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Abstract: We establish an analogy between the Fokker–Planck equation describing evolutionary
landscape dynamics and the Schrödinger equation which characterizes quantum mechanical particles,
showing that a population with multiple genetic traits evolves analogously to a wavefunction under
a multi-dimensional energy potential in imaginary time. Furthermore, we discover within this
analogy that the stationary population distribution on the landscape corresponds exactly to the
ground-state wavefunction. This mathematical equivalence grants entry to a wide range of analytical
tools developed by the quantum mechanics community, such as the Rayleigh–Ritz variational method
and the Rayleigh–Schrödinger perturbation theory, allowing us not only the conduct of reasonable
quantitative assessments but also exploration of fundamental biological inquiries. We demonstrate
the effectiveness of these tools by estimating the population success on landscapes where precise
answers are elusive, and unveiling the ecological consequences of stress-induced mutagenesis—a
prevalent evolutionary mechanism in pathogenic and neoplastic systems. We show that, even in an
unchanging environment, a sharp mutational burst resulting from stress can always be advantageous,
while a gradual increase only enhances population size when the number of relevant evolving traits
is limited. Our interdisciplinary approach offers novel insights, opening up new avenues for deeper
understanding and predictive capability regarding the complex dynamics of evolving populations.

Keywords: Schrödinger equation; Rayleigh–Ritz variational method; Rayleigh–Schrödinger perturbation
theory; fitness landscape; stress-induced mutagenesis; population dynamics

1. Introduction

Evolution is the primary driving force behind the diversity and complexity of life
on Earth for billions of years [1,2], allowing for organism change and adaptation over
time [3,4]. It emerges through the synergy between natural selection and genetic muta-
tions, in which natural selection favors combinations of traits that enhance fitness [5] while
genetic mutations introduce genetic variations that facilitate the emergence of new advan-
tageous traits [6]. Within populations, ecological factors such as niche constraint [7–9] and
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environmental stress [10,11] can exert their influence on these processes [12], even molding
the trajectory and tempo of evolution [13].

The complex dynamics of evolving population can be captured by a Fokker–Planck
equation on the evolutionary landscape [14], an abstract space of all possible genetic varia-
tions and their corresponding biological properties within a given ecological context [15].
The number of relevant evolving genetic traits corresponds to the dimensionality of this
space [16], where every combination corresponds to an unique position. On the landscape,
together with the ecological influence, we represent the mutation process with an effective
diffusion [17] and the natural selection pressure with a fitness potential [18]. We show that
there is an analogy between this formulation of evolutionary dynamics and the Schrödinger
description for quantum mechanical particles [19], in which the manner of population
evolution on the multi-dimensional landscape is almost similar to how a wavefunction
behaves under a multi-dimensional energy potential in imaginary time [20]. Following
this observation, we further discover that the stationary population distribution on the
landscape corresponds exactly to the quantum ground-state wavefunction [19,21]. Such
curious connection enables us to utilize various quantitative tools borrowed directly from
quantum mechanics literature to quickly extract information about the steady population
state of complex landscapes, even ones that lack exact analytical comprehension. For
other examples of classical-quantum analogies where insights from quantum physics can
illustrate classical phenomenon; see [22–26].

Understanding the consequences of evolution has always been a cornerstone of bio-
logical research [27], serving as a fundamental pursuit aimed at unravelling the possible
outcomes arising from this transformative force, and shedding light on the foundational
principles that shape and govern all life on Earth. There exist many distinct evolutionary
regimes [28]. For pathogenic and neoplastic populations such as microbial organisms
and cancer cells, stress-induced mutagenesis [10,11], in which mutational increase can
be triggered due to high biological stress, assumes a prominent role. We consider E. coli
bacteria after experiencing exposure to antibiotics [29,30]; they undergo elongation and
stop dividing [31]. At the same time, inside the bacterium, the SOS response switches on,
leading to the induction of low-fidelity error-prone replication polymerases and, conse-
quently, there is a sharp increase in the mutation rate during DNA replication from the
typically low value of Dl ∝ 10−9 to a high rate of Dh ∝ 10−5 mutations per base pair
per generation [32,33]. There are also several other mechanisms by which genetic change
can occur when organisms are under stress [34]. Laboratory studies have shown that at
least 80% of natural isolates of E. coli from diverse environments worldwide can exhibit
stress-induced mutagenesis [35], highlighting its significance as an essential evolutionary
dynamic in the realm of microbiology. Knowing the extensive effects of stress-induced
mutagenesis in pathogenic and neoplastic systems is vital for developing strategies to
combat their adaptive capabilities and improve therapeutic interventions [36].

Here, due to the Schrödinger analogy, we can conveniently employ two different
methods: the Rayleigh–Ritz variational method [37,38] to estimate the stationary popula-
tion number, and the Rayleigh–Schrödinger perturbation theory [39] to assess the tendency
of population change resulting from stress-induced mutagenesis. For an unknown system
evolving under a given Hamiltonian, the Rayleigh–Ritz variational method consists of
finding trial wave functions that minimize the energy of the system to approximate the
unknown ground state. Hence, we can estimate the stationary population size for a family
of single-peak landscapes in all dimensions through this method. On the other hand, we
also study the stress-induced mutagenesis using perturbation theory on a well-known
system: starting from a Hamiltonian with a well-known ground state and eigenenergy, we
probe the evolution of this system perturbed by a small addition to this Hamiltonian using
a power series expansion to the known ground state and the operator representation of the
additional Hamiltonian perturbation. This is the Rayleigh–Schrodinger method, and we
utilize it to consider two distinct extremes: gradual increases in mutation rate with stress
and a sharp mutational burst when stress levels surpass a certain fitness threshold. We
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demonstrate in an unchanging environment that, unlike in the former case, the latter con-
sistently leads to a net gain in the total population size. This finding offers an explanation
for the frequent appearance of mutational switches observed in nature [32,33].

2. Evolutionary Landscape and Ecological Influence

The landscape is typically represented as a multi-dimensional Euclidean space RD ,
where each point ~x represents a unique combination of D scalar-strategy genetic traits [16].
When the maximum fitness R(~x) (which represents the selection pressure) remains constant
over time [15,18], the population distribution density b(~x, t) within this landscape evolves
via the Fokker–Planck equation [14],

∂tb = ∇2(Db) + Rb , (1)

where the effective diffusivity D represents the local speed of mutations. In other words, a
higher value of D results in a faster population diversification.

