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Summary

This paper briefly reviews the recent research in matrix-variate time series analysis, discusses
some new developments, especially for seasonal time series, and demonstrates some applications.
A general matrix autoregressive moving-average model is introduced. The paper narrates a simple
approach for understanding the model, identifiability issues, and estimation. Real examples are
used to illustrate the theory.
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1 Introduction

The availability of large-scale and vast serially dependent data in recent years opens many
new research topics in time series analysis, ranging from factor models for modelling
high-dimensional data to tensor-variate models for exploring rich data structures. In this paper,
we focus on matrix-variate time series, which consists of a sequence of two-dimensional arrays.
The extension to general tensor-variate time series analysis is possible, but it would require
more restrictions to address model identifiability and nonlinear parameter constraints. Our goal
is to propose a general framework for modelling matrix-variate time series, to study some basic
properties of the series, to discuss the relationship between vector and matrix time series, and to
provide a simple approach to understanding and applying matrix-variate time series models. In
particular, we address the issues of model identifiability, estimation, and model checking. A
general matrix autoregessive moving-average (MARMA) model and multiplicative seasonal
models are also discussed.
The scalar and vector time series analyses have been well studied in the literature and are

widely used in applications. See, for example, the textbooks of Box et al. (2016),
Lütkepohl (2006), Shumway & Stoffer (2017), and Tsay (2010, 2014) and the references
therein. It is natural to think of the analysis of vector time series as an extension of that of
the scalar one, but some extensions from scalar to vector time series are not straightforward.
For instance, the generalisation of scalar autoregressive moving-average (ARMA) models to
the vector autoregressive moving-average (VARMA) models introduces certain issues concern-
ing model identifiablility. See, for instance, the block identifiability conditions in Dunsmuir &
Hannan (1976), the scalar component model approach to modelling in Tiao & Tsay (1989),
and the Kronecker indices for structural specification in Hannan & Deistler (1988). Empirical
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applications of vector time series models often encounter the issue of co-integration, whereas
those of scalar time series only need to address the order of difference in achieving stationarity.
The extension of vector time series analysis to matrix-variate time series seems easier in some
ways, but some important issues arise in the extension. We shall discuss properties of
matrix-variate time series that are easy to obtain from those of vector series and study issues that
require further investigation.

To begin, we define some notations and introduce a reshaping operator of a square matrix,
which is useful in understanding the identifiability problem of a matrix-variate time series
model. The uppercase and lowercase bold-face letters denote a matrix and a vector, respectively.
For a matrix A, ‖A‖2 denotes its Frobenious norm, trðAÞ is its trace, and a ¼ vecðAÞ denotes its
column stacking vector, that is, a ¼ ða0:1; a0:2; …; a0:hÞ0, where a:j is the jth column of A and 0
denotes the transpose of a matrix or a vector. Also, let aij be the ði; jÞth element of the matrix
A. For two matrices Dg � h and Cp � q, let D⊗C be their Kronecker product, that is, D⊗C ¼
½dijC�gp � hq. For a square matrix A, let ρðAÞ be its largest eigenvalue, in modulus. Finally, we
use Σ > 0 to denote that Σ is a positive-definite matrix.

For a gh� ghmatrixM, we partition it into h2 block sub-matrices, each of dimension g � g.
That is,

Mgh � gh ¼ ½M ij�hi; j¼1;

where M ij is a g � g matrix, for i; j ¼ 1; …; h. Following Van Loan & Pitsianis (1993),
we define a reshaping operator Rð:Þ of the square matrix M as

RðMÞ ¼

vecðM11Þ0
⋮

vecðMh1Þ0
vecðM12Þ0

⋮
vecðM1hÞ0

⋮
vecðMhhÞ0

2
666666666666664

3
777777777777775
h2 � g2

: (1)

Clearly,RðMÞ simply rearranges elements ofM into a h2 � g2 matrix. It has a nice property
in conjunction with the Kronecker product. Specifically, suppose that Dh � h and Cg � g are two
square matrices, then

RðD⊗CÞ ¼ vecðDÞvecðCÞ0: (2)

This identity says that one can reshape the Kronecker product into a rank-1 matrix, which is
useful in understanding matrix-variate time series models.

Returning to time series analysis, a VARMA(p; q) model for a k -dimensional vector time
series {xt} is

ϕðBÞxt ¼ ϕ0 þ θðBÞat; (3)

where ϕðBÞ ¼ I � P p
i¼1ϕiB

i and θðBÞ ¼ I � P q
j¼1θjB

j are the autoregressive (AR) and
the moving-average (MA) matrix polynomials of degrees p and q, respectively, ϕi and θj are
k � k real-valued matrices, B is the backshift or lag operator such that Bxt ¼ xt � 1, and ϕ0 is
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a k-dimensional constant vector. The innovation series fatg of Equation (3) is a sequence of se-
rially uncorrelated random vectors with EðatÞ ¼ 0 and var(at) = Σa > 0. The model reduces to
a scalar ARMA model when k = 1. For model (3), we assume that all solutions to the determi-
nant polynomial jϕðBÞj ¼ 0 are greater than or equal to one in modulus and those of jθðBÞj ¼ 0
are greater than one in modulus. For the block identifiability of model (3), we further require
that (a) ϕðBÞ and θðBÞ are left co-prime and (b) the joint matrix ½ϕp; θq� is of rank k , where
q is as small as possible and p is as small as possible for a given q . See Dunsmuir &
Hannan (1976). The series {xt} is weakly stationary if all solutions to jϕðBÞj ¼ 0 are outside
the unit circle and is invertible if all solutions to jθðBÞj ¼ 0 are outside the unit circle. For more
properties and applications of VARMA models, readers are referred to Lütkepohl (2006) and
Tsay (2014), among others.
Consider next a matrix-variate time series {X t}, which is of dimension g � h. For example,

