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A B S T R A C T   

Background: Ambient fine particulate matter (PM2.5) exposure has been related to cardiometabolic diseases, but the underlying biological pathways remain unclear at 
the population level. 
Objective: To investigate the effect of PM2.5 exposure on changes in multiple cardiometabolic biomarkers across different exposure durations. 
Method: Data from a prospective cohort study were analyzed. Ten cardiometabolic biomarkers were measured, including ghrelin, resistin, leptin, C-peptide, creatine 
kinase myocardial band (CK-MB), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNF-alpha), N-terminal pro B-type natriuretic peptide 
(NT-proBNP), troponin, and interleukin-6 (IL-6). PM2.5 levels across exposure durations from 1 to 36 months were assessed. Mixed effect model was used to estimate 
changes in biomarker levels against 1 μg/m3 increase in PM2.5 level across different exposure durations. 
Results: Totally, 641 participants were included. The average PM2.5 exposure level was 9 μg/m3. PM2.5 exposure was inversely associated with ghrelin, and positively 
associated with all other biomarkers. The magnitudes of these associations were duration-sensitive and exhibited a U-shaped or inverted-U-shaped trend. For 
example, the association of resistin were β = 0.05 (95% CI: 0.00, 0.09) for 1-month duration, strengthened to β = 0.27 (95% CI: 0.14, 0.41) for 13-month duration, 
and weakened to β = 0.12 (95% CI: − 0.03, 0.26) for 24-month duration. Similar patterns were observed for other biomarkers except for CK-MB, of which the 
association direction switched from negative to positive as the duration increased. Resistin, leptin, MCP-1, TNF-alpha, and troponin had a sensitive exposure duration 
of nearly 12 months. Ghrelin and C-peptide were more sensitive to longer-term exposure (>18 months), while NT-proBNP and IL-6 were more sensitive to shorter- 
term exposure (<6 months). 
Conclusion: PM2.5 exposure was associated with elevated levels in cardiometabolic biomarkers related to insulin resistance, inflammation, and heart injury. The 
magnitudes of these associations depended on the exposure duration. The most sensitive exposure durations of different biomarkers varied.   

1. Introduction 

Ambient air pollution exposure, especially to fine particulate matter 
(PM2.5), is recognized as a leading cause of global mortality and 
morbidity (Landrigan et al., 2018). Causal associations between PM2.5 
exposure and cardiometabolic diseases, including heart attack, conges
tive heart failure, diabetes, and obesity has been established 

(Rajagopalan et al., 2018a; An et al., 2018; Cosselman et al., 2015; Brook 
et al., 2018; Liu et al., 2019; Bowe et al., 2018; Di et al., 2017). It is 
estimated that PM2.5 exposure is responsible for nearly four million 
deaths annually, of which more than half are related to cardiometabolic 
diseases (Cohen et al., 2017). 

Several population studies have estimated the effect of PM2.5 expo
sure on biomarkers of metabolism and inflammation, to understand the 
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underlying biological pathways for the adverse health effects of PM2.5 
exposure (Chen et al., 2015, 2016; Zhang et al., 2017; Green et al., 2016; 
Hajat et al., 2015; Lanki et al., 2015; Dabass et al., 2016; Wyatt et al., 
2022; Viehmann et al., 2015; Brook et al., 2016; Dadvand et al., 2014). 
Despite inconsistent results, findings from prior studies supported as
sociations of PM2.5 exposure with an elevated level of inflammation 
biomarker C-reactive protein (CRP) (Chen et al., 2015, 2016; Zhang 
et al., 2017; Green et al., 2016; Hajat et al., 2015; Lanki et al., 2015; 
Dabass et al., 2016; Wyatt et al., 2022; Viehmann et al., 2015) and a 
higher risk for insulin resistance (Chen et al., 2016; Brook et al., 2013, 
2016; Thiering et al., 2013; Kim and Hong, 2012). A meta-analysis of 
eleven studies also suggests that PM2.5 exposure increases the circulating 
level of interleukin-6 (IL-6), a key mediator of inflammation (Zhu et al., 
2021). Apart from these commonly investigated biomarkers, evidence of 
involvement of other crucial cardiometabolic biomarkers, such as tumor 
necrosis factor alpha (TNF-alpha), troponin, and monocyte chemo
attractant protein-1 (MCP-1), is sparse in population studies, although 
animal studies suggest that these pathways play key roles in observed 
adverse health effects of PM2.5 exposure (Wang et al., 2015; Zhang et al., 
2018; Sun et al., 2009). To our knowledge, few population studies have 
included cardiometabolic biomarkers other than insulin, CRP, and IL-6 
(Wyatt et al., 2022; Chen et al., 2015; Dadvand et al., 2014; Zhang 
et al., 2022; Xia et al., 2019; Tseng et al., 2022). 