Our mathematical model is still incomplete as it assumes unlimited population growth.
In any natural ecological system, the population growth of an organism should be limited
by the resources available in its environment. The logistic model of population growth
provides a better description of the population dynamics in a finite environment by taking
into account the carrying capacity of the environment [7]. The carrying capacity K in the
logistic model of population growth [8,9] represents the maximum number of individuals
that can be sustained in a given environment. When the population size approaches the
carrying capacity, the growth rate decreases until the population stabilizes at the carrying
capacity. This carrying capacity can be incorporated into the mathematical framework by
modifying Equation (1) into an integro-differential equation,

∂tb = ∇2(Db) +

1−

∫
dD~xb(~x, t)

K

Rb , (2)

in which the integration of population density distribution is the total population size
B(t) =

∫
dD~xb(~x, t). We can define the metric for population success as [40]

S(t) =
B(t)

K
=

∫
dD~xb(~x, t)

K
; (3)

then, the expression for the growth rate is just G = (1− S)R. This is a valid description
at S ≤ 1, and it also exhibits a decrease in not only birth but also death rate at a large
population. For an example, bacteria such as E. coli can signal each other via quorum
sensing, which can lead to a collective slowdown in metabolic rate at a dense bacterial
population [41]. In general, at high cell densities, the rate of cell death may decrease due to
various reasons. One factor contributing to decreased cell death is the activation of stress
responses and mechanisms that enhance cell survival. Bacteria can sense and respond to
stressful conditions, such as nutrient limitation or high cell density, by activating protective
mechanisms that increase cell viability and reduce cell death. This adaptive response
can help bacteria survive and maintain population stability in crowded environments,
which has been observed with bacteria living in biofilms [42]. We rearrange the terms in
Equation (2) and define a rescaled time t̃ = 2Dt; in this way, we can arrive at:

−∂t̃b =

(
−1

2
∇2 − 1− S

2D
R
)

b , (4)

which has the form of a hyperbolic differential equation if the success is treated as a constant.
In order to describe stress-induced mutagenesis, the effective diffusivity D should not

be a constant. This evolutionary regime is a major concern for medical research due to
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its ability to accelerate the development of drug resistance in pathogenic and neoplastic
systems [13,43,44], while also creating other complications in the treatment of infectious
diseases [45]. According to the World Health Organization, antibiotic-resistant infections
caused an estimated 1.27 million deaths worldwide in 2019 [46]. Stress-induced mutagene-
sis has also been found to have a notable impact on the evolution of the SARS-CoV-2 virus
and the emergence of novel variants [47], highlighting the need for better understanding.
One of the most crucial biological inquiries one could present regarding stress-induced
mutagenesis is why it behaves in the way it does. There are many possible functional
dependencies of mutation rate on stress, yet nature somehow seems to favor a mutational
switch [32,33]. To explore this further, we cast this question into the mathematical frame-
work presented by Equation (4). To capture the intricacies of stress-induced mutagenesis,
we incorporate a heterogeneous effective diffusivity into the landscape. We seek to investi-
gate the theoretical distinctions between the outcomes of these two different possibilities
for diffusivity D as a function of fitness, which is defined as the ability to reproduce. In the
gradual case, a linearity governs:

Dgradual[R] = D(0)
gradual + D(1)

gradual∆R , (5)

in which ∆R = max(R)− R is the difference between the maximum fitness max(R) and the
fitness R, whereas the sharp case follows a Heaviside step-function in which the transition
happens right at the boundary between the fit and the unfit regions:

Dsharp[R] = D(0)
sharp + D(1)

sharpΘ(−R) . (6)

Θ(ζ) is the Heaviside function, in which Θ(ζ < 0) = 0 and Θ(ζ > 0) = 1. Figure 1 serves
as a visual representation of the basic postulations underlying our theoretical analysis. We
summarize the biophysical quantities used in our mathematical model in Appendix A.

Figure 1. The evolutionary landscape of our stress-induced mutagenesis model, illustrated
around a local peak fitness. In this work, we consider two distinct regimes of stress-induced
mutagenesis, corresponding to two different heterogeneous diffusion profiles: a gradual increased
diffusivity Dgradual[R] and a sharp transition diffusivity Dsharp[R] at the transition from the fit to the
unfit phenotype. In this illustration, we used Equation (10) for R(x), Equation (5) for Dgradual[R], and
Equation (6) for Dsharp[R]. Here, max(R) = R(0), and for comparison between the two cases we use

D(0)
gradual = D(0)

sharp.

3. An Analogy to the Schrödinger Equation

The analogy between the Fokker–Planck equation as in Equation (4) and the Schrödinger
equation [19,21] can be elucidated by considering the following identifications. We intro-
duce an imaginary time variable iτ related to the diffusion coefficient D and the physical
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time t and an energy potential V(S,~x) related to the population success S maximum growth
rate R(~x):

iτ ↔ t̃ , V(S,~x)↔ −1− S
2D

R(~x) . (7)

This procedure of changing from real time to imaginary time is known as Wick rotation [48].
If we treat S as a constant parameter, then, for Planck constant h̄ = 1 and mass m = 1,
we can recast Equation (4) into a form that closely resembles the Schrödinger equation in
imaginary time τ:

ih̄∂τΨ = ĤΨ , Ĥ =
p̂2

2m
+ V(S,~x) , (8)

where p̂ = −ih̄∇ is the momentum operator and Ψ(~x, t) ∝ b(~x, t) represents the wavefunc-
tion of a single quantum mechanical particle of mass m moving in our multi-dimensional
landscape. The Hamiltonian operator Ĥ governs the behavior of this particle under the
influence of the energy potential V(S,~x). From here on, we drop h̄ and m out of the analysis.

While this analogy is not exact, as it assumes that success S is unchanging, inde-
pendent of distribution density b(~x, t), and therefore neglects the influence of the total
population number on the potential energy function, it can still provide a powerful frame-
work for understanding the dynamics of evolution. We demonstrate this by looking at the
stationary state, where b = bst(~x) is an unchanging spatial-function and thus S = Sst is
fixed. We now have an exact correspondence between Equation (8) and a time-independent
Schrödinger equation associated with E = 0 eigenstate (also known as the stationary
Schrödinger equation):

0 =

(
−1

2
∇2 − 1− Sst

2D
R
)

bst ←→ EΨst =

(
p̂2

2m
+ V(Sst,~x)

)
Ψst . (9)

Here, we obtain a powerful constraint—the stationary population success Sst must corre-
spond to an energy potential V(Sst,~x) that has a zero eigenenergy. Moreover, since the
population density bst(~x) is a non-negative physical field, its associated wavefunction
Ψst(~x) should not change sign and cross zero anywhere on the entire landscape (one ex-
ception is at impenetrable boundaries, where the wave function is forced to vanish) [49].
This further restriction implies that the wavefunction should also be the ground state
of the energy potential V(Sst,~x). Together, we require V(Sst,~x) to be a potential energy
function that possesses a ground state with zero energy, and Ψ(~x) must be the ground-state
wavefunction ΨΩ(~x).

This kind of quantum mechanical analogy in classical biological phenomena has been
discovered in other contexts as well. For instance, the very same Schrödinger equation we
consider in our paper emerges in bacterial chemotaxis [50] as well, although only at a very
special subset—but experimentally has been observed in actual bacteria populations—of
the parameter space.

