
EC
O

N
O

M
IC

SC
IE

N
CE

S
A

PP
LI

ED
M

A
TH

EM
A

TI
CS

Aversion to ambiguity and model misspecification in
dynamic stochastic environments
Lars Peter Hansena,b,c,1,2 and Jianjun Miaod,e,f,1

aDepartment of Economics, University of Chicago, Chicago, IL 60637; bDepartment of Statistics, University of Chicago, Chicago, IL 60637; cBooth School of
Business, University of Chicago, Chicago, IL 60637; dDepartment of Economics, Boston University, Boston, MA 02215; eInstitute of Chinese Financial Studies,
Southwestern University of Finance and Economics, Chengdu 610074, China; and fChina Economics and Management Academy, Central University of
Finance and Economics, Beijing 100081, China

Contributed by Lars Peter Hansen, July 27, 2018 (sent for review June 29, 2018; reviewed by Fabio Maccheroni and Tomasz Strzalecki)

Preferences that accommodate aversion to subjective uncertainty
and its potential misspecification in dynamic settings are a valu-
able tool of analysis in many disciplines. By generalizing previ-
ous analyses, we propose a tractable approach to incorporating
broadly conceived responses to uncertainty. We illustrate our
approach on some stylized stochastic environments. By design,
these discrete time environments have revealing continuous time
limits. Drawing on these illustrations, we construct recursive
representations of intertemporal preferences that allow for penal-
ized and smooth ambiguity aversion to subjective uncertainty.
These recursive representations imply continuous time limiting
Hamilton–Jacobi–Bellman equations for solving control problems
in the presence of uncertainty.

uncertainty | robustness | misspecification | ambiguity | risk

In statistics, control theory, decision theory, and economics,
the question of how to cope with subjective uncertainty comes

into play. While researchers have developed many different
approaches, it is standard in decision theory to impose axioms on
preferences over choices. Axiomatic decision theory justifies rep-
resentations of preferences that provide applied researchers with
alternative ways to capture uncertainty responses. In applications,
however, a decision maker must decide how to calibrate prefer-
ence parameters, including aversion to ambiguity, and to model
misspecification. An important issue that arises is how to transport
these parameters across alternative environments, a question to
which existing axiomatic treatments provide little guidance.

It has become common practice within economics to transport
risk-aversion parameters and subjective discount rate parame-
ters from one environment to another. Through some exam-
ples, we suggest that a mechanical implementation of the same
approach is not appealing for some forms of aversion to ambigu-
ity and model misspecification that interest us. These examples
are not only of interest in their own right, but they also provide
guidance as to meaningful continuous time limiting counterparts
to Hamilton–Jacobi–Bellman (HJB) equations, for which the
aversions contribute in the limit.

We build our analysis in multiple steps. We first use a version
of Shannon’s relative entropy to quantify uncertainty. Specifi-
cally, in section 1, we present a relative entropy decomposition
of the joint probability distribution over a future observation
and an unknown parameter that we find to be revealing when
conceptualizing various forms of aversion. In section 2, we pose
two alternative static robustness problems using relative entropy
penalizations. Both are special cases of the variational prefer-
ences axiomatized by refs. 1 and 2. The first underlies the known
connection between risk sensitive and robust control dating back
to ref. 3. As we illustrate, this problem features the potential
misspecification of the predictive density familiar from statistics.
A second problem targets a concern about prior misspecifica-
tion. In section 3, we solve these two problems using examples
and explore some limits. By changing the exposure to an under-
lying shock, we distinguish in a sharp way the contributions
from the likelihood and before the relative entropy of the joint

distribution. We provide a way to scale aversion parameters so
that their impact remains intact, even in the limiting economy.