Another key gap in the literature relevant for public health is how the 
duration of exposure to air pollution impacts biology. Both short- and 
long-term PM2.5 exposures have been investigated in relation to car
diometabolic biomarkers, with exposure durations ranging from several 
days (Green et al., 2016; Hajat et al., 2015; Dabass et al., 2016; Wyatt 
et al., 2022; Chen et al., 2015; Viehmann et al., 2015; Brook et al., 2016) 
to one month (Chen et al., 2016; Green et al., 2016; Dabass et al., 2016) 
and up to one (Chen et al., 2016; Green et al., 2016; Hajat et al., 2015; 
Lanki et al., 2015; Dabass et al., 2016; Viehmann et al., 2015) and two 
years (Zhang et al., 2017). Researchers have observed differing associ
ations with short- and long-term exposures. For example, Hajat et al. 
reported a positive association between IL-6 and long-term PM2.5 
exposure (one-year average concentration), but not with short-term 
exposure (up to five-day average) (Hajat et al., 2015). Chen et al. 
concluded that short- (up to 58-day average) and long-term (one-year 
average) PM2.5 exposures were associated with changes in different 
biomarkers related to energy metabolism (Chen et al., 2016). Overall, 
most studies support the association between long-term PM2.5 exposure 
and changes in cardiometabolic biomarkers (Chen et al., 2016; Zhang 
et al., 2017; Green et al., 2016; Hajat et al., 2015; Lanki et al., 2015; 
Dabass et al., 2016; Viehmann et al., 2015), while some limited evidence 
for short-term PM2.5 exposure was noted (Wyatt et al., 2022; Chen et al., 
2015; Brook et al., 2016). The inconsistencies raised a question on 
whether sensitive time windows for these cardiometabolic biomarkers 
vary, warranting a more comprehensive investigation of different PM2.5 
exposure durations. 

Additionally, African Americans, an under-represented population in 
biomedical research, bear a disproportionate burden of air pollution and 
cardiometabolic diseases in the US. The racial/ethnical disparities in air 
pollution exposure are most pronounced in urban areas with high levels 
of residential segregation (Woo et al., 2019). It is also well-established 
that African Americans have higher prevalence of cardiometabolic dis
eases, and these disparities persist even after accounting for differences 
in age, sex, socioeconomic status (SES), and other factors (Graham, 
2015; Benjamin et al., 2019; Cefalu and Golden, 2015). A synergistic 
interaction of disparities in air pollution and disease prevalence has led 
to a stronger adverse effect of PM2.5 exposure. It is estimated that Afri
can Americans have a 1.5 times higher rate of cardiometabolic diseases 
and all-cause mortality than Caucasians that was only explained by 
higher exposure to PM2.5 (Erqou et al., 2018). 

Within this context, we conducted this study to investigate the as
sociation between ambient PM2.5 exposure and cardiometabolic bio
markers that were less frequently investigated in prior studies, including 

ghrelin, resistin, leptin, C-peptide, creatine kinase myocardial band (CK- 
MB), MCP-1, TNF-alpha, N-terminal pro B-type natriuretic peptide (NT- 
proBNP), troponin, and IL-6. We further examined the associations with 
cumulative average PM2.5 over different exposure durations from 1 
month to 36 months, aiming to elucidate how different exposure dura
tions influence the impact of PM2.5 exposure. Notably, the study lever
ages data from the Chicago Multiethnic Prevention and Surveillance 
Study (COMPASS), a predominantly African American cohort that seeks 
to uncover the causes of health disparities. 

2. Method 

2.1. Study population 

COMPASS is a large, longitudinal cohort study. A more detailed 
description of the study design can be found elsewhere (Asche
brook-Kilfoy et al., 2020). Briefly, eligibility for COMPASS includes: 1) 
age 18 or older at the time of enrollment; 2) ability to consent and 
provide survey data in English or Spanish; 3) willingness to provide 
blood, urine, and saliva samples as well as electronic health record ac
cess. COMPASS has employed multiple recruitment modalities, 
including a population-based approach, a community-based approach, 
and a hospital/clinic-based approach. During their first visit to the 
research clinic, participants completed a survey questionnaire. Anthro
pometry and blood pressure are then measured. The COMPASS ques
tionnaire codebook can be found at https://compass.uchicago.edu/res 
earch/self-reported-questionnaire-data/. The residential address of 
each participant was geocoded and ascertained by our research staff. All 
participants in this study had valid residential addresses. 

From an initial sample size of 7409 eligible participants, blood 
samples of 650 participants were randomly selected for measurement of 
cardiometabolic biomarkers. The population analyzed in this study were 
enrolled into COMPASS between 2015 and 2019, thus were not 
impacted by COVID-19. All the participants lived in their current ad
dresses for more than three years. 