Let us show how to utilize this convenient constraint in practice. WE consider an
inverse quadratic maximum growth rate R(x) peaked and centered around the optimal
combinations of genetic traits which is chosen to be at ~xop = 0:

R(~x) = R0

[
1−

(
|~x|
λ

)2
]

(10)

It means the further away from the origin, the less fit an organism becomes. We call |~x| < λ
the fit region where R > 0, and |~x| > λ the unfit region where R < 0 [40], as already shown in
Figure 1. Following Equation (7), this fitness landscape corresponds to a simple harmonic
oscillator potential energy USHO(~x) up to a shift U0:

V(Sst,~x) = USHO(~x) + U0 , USHO(~x) =
1
2

ω2|~x|2 , (11)
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in which the angular oscillation frequency and the downward shift are

ω2 =
1− Sst

Dλ2 R0 , U0 = −1
2

ω2λ2 . (12)

The ground-state energy of a D-dimensional oscillator, which corresponds to the purely
quadratic potential USHO(~x), is a fundamental result that can be found in pretty much
every quantum mechanics textbook [51–54]):

EΩ = D
ω

2
. (13)

Therefore, for it to be zero after the energy shift, we need

E = EΩ + U0 = 0 =⇒ ω =
D

λ2 , (14)

which directly offers us the stationary population success from Equation (12):

Sst = 1− Dλ2

R0
ω2 = 1− D2D

R0λ2 . (15)

If Sst < 0, it means there is no sustainable success, and the population eventually becomes
extinct on such ecological system. We obtain the stationary population distribution den-
sity bst(~x), starting from the Gaussian ground-state wavefunction of a simple harmonic
oscillator [51–54]:

bst(~x) ∝ ΨΩ(~x) ∝ exp
(
−1

2
ω|~x|2

)
= exp

[
−D

2

(
|~x|
λ

)2
]

. (16)

Using Equation (3), we can determine the pre-factor and obtain

bst(~x) =
K

√
2πλ2/D

D

(
1− D2D

R0λ2

)
exp

[
−D

2

(
|~x|
λ

)2
]

. (17)

Similar analytical investigations can be conducted to extract Sst and bst(~x) from the quan-
tum mechanical ground-state for any function R(~x) defined on the landscape.

We can utilize the Rayleigh–Ritz variational method [37,38] to estimate the upper
bound (and also the Weinstein method [55,56] for the lower bound) of the population
success Sst in any dimension. As a demonstration, we consider a class of landscapes with
power-law dependency fitness R(~x) = R0[1− (|~x|/λ)γ]. The fitness we considered before,
given by Equation (10), belongs to this class and corresponds to the exponent value γ = 2.
For a general value of D and γ, the exact solution for the ground state is not known. But
using a Gaussian ansatz-wavefunction, we can quickly estimate the stationary population
success Sst and the width σ of the population distribution around the optimal peak on
the landscape:

Sst ≥ S(RR)
st = 1− 2D

R0λ2 (2 + γ)
2+γ

γ

(
D

4γ

)Γ
(

D+γ
2

)
2Γ
(

D
2

)


2
γ

, σ ≈

 D

2γ

Γ
(

D
2

)
Γ
(

D+γ
2

)


1
2+γ

. (18)

We carry out in detail this estimation with a Gaussian trial wavefunction in Appendix B.1. The
width σ decreases with the exponent γ, which is consistent with our simulation findings as
shown in Figure 2A. There are also other methods for estimating the ground state, such as
the lesser known Weinstein method [55] and the Temple method [57,58] which can offer us
lower bounds and the one-dimensional Wentzel–Kramers–Brillouin approximation [59–64]
which does not admit a simple higher-dimensional generalization but has gained more
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interest recently via the exact quantization condition [65–68]. We examine the Weinstein
method and the Wentzel–Kramers–Brillouin approximation in Appendices B.2 and B.3. In
Figure 2B, we compare estimations for Sst using different methods with results from the
simulation. We describe our simulation in Appendix C.

Figure 2. Stationary population distributions and successes for different fitness landscapes can
be estimated with the Rayleigh–Ritz variational method. (A) The distributions of the heteroge-
neous population on different fitness landscapes at the stationary state, where the fitness obeys

R(~x) = R0

[
1−

(
|~x|
λ

)γ]
and the exponent γ ∈ [1, 10], concentrates more around the optimal position

xop = 0 with increasing γ. The dash lines mark x = ±λ, where the fitness hits 0. Here, we show the
results from a simulation, which we described in Appendix C. Here, we consider D = 1-dimensional
landscapes and use the parameter values D = 1/2, R0 = 1, λ = 1, and K = 105. (B) We compare
different methods of estimation for the stationary population success with the simulation findings. We
show the analytical results as obtained from the Rayleigh–Ritz variational method as in Equation (18),
the Weinstein method as in Equation (A23), and the Wentzel–Krammers–Brillouin approximation
(zeroth- and second-order) as in Equations (A31) and (A36).

In Figure 3, we show the analytical results obtained from the estimations of Sst, with
the Rayleigh–Ritz variational method as in Equation (18), the Weinstein method as in
Equation (A23), and the Wentzel–Krammers–Brillouin approximation (zeroth- and second-
order) as in Equations (A31) and (A36). The Rayleigh–Ritz variation method, despite its
simplicity, captures correctly and consistently the non-monotonic behavior of Sst(γ) at
small exponent γ, which peaks at γ ≈ 1.83, and deviations from the simulation values for
the region γ ∈ [1, 4] are less than 4%. Biophysically, small values of γ can be interpreted
as corresponding to weakly curved fitness landscapes where fitness does not drastically
decrease with mutations that move away from the optimal position. The Weinstein method,
which follows naturally from the Rayleigh–Ritz variational method, requires much more
calculations, and in general provides a bad estimation (except for around γ→ 2). We also
explain the sudden change at γ = 2 of its estimated Sst in Appendix B.2. The Wentzel–
Krammers–Brillouin approximation is very off at the zeroth order (except also for γ→ 2),
but can become much better at the second order. We note that this inability to describe
the ground state at high precision is a feature expected from this approximation, which
works best at highly excited states where the wavelengths are much smaller than that of
the potential characteristic length scale [69].
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Figure 3. Rayleigh–Schrodinger perturbation theory can predict how different regimes of stress-
induced mutagenesis affect the population success, extrapolatable beyond the perturbative
regime. Here, we show our simulation findings, in which we use parameter values R0 = 1, λ = 1,
K = 105, and fitness as in Equation (10). We describe our simulation in Appendix C. (A1) The
population distributions at a stationary state on D = 1-dimensional landscape for no stress-induced,
gradual stress-induced, and sharp stress-induced mutagenesis regimes. The dash lines mark x = ±λ.
For a gradual stress-induced regime, we use Equation (21) with ε = 10; for a sharp stress-induced
regime, we use Equation (28) with ε = 10. (A2) The evolution of population success S(t) with time t
on D = 1-dimensional landscape for different mutagenesis regimes. (B1) The population distribu-
tions at stationary state on D = 3-dimensional landscape. We consider looking at the distribution
from a projection, i.e., ~x = (x1, x2, x3); then, we can use x1 as the projected position. The dash
lines mark x1 = ±λ. For gradual stress-induced regime, we use Equation (21) with ε = 0.1. Note
that with ε = 10, the population becomes extinct, as Sst = 0. For a sharp stress-induced regime,
we use Equation (28) with ε = 10. (B2) The evolution of population success S(t) with time t on
D = 3-dimensional landscape.