The limits that we explore in section 3 are, by design, valu-
able inputs into the formulation and calibration of uncertainty
preferences in dynamic stochastic environments. For example,
in section 4, we study the impact of compounding the assess-
ments of risk, ambiguity, and the potential for misspecification of
subjective probabilities in a sequence of simple recursive learn-
ing environments. We also explore a convenient parametrization
of smooth ambiguity specification from ref. 4, which we know
from ref. 5 sometimes can be motivated by an aversion to prior
uncertainty. We use these calculations to shed light on how
to parameterize aversion to ambiguity and model misspecifi-
cation across alternative dynamic environments, including an
environment that emerges as a continuous time limit. Finally, in
section 5, we propose a more general continuous time specifica-
tion with distinct forms of aversions to alternative uncertainty
components. This provides a counterpart of the discrete time
specifications of refs. 5, 6, and 7. Moreover, it provides HJB
equations that allow a decision maker to confront uncertainty in
its various forms.

1. Entropy Penalization
Relative entropy is an attractive and tractable measure of dis-
crepancy between probability measures. We use it to guide our
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formulation of preferences for a decision maker with an aversion
to model ambiguity and concerns about misspecification. As a
precursor to formulating such preferences, we explore the rela-
tive entropy relations between priors, likelihoods, and predictive
densities in a static setting.

We start with a prior distribution π for hypothetical parameter
values θ over a set Θ and a likelihood λ that informs us of the
density for possible outcomes y ∈Y given θ (with respect to a
measure τ). Let p denote the implied joint probability measure
over Y ×Θ:

p(dy , dθ) =λ(y |θ)τ(dy)π(dθ).

The corresponding predictive density for y that integrates over
θ is

φ(y) =

∫
Θ

λ(y |θ)π(dθ).

In our analysis, it is the predictive density that the decision maker
cares about when taking actions, but he or she has uncertainty
about subjective inputs into its construction. We introduce base-
line counterparts with ·̂ and explore discrepancies relative to
these baselines.

The relative entropy discrepancy of the joint distribution for
outcomes and parameters is defined as

D (p | p̂) =

∫
Θ

log

[
dπ

d π̂
(θ)

]
π(dθ)

+

∫
Θ

∫
Y
λ(y |θ) log

[
λ(y |θ)
λ̂(y |θ)

]
τ(dy)π(dθ), [1]

where we presume that p is in a set P of probability measures
that are absolutely continuous with respect to the baseline p̂.
This representation gives us two potential contributions to rel-
ative entropy: one coming from differences in the prior and the
other coming from differences in the likelihood.

As we show in SI Appendix, there is an equivalent way to
represent the same relative entropy in terms of predictive densi-
ties and posterior distributions, where the posterior distribution,
π+, is

π+(dθ | y) =
λ(y | θ)
φ (y)

π(dθ)

and π̂+ is defined analogously.

2. Relative Entropy and Robustness Problem
In this section, we pose and solve two problems that adjust for
robustness. These problems are the ingredients to preferences
that capture a concern for robustness. While both use relative
entropy to constrain the robustness assessment, one does so in a
more restricted way to target the robust choice of a prior. The
solutions to both are special cases of the solution to a more
general problem that entails exponential tilting toward lower
expected utilities.

Consider the first robust evaluation of a y-dependent utility
U(y).

Problem 2.1.

min
p∈P

∫
U (y)dp +κD (p | p̂).

A more primitive starting point would be to write Ũ (a, y),
where a is chosen before y is observed. We may then rank alter-
native actions using the corresponding solutions to this problem.
Notably, we presume that the utility function does not depend on
the unknown parameter.

In this problem, κ> 0 is a parameter that penalizes the search
for robustness in the likelihood and prior. The κ=∞ limit

enforces a commitment to the baseline specifications. Since the
function U(y) depends only on y and not on θ, the solution
distorts only the predictive density

φ∗(y) =
exp

[
− 1

κ
U (y)

]
φ̂(y)∫

Y exp
[
− 1

κ
U (y)

]
φ̂(y)τ(dy)

and not the posterior π+ of θ given y . The resulting minimized
objective is

−κ log

∫
Y

exp

[
− 1

κ
U (y)

]
φ̂(y)τ(dy).