3.2. Cardiometabolic biomarker measurement 

Plasma levels of C-peptide, CKMB, ghrelin, IL-6, leptin, MCP-1, NT- 
proBNP, resistin, TNF-alpha and troponin I were analyzed by multiplex 
assays using Human Custom ProcartaPlex 12-Plex immunoassay (Life 
Technologies Corp, CA, USA). Briefly, plasma samples were vortexed 
and spun down. Twenty-five microliters of the plasma and standards 
were added to each well of a 96-well plate. Then assay buffer and 
multiplexed bead solution were added as per manufacturer’s protocol. 
After a 2-h incubation at room temperature, the detection Antibody 
mixtures were added to the plate followed by addition of Streptavidin- 
Phycoerythrin solution. After incubation and washing, the plate was 
analyzed on a Luminex 200 instrument (Luminex Corporation, Austin, 
Texas). The median fluorescent intensity (MFI) was used to determine 
the concentration of the analytes against the standard curve. Four 
parameter logistic (4 PL) curve was used to generate the standard curve. 
All the measures were in pg/mL. 

3.3. PM2.5 exposure assessment 

Ambient PM2.5 exposure data was obtained from the Atmospheric 
Composition Analysis Group at Washington University at St. Louis. 
Monthly surface PM2.5 levels for 1998–2021 were estimated by 
combining Aerosol Optical Depth retrievals from the NASA Moderate 
Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging 
SpectroRadiometer (MISR), and Sea-viewing Wide Field-of-view Sensor 
(SeaWiFS) instruments with the GEOS-Chem chemical transport model, 
and subsequently calibrating to global and North America ground-based 
observations using a Geographically Weighted Regression (Van Donke
laar et al., 2019, 2021; Hammer et al., 2020). The most updated high 
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resolution (0.01◦ × 0.01◦) datasets for surface PM2.5 levels in North 
America can be obtained on the website: https://sites.wustl.edu/aca 
g/datasets/surface-pm2-5/. No missing values were reported in our 
exposure assessment. 

We retrospectively assigned the PM2.5 exposure to each participant 
according to their residential addresses. The cumulative average PM2.5 
levels were generated over different exposure durations, from 1 month 
to 36 months prior to the date when the blood sample was collected. 

3.4. Potential confounders 

Based on prior publications in this cohort (Luo et al., 2022, 2023), we 
constructed a causal directed acyclic graph to select potential con
founders (supplemental figure S1). Accordingly, potential confounders 
adjusted in the final analysis included age (≤35, 36–45, 46–55, 56–65, 
>65), race/ethnicity (non-Hispanic White, non-Hispanic Black, other), 
gender (male, female), education (less than high school, high school, 
some college, college or more), household income (<$15,000, $15,000 - 
$34,999, $35,000 - $69,999 and >$69,999), neighborhood area depri
vation index (ADI, in quartiles), body mass index (BMI; <25, 25–29.9, 
30–39.9, >39.9), seasonality (January–March, April–June, July–Sep
tember, October–December), smoking (never, former, current), 
measured hypertension (yes, no), heart attack history (yes, no), and type 
2 diabetes (yes, no). Age, race/ethnicity, gender, education, household 
income, and heart attack history were collected through questionnaires. 
ADI is a composite score to measure neighborhood disadvantages and 
was retrieved at the census tract level based on participants’ residential 
address (Kind and Buckingham, 2018). BMI, hypertension, and type 2 
diabetes were measured and ascertained when participants visited our 
research clinic. Heart attack history was retrieved from the electronic 
health record. We also retrieved self-report hypertension medication 
use, given its influence on cardiometabolic profiles (Smith et al., 2014). 
However, since the hypertension medication variable was not on the 
backdoor pathway and had many missing values, we adjusted for this 
variable in the sensitivity analysis instead of our main analysis. 

3.5. Statistical analysis 

Among the ten cardiometabolic biomarkers in this study, four 
(ghrelin, resistin, leptin, and CK-MB) were measured in all participants, 
two (C-peptide and MCP-1) were under limit of detection (LOD) in 
<15% participants, and the remaining four (TNF-alpha, NT-proBNP, 
troponin, and IL-6) were under LOD in >40% participants (Table 1), 
leading to missing values in these biomarkers. Missing values in C- 
peptide and MCP-1 were imputed using LOD divided by 

̅̅̅
2

√
as suggested 

by prior practices (Richardson and Ciampi, 2003). Since the distribu
tions of ghrelin, resistin, leptin, CK-MB, C-peptide, and MCP-1 were 
right-skewed, the concentrations of these six biomarkers were 
log-transformed and treated as continuous variables in analysis to 
mitigate the influence of extreme values. TNF-alpha (Li et al., 2018), 

NT-proBNP (Welsh et al., 2022), troponin (Dionne et al., 2020), and IL-6 
(Mouawad et al., 1996) were grouped into binary variables using a 
cutoff of 8.1, 125, 0.04, 10 pg/mL, respectively, as suggested by clinical 
practices. Missing values in these four biomarkers were considered as 
below the cutoff. 