consider six mid-western states of the United States; namely, Illinois, Indiana, Iowa, Wisconsin,
Minnesota, and Michigan. Suppose that we are interested in analysing the employment and un-
employment of these six states. The available variables include (a) civilian labour force
(in persons) and (b) all employees: leisure and hospitality (in thousands of persons). In this par-
ticular instance, we have a monthly 6� 2matrix-variate time series with each row representing a
state and each column representing an employment variable. Here one can employ a vector time
series of dimension six to analyse each employment variable, or a bivariate series to analyse the
labour market of each state, or a 12-dimensional series to modelling jointly the employment se-
ries of the six states. However, it would be of interest to study the mid-western regional labour
market jointly while maintaining the state structure. This leads to the analysis of a 6� 2
matrix-variate time series.

2 Matrix-Variate Time Series

A straightforward generalisation of VARMA models in Equation (3) to matrix-variate time
series {X t} of dimension g � h is

X t ¼ Φ0 þ
Xp
i¼1

C iX t � iD
0
i þ At �

Xq
j¼1

LjAt � jR
0
j; (4)

where C i and Lj are g � g real-valued matrices,Di and Rj are h� h real-valued matrices,Φ0 is a
g � h constant matrix, and {At} is a sequence of serially uncorrelated g � h random matrices
with EðAtÞ ¼ 0 and var(at) = Σa > 0, where at ¼ vecðAtÞ, which is a gh-dimensional series.
If one further assumes that At follows a matrix normal distribution, then Σa ¼ V⊗U , where
U > 0 is the left covariance matrix and V > 0 is the right covariance matrix. See Section
2.3 below for further information. We shall refer to model (4) as a (rank-1) matrix
autoregressive moving-average (MARMA) model.

2.1 Identifiability

The MARMA model in Equation (4) is not identifiable without further restrictions. For in-

stance, the pairs ðC i; DiÞ and 1

c
C i; cDi

� �
, for c ≠ 0, provide the same dependence of X t on

X t � i. A common practice in the literature is to require ‖C i‖2 ¼ 1, for i ¼ 1; …; p, and ‖Li‖2 ¼
1, for j ¼ 1; …; q. Even with such requirements, the pair ðC i; DiÞ remains un-identified, be-
cause ðC i; DiÞ and ð�C i; �DiÞ would produce the same results. This sign issue is not critical
in some applications, but it creates problems for parameter estimation. A possible solution is to
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require that trðDiÞ > 0, for i ¼ 1; …; p, and trðRjÞ > 0, for j ¼ 1; …; q. See, for instance,
Hsu et al. (2021). We consider another simple solution to this identifiability problem later.

The MARMA model in Equation (4) can be rewritten as

xt ¼ ϕ0 þ
Xp
i¼1

ðDi⊗C iÞxt � i þ at �
Xq
j¼1

ðRj⊗LjÞat � j; (5)

where xt ¼ vecðX tÞ and ϕ0 ¼ vecðΦ0Þ. This is a VARMA representation for the MARMA
model in (4) with AR and MA matrix polynomials being ϕC; DðBÞ ¼ I � P p

i¼1ðDi⊗C iÞBi

and θL; RðBÞ ¼ I � P q
j¼1ðRj⊗LjÞBj, respectively, where the subscripts ðC; DÞ and ðL; RÞ sig-

nify that the coefficient matrices of the matrix polynomials are Kronecker products of (Di; C i)
and (Rj; Lj).

Taking advantages of the block identifiability conditions of VARMA models, we obtain that
the MARMA model in (4) is block identifiable if the following two conditions hold: (a)
ϕC; DðBÞ and θL; RðBÞ are left co-prime and (b) the joint matrix [Dp⊗Cp , Rq⊗Lq] is of rank
gh, where q is as small as possible and p is as small as possible for a given q.

An intuitive approach to modelling the matrix time series {X t} is to fit a VARMA model
of Equation (3) to the gh-dimensional vector process {xt}. However, the VARMA(p; q) model
for {xt} fails to capture the matrix structure of {X t} and often employs many more parameters
than the MARMA model in (4) does. Comparing models in Equations (3) and (4), we see that,
ignoring the covariance matrices of At and at and constant terms, the VARMA model uses
ðpþ qÞg2h2 parameters whereas the MARMA model only contains ðpþ qÞðg2 þ h2 � 1Þ pa-
rameters. We subtract one parameter from each pair of ðDi; C iÞ and ðRj; LjÞ due to the scaling
issue mentioned in Section 2.1. The difference in the number of parameters between the two
models can be substantial even for small g and h . For example, consider the case of
ðg; h; p; qÞ ¼ ð6; 2; 2; 0Þ. In this particular case, the VARMA(2,0) model of dimension 12 em-
ploys 288 coefficient parameters, but the matrix model in Equation (4) only uses 78 coefficient
parameters. In general, advantages of using MARMA models over VARMA ones include (a)
making use of the matrix data structure and (b) obtaining a parsimonious model, which in turns
avoids the problem of over-parameterisation. Mathematically speaking, the extension from (3)
to the model in (4) is not sufficiently general. We consider a general (rank-r) MARMA model
in the next section.