The exponential tilting toward outcomes y with lower utility
is familiar from the extensive literature applying relative entropy
penalizations in control and estimation problems. In particular,
Problem 2.1 has the same solution as

min
φ

∫
Y
U (y)φ(y)τ(dy)

+κ

∫
Y

[
log φ(y)− log φ̂(y)

]
φ(y)τ(dy).

This latter problem is the static counterpart to the dynamic
recursive specification used extensively in robust control theory:
for instance, refs. 3, 8, 9, 10, and 11.∗ While the construc-
tion of the predictive density φ̂ embeds the reference prior
π̂, prior sensitivity is only confronted in an indirect way by
Problem 2.1 through potential modifications in the predictive
density.

As an alternative, we target prior robustness by restricting λ=

λ̂. This eliminates specification concerns about the likelihood.
One justification for this omission is that uncertainty about how
a prior weights alternative likelihoods already gives us a way to
capture many forms of likelihood uncertainty. Let Π denote the
set of priors that are absolutely continuous with respect to π̂ and
solve Problem 2.2.

Problem 2.2.

min
π∈Π

∫
U (θ)π(dθ) +κ

∫
Θ

log

[
dπ

d π̂
(θ)

]
π(dθ),

where
U (θ)≡

∫
Y
U (y)λ̂(y |θ)τ(dy).

Notice that U is constructed without likelihood uncertainty. In
using the formulation to investigate prior sensitivity, we penalize
only the prior contribution to relative entropy. This formulation
follows ref. 5.

The solution to this problem gives the worst case prior

π∗(dθ) =
exp

[
− 1

κ
U (θ)

]∫
Θ

exp
[
− 1

κ
U (θ)

]
π̂(dθ)

π̂(dθ),

provided that the right-hand side integral is finite. The optimized
objective is

−κ log

∫
Θ

exp

[
− 1

κ
U (θ)

]
π̂(dθ). [2]

The solution to this particular problem is recognizable as a
smooth ambiguity objective and a special case of ref. 4.†

∗Fabio Maccheroni reminded us that an alternative way to connect with this robust
control theory literature is to impose a prior with a point mass on a single value of θ

and targeting only likelihood uncertainty.
†Refs. 12 and 13 discuss earlier motivations for smooth ambiguity decision problems.
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3. Revealing Family of Stochastic Environments
We study Problems 2.1 and 2.2 for a family of stochastic envi-
ronments to illustrate the impacts of the penalization. We design
these illustrations to serve as a precursor to formulating continu-
ous time limits to be used in a dynamic setting. They will provide
input into formulations of HJB equations for continuous time
decision problems.

Consider a parameterized family of log-normal random vari-
ables indexed by ε, and assume a logarithmic utility function
U :

U (Yε) = logYε, logYε = y0 +µ (θ)ε− 1

2
|ς|2 ε+ ς ·Zε, [3]

where µ is a measurable function of θ and Zε is a normally dis-
tributed random vector with mean 0 and covariance matrix εI .‡

We find it convenient to think of ε> 0 as an interval of time and
{Zε : 0≤ ε≤ 1} as a multivariate standard Brownian motion.

Under the φ̂ε predictive density, logYε is distributed as a mix-
ture of a prior distribution π̂ for θ and a normal distribution with
mean

yo + εµ(θ)− ε

2
|ς|2

and variance ε|ς|2. For pedagogical simplicity, we consider
the small ε approximation, whereby the distribution for logYε

implied by φ̂ε is normal with mean yo + ε
∫

Θ
µ(θ)π̂(dθ)− ε

2
|ς|2

and variance ε|ς|2. The minimized objective in Problem 2.1 is

−κ log

∫
Y

exp

[
− 1

κ
U (y)

]
φ̂ε(y)τ(dy)

≈ yo + ε

[∫
Θ

µ(θ)π̂(dθ)−
(

1

2
+

1

2κ

)
|ς|2
]
.