We used mixed effect models to estimate the association between 
PM2.5 exposure and the cardiometabolic biomarkers. Linear regression 
was used for continuous biomarker variables to estimate the average 
change (β) in the log-transformed level and the corresponding 95% 
confidence interval (CI). Logistic regression was used for binary 
biomarker variables to estimate the odds ratio (OR) for the high-level 
group and the corresponding 95% CI. The average PM2.5 exposure 
concentration level was treated as a continuous variable in the model; 
therefore, the results should be interpreted against 1 μg/m3 increase in 
PM2.5 level. The average PM2.5 concentration levels of different expo
sure durations were put in the model separately. To further eliminate 
potential confounding arising from spatial variations, we included 
random effects of residential zip codes for intercept in the model. We 
then described the trend of effect estimates across different exposure 
durations using a smoothing line generated from LOESS (Cleveland, 
1979). 

The models were adjusted for all aforementioned potential con
founders. Missing values in potential confounders were assumed to be 
missing at random and then imputed using the non-parametric random 
forest imputation algorithm (Shah et al., 2014). Compared to traditional 
parametric imputation algorithms, such as multivariate imputation by 
chained equations, the non-parametric random forest imputation algo
rithm avoids model misspecification and outperforms traditional algo
rithms in complex scenarios that involves non-linearity and interactions 
(Shah et al., 2014). All variables were used to generate the imputed data. 
Ten complete datasets were generated via imputation, and we employed 
the established analytical procedure to combine the results. 

In sensitivity analysis, we restricted our analysis to non-Hispanic 
Black people to avoid the influence of small sample size in other race/ 
ethnicity groups. Additionally, we adjusted for hypertension medication 
use in the sensitivity analysis. 

Statistical analysis in this study was performed using R 4.2.2 (R Core 
Team, Vienna, Austria). A two-tailed P-value< 0.05 was considered 
statistically significant. 

3. Results 

A total of 641 participants with valid measures of cardiometabolic 
biomarkers were analyzed in this study. The distributions of selected 
sociodemographic and medical characteristics are presented in Table 2. 
The study population was predominantly non-Hispanic Blacks (95.2%), 
more than 45% were above 55 years of age, over half reported an annual 
household income less than $15,000, and nearly 55% received high 
school education or less. The prevalence of obesity (BMI ≥30) and type 2 
diabetes was 40.5% and 10.5%, respectively. Only 5.1% reported a heart 

Table 1 
Descriptive statistics of selected serum cardiometabolic biomarker levels in this study.  

Biomarkers Min Q1 Median Mean Q3 Max N under LOD Cutoff value N (%) above cutoff 

Ghrelin (pg/mL) 76.99 1530.74 2701.57 3376.55 4584.90 17168.50 0 NA  
Resistin (pg/mL) 15.95 158.01 339.59 545.07 653.49 13588.20 0 NA  
Leptin (pg/mL) 3.98 976.85 2306.55 2897.62 4049.22 23015.40 0 NA  
C-peptide (pg/mL) 0.54 225.85 409.95 512.05 678.49 2901.25 62 NA  
CK-MB (pg/mL) 10.35 70.17 105.73 132.31 153.34 1805.77 0 NA  
MCP-1 (pg/mL) 0.02 3.34 8.82 17.49 20.60 450.96 99 NA  
TNF-alpha (pg/mL) 0.02 0.46 1.14 5.615 4.13 230.897 293 8.1 56 (8.7) 
NT-proBNP (pg/mL) 0.07 4.55 11.18 22.83 25.45 272.91 254 125 10 (1.6) 
Troponin (pg/mL) 1.46 63.78 144.04 258.54 249.96 1830.58 591 0.04 50 (7.8) 
IL-6 (pg/mL) 0.05 4.423 11.025 32.468 23.99 688.98 551 10 48 (7.5) 

CK-MB, creatine kinase myocardial band; IL-6, interleukin-6; LOD, limit of detection; MCP-1, monocyte chemoattractant protein-1; NT-proBNP, N-terminal pro B-type 
natriuretic peptide; TNF-alpha, tumor necrosis factor alpha. 
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attack history. Overall, the study population represents a population 
historically underrepresented in biomedical research. 

The average PM2.5 exposure concentration was 9 μg/m3 across all 
exposure durations in this study (Fig. 1; original values in Supplemental 
Table S1). In most exposure durations, the average PM2.5 concentrations 
ranged from 8 to 12 μg/m3. The Pearson correlations between car
diometabolic biomarkers analyzed in this study is presented in supple
mental figure S2. 

3.1. Continuous cardiometabolic biomarkers 

We observed significant associations of PM2.5 exposure with all six 
continuous cardiometabolic biomarker variables (Fig. 2; original values 

in Supplemental Tables S2 and S3). Over the exposure durations of 1–36 
months, the associations showed a two-stage change for ghrelin, C- 
peptide, MCP-1, resistin and leptin. Specifically, the association was 
strengthened as the exposure duration increased, and then weakened as 
the duration increased, presenting a U-shaped or inverted-U-shaped 
trend. However, these associations remained in the same direction. In 
contrast, the direction of association with CK-MB switch from negative 
to positive when exposure duration increased. 

