequencies of amino acids a and b at positions i and j, respec-

tively, and f ¼ qD
qf

¼ ln
f 1�qð Þ
q 1�fð Þ

h i

, the gradient of the Kullback-Leibler entropy D describing the degree

of conservation of amino acids (Halabi et al., 2009). C
~
ab

ij is reduced to a positional coevolution

matrix C
~

ij by taking the Frobenius norm over amino acid pairs for each ijð Þ, and C
~

ij is subject to

eigenvalue decomposition. Coevolving positions are hierarchically organized into one or more col-

lective modes (protein sectors, [Halabi et al., 2009]) in the top eigenmodes of the SCA positional

coevolution matrix, with lower modes indistinguishable from noise due to limited sampling

(Halabi et al., 2009). For PDZ, a protein with a single hierarchical sector, we consider here just the

top eigenmode, permitting calculation of cleaned coevolution matrix Ĉ ¼ v1l1v
T
1
, where l1 is the top

eigenvalue and v1 is the first eigenvector. The portion of Ĉ corresponding to the a2 helix is shown in

Figure 4D.

Direct coupling analysis (DCA)
DCA calculations were carried out for alignments of 1689 (’Poole’), 9610 (PFAM), or 102410 (’Hopf’,

[Hopf et al., 2017]) PDZ domains using the pseudolikelihood maximization approach reported in

(Hopf et al., 2017), resulting in intrinsic constraints (hi) for each amino acid and pairwise couplings

(Jij) for each amino acid pair at positions i and j. These parameters define a statistical energy for any

given amino acid sequence s ¼ s1 . . .sLð Þ: EðsÞ ¼
P

i

hisi þ
P

i<j
Jijsisj. As described (Hopf et al.,

2017), we use these parameters to compute the energetic effect of single mutants and pairwise
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coupling of mutation pairs (Equation 1, main text), starting from the sequences of each homolog.

Just as for the experimental data, histograms of all amino acid couplings for every pair of positions

were fit to either single or double Gaussian distributions, and mean values used for comparisons

with the experimental data for individual homologs (Figure 8—figure supplement 2). For homolog

averaged couplings (Figure 4G), coupling energies for each amino acid pair were averaged over

homologs, and then used to make histograms. For Figure 4H, we defined a DCA model in which

top couplings in Jij were defined using a cutoff as in (Ovchinnikov et al., 2014), and all couplings

below the cutoff were randomly scrambled. The resulting model parameters were used for comput-

ing the energetic effect of single and double mutations, as above.
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