Thus, up to the first-order approximation in ε, the decision maker
targets concerns about misspecified likelihoods in contrast to
misspecified priors.

Consider now Problem 2.2, where

U ε(θ)≡
∫
Y

log(y)λ̂ε(y |θ)τ(dy). [4]

The minimized objective is given by

−κ log

∫
Θ

exp

[
− 1

κ
U ε(θ)

]
π̂(dθ)

≈ yo + ε

[∫
Θ

µ (θ)π̂(dθ)− |ς|
2

2

]
,

which is the same as the expected utility level under π̂ up to
the first-order approximation in ε. Thus, the robustness adjust-
ment vanishes to the first order in ε. In contrast, the risk-
aversion adjustment associated with logarithmic utility remains
present.

Why is this the case? The probability distribution for Yε

becomes concentrated as ε becomes small conditioned on θ.
The same is true of the predictive distributions for alternative
priors. By contrast, the prior divergence contribution to rel-
ative entropy does not depend on ε. This difference in how
the prior and likelihoods behave as a function of ε causes
the entropy penalty relative to the utility distortion to con-
verge to infinity as ε goes to zero. Thus, the solution to Prob-
lem 2.2 implies no robustness adjustment up to a first-order
approximation.

‡We use |·| to denote the Euclidean norm and I to denote an identity matrix.

As an alternative, we alter Problem 2.2 by letting the prior
divergence scale in ε so that the consequence and cost of alter-
ing priors have comparable magnitudes up to the first order in ε.
Thus, we allow κ to depend on ε by setting κ(ε) =κdε for some
constant κd > 0 and consider Problem 3.1.

Problem 3.1.

min
π∈Π

∫
Θ

U ε(θ)π(dθ) + εκd

∫
Θ

log

[
dπ

d π̂
(θ)

]
π(dθ).

The minimized objective is now given by

−εκd log

∫
Θ

exp

[
− 1

εκd
U ε(θ)

]
π̂(dθ).

Plugging Eq. 4 into this expression yields

y0 + ε

{
−κd log

∫
Θ

exp

[
− 1

κd
µ(θ)

]
π̂(dθ)

}
− ε

2
|ς|2.

We may interpret the term in {·} as the certainty equivalent of
µ (θ) adjusted for robustness. By Jensen’s Inequality, it is lower
than the Bayesian mean of µ(θ) under the baseline prior. This
captures utility cost associated with the robust prior adjustment.
The worst case prior is given by

π∗ε (dθ) =
exp

[
− 1

εκd
U ε(θ)

]
π̂(dθ)∫

Θ
exp

[
− 1

εκd
U ε(θ)

]
π̂(dθ)

→
exp

[
− 1

κd
µ (θ)

]
π̂(dθ)∫

Θ
exp

[
− 1

κd
µ (θ)

]
π̂(dθ)

as ε→ 0. Therefore, by reducing the penalization proportionally
to ε, the exponential tilting applies to the first derivative of the
objective function U with respect to ε. In so doing, we are left
applying a particular smooth ambiguity adjustment to the local
mean of U (Y ) conditioned on θ. The worst case prior puts more
weight on the lower values of the mean µ (θ).

We see little motivation for holding fixed the robustness penal-
ization as we change ε. While the suggested adjustment is at the
moment ad hoc, we will provide additional motivation in our
subsequent analysis. In particular, this scaling lends itself to the
study of prior robustness within a continuous time setting for
dynamic decision problems.

The same issue emerges with other approaches to ambiguity
as in the smooth ambiguity model in ref. 4. With that perspec-
tive, we view − 1

κ(ε)
as an exponential adjustment for ambiguity

aversion capturing a differential preference response for expo-
sure to ambiguity induced by a prior over θ, in contrast to risk
conditioned on the parameter θ. By holding κ(ε) fixed inde-
pendent of ε, we reproduce a claim in ref. 14. By instead using
κ(ε) = εκd , we obtain a limiting hyperbolic parameterization of
smooth ambiguity aversion.