2.2 General Matrix-Variate ARMA Models

In theory, the MARMA model in (4) can be considered as a reduced (or sub) model of the
VARMA model in (3) with nonlinear parameter constraints. Alternatively, one can think of
the MARMA model as an approximation to the VARMA model with ϕi being approximated
by ðDi⊗C iÞ, for i ¼ 1; …; p, and θj being approximated by ðRj⊗LjÞ, for j ¼ 1; …; q. Here
we use a single Kronecker product to approximate each coefficient matrix of the corresponding
VARMA model. The accuracy of such an approximation might be questionable in real applica-
tions. In fact, using a single Kronecker product to approximate a coefficient matrix can be con-
sidered as using a rank-1 approximation to the coefficient matrix. See the reshaping identity
in (2). In addition, using multiple Kronecker products to approximate a given matrix has been
investigated recently by Cai et al. (2022). To increase model flexibility and to improve accuracy
in matrix approximation, Hsu et al. (2023) proposed a rank-r MAR(p) model for modelling
spatio-temporal data observed on a regular grid, in which each AR coefficient matrix is
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approximated by r Kronecker products, that is, ϕi ¼
P

r
j¼1ðDi; j⊗C i; jÞ. We can generalise their

model to a general rank-r MARMA(p; q) model as follows:

X t ¼ Φ0 þ
Xp
i¼1

Xr
j¼1

γi; jC ijX t � iD
0
ij

 !
þ At �

Xq
i¼1

Xr
j¼1

ωi; jLijAt � iR
0
ij

 !
; (6)

where r is a positive integer, γi; 1 ≥ … ≥ γi; r > 0, for i ¼ 1; …; p, and ωi; 1 ≥ … ≥ ωi; r > 0,
for i ¼ 1; …; q. For model identification of (6), we assume that fvecðC i; 1Þ; … ; vecðC i; rÞg and
fvecðDi; 1Þ; … ; vecðDi; rÞg are two sets of orthonormal vectors, for i ¼ 1; …; p , and
fvecðLi; 1Þ; … ; vecðLi; rÞg and fvecðRi; 1Þ; … ; vecðRi; rÞg are also two sets of orthonormal
vectors, for i ¼ 1; …; q. These identifiability conditions of coefficient matrices can equivalently
be written as: for 1 ≤ u; v ≤ r,

trðC 0
i; uC i; vÞ ¼ trðD0

i; uDi; vÞ ¼ δuv; γi; 1 ≥ … ≥ γi; r > 0; i ¼ 1; …; p; (7)

trðL0
i; uLi; vÞ ¼ trðR0

i; uRi; vÞ ¼ δuv; ωi; 1 ≥ … ≥ ωi; r > 0; i ¼ 1; …; q; (8)

where δuv ¼ 1 if u ¼ v and = 0, otherwise. The requirement of using orthonormal vectors is to
distinguish each Kronecker product and to fix the scaling effect of the Kronecker products so
that the quantities γi; j and ωi; j can quantify the contribution of each Kronecker product in their
matrix approximation. Clearly, this general MARMA model uses r Kronecker products to ap-
proximate each AR and MA coefficient matrix of the VARMA representation for {X t}. Indeed,
from model (6), the VARMA representation of X t becomes Equation (3) with

ϕi ¼
Xr
j¼1

γi; jðDi; j⊗C i; jÞ; i ¼ 1; …; p; θi ¼
Xr
j¼1

ωi; jðRi; j⊗Li; jÞ; i ¼ 1; …; q: (9)

Applying the identity (2), we have

RðϕiÞ ¼
Xr
j¼1

γi; jRðDi; j⊗C i; jÞ ¼
Xr
j¼1

γi; jvecðDi; jÞvecðC i; jÞ0:

Consequently, one can reshape each AR coefficient matrix to perform a singular value decom-
position to identity γi; j and ðDi; j; C i; jÞ, for j ¼ 1; …; r and i ¼ 1; …; p. The same operation also
applies to each MA coefficient matrix θi, for i ¼ 1; …; q. The idea of using rank-r approxima-
tions for AR coefficient matrices is also used in Li & Han (2021) for tensor autoregressive
models.
Again, using the VARMA representation, one can easily obtain the stationarity, invertibility,

and block identiability conditions for a general rank-rMARMAmodel, provided that the param-
eter identification conditions in (6) are met. Furthermore, one can even relax the assumption of
using the same rank r for all coefficient matrices by using rank pi forϕi and rank qj for θj. In real
applications, one expects that the rank r is sufficiently small so that the resulting MARMA
model does not employ too many parameters.

2.3 A Brief Survey

In this section, we briefly review the analysis of matrix-variate time series. To begin, a g � h
random matrix A is said to follow a matrix normal distribution with mean M , left (or row)
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covariance matrixU > 0, and right (column) covariance matrixV > 0 if the probability den-
sity function of A is

pðAjM ; U ; VÞ ¼
exp �1

2
tr½V�1ðA � MÞ0U�1ðA � MÞ�

� �
ð2πÞgh=2jV jg=2jU jh=2

;

where U and V are g � g and h� h matrices. We use the notation A ∼ NðM ; U ; V Þ to denote
such a matrix normal distribution. It is easy to see that A ∼ NðM ; U ; VÞ if and only if a ¼
vecðAÞ ∼ NðvecðMÞ; V⊗UÞ.