4. Applying the Rayleigh–Schrödinger Perturbation Theory to Stress-Induced
Mutagenesis

We investigate the impact of stress-induced mutagenesis on the stationary population
size Bst in both cases, as listed in Equations (5) and (6), for all natural dimensionality
D ∈ N of the landscape. Rather than attempting to solve the exact, non-tractable evolution
dynamics on the landscape, we adopt a perturbative approach. This enables us to reveal
distinctions between the two cases in a tractable manner. We split the Hamiltonian in
Equation (8) into the unperturbed Ĥ0 and the perturbed εĤp. At the stationary state,

Ĥ = Ĥ0 + εĤp , Ĥ0 =
1
2

p̂2 + V(Sst,~x) , (19)

where the energy potential V(Sst,~x) is as given in Equations (11) and (12). At the lowest
order of perturbation O(ε), the correction εδEΩ to the ground-state energy in Equation (13)
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can be estimated via the Rayleigh–Schrödinger perturbation theory even for a non-Hermittian
Ĥp [39]:

EΩ = D
ω

2
+ εδE(1)

Ω , δE(1)
Ω =

∫
dD~x Ψ†

Ω(~x).Ĥp.ΨΩ(~x)∫
dD~x Ψ†

Ω(~x)ΨΩ(~x)
, (20)

where ΨΩ(~x) is the ground-state wavefunction of the unperturbed Hamiltonian as given by
Equation (16). Our analysis can unveil the tendencies with which different manifestations of
stress-induced mutagenesis affect the population, either boosting or suppressing success Sst.

4.1. A Gradual Change

The diffusivity on the landscape as in Equation (5), which is associated with a gradual
change in mutation rates, can be expressed as follows:

Dgradual = D

[
1 + ε

(
|~x|
λ

)2
]

, (21)

where we define constants D and ε to be

D = D(0)
gradual , ε =

D(1)
gradualR0

D(0)
gradual

. (22)

We consider ε as a perturbation parameter in limit ε� 1 which corresponds to D(0)
gradual �

D(1)
gradualR0.

The perturbed Hamiltonian in Equation (19) for this regime of stress-induced mutage-
nesis is given by a non-Hermitian operator:

Ĥp =
1
2

p̂2
(
|~x|
λ

)2

. (23)

Applying Equation (20), we obtain

δE(1)
Ω =

1
8λ2 D(D − 2) . (24)

The detail of this calculation can be found in Appendix D.1.
Applying Equation (14) including the ground-state energy correction,

E = EΩ + U0 = D
ω

2
+ ε

1
8λ2 D(D − 2)− 1

2
ω2λ2 = 0 , (25)

we can approximate ω at the first order of ε-expansion:

ω ≈ D

λ2 [1 + εη(D)] , η(D) =
D − 2

4D
. (26)

For a high dimensionality D > 2, η(D) is a positive value. Perturbative stress-induced
mutagenesis in this regime increases ω ↑. Since Equation (12) indicates that ω and Sst have
an inverse monotonic relationship, this means we obtain a reduction in success Sst ↓. In
other words, stress-induced mutagenesis tends to suppress the population success when
the number of relevant genetic traits on the landscape is high.

The above statement does not change if we consider another power-law dependency
for the perturbative Hamiltonian in Equation (23), since

Ĥp ∝ p̂2|~x|κ =⇒ η(D) ∝ D − κ . (27)
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We obtain η(D) > 0 when D > κ. The derivation can be found in Appendix D.2.

4.2. A Sharp Change

We can rewrite Equation (6), which describes the diffusivity on the landscape associ-
ated with a sharp change in mutation rates, as follows:

Dsharp = D
[

1 + εΘ
(
|~x|
λ
− 1
)]

. (28)

From Equations (6) and (10), we define the constants D and ε to be

D = D(0)
sharp , ε =

D(1)
sharp

D(0)
sharp

. (29)

Here, we treat the up-step contribution as perturbation ε � 1, which requires D(0)
sharp �

D(1)
sharp for subsequent calculations to be analytically tractable.

For this posibility of stress-induced mutagenesis, the perturbed Hamiltonian in Equation (19)
is given by the following non-Hermitian operator:

Ĥp =
1
2

p̂2Θ
(
|~x|
λ
− 1
)

. (30)

Following Equation (20), we can make the following estimation:

δE(1)
Ω =

1
λ2

(ωλ2)
D
2 +1

[
−2e−ωλ2

+ ωλ2 E−D
2

(
ωλ2)]

2Γ
(

D
2

) , (31)

where we remind that ω is as given in Equation (12). We carry out the details of this
calculation in Appendix D.3. We can then determine ω using Equation (14):

E = EΩ + U0

= D
ω

2
+ ε

1
λ2

(ωλ2)
D
2 +1

[
−2e−ωλ2

+ ωλ2 E−D
2

(
ωλ2)]

2Γ
(

D
2

) − 1
2

ω2λ2 = 0 ,
(32)

in which we obtain the approximate solution:

ω ≈ D

λ2 [1 + εη(D)] , η(D) =
D

D
2 −1

[
−2e−D +D E−D

2
(D)

]
Γ
(

D
2

) , (33)

where E...(. . .) is the generalized exponential integral [70]. Since η(D) < 0 for every natural
dimensionality D ∈ N, this perturbative stress-induced mutagenesis effect always reduces
ω ↓, thus increasing success Sst ↑ as follows from Equation (12).

The nonperturbative stationary solution of this case has been studied in our pre-
vious work [71]. For a sanity check, one can show that what we found here using the
Rayleigh–Schrödinger perturbation theory agrees with the exact result at the leading order
of perturbative parameters ε.

4.3. A Comparison between Two Stress-Induced Mutagenesis Regimes

While the calculations in the previous section are performed with perturbation theory,
which corresponds to weak stress-induced mutagenesis effects, our findings move beyond
that, as shown with simulations in Figure 3 for large values of ε. We describe our simulation
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in Appendix C. Gradual stress-induced mutagenesis, which can be beneficial on low-
dimensional landscapes (see Figure 3A1,A2), becomes quite lethal at high-dimensional
landscapes (see Figure 3B1,B2). Sharp stress-induced mutagenesis, on the other hand,
always up the stationary population success.