4. Recursive Risk and Smooth Ambiguity Aversion
We now explore consequences of compounding risk, ambiguity,
and misspecification aversion over time. We continue to find the
environment in section 3 captured in ref. 3 to be revealing from
a pedagogical standpoint, allowing us to draw on some of our
previous insights. The calculations in this section illustrate how
risk compounds in rather different ways than uncertainty about
priors over parameters. The resulting differences are pertinent
to how we conceive of ambiguity and misspecification aversion
in dynamic environments in general and in continuous time limit
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environments in particular.§ Given that there are known ways
for ambiguity and misspecification aversion to have an impact
on preferences in discrete time, we find it most appealing to
adopt parameterizations with more meaningful and revealing
continuous time limits.

In what follows, partition the interval [0, 1] into subintervals
of length 1/n , and let ε= 1/n . Let Fε

jε be the sigma algebra
generated by θ and {Y0,Y1ε,Y2ε, . . . ,Yjε} for j = 0, 1, 2, . . . ,
n − 1.

A. Risk Aversion. We first consider a recursive construction of
risk aversion over subintervals. Introduce a certainty equivalent
operator applied to a positive random variable X that is Fε

t+ε

measurable:

Rε,t(X )≡
(
E
[
X 1−γ | Fε

t

]) 1
1−γ ,

where t = j ε and γ > 0 represents the risk-aversion parameter.
For γ= 1, Rε,t(X )≡ exp [E (logX | Fε

t )]. Note that

logRε,t (Yt+ε) = logYt + ε
[
µ(θ)− γ

2
|ς|2
]

for ε> 0. The risk adjustment εγ|ς|2/2 scales with ε.
Introduce a recursive construction for the certainty equivalent

of the terminal consumption Y1,

Ut =Rε,t (Ut+ε), U1 =Y1 [5]

for t = 0, ε, . . . , (n − 1)ε. We show that

U0 =R1,0 (Y1) =Y0 exp
[
µ(θ)− γ

2
|ς|2
]

for any value of ε. Notice that, in the recursive construction
on the right-hand side of Eq. 5, we use the same risk-aversion
coefficient γ in the certainty equivalent operator for any ε.
This simple example shows why the common practice of hold-
ing γ fixed across environments (in our case, indexed by ε)
can be sensible, even as we shrink the exposure to risk by
looking at small time intervals, due to the law of iterated
expectations.

B. Parameter Learning. Before investigating a recursive specifica-
tion of smooth ambiguity, we remind readers of Bayesian updat-
ing within this setting. Analogous to our previous discussion, we
let Gεjε be the sigma algebra generated by {Y0,Y1ε,Y2ε . . . ,Yjε}
for j = 0, 1, 2, . . . ,n − 1, but we exclude the random param-
eter θ from the construction. The resulting family {Gεjε : j =
0, 1, 2, . . . ,n − 1} captures the reduced information structure for
a decision maker that does not know the parameter realization.
For simplicity, let µ (θ)= θ.

Suppose that the date 0 prior for θ is normal with mean
m0 and variance q0. Only data on Y are used to make infer-
ences about θ. The posterior conditioned on Gεt is normal with
mean mt and variance qt . The Bayesian recursive updating for
mt+ε is

mt+ε−mt =

qt
|ς|2 + εqt

(
logYt+ε− logYt − εmt +

ε

2
|ς|2
)

, [6]

§The calculations build in part on the prior work in ref. 15, which first discussed produc-
tive ways for robustness concerns to persist in a continuous time limiting specification.
Our analysis here addresses these issues more generally and forges connections to a
broader collection of previous contributions.

and the conditional variance update is

qt+ε− qt =
ε(qt)

2

|ς|2 + εqt
. [7]

Both equations have well-known continuous time limits. The
limiting version of Eq. 6 for the conditional mean is

dmt =
qt
|ς|2

(
d logYt −mtdt +

|ς|2

2
dt

)
,

and the limiting version of Eq. 7 is

dqt
dt

=− (qt)
2

|ς|2 .