Research in matrix-variate time series has a relatively short history and most of the articles
focus on matrix-variate autoregressive (MAR) models. H. Wang & West (2009) consider a dy-
namic linear model for the matrix-variate time series {X t} as follows:

X t ¼ ðIg⊗F0
tÞQt þH t; H t ∼ Nð0; U ; VÞ; (10)

Qt ¼ ðIg⊗GtÞQt � 1 þ Ωt; Ωt ∼ Nð0; U⊗W t; V Þ; (11)

whereQt denotes the state matrix, andFt,Gt andW t are time-varying matrices of proper dimen-
sions. The authors applied the model (10)–(11) to study the dynamic relationship of a monthly
8� 9 matrix-variate of employment statistics of eight U.S. states and nine industrial sectors.
Samadi (2014) studies MAR models for the matrix series {X t} with the right matrixDi assuming
a location matrix. Specifically, he considers the MAR(1) model

X t ¼ Φ0 þ
Xh
j¼1

Xh
i¼1

Gj
iX t � 1Eij þ At; (12)

whereGj
i, for i; j ¼ 1; …; h, are g � g real-valued matrices andEij ¼ ½ðeuvÞij�, for i; j ¼ 1; …; h,

are h� h location matrices such that

ðeuvÞij ¼
1; if u ¼ i and v ¼ j;

0; otherwise:

�
The model states that each element xij; t of X t is a linear function of elements of X t � 1 plus the
innovation aij; t ofAt. This is different from the other MAR models discussed so far. As a matter
of fact, it is not hard to see that model (12) is just an alternative way to write the VAR(1) model
for the vector {xt} series in a matrix form.

Chen et al. (2021) propose MAR models to maintain and utilise the matrix structure of the
data and investigate probabilistic properties of the proposed model. The authors also consider
estimation via iterated least squares and maximum likelihood methods. Hsu et al. (2021) con-
sider structured MAR models to characterise the temporal dynamics of spatio-temporal
matrix-variate time series. The model is in the form of Equation (4) with q ¼ 0, but certain
banded structures are allowed for the coefficient matrices to take care of the nearest neighbours
of individual series xij; t and special attention is paid to the covariance structure ofAt to allow for
non-separable covariance structure, which is commonly seen in spatial data analysis. Specifi-
cally, the covariance matrix of at assumes the form

Σa ¼ BGB0 þ σ2I ; (13)

where B is a known gh� k matrix of basis functions with rank k ≤ gh, G is an unknown k � k
nonnegative-definite matrix and σ2 ≥ 0 is an unknown parameter. The basis functions used in
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Hsu et al. (2021) is the multi-resolution spline basis functions of Tzeng & Huang (2018). Other
commonly used basis functions include wavelet basis functions, bisquare functions and Gauss-
ian functions. Both iterated least squares and maximum likelihood methods are used to estimate
the model, includingG andσ2, and information criteria such as AIC and BIC are used to perform
model selection. Li & Han (2021) study multi-linear tensor autoregressive models, including
model identifiability conditions for the AR coefficient matrices.
When the dimensiongh is large, D. Wang et al. (2019) propose a matrix factor model for {X t},

which can be written as

X t ¼ LFtR
0 þ Et; (14)

whereFt is a g1 � h1 matrix-variate factor process with g1 << g and h1 << h, L is an g � g1
left loading matrix and R is a h� h1 right loading matrix. The model in Equation (14) is not
identifiable, because for any two nonsingular matrices Ug1 � g1 and V h1 � h1 , we can rewrite
the model as X t ¼ LUðU�1FtV�1ÞðRV 0Þ0 þ Et . To address this identifiability issue, one can
rewrite L ¼ Q1W 1 and R ¼ Q2W 2, where Q1 is a g � g1 semi-orthonormal matrix such that
Q0

1Q1 ¼ Ig1 and Q2 is a h� h1 semi-orthonormal matrix such that Q0
2Q2 ¼ Ih1 , and W 1 and

W 2 are g1 � g1 and h1 � h1 nonsingular matrices. The model in Equation (14) then becomes
X t ¼ Q1ðW 1FtW 0

2ÞQ0
2 þ Et =Q1Z tQ

0
2 þ Et, where Z t ¼ W 1FtW 0

2. The orthonormal condition
ofQ1 andQ2 enables us to consistently estimate the column spaces of L andR. The authors then
estimate the dynamic part of {X t}, defined as Y t ¼ LFtR0, by

Ŷ t ¼ Q̂1Q̂
0
1X tQ̂2Q̂

0
2: (15)