Ghrelin was inversely associated with PM2.5 exposure across all 
exposure durations. The magnitude of the association exhibited a U- 
shaped trend across the exposure duration. This inverse association was 
steadily strengthened from β = − 0.03 (95% CI: − 0.06, 0.01) for 1-month 
exposure duration to β = − 0.46 (95% CI: − 0.57, − 0.35) for 19-month 
exposure duration, the strongest association for ghrelin. Beyond 19 
months, the association was attenuated as the exposure duration 
increased. However, a significant association (β = − 0.27, 95% CI: 
− 0.38, − 0.17) was still observed for the 36-month exposure duration. 

In contrast, PM2.5 exposure was positively associated with resistin 
and leptin, and these associations exhibited an inverted-U-shaped trend 
across the exposure durations. At the beginning, the associations for 1- 
month exposure duration were β = 0.05 (95% CI: 0.00, 0.09) for resis
tin and β = 0.01 (95% CI: − 0.03, 0.05) for leptin. These associations 
were steadily strengthened when the exposure duration increased. The 
exposure duration with the strongest associations for resistin and leptin 
were 13 months (β = 0.27, 95% CI: 0.13, 0.41) and 12 months (β = 0.25, 
95% CI: 0.13, 0.38), respectively. Then these associations were attenu
ated as the exposure duration increased. The attenuation rate was higher 
for resistin than for leptin. Specifically, the associations became non- 
significant for resistin from a duration of 24 months (β = 0.12, 95% 
CI: − 0.03, 0.26), and for leptin from a duration of 31 months (β = 0.12, 
95% CI: − 0.01, 0.22). 

The association for C-peptide appeared to exhibit an inverted-U- 
shaped trend across these exposure durations as well. The association 
between C-peptide and 1-month exposure was null (β = 0, 95% CI: 
− 0.10, 0.10), but then strengthened to be positive when exposure 
duration increased. C-peptide was not significantly associated with 
PM2.5 exposure until 25 months (β = 0.31, 95% CI: 0.00, 0.63), and the 
significant associations were observed between durations of 25–27 
months. After this period, the association weakened to non-significant. 

PM2.5 exposure was inversely associated with CK-MB when the 
exposure duration was short. For example, the association was β =
− 0.04 (95% CI: − 0.07, − 0.02) for 1-month exposure duration and β =
− 0.05 (95% CI: − 0.09, − 0.01) for 2-month exposure duration. How
ever, the direction of the association switched from negative to positive 
as the exposure duration increased. Positive associations was observed 
from a duration of 12 months onwards. The magnitude of the positive 
association reached the peak with 23-month exposure duration (β =
0.14, 95% CI: 0.04, 0.23), and remained roughly stable after that. 

Similar to resistin and leptin, MCP-1 was positively associated with 
PM2.5 exposure and this association exhibited an inverted-U-shaped 
trend over the exposure durations. Beginning from β = 0.13 (95% CI: 
0.01, 0.25) for 1-month duration, the association was strengthened as 
duration increased and had the strongest magnitude with 12-month 
exposure duration (β = 1.05, 95% CI: 0.69, 1.41). The association was 
eventually attenuated to non-significant from a duration of 30 months 
(β = 0.35, 95% CI: − 0.03, 0.73). 

3.2. Binary cardiometabolic biomarkers 

We also observed positive associations with all four binary car
diometabolic biomarker variables in this study (Fig. 3; original values in 
Supplemental Table S4). The magnitudes of associations exhibited an 
inverted-U-shaped trend across different exposure durations for TNF- 
alpha and troponin, while the trends were vague for NT-proBNP and 
IL-6. 

PM2.5 exposure was associated with higher odds for the high-level 

Table 2 
Distributions of selected sociodemographic and medical characteristics in the 
study population.  

Selected characteristics Study population (n = 641) 

Age, n (%) 
≤35 9 (1.4) 
36-45 115 (17.9) 
46-55 222 (34.6) 
56-65 219 (34.2) 
>65 76 (11.9) 

Race/ethnicity, n (%) 
Non-Hispanic Black 610 (95.2) 
Non-Hispanic White 6 (0.9) 
Hispanic 12 (1.9) 
Other 12 (1.9) 
Missing 1 (0.2) 

Gender, n (%) 
Female 412 (64.3) 
Male 229 (35.7) 

Education, n (%) 
< High school 234 (36.5) 
High school 179 (27.9) 
Some college 184 (28.7) 
College or more 44 (6.9) 

Household income, n (%) 
< $15,000 370 (57.7) 
$15,000 - $34,999 92 (14.4) 
$35,000 - $69,999 25 (3.9) 
> $69,999 51 (8.0) 
Missing 103 (16.1) 

BMI, n (%) 
<25 193 (30.1) 
25–29.9 167 (26.1) 
30–39.9 189 (29.5) 
>39.9 59 (9.2) 
Missing 33 (5.1) 

Seasonality 
January–March 160 (25.0) 
April–June 168 (26.2) 
July–September 160 (25.0) 
October–December 153 (23.9) 