C. Recursive Robust Priors. Analogous to ref. 2, define a certainty
equivalent robustness adjustment operator

Bε,t(X )≡−κ(ε) logE

[
exp

(
− 1

κ(ε)
X

)
| Gεt
]

for a random variable X that is Fε
t measurable. Here, we allow

the robustness parameter κ(ε)> 0 to depend on ε. Motivated
by the static model in sections 3 and 4, we define the recur-
sive adjustment for robust priors for log utility over the terminal
consumption Y1,

logBt =Bε,t [E (logBt+ε | Fε
t )], B1 =Y1, [8]

for t = 0, ε, . . . , (n − 1)ε.
We show in SI Appendix that

logBt = logYt + (1− t)mt + bt ,

where

bt+ε− bt =
ε2

2κ(ε)
qt

(
|ς|2 + (1− t)qt
|ς|2 + εqt

)2

+
ε|ς|2

2
.

From this formula, we see that the worst case prior/posterior
for θ has a mean given by

mt −
ε

κ(ε)
qt

(
|ς|2 + (1− t)qt
|ς|2 + εqt

)
.

If the robustness parameter κ(ε) is held constant independent
of ε, then robustness vanishes in the continuous time limit as
ε→ 0. By contrast, we let κ(ε) =κdε as in Problem 3.1 so that
penalization used in making robust prior/posterior adjustments
scales with ε. Take small ε limits, and find

dbt
dt

=
1

2κd
qt

(
|ς|2 + (1− t)qt

|ς|2

)2

+
|ς|2

2
.

The first term on the right-hand side is the recursive robust-
ness adjustment that remains present in a continuous time limit
because of how we scale the robustness penalty as a function
of ε.

D. Risk Aversion and Smooth Ambiguity. We next explore “smooth
ambiguity adjustments” from ref. 4 over different time inter-
vals, including ones that are arbitrarily small. For X that is Fε

t

measurable, define a certainty equivalent operator

Aε,t(X )≡
[
E
(
X−α(ε)|Gεt

)]− 1
α(ε)

,

9166 | www.pnas.org/cgi/doi/10.1073/pnas.1811243115 Hansen and Miao
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where α(ε)> 0 may depend on ε and captures aversion to the
uncertainty about the unknown parameter θ.

We now investigate how recursive smooth ambiguity behaves
as a function of ε. Define smooth ambiguity adjustments
recursively for utility over the terminal consumption Y1,

At =Aε,t [Rε,t (At+ε)] , A1 =Y1. [9]

In SI Appendix, we show that

logAt = logYt + (1− t)mt + at ,

where

at+ε− at=

1

2

(
|ς|2 + (1− t)qt
|ς|2 + εqt

)2 [
ε(γ− 1)|ς|2 +α(ε)ε2qt

]
+
ε|ς|2

2

and a1 = 0.
Consistent with our earlier discussion of smooth ambigu-

ity over small time intervals, by letting α(ε) be the same for
all ε> 0, smooth ambiguity contributes only a second-order
adjustment.¶

In contrast, by adopting a hyperbolic parameterization α(ε) =
αh
ε

, the smooth ambiguity contribution becomes first order
and does not vanish in a continuous time limit. With this
specification, the continuous time limiting equation becomes

dat
dt

=
1

2

(
|ς|2 + (1− t)qt

|ς|2

)2 [
αhqt + (γ− 1)|ς|2

]
+
|ς|2

2
.

It matches our robust prior recursion At =Bt by setting γ=
1 and αh = 1

κd
. Thus, the smooth ambiguity adjustments are

equivalent to robust prior adjustments when using a logarithmic
specification of risk aversion.

