000009783 001__ 9783
000009783 005__ 20251007025547.0
000009783 02470 $$ahttps://doi.org/10.1093/pnasnexus/pgad245$$2doi
000009783 037__ $$bArticle
000009783 037__ $$aTEXTUAL
000009783 041__ $$aeng
000009783 245__ $$aKinesin and myosin motors compete to drive rich multiphase dynamics in programmable cytoskeletal composites
000009783 269__ $$a2023-07-31
000009783 336__ $$aArticle
000009783 520__ $$aThe cellular cytoskeleton relies on diverse populations of motors, filaments, and binding proteins acting in concert to enable nonequilibrium processes ranging from mitosis to chemotaxis. The cytoskeleton's versatile reconfigurability, programmed by interactions between its constituents, makes it a foundational active matter platform. However, current active matter endeavors are limited largely to single force-generating components acting on a single substrate—far from the composite cytoskeleton in cells. Here, we engineer actin–microtubule (MT) composites, driven by kinesin and myosin motors and tuned by crosslinkers, to ballistically restructure and flow with speeds that span three orders of magnitude depending on the composite formulation and time relative to the onset of motor activity. Differential dynamic microscopy analyses reveal that kinesin and myosin compete to delay the onset of acceleration and suppress discrete restructuring events, while passive crosslinking of either actin or MTs has an opposite effect. Our minimal advection–diffusion model and spatial correlation analyses correlate these dynamics to structure, with motor antagonism suppressing reconfiguration and demixing, while crosslinking enhances clustering. Despite the rich formulation space and emergent formulation-dependent structures, the nonequilibrium dynamics across all composites and timescales can be organized into three classes—slow isotropic reorientation, fast directional flow, and multimode restructuring. Moreover, our mathematical model demonstrates that diverse structural motifs can arise simply from the interplay between motor-driven advection and frictional drag. These general features of our platform facilitate applicability to other active matter systems and shed light on diverse ways that cytoskeletal components can cooperate or compete to enable wide-ranging cellular processes.
000009783 536__ $$oWM Keck Foundation$$aResearch Grant
000009783 536__ $$oNational Science Foundation$$cDMR 2119663$$aDMREF Program
000009783 536__ $$oNational Institute of General Medical Sciences$$cR15GM123420
000009783 540__ $$a<p>Copyright © 2023, © The Author(s) 2023. Published by Oxford University Press on behalf of National Academy of Sciences.</p> <p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">https://creativecommons.org/licenses/by/4.0/</a>), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.</p>
000009783 542__ $$fCC BY
000009783 594__ $$a<p class="chapter-para">All data generated or analyzed during this study are included in this published article and its supplementary information files or available at Zenodo: doi:<a class="link link-uri openInAnotherWindow" href="https://doi.org/10.5281/zenodo.8165779" target="_blank" data-google-interstitial="false">10.5281/zenodo.8165779</a>.</p>
000009783 6531_ $$acytoskeleton
000009783 6531_ $$aactive matter
000009783 6531_ $$akinesin
000009783 6531_ $$aactin
000009783 6531_ $$amicrotubules
000009783 690__ $$aBiological Sciences Division
000009783 691__ $$aMolecular Genetics and Cell Biology
000009783 7001_ $$1https://orcid.org/0000-0002-6577-060X$$2ORCID$$aMcGorty, Ryan J.$$uUniversity of San Diego
000009783 7001_ $$aCurrie, Christopher J.$$uUniversity of San Diego
000009783 7001_ $$aMichel, Jonathan$$uRochester Institute of Technology
000009783 7001_ $$aSasanpour, Mehrzad$$uUniversity of San Diego
000009783 7001_ $$aGunter, Christopher$$uSan Diego State University
000009783 7001_ $$aLindsay, K. Alice$$uSyracuse University
000009783 7001_ $$aRust, Michael J.$$uUniversity of Chicago
000009783 7001_ $$1https://orcid.org/0000-0001-9873-5117$$2ORCID$$aKatira, Parag$$uSan Diego State University
000009783 7001_ $$1https://orcid.org/0000-0002-0397-8886$$2ORCID$$aDas, Moumita$$uRochester Institute of Technology
000009783 7001_ $$1https://orcid.org/0000-0002-4838-3798$$2ORCID$$aRoss, Jennifer L.$$uSyracuse University
000009783 7001_ $$1https://orcid.org/0000-0003-4475-4667$$2ORCID$$aRobertson-Anderson, Rae M.$$uUniversity of San Diego
000009783 773__ $$tPNAS Nexus
000009783 8564_ $$yArticle$$964af3a22-ec77-4712-be34-9f996fa80aef$$s1548977$$uhttps://knowledge.uchicago.edu/record/9783/files/pgad245.pdf$$ePublic
000009783 8564_ $$ySupplementary material$$93a653a7c-0927-4394-a746-0ac6e3a02303$$s297488194$$uhttps://knowledge.uchicago.edu/record/9783/files/pgad245_supplementary_data.zip$$ePublic
000009783 908__ $$aI agree
000009783 909CO $$ooai:uchicago.tind.io:9783$$pGLOBAL_SET
000009783 983__ $$aArticle