Smoking status 
Never 166 (25.9) 
Former 78 (12.2) 
Current 397 (61.9) 

Measured hypertension 
No 303 (47.3) 
Yes 338 (52.7) 

Type 2 diabetes, n (%) 
No 574 (89.5) 
Yes 67 (10.5) 

Heart attack history, n (%) 
No 608 (94.9) 
Yes 33 (5.1) 

Area deprivation index national percentile 
Median (interquartile range) 70 (42–87) 

Hypertension medication intakea 

No 261 (40.7) 
Yes 205 (32.0) 
Missing 175 (27.3)  

a Not adjusted for in the main analysis. 
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groups of TNF-alpha and troponin. These associations were significant 
from a duration of 1 month, and then became stronger when duration 
increased. The associations reached the peak with 12-month duration 
for both TNF-alpha (OR = 2.70, 95% CI: 1.77, 4.11) and troponin (OR =
2.33, 95% CI: 1.49, 3.65). After a duration of 12 months, the associations 
weakened as the exposure duration increased. The association of 
troponin became non-significant from a duration 31 months (OR = 1.55, 
95% CI: 0.98, 2.46), while the association of TNF-alpha was still sig
nificant for a duration of 36 months (OR = 1.57, 95% CI: 1.03, 2.40). 

NT-proBNP was significantly associated with PM2.5 exposure only for 
short durations of 1 month (OR = 1.73, 95% CI: 1.19, 2.51) and 2 
months (OR = 1.73, 95% CI: 1.09, 2.73). The association then became 
non-significant when the exposure duration increased. The trend of as
sociation magnitudes was neither increasing nor declining. 

IL-6 was associated with PM2.5 exposure at the early stage as well. 
The significant association was observed between 1- and 5-month du
rations (e.g., for 4-month, the strongest association, OR = 1.57, 95% CI: 
1.13, 2.18). After these durations, the association generally exhibited a 
declining trend, and no significant association was observed. 

In sensitivity analysis, we restricted to non-Hispanic Black people 
and additionally adjusted for hypertension medication intake. The re
sults remained almost unchanged compared to those from our main 
analysis (supplemental figures S3 and S4). 

4. Discussion 

In this predominantly African American population of low SES that 
was historically under-represented in biomedical research, exposure to 
ambient PM2.5 was associated with a spectrum of changes in all ten 
cardiometabolic biomarkers investigated in this study. Specifically, 
PM2.5 exposure was positively associated resistin, leptin, C-peptide, 
MCP-1, TNF-alpha, NT-proBNP, troponin, and IL-6, and inversely asso
ciated with ghrelin; a mix of inverse and positive associations were 
observed for CK-MB. The magnitudes of these associations were 
dependent on exposure durations, suggesting that the sensitive exposure 
durations differ across these biomarkers. Findings from this study pro
vide insights regarding the latency period of the adverse effect of PM2.5, 

which offers opportunities for potential interventions. 
Ghrelin, resistin, leptin, and C-peptide are mainly related to energy 

metabolism, while they also play roles in inflammation (Meier and 
Gressner, 2004). Ghrelin stimulates food intake, and a low ghrelin level 
can be an indicator for obesity and type 2 diabetes. Resistin acquired its 
name because of its role in insulin sensitivity. The resistin level was 
elevated in individuals with insulin resistance, obesity, and type 2 dia
betes. Leptin regulates energy balance, and its level is generally pro
portional to body fat mass. C-peptide is used as a marker of insulin 
secretion as it is secreted in equimolar amounts to insulin. The inverse 
association of ghrelin and positive associations of resistin, leptin, and 
C-peptide observed in this study suggests higher risks for insulin resis
tance, obesity, and type 2 diabetes, as supported by prior studies (Bowe 
et al., 2018; Chen et al., 2016). The significant associations for ghrelin, 
resistin, and leptin was observed in a short duration of only 1 or 2 
months, further corroborating the conclusion about the adverse effects 
of short-term PM2.5 exposure on insulin resistance (Bowe et al., 2018; 
Chen et al., 2016). Notably, the effect magnitude changed across 
different exposure durations, but were most pronounced for a duration 
of around 12 months for resistin and leptin, 18 months for ghrelin, and 
24 months for C-peptide. The changing magnitude implies that on one 
hand the adverse effect of PM2.5 exposure can be chronic and accumu
lative, and on the other hand these biomarkers are unable to completely 
reflect the very long-term effect PM2.5 exposure. Findings from this 
study also suggest that the sensitive exposure duration for different 
cardiometabolic biomarkers vary. 