In obtaining the limiting recursion, we held the risk-aversion
parameter the same over environments indexed by ε, while we
scaled the ambiguity aversion or robustness parameter with ε.
While there is no perfect way to transform ambiguity-aversion
parameters across environments with different discrete time
increments, the embedding that we suggest has the virtue of pos-
sessing a tractable continuous time limit. While we may think
that setting α(ε) = αh

ε
amounts to imposing “infinite” ambiguity

aversion in the continuous time limit, this is misguided in our
view. Notice that, in the continuous time limit, αh scales the vari-
ance associated with estimation. As an analogy to our scaling, let
0<β < 1 denote the discount factor over a unit of time. Then, we
think of β

1
n as the discount factor over an interval 1

n
, which in the

large n limit, implies a unit discount factor in the limit. However,
in fact, the rate − log β continues to play a role of discounting in
the continuous time limit.

5. Implications for Stochastic Control
Let (Ω,F , P)be a probability space, and time is continuous over
[0,T ]. Let {Yt : t ≥ 0} be an observable stochastic process and
θ be an unknown parameter. Let {Ft} be the filtration gener-
ated by current and past Yt and θ, and let {Gt}be the filtration
generated by current and past Yt only. The decision maker’s con-
tinuation value process (Vt) is adapted to {Gt} and satisfies a
backward stochastic differential equation:

dVt =Vtνt(θ)dt +Vt ςt · dWt ,VT given,

¶Researchers (16) have a revealing but different type of limiting characterization of risk
aversion and smooth ambiguity in a static environment.

where {Wt : t ≥ 0} is a standard Brownian motion relative to
(Ω,F , {Ft}, P). The continuation value process will be used to
give recursive construction of the decision maker’s preference
over consumption processes. We will derive an HJB equation for
the {Vt}to incorporate risk aversion, smooth ambiguity aversion,
and/or prior misspecification aversion.

We find it most convenient to use the logarithm of the con-
tinuation value vt = logVt , which with an application of Ito’s
Lemma, satisfies

dvt = νt(θ)dt −
1

2
|ςt |2dt + ςt · dWt .

This evolution captures the familiar lognormal adjustment.
Motivated by the analyses in sections 3–5, we define risk and

ambiguity adjustment operators:

R∗ε,t (vt+ε)≡
1

1− γ logE (exp [(1− γ)vt+ε]|Ft),

B∗ε,t (wε,t)≡ −
ε

αh
logE

[
exp

(
−αh

ε
wε,t

)
| Gt
]
,

where wε,t is Ft measurable. In what follows, let

v∗ε,t =B∗ε,t ◦R∗ε,t (vt+ε)

and V ∗ε,t = exp
(
v∗ε,t
)
.

We consider a preference specification that includes interme-
diate consumption and subjective discounting. Suppose that Vt

satisfies the commonly used and convenient recursion

Vt =
(

[1− exp(−δε)](Ct)
1−ρ + exp(−δε)

(
V ∗ε,t

)1−ρ
) 1

1−ρ
,

where δ > 0 is the subjective discount rate, {Ct : t ≥ 0} is a con-
sumption process adapted to {Gt : t ≥ 0}, and 1

ρ
is an intertempo-

ral elasticity of substitution. Using the homogeneity property of
this recursion and taking logarithms, write

0 =
1

1− ρ log

[
[1− exp(−δε)]

(
Ct

Vt

)1−ρ

+ exp(−δε)
(
V ∗ε,t
Vt

)1−ρ
]
. [10]

We derive (heuristically) the limit of the right-hand side of the
equal sign of Eq. 10. This will characterize a restriction on local
evolution of the continuation value process. Notice that

R∗ε,t (vt+ε− vt) =R∗ε,t (vt+ε)− vt ,

B∗ε,t (wε,t − vt) =B∗ε,t (wε,t)− vt ,

where vt is Gt measurable. Extending our previous calculations,
we first study the local risk adjustment, R∗ε,t (vt+ε− vt):

lim
ε↓0

1

ε

(
1

1− γ

)
logE (exp [(1− γ)(vt+ε− vt)]|Ft)

= νt(θ)−
γ

2
|ςt |2.