To gain some intuitive understanding of how these two regimes can be so different,
consider the following. The expression for the total diffusive flux of population on the
landscape is given by J = ∇(Db), which can be further broken down into two contributions:
the diffusion gradient contribution Jdiff = (∇D)b which is driven by the local slope of
the diffusivity, and the density gradient contribution Jdens = D(∇b) which is generated
by the heterogeneity of population distribution. In the case of a gradually changing
Dgradual[R], contribution Jdiff exists generally everywhere, pointing towards the optimal
combination of genetic traits. This means that there is a clear guidance toward peak fitness
on the D-dimensional space of genetic variations, focusing the population into a specific
hypervolume. In contrast, for a sharp transition Dsharp[R], this flux vanishes everywhere
except at the (D − 1)-dimensional boundary hypersurface between fit and unfit regions.
Thus, intuitively, we expect that abruptly increasing mutation rates via stress-induced
mutagenesis may be less effective in maintaining a large stationary population size.

Our application of Rayleigh–Schrödinger perturbation theory quickly revealed a para-
doxical outcome that influences evolutionary dynamics in the presence of multiple relevant
evolving genetic traits. We interpret this mathematical finding as follows: in the case of
gradual stress-induced mutagenesis, the diffusive gradient flux becomes less effective at
population concentration towards the fit region, as it spreads out excessively as the number
of landscape dimensions increases. Conversely, sharp stress-induced mutagenesis enables
the diffusive gradient flux to remain spatially focused, even singular, and thus boosts the
population success consistently, regardless of the number of genetic traits involved. It has
been observed that natural selection favors species that can optimize multiple biological
capabilities simultaneously [5,72]. As a result, the sharp regime of stress-induced mutagen-
esis may be preferred. Empirical evidence supports this notion [32,33]. Here, we showed a
quantitative argument for why this might be the case.

5. Discussion

In this study, we reveal a curious analogy between a fundamental equation in quantum
mechanics and the equation that governs the evolution of multiple genetic traits in a
population. We show that determining the stationary distribution of a heterogeneous
population can be mapped to the problem of finding the ground state wavefunction,
fostering a more unified understanding of diverse phenomena and leading to new analytical
approaches. Techniques developed for dealing with quantum mechanical systems can be
adapted and applied to comprehend population dynamics, not only more expeditiously
but also more profoundly.

The Rayleight–Ritz variational method [37,38] allows us quick estimation of the popu-
lation number at an equilibrium state, and also approximation of the genotypic diversity
in the population, usually with a test function, such as a Gaussian shape, where the most
dominant genotype (the mean) and the heterogeneity (the width) are well-defined. In stan-
dard coarse-graining macroscopic description of evolutionary game theory with competing
species, such as in the study of cancer progression [73,74] and optimizing chemotherapeutic
treatment [75] via the G-function [16,76], these two features (the mean and the width) are
the most important mesoscopic variables.

Perhaps even more interesting, the Rayleigh–Schrödinger perturbation theory [39] can
be utilized to answer a biological “why” question. Specifically, we showed quantitative
supporting evidence for why stress-induced mutagenesis exhibits a sharp transition rather
than a gradual change in mutation rates, which is commonly observed in microbial and
cancer cells [32,33]. In contrast to physics, where phenomena may arise spontaneously,
the complex emergent behavior observed in biology is the product of billions of years of
natural selection, which has relentlessly honed and optimized the living systems we see
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today [1,2]. It is therefore essential to focus on understanding why biological phenomena
occur, rather than simply how they occur [77,78]. Our findings highlight the significance of
our approach as a valuable framework for modeling biological evolution, rather than just a
mere mathematical exercise.

The methodology presented in this paper opens up many avenues for future research.
Although our study focused on a static ecological system, it is essential to acknowledge
that most ecological systems in the real world are highly complex [79,80] and dynamic in
nature [81]. Therefore, one possible direction for future research is to extend our analogy to
incorporate the effects of dynamical ecological systems, such as seasonal change or periodic
cycle of drug administration [40], in which it is expected that quantum mechanical methods
to deal with temporal varying Hamiltonian (e.g., time-dependent perturbation theory [82],
adiabatic invariant [83], Floquet theory [84]) can be employed. Another exciting adventure
is to explore the impact of landscape topology. In particular, it would be interesting to
investigate whether certain topological features of the fitness landscape can amplify or
suppress the effects of stress-induced mutagenesis on population dynamics, since spatial
topology has been shown to affect the quantization conditions greatly [85]. Finally, there
have been recent attempts to investigate exotic collective behaviors and new sectors of
evolutionary dynamics using robots with engineered ecological interactions [86,87] and
stress-induced mutable genomes [88], which might allow for observing the realization of
our analogy in a physical evolvable system beyond biology. So much to do; the future
seems bright and exciting.
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Appendix A. Summary of All Mathematical Quantities

Here, we summarize all quantities in our proposed model for the evolution dynamics
with stress-induced mutagenesis:

• t: time.
• ~x: position (a genomic configuration) in the abstract D-dimensional fitness landscape.
• b(~x, t): population density on the landscape, which has the unit of population number

per unit volume (equal to a unit length to the power D).
• D(~x): effective diffusivity in the landscape, which has the unit of unit length squared

(to the power 2) per unit time.
• R(~x): the maximum growth rate of the sub-population located at position ~x in the

landscape, which has the unit of inverse unit time.
• K: carrying capacity, which has the unit of population number.
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• S: success, which is the ratio between the total population number
∫

dD~xb(~x, t) and
the carrying capacity K; therefore, it is a dimensionless quantity.

Appendix B. Estimations of Stationary Population Success

Let us define the following:

Φ =
1− Sst

2D
R0λ−γ , (A1)

so that the potential as in Equation (7) can be rewritten as

V(Sst,~x) = −Φλγ + Φ|~x|γ . (A2)

We want to estimate the ground state energy EΩ of a pure power-law potential U(~x) =
Φ|~x|γ, which can be related to the ground state energy ẼΩ of the potential Ũ(~x) = |~x|γ:

ẼΩ = Φ
2

2+γ ẼΩ . (A3)

If we can estimate ẼΩ, then we can estimate the stationary population success Sst via the
equality Equation (14):

−Φλγ + EΩ = 0 =⇒ Sst = 1− 2D
R0λ2 Ẽ

2+γ
γ

Ω . (A4)

We note that it is possible that the mathematical estimation of Sst can become smaller than
zero or larger than one, which is physically impossible. In that case, we can interpret these
results as S(estimation)

st → 0 if S(estimation)
st < 0 (population extinction), or S(estimation)

st → 1 if
S(estimation)

st > 1.
For simplicity, we work with Ũ(~x) instead of U(~x). The relationship between the

ground states ΨΩ(~x) and Ψ̃Ω(~x) are given by

ΨΩ(~x) = Φ
D

2+γ Ψ̃Ω

(
Φ−

1
2+γ~x

)
. (A5)

Appendix B.1. Application of the Rayleigh–Ritz Variational Method

For the Rayleigh–Ritz variational method [37,38], we need a trial wavefunction. We
choose a Gaussian function centered at ~x = 0 and that has the standard deviation σ as
a parameter:

Ψ̃trial(σ,~x) ∝ exp
(
−|~x|

2

2σ2

)
. (A6)

An upper bound for ẼΩ can be estimated via the following minimization with respect to σ:

ẼΩ ≤ min
σ

[∫
dD~xΨ̃trial(σ,~x) ˆ̃HΨ̃trial(σ,~x)∫
dD~xΨ̃trial(σ,~x)Ψ̃trial(σ,~x)

]

= min
σ


∫

dD~xΨ̃trial(σ,~x)
[
− 1

2∇2 + Ũ(~x)
]
Ψ̃trial(σ,~x)∫

dD~xΨ̃2
trial(σ,~x)

 = Ẽ(RR)
Ω .