The link between PM2.5 exposure and metabolic disorders is 
accompanied with systemic inflammation, as indicated by positive as
sociations of biomarkers including MCP-1, TNF-alpha, and IL-6 that are 
closely related and can influence each other’s production and activity 
through complex signaling pathways (Jain et al., 2009). Systemic 
inflammation is a long-standing established pathway for the adverse 
effect of PM2.5 exposure as supported by solid experimental evidence 
(Rajagopalan et al., 2018b). In population studies, investigations of 
MCP-1 and TNF-alpha generally focused on short-term PM2.5 exposure 
and reported elevated MCP-1 and TNF-alpha levels associated with high 
PM2.5 exposure levels (Chen et al., 2015; Dadvand et al., 2014; Zhang 

Fig. 1. Boxplots of average PM2.5 concentrations of different exposure durations in the study.  

J. Luo et al.                                                                                                                                                                                                                                      



Environmental Research 240 (2024) 117496

6

et al., 2022; Xia et al., 2019; Tseng et al., 2022). Our findings corrobo
rated these conclusions and further demonstrate that the utilization of 
short exposure duration might underestimate the adverse effects of 
PM2.5 exposure. Again, these findings suggest that the adverse effect of 
PM2.5 exposure on systemic inflammation can be chronic and 
accumulative. 

Systemic inflammation elicited by PM2.5 exposure is widely consid
ered as a major contributor to a higher risk for cardiovascular diseases. 
In this study, results for CK-MB and troponin, two biomarkers closely 
related to heart injury, provides evidence for this hypothesis at the 
population level. Few studies have investigated the association between 
cardiac troponin levels and air pollution, and they have focused on 
short-term exposures (Wyatt et al., 2022). Troponin is a more specific 
marker of heart damage than CK-MB, as it is only found in the heart 
muscle and not in other parts of the body. Elevated levels of troponin in 
the blood indicate that there has been damage to the heart muscle. The 
stronger association between long-term PM2.5 exposure and troponin 

suggests that this effect is accumulative. CK-MB, on the other hand, is 
also found in other muscles, such as skeletal muscle, and can be elevated 
in cases of muscle damage or injury, in addition to heart damage. 
However, in the context of suspected heart diseases, elevated levels of 
CK-MB could indicate cardiac damage. It is very interesting to observe 
an inverse association between CK-MB and short-term PM2.5 exposure. 
This inverse association could be due to protective mechanisms such as 
anti-oxidant defense, or a chance findings. But when the PM2.5 exposure 
was prolonged, the association for CK-MB switched to positive and 
became stable. Compared to troponin, the association for CK-MB better 
reflects the long-term and accumulative damages caused by PM2.5 
exposure. 

NT-proBNP is a hormone that is released by the heart in response to 
increased pressure or volume in the heart’s chambers, thus usually used 
as an indicator of cardiac health. We observed a significant association 
of NT-proBNP and 1-month exposure duration. However, this does not 
necessarily mean that long-term PM2.5 would not influence NT-proBNP 

Fig. 2. Associations of average PM2.5 concentrations over different exposure durations with continuous cardiometabolic biomarkers in linear regression. The grey 
area indicates 95% confidence interval. The red vertical line indicates the strongest association over these exposure durations. The blue curve is the smoothing line 
generated from LOESS that describes the trend of effect estimates over these exposure durations. The mixed effect models were adjusted for age (35–39, 40–44, 
45–49, 50–64, 65+), race/ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic, other), gender (male, female), education (less than high school, high school, 
some college, college or more), household income (<$15,000, $15,000 - $24,999, $25,000 - $34,999 and >$34,999), body mass index (BMI; <25, 25–29.9, 30–39.9, 
>39.9), seasonality (January–March, April–June, July–September, October–December), smoking status (never, former, current), hypertension (yes, no), type 2 
diabetes (yes, no), and heart attack history (yes, no), and neighborhood area deprivation index (ADI, in quartiles). 
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levels. It should be noted that only 10 participants were categorized as 
high NT-proBNP group. The limited sample size might prevent us 
drawing reasonable conclusion about NT-proBNP. 

This study underscores the clinical significance of PM2.5 exposure, 
providing evidence for its associations with crucial cardiometabolic 
biomarkers over time. Given the systemic nature of inflammation and its 
central role in many chronic diseases, the positive associations of PM2.5 
with inflammatory markers like MCP-1, TNF-alpha, and IL-6 are 
particularly alarming. On the other hand, the most sensitive time win
dow for these associations identified in this study provides insights for 
potential interventions to mitigate the adverse health effects of PM2.5 
exposure, reinforcing the need for comprehensive public health strate
gies. These strategies should encompass stringent air quality control 
policies, community health monitoring, targeted healthcare services, 
and population-specific research to unravel the nuanced health impacts 
of air pollution in diverse communities. The unique findings concerning 
biomarkers like CK-MB and NT-proBNP, coupled with the limited sam
ple size for the high NT-proBNP group, underscore the necessity for 
further research. The future research should be aimed at understanding 
the underlying biological mechanisms, refining predictive models for 
health outcomes, and developing preemptive interventions to safeguard 
cardiovascular health in susceptible populations exposed to PM2.5. 