Sufficient conditions are also given to derive some asymptotic properties of the proposed es-
timates. E. Chen et al. (2020) extend the factor models one-step further by studying constrained
factor models for high-dimensional matrix-variate time series. The constraints are known a
priori, such as the prior knowledge concerning the categories of the variables involved, and
are used to obtain a parsimonious factor model when the dimension of X t is high.
Gao & Tsay (2023) propose a two-way transformed factor model for matrix-variate time se-

ries. Assuming that EðX tÞ ¼ 0, one can write the proposed model as

X t ¼ L
Ft Z12; t

Z21; t Z22; t

� �
R0 ¼ L1FtR

0
1 þ L2Z21; tR

0
1 þ L1Z12; tR

0
2 þ L2Z22; tR

0
2; (16)

whereFt is a g1 � h1 factor process with g1 < g and h1 < h,Z12; t,Z21; t andZ22; t are g1 � h2,
g2 � h1 andg2 � h2 matrix-variate white noise processes withg1 þ g2 ¼ g andh1 þ h2 ¼ h,L ¼
½L1; L2� is a g � g left transformation matrix with L1 being of dimension g � g1 , and R ¼
½R1; R2� is a h� h right transformation matrix withR1 being of dimension h� h1. In model (16),
Ft is uncorrelated with the three matrix-variate white noise processes. Note that the model
in (16) is different from the model in (14), because the number of noise components in
model (14) is gh whereas that in model (16) is only gh � g1h1. Decompose the transformation
matrices L and R as follows:

L1 ¼ K1W 1; L2 ¼ K2W 2; R1 ¼ P1G1; and R2 ¼ P2G2; (17)

whereK i andPi are semi-orthonomal matrices, that is,K 0
iK i ¼ Igi andP

0
iPi ¼ Ihi, for i= 1 and 2.

This can be done via QR or singular value decomposition. Letting Y t ¼ W 1FtG
0
1 , E21; t ¼

W 2Z21; tG
0
1, E12; t ¼ W 1Z12; tG

0
2 and E22; t ¼ W 2Z22; tG

0
2, we can rewrite the model (16) as

X t ¼ K1Y tP
0
1 þ K2E21; tP

0
1 þ K1E12; tP

0
2 þ K2E22; tP

0
2: (18)
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Note that the model in (18) is still not identifiable, because the triplets ðK1; Y t; P1Þ can be
replaced by ðK1H 0

1; H1Y tH2; P1H2Þ for any orthonormal matrices H1 ∈ Rg1 � g1 and
H2 ∈ Rg2 � g2 without altering the data generating process. Similarly to that of D. Wang
et al. (2019), the orthonormal features of K i and Pi enable us to estimate the column spaces
of transformation matrices L and R . On the other hand, Gao & Tsay (2023) propose a
two-way projected principal component analysis to improve the estimation of the factor process.
For i = 1 and 2, let J i andQi be the orthonormal complements ofK i and Pi, respectively. That is,
J1 ∈ Rg � g2 , J2 ∈ Rg � g1 , Q1 ∈ Rh � h2 and Q2 ∈ Rh � h1 are semi-orthonomal matrices with
J 0
1K1 ¼ 0, J 0

2K2 ¼ 0, Q0
1P1 ¼ 0, and Q0

2P2 ¼ 0. From (18), we have

J 0
1X tQ1 ¼ J 0

1K2E22; tP
0
2Q1; (19)

which implies that J 0
1X tQ1 is a matrix-variate white noise process. Also, from Equation (18), we

have

J 0
2X t ¼ J 0

2K1Y tP0
1 þ J 0

2K1E12; tP0
2;

X tQ2 ¼ K1Y tP0
1Q2 þ K2E21; tP0

1Q2:

Therefore, J 0
2X t andX tQ2 are uncorrelated with J

0
1X tQ1 of Equation (19). LetΩi = cov(xi; t; xt),

where xi; t is the i-column of X t and xt = vec(X t), where i ¼ 1; …; h. Also, let Δe22; ip = cov
(E22; tp02; i:,vec(E22; t)), where p2; i: is the ith row P2. Then, it follows from (18) and (19) that

covðxi; t; vecðJ 0
1X tQ1ÞÞ ¼ ΩiðQ1⊗J1Þ ¼ K2Δe22; ipðP0

2Q1⊗K 0
2J1Þ: (20)

Note that J 0
2xi; t is uncorrelated with vec(J 0

1X tQ1), for i ¼ 1; …; h. Therefore, define

S1 ¼
Xh
i¼1

½ΩiðQ1⊗J1Þ�½ΩiðQ1⊗J1Þ�0; (21)

from which we see that, via Equation (20), S1J2 ¼ 0. Furthermore, the rank of S1 ∈ Rg � g is g2
so that J2 contains all the eigenvectors corresponding to the zero eigenvalues of S1. Similarly,
we can construct S2 such that S2Q2 ¼ 0 andQ2 contains all the eigenvectors associated with the
zero eigenvalues of S2. Finally, by Equation (18), we have J 0

2X tQ2 ¼ J 0
2K1Y tP0

1Q2 provided
that K1; P1; J2 and Q2 are known. Consequently, we have the factor process

Y t ¼ ðJ 0
2K1Þ�1J 0

2X tQ2ðP0
1Q2Þ�1; (22)

where J 0
2K1 ∈ Rg1 � g1 and P0

1Q2 ∈ Rh1 � h1 are two invertible matrices; see Gao & Tsay (2023)
for further details. Asymptotic properties, such as consistency of the proposed estimates, are
also derived. A contribution of the proposed two-way projected PCA is as follows. Recall that
Y t ¼ W 1FtG

0
1, which does not involve the white noise matrices Z12; t; Z21; t and Z22; t. On the

other hand, from Equation (15), the estimated common factor process in D. Wang et al. (2019)
contains the noise process {Et}.