(A7)
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Let us evaluate the function inside {...}:

F(σ) =

∫ ∞
0 d|~x||~x|D−1 exp

(
− |~x|

2

2σ2

)[
− 1

2∇2 + |~x|γ
]

exp
(
− |~x|

2

2σ2

)
∫ ∞

0 d|~x||~x|D−1 exp
(
− |~x|

2

σ2

)
=

fkin(σ) + fpot(σ)

1
2 Γ
(

D
2

)
σD

.

(A8)

This has two components, the potential part,

fpot(σ) =
∫ ∞

0
d|~x||~x|D−1 exp

(
−|~x|

2

2σ2

)
|~x|γ exp

(
−|~x|

2

2σ2

)
=
∫ ∞

0
d|~x||~x|D+γ−1 exp

(
−|~x|

2

σ2

)
=

1
2

Γ
(

D + γ

2

)
σD+γ ,

(A9)

and the kinetic part,

fkin(σ) = −
1
2

∫ ∞

0
d|~x||~x|D−1 exp

(
−|~x|

2

2σ2

)
∇2 exp

(
−|~x|

2

2σ2

)
= −1

2

∫ ∞

0
d|~x||~x|D−1 exp

(
−|~x|

2

σ2

)(
|~x|2 −Dσ2

σ4

)
=

1
4

Γ
(

D + 2
2

)
σD−2 ,

(A10)

where operating the Laplacian on any function A(|~x|) offers

∇2 A(|~x|) = 1
|~x|D−1 ∂|~x|

[
|~x|D−1∂|~x|A(|~x|)

]
. (A11)

Together, with these two contributions, we have

F(σ) =
1
4 Γ
(

D+2
2

)
σD−2 + 1

2 Γ
(

D+γ
2

)
σD+γ

1
2 Γ
(

D
2

)
σD

=
D

4
σ−2 +

Γ
(

D+γ
2

)
Γ
(

D
2

) σγ . (A12)

The minimum of F(σ) can be found by using the Cauchy inequality:

F(σ) = γ

(
D

4γ
σ−2

)
+ 2

Γ
(

D+γ
2

)
2Γ
(

D
2

) σγ



≥ (2 + γ)


(

D

4γ

)γ
Γ
(

D+γ
2

)
2Γ
(

D
2

)
2

1
2+γ

= F(σmin) ,

(A13)

and the equal sign appears when

D

4γ
σ−2

min =
Γ
(

D+γ
2

)
2Γ
(

D
2

) σ
γ
min =⇒ σmin =

 D

2γ

Γ
(

D
2

)
Γ
(

D+γ
2

)


1
2+γ

. (A14)
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Hence, we obtain an upper estimation for ẼΩ, i.e., ẼΩ ≤ F(σmin) = Ẽ(RR)
Ω . We plug this

inside Equation (A4), and thus we can have a lower-bound estimate of the stationary
population success:

Sst ≥ S(RR)
st = 1− 2D

R0λ2

[
Ẽ(RR)

Ω

] 2+γ
γ

= 1− 2D
R0λ2 (2 + γ)

2+γ
γ

(
D

4γ

)Γ
(

D+γ
2

)
2Γ
(

D
2

)


2
γ

.

(A15)

Appendix B.2. Application of the Weinstein Method

The Weinstein method [55,58] picks up where the Rayleigh–Ritz has left off, using the
trial wavefunction Ψ̃(σmin,~x) to estimate the lower bound of ẼΩ:

ẼΩ ≥ Ẽ(RR)
Ω −

{
〈 ˆ̃H2〉σmin −

[
Ẽ(RR)

Ω

]2
} 1

2
= Ẽ(W)

Ω , (A16)

where σmin is as found in Equation (A14) and

〈 ˆ̃H2〉σ =

∫
dD~xΨ̃trial(σmin,~x) ˆ̃H2Ψ̃trial(σ,~x)∫

dD~xΨ̃2
trial(σ,~x)

∣∣∣∣∣
σ=σmin

=

∫ ∞
0 d|~x||~x|D−1 exp

(
− |~x|

2

2σ2

)[
− 1

2∇2 + |~x|γ
]2

exp
(
− |~x|

2

2σ2

)
1
2 Γ
(

D
2

)
σD

∣∣∣∣∣
σ=σmin

.

(A17)

The numerator of this expression can be divided into four parts, evaluated separately.

Opening up the operator
[
− 1

2∇2 + |~x|γ
]2

, we obtain the contribution from the |~x|γ|~x|γ
term:

N1(σ) =
∫ ∞

0
d|~x||~x|D−1 exp

(
−|~x|

2

2σ2

)
|~x|2γ exp

(
−|~x|

2

2σ2

)
=
∫ ∞

0
d|~x||~x|D+2γ−1 exp

(
−|~x|

2

σ2

)
=

1
2

Γ
(

D + 2γ

2

)
σD+2γ ,

(A18)

the − 1
2 |~x|γ∇2 term:

N2(σ) = −
1
2

∫ ∞

0
d|~x||~x|D−1 exp

(
−|~x|

2

2σ2

)
|~x|γ∇2 exp

(
−|~x|

2

2σ2

)
= −1

2

∫ ∞

0
d|~x||~x|D+γ−1 exp

(
−|~x|

2

σ2

)(
|~x|2 −Dσ2

σ4

)
=

1
8
(D − γ)Γ

(
D + γ

2

)
σD+γ−2 ,

(A19)
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the − 1
2∇2|~x|γ term:

N3(σ) = −
1
2

∫ ∞

0
d|~x||~x|D−1 exp

(
−|~x|

2

2σ2

)
∇2
[
|~x|γ exp

(
−|~x|

2

2σ2

)]
= −1

2

∫ ∞

0
d|~x||~x|D+γ−3 exp

(
−|~x|

2

σ2

)
[
|~x|4 − (D + 2γ)σ2|~x|2 + γ(D + γ− 2)σ4

σ4

]
=

1
8
(D − γ)Γ

(
D + γ

2

)
σD+γ−2 ,

(A20)

and the 1
4∇2∇2 term:

N4(σ) =
1
4

∫ ∞

0
d|~x||~x|D−1 exp

(
−|~x|

2

2σ2

)
∇2
[
∇2 exp

(
−|~x|

2

2σ2

)]
=

1
4

∫ ∞

0
d|~x||~x|D−1 exp

(
−|~x|

2

σ2

)[
|~x|4 − 2(D + 2)σ2|~x|2 +D(D + 2)σ4

σ8

]
=

1
32

D(D + 2)Γ
(

D

2

)
σD−4 .