The most sensitive exposure duration varied for different biomarkers 
investigated in this study. A duration of 12 months can be a critical time 
window, because we observed the strongest association with this dura
tion for resistin (13 months), leptin, TNF-alpha, and troponin. For CK- 
MB, we observed a positive association beginning from 12 months 
exposure. These findings are unlikely to occur by chance. We posit that 
the adverse effects of PM2.5 exposure on different aspects of human 
bodies are synchronous. In contrast, ghrelin and C-peptide had longer 

sensitive exposure duration, while NT-proBNP and IL-6 had shorter 
sensitive exposure durations. The varying exposure durations also sug
gests that we can use different biomarkers to measure the impact of 
PM2.5, though more studies are needed to examine these durations in 
other cohorts. 

Several large-scale studies on the relationship between PM2.5 expo
sure and clinical diagnosis of cardiovascular diseases usually focus on 
long-term exposures, for example, 8 years (Bowe et al., 2018) and even 
10 years (Di et al., 2017). Leveraging on cardiometabolic biomarkers, 
we found that the adverse effects of PM2.5 can be evident in short 
exposure durations, with the most pronounced effect in a duration of 
nearly 12 months, even when the exposure level is as low as 9 μg/m3 in 
this study. The findings support more interventions to further reduce air 
pollution and improve population health. 

There are several limitations to consider in this study. First, the study 
population may not be nationally representative, nor was it designed to 
be geographically representative. The oversampling of disadvantaged 
groups can be a strength, but also leads this study to suffer from 
generalizability problems. Since African Americans are more vulnerable 
to the adverse effect of PM2.5 exposure as suggested by prior studies, the 
strong effects observed in this study may not apply to other cohorts. 
Second, the air pollution variation is low in study, as most exposure 
levels fell between 8 and 12 μg/m3. Therefore, results in this study may 
not be applied to more polluted areas, for example, the PM2.5 exposure 
level in China is usually reported to be around 50 μg/m3, almost five 
times that of the concentration levels in the US (Liu et al., 2019). 
However, the strong effect associated with low concentration level 
further corroborate the adverse effect of air pollution. Third, the current 
study does not link changes in cardiometabolic biomarkers with specific 
clinical diagnoses, though measured hypertension and heart attack 

Fig. 3. Associations of average PM2.5 concentrations over different exposure durations with binary cardiometabolic biomarkers in logistic regression. The grey area 
indicates 95% confidence interval. The red vertical line indicates the strongest association over these exposure durations. The blue curve is the smoothing line 
generated from LOESS that describes the trend of effect estimates over these exposure durations. The mixed effect models were adjusted for age (35–39, 40–44, 
45–49, 50–64, 65+), race/ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic, other), gender (male, female), education (less than high school, high school, 
some college, college or more), household income (<$15,000, $15,000 - $24,999, $25,000 - $34,999 and >$34,999), body mass index (BMI; <25, 25–29.9, 30–39.9, 
>39.9), seasonality (January–March, April–June, July–September, October–December), smoking status (never, former, current), hypertension (yes, no), type 2 
diabetes (yes, no), and heart attack history (yes, no), and neighborhood area deprivation index (ADI, in quartiles). 
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history were adjusted for in the analysis. While our observations suggest 
a latency period for the PM2.5 exposure effect, there are sufficient data in 
the literature demonstrating that acute PM2.5 exposure can triggers a 
pro-thrombotic state and cause ischemic damage to organs with blood 
flow through end arteries such as the heart, brain and other vital organs 
(Wylie et al., 2017; Li et al., 2022; Dutta et al., 2018). How these changes 
eventually lead to clinical diagnosis and whether any intervention on 
these biomarkers would benefit the population should be investigated in 
future studies. Fourth, we only included one air pollutant, PM2.5, in this 
study. It is unknown how other pollutants (e.g., NO2 and O3) interact 
with PM2.5 jointly affecting cardiometabolic profiles. To our knowledge, 
there is no data on monthly exposure to other pollutants that covers our 
study period. Therefore, we are unable to conduct a similar analysis for 
other pollutants at this moment. Future studies may evaluate if other air 
pollutants also demonstrated duration-sensitive associations as observed 
for PM2.5 in this study. Last, this study is cross-sectional in nature, even 
though we were able to assign the air pollution level retrospectively. 
Therefore, caution is needed when we established a relationship be
tween PM2.5 exposure and one-time biomarker measures. 

In conclusion, this study investigated the association between PM2.5 
exposure and changes in cardiometabolic biomarkers across exposure 
durations ranging from 1 to 36 months. PM2.5 exposure was significantly 
associated with elevated levels in resistin, leptin, C-peptide, CK-MB, 
MCP-1, TNF-alpha, NT-proBNP, troponin, and IL-6, and a reduced 
level in ghrelin. The results suggest that the magnitudes of these asso
ciations may be dependent on exposure duration. The strongest associ
ation was observed with a duration of nearly 12 months for resistin, 
leptin, TNF-alpha, and troponin, a duration of more than 18 months for 
ghrelin and C-peptide, and a duration of 1–4 months for NT-proBNP and 
IL-6. 
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