Xiao et al. (2022) study reduced-rank MAR models. To highlight the idea, we consider the
simple MAR(1) model in Equation (4) with Φ0 ¼ 0, that is,

X t ¼ CX t � 1D
0 þ At: (23)

Suppose that Rank(C) = k1 < g and Rank(D) = k2 < h. The authors proposed two methods
for estimation and derived some asymptotic properties of the estimates. The first estimation
method is the alternating reduced rank regression. Suppose that D is given, one can rewrite
the model as
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xj; t ¼ C½X t � 1d
0
j:�þaj; t; j ¼ 1; …; h; (24)

where xj; t and aj; t are the j-th column ofX t andAt, respectively, and dj: denotes the j-th row ofD.
In this equation, ½X t � 1d

0
j:� are the predictors and xj; t is the response vector so that the problem

becomes a reduced-rank regression. One can then consider the h equations in (24) jointly to es-
timateCwith rank k1. The same idea applies in estimatingD ifC is given. The second estimation
method is the maximum likelihood method for which At is assumed to follow a matrix normal
distribution Nð0; U ; V Þ. Again, updating procedures are available to compute the estimates of
C and D for given ranks k1 and k2. The authors further proposed an extended Bayesian infor-
mation criterion to select the ranks k1 and k2.
Han et al. (2022) propose a bilinear transformation for matrix-variate time series so that the

transformed series assumes certain block structures such that the dynamic dependence of the
transformed series only occurs within individual blocks. In this way, one can simplify the com-
plexity in modelling matrix-variate time series. The authors further demonstrated that the pro-
posed segmentation technique can improve the accuracy in forecasting. Recently, Hsu
et al. (2023) extend the spatio-temporal model of Hsu et al. (2021) to a rank-r MAR(p) model,
which assumes the form

X t ¼ Φ0 þ
Xp
i¼1

Xr
j¼1

σi; jC i; jX t � iD
0
i; j þ At; (25)

where r ≥ 1 is a positive integer,C i; j andDi; j areg � g andh� hmatrices, characterising the row
and column effects of X t � i on X t for the j-th component of Kronecker product approximation,
and σi; j is a scalar, for i ¼ 1; …; p and j ¼ 1; …; r . As mentioned before, for model
identifiability, they assume that ½vecðC i; 1Þ; … ; vecðC i; rÞ� and ½vecðDi; jÞ; … ; vecðDi; rÞ� are
two sets of orthonormal vectors and σi; 1 ≥ … ≥ σi; r > 0, for i ¼ 1; …; p. A modified alternat-
ing direction method of multipliers (ADMM) algorithm is proposed for parameter estimation
via maximum likelihood. Note that this model is in the framework of (6) with q ¼ 0, except that
the covariance matrix of at is given in (13). Other related works of matrix-variate time series
analysis include Walden & Serroukh (2017), which considers wavelet analysis of the series.

2.4 Properties of MARMA Models

From Section 2.3, we see that most of the works on matrix-variate time series focus either on
MAR models or on dimension reduction. In this section, we leverage the connection between
the MARMA model in (4) and the VARMA model in (3) to obtain some basic properties of
MARMA processes. Properties for the general MARMA models in (6) can be similarly ob-
tained. We assume that the identifiability conditions of MARMA models discussed in
Section 2.1 hold in this section.

Property 1: Stationarity and invertibility. The MARMA(p; q) process of (4) is weakly stationary
if all solutions to jϕC; DðBÞj ¼ jI � P p

i¼1 Di⊗C ið ÞBj ¼ 0are outside the unit circle. The process
is invertible if all solutions to jθL; RðBÞj ¼ jI � P q

j¼1 Rj⊗Lj

� �
Bjj ¼ 0are outside the unit circle.

For an MAR(1) model, the stationarity condition is equivalent to that all eigenvalues of
ðD1⊗C1Þ are less than 1 in modulus, which hold if ρðD1Þ < 1 and ρðC1Þ < 1. See proposi-
tion 1 in Chen et al. (2021). In this case, the MAR(1) model has the matrix moving-average
(MMA) representation

9Matrix Time Series Analysis
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~X t ¼ At þ
X∞
j¼1

C j
1At � jðD0

1Þj;

where ~X t ¼ X t � EðX tÞ is the mean-adjusted series. Similarly, an MMA(1) model is invertible
if all eigenvalues of ðR1⊗L1Þ are less than 1 in modulus. In this case, the process has the MAR
representation

~X t þ
X∞
i¼1

Li
1
~X t � iðR0

1Þi ¼ At:

For the general MARMA(p; q) model, there is no simple matrix expression for MAR(∞) or
MMA(∞) representations. However, one can use its VARMA representation to obtain an expres-
sion that links X t to its past values fX t � jjj ¼ 1; …g or an expression that links X t to its past
innovations fAt � jjj ¼ 1; …g.

