000009909 001__ 9909 000009909 005__ 20250218124641.0 000009909 02470 $$ahttps://doi.org/10.7554/eLife.56898$$2doi 000009909 037__ $$aTEXTUAL 000009909 041__ $$aeng 000009909 245__ $$aTemporal transcription factors determine circuit membership by permanently altering motor neuron-to-muscle synaptic partnerships 000009909 269__ $$a2020-05-11 000009909 336__ $$aArticle 000009909 520__ $$aHow circuit wiring is specified is a key question in developmental neurobiology. Previously, using the Drosophila motor system as a model, we found the classic temporal transcription factor Hunchback acts in NB7-1 neuronal stem cells to control the number of NB7-1 neuronal progeny form functional synapses on dorsal muscles (Meng et al., 2019). However, it is unknown to what extent control of motor neuron-to-muscle synaptic partnerships is a general feature of temporal transcription factors. Here, we perform additional temporal transcription factor manipulations—prolonging expression of Hunchback in NB3-1, as well as precociously expressing Pdm and Castor in NB7-1. We use confocal microscopy, calcium imaging, and electrophysiology to show that in every manipulation there are permanent alterations in neuromuscular synaptic partnerships. Our data show temporal transcription factors, as a group of molecules, are potent determinants of synaptic partner choice and therefore ultimately control circuit membership. 000009909 536__ $$oNational Institute of Neurological Disorders and Stroke$$cR01-NS105748 000009909 536__ $$oNational Institute of General Medical Sciences$$cT32 GM007183 000009909 536__ $$oNational Science Foundation$$cDGE-1746045 000009909 536__ $$oNational Institute of Neurological Disorders and Stroke$$cK01 NS102342 000009909 536__ $$oUniversity of Chicago$$aInternational Student Fellowship 000009909 536__ $$oUniversity of Chicago$$aMGCB start-up funds 000009909 540__ $$a<p>© 2020, Meng et al.</p> <p>This article is distributed under the terms of the <a href="http://creativecommons.org/licenses/by/4.0/" target="_blank">Creative Commons Attribution License</a>, which permits unrestricted use and redistribution provided that the original author and source are credited.</p> 000009909 542__ $$fCC BY 000009909 594__ $$aAll data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 1S2, 3, 4, 5. 000009909 6531_ $$aneuronal stem cell 000009909 6531_ $$amotor neuron 000009909 6531_ $$atranscription factors 000009909 690__ $$aBiological Sciences Division 000009909 691__ $$aDevelopment, Regeneration, and Stem Cell Biology 000009909 691__ $$aMolecular Genetics and Cell Biology 000009909 692__ $$aNeuroscience Institute 000009909 7001_ $$1https://orcid.org/0000-0003-0364-4437$$2ORCID$$aMeng, Julia L.$$uUniversity of Chicago 000009909 7001_ $$aWang, Yupu$$uUniversity of Chicago 000009909 7001_ $$1https://orcid.org/0000-0002-2067-9861$$2ORCID$$aCarrillo, Robert A.$$uUniversity of Chicago 000009909 7001_ $$1https://orcid.org/0000-0001-7618-0616$$2ORCID$$aHeckscher, Ellie S.$$uUniversity of Chicago 000009909 773__ $$teLife 000009909 8564_ $$yArticle$$93d940f45-021a-4f5e-912d-2450938fcc74$$s4549432$$uhttps://knowledge.uchicago.edu/record/9909/files/elife-56898-v2.pdf$$ePublic 000009909 8564_ $$yAdditional file$$929e8c3a5-f9f7-44f3-964c-82bb8e8f927f$$s251873$$uhttps://knowledge.uchicago.edu/record/9909/files/elife-56898-transrepform-v2.docx$$ePublic 000009909 908__ $$aI agree 000009909 909CO $$ooai:uchicago.tind.io:9909$$pGLOBAL_SET 000009909 983__ $$aArticle