(A21)

Thus, following from Equation (A16), we obtain

Ẽ(W)
Ω = Ẽ(RR)

Ω −

∑4
j=1 Nj(σ)

1
2 Γ
(

D
2

)
σD

∣∣∣∣∣
σ=σmin

−
[

Ẽ(RR)
Ω

]2


1
2

, (A22)

in which we can estimate the upper bound for the stationary population success as

Sst ≤ S(W)
st = 1− 2D

R0λ2

[
Ẽ(W)

Ω

] 2+γ
γ . (A23)

In Figure 2, for the dependence of S(W)
st on the exponent γ, we see a sharp turn at γ = 2,

where Ẽ(W) = Ẽ(RR). To understand this, let us take a look at how the difference between
them progresses with γ by rewriting Equation (A16) as follows:

Ẽ(RR)
st − Ẽ(W)

st =
[
〈Ĥ2〉γ − 〈Ĥ〉2γ

] 1
2 , (A24)

in which we use

〈Ĥ2〉γ =
〈

Ψtrial[σmin(γ)]
∣∣∣Ĥ2

∣∣∣Ψtrial[σmin(γ)]
〉

,

〈Ĥ〉2γ =
〈

Ψtrial[σmin(γ)]
∣∣∣Ĥ∣∣∣Ψtrial[σmin(γ)]

〉2
.

(A25)

Since 〈Ĥ2〉γ and 〈Ĥ〉2γ are analytical functions of γ, and mathematically we always have
the inequality 〈Ĥ2〉γ ≥ 〈Ĥ〉2γ, in the limit γ→ 2 where the equal sign happens, the leading
order of the (γ− 2) expansion there should be as least the second order:

〈Ĥ2〉γ − 〈Ĥ〉2γ ∝ (γ− 2)2 =⇒ Ẽ(RR)
st − Ẽ(W)

st ∝ |γ− 2| . (A26)

Therefore, it signals a sharp turn for S(W)
st at γ = 2 due to the contribution from this non-

differentiable absolute value function, as S(RR)
st is smooth there. This is indeed the behavior

we observed.
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Appendix B.3. Application of the Wentzel–Kramers–Brillouin Approximation

The Wentzel–Kramers–Brillouin approximation in D = 1 uses semiclassical quantiza-
tion conditions to estimate the eigenenergies via a summation series [69]:

∞

∑
k=0

(−i)2k
∮

Θ2k =
∞

∑
k=0

= 2π

(
n +

1
2

)
where n = {0, 1, 2, 3, ...} . (A27)

For the ground state, we consider n = 0.
Perhaps the most familiar part of this general formula is the zeroth-order term, which

is given by the total action in a single cycle of a classically allowed periodic trajectory:∮
Θ0 =

∮
dx
{

2
[
Ẽ− Ũ(x)

]} 1
2 , (A28)

which can be evaluated with Ũ(x) = |x|γ to be

∮
Θ0 = 4

√
2
∫ +Ẽ

1
γ

0
dx
[
Ẽ− |x|γ

] 1
2

ρ=xE−
1
γ

−−−−−−→ 4
√

2Ẽ
2+γ
2γ

∫ +1

0
dρ(1− |ρ|γ)

1
2

= 4
√

2Ẽ
2+γ
2γ

√π

2

Γ
(

1 + 1
γ

)
Γ
(

3
2 + 1

γ

)
 =
√

8π
Γ
(

1 + 1
γ

)
Γ
(

3
2 + 1

γ

) Ẽ
2+γ

γ .

(A29)

Using this in Equation (A27), we can estimate the energy of the ground state:

√
8π

Γ
(

1 + 1
γ

)
Γ
(

3
2 + 1

γ

)[Ẽ(WKB,0)
Ω

] 2+γ
γ

= 2π

(
n +

1
2

)∣∣∣∣∣
n=0

= π

=⇒ Ẽ(WKB,0)
Ω =

√π

8

Γ
(

3
2 + 1

γ

)
Γ
(

1 + 1
γ

)


2γ
2+γ

.

(A30)

We can take this result and apply Equation (A4) to obtain a zeroth-order estimation for the
stationary population success:

S(WKB,0)
st = 1− 2D

R0λ2

[
Ẽ(WKB,0)

Ω

] 2+γ
γ

= 1− π

4
D

R0λ2

Γ
(

3
2 + 1

γ

)
Γ
(

1 + 1
γ

)
2

. (A31)

For higher orders, the quantization conditions can be written as

∞

∑
k=0

c2kE
1
2−k = 2π

(
n +

1
2

)
where E = Ẽ

2+γ
γ . (A32)

The first few coefficients we calculated for the pure power-law potential Ũ(x) = |x|γ to be

c0 = 2
√

2π
Γ
(

1 + 1
γ

)
Γ
(

3
2 + 1

γ

) , c2 = −
√

2π

12

γΓ
(

2− 1
γ

)
Γ
(

1
2 −

1
γ

) ,

c4 = −
√

2π

8640

γ3(3 + 2γ)Γ
(

4− 3
γ

)
(3− 2γ)Γ

(
− 1

2 −
3
γ

) .

(A33)
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For tractability, we only go up the second order. Then, for the ground state, from Equation (A32),
we can arrive at

c0E
1
2

Ω + c2E
− 1

2
Ω = 2π

(
n +

1
2

)∣∣∣∣∣
n=0

= π , (A34)

which can be solved as a quadratic polynomial,

EΩ =
π2 − 2c0c2 + π

√
π2 − 4c0c2

2c2
0

. (A35)

Hence, by using Equation (A4), we can obtain the second-order estimation

S(WKB,2)
st = 1− 2D

R0λ2

(
π2 − 2c0c2 + π

√
π2 − 4c0c2

2c2
0

)
. (A36)

Appendix C. Simulation of the Non-Homogeneous Random Walk on the Landscape

Figure A1. Our simulation for the evolution of heterogeneous population distribution on the
D = 3-dimensional fitness landscape as described in Equation (10). We use parameter values
D = 1/18, R0 = 1, λ = 1, and K = 105. For better visualization, only 10% of the agents are shown.
(A) The initial distribution at t = 0 we use for all runs, using

∫
d3~xb(~x, 0) = 103 agents. (B1) A

snapshot of the distribution at a stationary state if the evolution has no stress-induced mutagenesis.
(B2) A snapshot of the distribution at a stationary state if the evolution has gradual stress-induced
mutagenesis as in Equation (21), where ε = 0.1. (B3) A snapshot of the distribution at a stationary
state if the evolution has sharp stress-induced mutagenesis as in Equation (28), where ε = 10. Each
dot represents the position of an agent in the landscape.