For moment properties, taking expectations in Equation (4), we have

Ξ≡EðX tÞ ¼ Φ0 þ
Xp
i¼1

C iΞD0
i: (26)

Therefore,

ξ ¼ I �
Xp
i¼1

ðDi⊗C iÞ
" #�1

ϕ0;

where ξ ¼ vecðΞÞ ¼ EðxtÞ andϕ0 ¼ vecðΦ0Þ. This is precisely the result of taking expectations
in the VARMA representation in Equation (5). Using Equation (26), we can rewrite the
MARMA model as

~X t ¼
Xp
i¼1

C i ~X t � iD
0
i þ At �

Xq
j¼1

LjAt � jR
0
j:

For simplicity, we assume that EðX tÞ ¼ 0 if {X t} is stationary. There are two ways to define the
autocovariance matrices of a stationary {X t}. The first approach is to use the vector process {xt}
so that

Γ j ¼ covðxt; xt � jÞ ¼ Eðxtx0t � jÞ; j ¼ 0; ±1; …: (27)

It is easy to see that the v-th column of Γ j shows the linear dependence of xt on the v-th el-
ement of xt � j. The second approach is

~Γ j ¼ covðX t; X t � jÞ ¼ EðX t⊗X 0
t � jÞ; (28)

which is a g � h block-matrix with each block of size h� g. The ðu; vÞ-block of ~Γ j shows the
linear dependence of xuv; t on the past lagged matrix X 0

t � j. Clearly, Γ j and ~Γ j contain the same

elements so that there is a one-to-one mapping from ~Γ j toΓ j. Specifically, writing the u-th row of
Γ j as u ¼ iþ ðv � 1Þg , for i ¼ 1; …; g and v ¼ 1; …; h , then the u -th row of Γ j is
vecðEðxiv; tX 0

t � jÞÞ with Eðxiv; tX 0
t � jÞ being the ði; vÞth block of ~Γ j. A nice feature of Γ j is that

its diagonal elements are the lag-j autocovariances of elements of X t and this feature does not
hold for ~Γ j. We define the lag-j cross-correlation matrix (CCM) of {X t} as
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ρj ¼ G�1=2Γ jG
�1=2; (29)

whereG is a diagonal matrix consisting of the diagonal elements ofΓ0. In this way, ρj is the lag-j
CCM of {xt}.

Property 2: Generalised Yule–Walker equation. Using Γ j , the generalised Yule–Walker
equations for {X t} can be written as

Γ ℓ ¼
Xp
i¼1

ðDi⊗C iÞΓ ℓ � i; ℓ ¼ qþ 1; …; qþ p:

Other properties such as the π-weights,ψ-weights and impulse response functions of {X t} can
also be defined as those of {xt}. In particular, theψ-weights can be used to compute the standard
errors of predictions. Predictions of an MARMA model can be computed recursively either
using the matrix model or its corresponding vector model. The variances of forecast errors
are easier to compute using the VARMA representation.

2.5 Estimation

For simplicity, we only consider the estimation of the MARMA model in (4) in this section.
The estimation of the general MARMA model in (6) is much more involved and is left for fu-
ture research. For MAR models in Equation (4), the estimation can be carried out by either an
iterated least squares method or the maximum likelihood method. See the review in Section 2.3.
For the MARMA(p; q) model in (4), we consider a conditional maximum likelihood method.
Let to ¼ maxfp; qg and suppose the data available are fX tgTt¼1. Conditional on fX tgtot¼1 and
At ¼ 0, for t ¼ 1; …; to, one can compute At recursively from model (4). If one assumes that
At follows Nð0; U ; VÞ, then the log likelihood function becomes

ℓðΥ ; U ; V Þ ∝ � 1

2
ðT � toÞðg lnjV jþh lnjU jÞ �

XT
t¼to þ 1

trðV�1A0
tU

�1AtÞ; (30)

where Υ denotes the collection of parametersΦ0, fDi; C igpi¼1, fRj; Ljgqj¼1. The maximum like-

lihood estimates of Υ can then be obtained by maximising ℓðΥ ; U ; VÞ subject to the identifi-
cation constraints ‖C i‖2 ¼ 1, for i ¼ 1; …; p, and ‖Lj‖2 ¼ 1, for j ¼ 1; …; q. To fix the

issue of sign identification, we set the maximum element in each pair ðD̂i; Ĉ iÞ and ðL̂j; R̂jÞ
as being fixed and compute the standard errors of the other estimates. The estimates of U
and V can be calculated by the residual series as U being the row covariance matrix and V
the column covariance matrix of At.
Instead of assuming that At follows a matrix normal distribution, one can assume that at is

normally distributed and estimates a general covariance matrix of at. Here at can also be recur-
sively calculated using the VARMA representation in Equation (5). The likelihood function is
then similar to that for the VARMA process {xt}, even though, except for the constant termΦ0,
the likelihood function is nonlinear for all coefficient parameters. The limiting distributions of
the maximum likelihood estimates can be established using the results of VARMAmodels. See,
for instance, Tsay (2014, section 3.11).
Note that one can estimate a VARMA( p; q ) model for the { xt } process to obtain

(unconstrained) estimates of the AR and MA coefficient matrices. Those estimates can then
be used, via the Kronecker product approximation, to obtain initial estimates of Di; C i; Lj ,
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andRj. However, if gh is sufficiently large, then a penalised (or regularised) estimation is needed
to estimate the VARMA model.