Let wε,t =R∗ε,t (vt+ε)and w0,t = vt , and compute

lim
ε↓0

1

ε
B∗ε,t (wε,t − vt)

=− 1

αh
logE (exp [−αhνt(θ)] |Gt)−

γ

2
|ςt |2.
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With these intermediate calculations, we construct the local
counterpart to Eq. 10 by dividing both sides of the equation by ε
and taking small ε limits, resulting in

0 =
δ

1− ρ

[(
Ct

Vt

)
1−ρ− 1

]

− 1

αh
logE (exp [−αhνt(θ)] |Gt)−

γ

2
|ςt |2. [11]

The first term on the right-hand side comes from discounting,
intermediate consumption, and intertemporal substitution. The
second term captures uncertainty to the drift induced by the
unknown parameter vector θ. We motivate this either as a robust
prior/posterior adjustment or as an aversion to “smooth ambigu-
ity” in the unknown drift. The third term captures the local risk
adjustment coming from exposure to the underlying Brownian
motion.

Using this limiting recursion for an HJB equation requires that
we use a value function and its derivatives to deduce formulas for
νt(θ) and ςt as functions of the relevant Markov-state vector.

We conclude with four connections to related literature in
control theory and economics.

Remark 5.1: Recursion Eq. 11 provides a continuous time ana-
log to discrete time recursions in refs. 6 and 7. Moreover, it shows
how to incorporate ambiguity aversion into the continuous time
specifications of refs. 17 and 18.

Remark 5.2: The ambiguity adjustment

− 1

αh
logE (exp [−αhνt(θ)] |Gt) [12]

for the drift is a smooth counterpart to a continuous time
ambiguity adjustment with period-by-period constraints when
the random set Ht = {νt(θ) : θ∈Θ} is a compact subset of a
Euclidean space with probability 1. As αh becomes arbitrarily
large, the smooth ambiguity adjustment converges to the mini-
mum over Ht . The result is a continuation value recursion of the
form considered in ref. 19.

More generally, E (exp [−αhνt(θ)]|Gt) is the moment-
generating function for νt when viewed as a function of θ
conditioned on Gt . In general, a moment-generating function is
not guaranteed to be finite for all αh . Even when the moment-
generating function is finite for small αh , there may only be a
compact interval of αh for which the function remains finite.

The existence of a finite upper bound for αh has a recognizable
connection to breakdown points in dynamic control theory.

Remark 5.3: Recursive Eq. 11 also gives the continuous time
counterpart to a discrete time recursion in ref. 5 that captures
two forms of robustness.

As we discussed previously, smooth ambiguity adjustment Eq.
12 has a dual interpretation as the outcome of prior/posterior
uncertainty adjustment. For the likelihood adjustment, there is
a well-known link between risk sensitivity and robustness dating
back to ref. 3.# Capture the likelihood uncertainty by represent-
ing dWt = htdt + dW h

t under a change of probability measure,
for which dW h

t is a Brownian increment and ht is a local drift
distortion. This adjustment alters the implied value function νt
by ςt · ht . Minimizing the local evolution of the value function by
the choice of ht subject to a penalization, κf

2
|ht |2, illustrates a

link between robustness and risk sensitivity that is familiar in the
control literature.

Remark 5.4: To construct the filtration {Gt : t ≥ 0} in prac-
tice and use it for solving a control problem, we must produce
a recursive solution for a filtering or estimation problem. While
we posed the analysis as one for which θ is an unknown param-
eter, in fact, this parameter could be an actual process designed
to capture time variation in some underlying parameters. The
sigma algebra Gt could condition on the entire process or just
the process up to time t . Examples of recursive constructions
include Zakai equations, Kalman filtering, or Wohham filtering
depending on the application.
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#A continuous time analysis is, for instance, in ref. 9.
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