We use agent-based simulations to investigate the population dynamics, in which
each agent is specified by its location ~x = (x1, x2, ..., xD ) on the D-dimensional landscape.
We discretize the time t into evenly pacing simulation time-steps, so that two consecutive
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steps are ∆t apart. At every simulation step, the position of each agent in every different
direction j ∈ {1, 2, 3, ..., D} is updated with

xj(t + ∆t) = xj(t) + {2D[R(~x)]∆t×N (0, 1)} , (A37)

where D[R] is the fitness R(~x)-dependence diffusivity, and N (0, 1) is sample values from
a Gaussian distribution of mean value 0 and standard deviation 1. Each agent also has a
chance to multiply (when one agent becomes two) or die. These two are controlled by a
single value p:

p = R(~x)
[

1− N(t)
K

]
∆t , (A38)

in which K is the carrying capacity and N(t) is the total number of agents at physical time
t. A random number is generated uniformly between [0, 1], and if that number is larger
than |p|, then the agent multiplies if p > 0 and dies if p < 0 (otherwise, nothing happens).

For fitness function R(~x), unless further specified, we use Equation (10). For the
gradual stress-induced mutagenesis regime, we use D[R] as in Equation (21). For the
sharp stress-induced mutagenesis regime, we use D[R] as in Equation (28). At t = 0,
we use the very same initial distribution of 103 agents in the landscape, which we place
randomly using a uniformly generated procedure inside a ball of radius λ (the fit region on
the landscape).

For our simulations, we use a time discretization ∆ = 0.01 and the total time of
T = 100. In every simulation, the population reaches a stationary state before t = 50, so all
the population distribution densities are temporal averages of all agent position data in
t ∈ [51, 100]. The values of other parameters (D , D, R0, λ, K, ε) in different simulations are
mentioned in the figures that show their results.

Appendix D. Perturbative Corrections

Appendix D.1. With Perturbed Hamiltonian Contains |~x|2

Following Equation (20), with perturbed Hamiltonian Equation (23), we can estimate
the ground state energy shift via brute force integration as follows:

δE(1)
Ω =

∫ ∞

0
d|~x||~x|D−1e−

1
2 ω|~x|2 · 1

2
p̂2
(
|~x|
λ

)2

· e−
1
2 ω|~x|2

∫ ∞

0
d|~x||~x|D−1e−

1
2 ω|~x|2 · e−

1
2 ω|~x|2

=

∫ ∞

0
d|~x||~x|D−1e−

1
2 ω|~x|2 · 1

2
(−∇2)

[(
|~x|
λ

)2

e−
1
2 ω|~x|2

]
∫ ∞

0
d|~x||~x|D−1e−ω|~x|2

=

−1
2

∫ ∞

0
d|~x||~x|D−1e−ω|~x|2

[
ω2|~x|4 − (D + 4)ω|~x|2 + 2D

λ2

]
1
2

ω−
D
2 Γ
(

D

2

)

=
−
(D − 2)ω−

D
2 Γ
(

1 + D
2

)
8λ2

1
2

ω−
D
2 Γ
(

D

2

) =
D(D − 2)

8λ2 .

(A39)
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Appendix D.2. With Perturbed Hamiltonian Contains xκ

In order to evaluate δE(1)
Ω for the p̂2|~x|κ perturbation operator, we start from Equation (20):

δE(1)
Ω =

∫ ∞

0
d|~x||~x|D−1e−

1
2 ω|~x|2 · 1

2
p̂2
(
|~x|
λ

)κ

· e−
1
2 ω|~x|2

∫ ∞

0
d|~x||~x|D−1e−

1
2 ω|~x|2 · e−

1
2 ω|~x|2

=

∫ ∞

0
d|~x||~x|D−1e−

1
2 ω|~x|2 · 1

2
(−∇2)

[(
|~x|
λ

)κ

e−
1
2 ω|~x|2

]
∫ ∞

0
d|~x||~x|D−1e−ω|~x|2

=

−1
2

∫ ∞

0
d|~x||~x|D+κ−1e−ω|~x|2

[
ω2|~x|4 − (D + 2κ)ω|~x|2 + κ(D + κ − 2)

λκ

]
1
2

ω−
D
2 Γ
(

D

2

)

=
−
(D − κ)ω1−D+κ

2 Γ
(

D+κ
2

)
8λκ

1
2

ω−
D
2 Γ
(

D

2

) =

(D − κ)ω1− κ
2 Γ
(

D + κ

2

)
4λκΓ

(
D

2

) .

(A40)

For the sanity check, when we substitute κ = 2, result δE(1)
Ω becomes Equation (A39).

Appendix D.3. With Perturbed Hamiltonian Contains Heaviside Function

In order to evaluate δE(1)
Ω for the non-Hermitian operator containing a Heaviside

function, which is given in Equation (30), we expand Equation (20):

δE(1)
Ω =

∫ ∞

0
d|~x||~x|D−1e−

1
2 ω|~x|2 · 1

2
p̂2Θ

(
|~x|
λ
− 1
)
· e−

1
2 ω|~x|2

∫ ∞

0
d|~x||~x|D−1e−

1
2 ω|~x|2 · e−

1
2 ω|~x|2

=
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0
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1
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2
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Θ
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0
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0
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1
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(
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e−
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(

D

2

) .

(A41)
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It is non-trivial to deal with the derivatives of the Heaviside function, so let us move slower:

∂|~x|

{
|~x|D−1∂|~x|

[
Θ
(
|~x|
λ
− 1
)

e−
1
2 ω|~x|2

]}
= ∂|~x|

{
|~x|D−1e−

1
2 ω|~x|2

[
−ω|~x|Θ

(
|~x|
λ
− 1
)
+

1
λ

δ

(
|~x|
λ
− 1
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(
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)
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1
2 ω|~x|2 Θ

(
|~x|
λ
− 1
)

+
1
λ

[
−2ω|~x|D + (D − 1)|~x|D−2

]
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1
2 ω|~x|2 δ

(
|~x|
λ
− 1
)

+
1
λ
|~x|D−1e−

1
2 ω|~x|2 ∂|~x|δ

(
|~x|
λ
− 1
)

,

(A42)

where δ(...) is the Dirac-delta function [89]. To proceed, we evaluate the integration of each
term separately. The Θ-term:

− 1
2

∫ ∞

0
d|~x|e−

1
2 ω|~x|2

[
ω
(

ω|~x|2 −D
)

xD−1e−
1
2 ω|~x|2 Θ

(
|~x|
λ
− 1
)]

= −1
2
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λ
d|~x|xD−1e−ω|~x|2 ω

(
ω|~x|2 −D

)
=

1
4

ωλD
[
−2e−ωλ2

+ ωλ2 E−D
2

(
ωλ2

)]
,

(A43)

the δ-term:

− 1
2

∫ ∞

0
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(A44)

and finally the ∂|~x|δ-term:
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(A45)
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in which we used integration by part. Adding up these three, we obtain the numerator of
Equation (A41), which provides

δE(1)
Ω =

1
4 ωλD

[
−2e−ωλ2

+ ωλ2 E−D
2

(
ωλ2)]

1
2
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(
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(
ωλ2

)]
2Γ
(

D

2

) .

(A46)
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