3 Seasonal Matrix-Variate Time Series

As shown in Section 2.3, a majority of literature on matrix-variate time series analysis focus
on MAR models, but there are situations in which MMA models are needed. One of such ap-
plications is modelling matrix-variate seasonal time series. Figure 1 shows time plots of twelve
monthly seasonal time series, in log scale, concerning two labour-market data of the six US
mid-western states mentioned in Section 1. The two employment series are (a) the civilian
labour force (in persons) and (b) all employments in leisure and hospitality (in thousands of
persons). The six states are, in row order, Illinois, Indiana, Iowa, Wisconsin, Minnesota and
Michigan. The data span is from January 1990 to January 2020, for T = 361. The data are
available from the Federal Reserve Economic Data (FRED) of the Federal Reserve Bank of
St Louis and are not seasonally adjusted. They naturally form a 6� 2matrix-variate time series.
All series show an upward trend and strong seasonality. Following the traditional time series
analysis, one can take the regular and seasonal differences and consider the process {W t ¼
ð1 � BÞð1 � B12ÞX t}, where X t denotes the 6� 2 matrix time series of log employment data.
As expected, the sample cross-correlation matrices of {W t } show the existence of high
cross-correlations in lags 1, 11, 12, and 13, indicating that the seasonal features of scalar
monthly time series continue to hold for the matrix-variate seasonal time series. Motivated by
such an application, we discuss some useful seasonal models for matrix-variate time series.

3.1 Exponential Smoothing Models

One of the widely used scalar or vector models in forecasting is the exponential smoothing
model. For matrix-variate series, the model can be written as

Figure 1. Time plots of log series of (a) civilian labour force and (b) all employees in leisure and hospitality of six US
mid-western states from January 1990 to January 2020
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ð1 � BÞX t ¼ At � L1At � 1R
0
1; (31)

where, for simplicity, we use r=1 in Equation (6) and assume that ρðL1Þ < 1 and ρðR1Þ < 1.
By repeated substitutions, it is easy to see that

X t ¼ At þ
X∞
j¼1

Lj � 1
1 X t � j � L1X t � jR

0
1

� �
Rj � 1
1

	 
0
:

This is a matrix version of the exponential smoothing model and is equivalent to

xt ¼ at þ
X∞
j¼1

θj � 1
1 ðI � θ1Þxt � j;

for the vectorised process {xt} with discounting matrix θ1 ¼ R1⊗L1.
For seasonal matrix time series, the seasonal exponential smoothing model can be written as

ð1 � BsÞX t ¼ At � LsAt � sR
0
s; (32)

where s is the periodicity of the annual cycles. In this case, we have

X t ¼ At þ
X∞
j¼1

Lj � 1
s X t � js � LsX t � jsR

0
s

� �
Rj � 1
s

� �0
;

for which the annual discount matrix is θs ¼ Rs⊗Ls.

3.2 Multiplicative Seasonal Models

Analogously to the well-known Airline model for scalar seasonal time series, we have the ma-
trix version of the multiplicative seasonal model as

ð1 � BÞð1 � BsÞX t ¼ At � L1At � 1R
0
1 � LsAt � sR

0
s þ L1LsAt � s � 1R

0
sR

0
1; (33)

which corresponds to the model

ð1 � BÞð1 � BsÞxt ¼ ðI � θ1BÞðI � θsBsÞat;
where θ1 ¼ R1⊗L1 and θs ¼ Rs⊗Ls , where the identity R1Rs⊗L1Ls ¼ ðR1⊗L1ÞðRs⊗LsÞ is
used. Similarly to the vector case, another multiplicative seasonal model is

ð1 � BÞð1 � BsÞX t ¼ At � L1At � 1R
0
1 � LsAt � sR

0
s þ LsL1At � s � 1R

0
1R

0
s;

which corresponds to

ð1 � BÞð1 � BsÞxt ¼ ðI � θsBsÞðI � θ1BÞat:
In applications, some multiplicative AR polynomial matrices might be needed, in addition to the
MMA polynomial matrices mentioned above, to effectively model seasonal matrix time series.
Details are omitted.

4 Empirical Examples

We demonstrate the analysis of matrix-variate time series by two empirical examples in this
section. More complicated models can be found in the literature. For instance, Hsu et al. (2023)
fitted a rank-2 MAR(6) model to a 17-by-17 matrix series of wind speed in the north-western
Pacific Ocean.

13Matrix Time Series Analysis

International Statistical Review (2023)
© 2023 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.

 17515823, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/insr.12558 by U

niversity O
f C

hicago, W
iley O

nline L
ibrary on [03/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Example Consider the 6� 2matrix-variate time series of Figure 1. The upward trend and strong

seasonality lead us to consider the differenced process {W t ¼ ð1 � BÞð1 � B12ÞX t }, where X t

denotes the log series of labour market data, in which each row represents one state and each
column a labour market series. The cross-correlation matrices of {wt } show relatively strong
cross-correlations at lags 1, 11, 12, and 13 so that the airline model of Equation (33) is entertained.
The estimates of the model are

L̂1 ¼

�0:35 0:10 �0:13 0:19 0:07 0:06

�0:02 �0:29 0:05 �0:00 0:09 0:06

�0:10 �0:05 �0:17 �0:07 0:07 0:25

0:15 0:19 �0:03 �0:49 0:01 �0:00

0:07 0:14 �0:23 0:12 �0:21 0:08

�0:22 0:21 0:06 0:06 0:12 �0:20

2
6666666666664

3
7777777777775
; R̂1 ¼

0:34 �0:03

0:21 �0:52

" #

L̂s ¼

0:46 �0:01 �0:01 �0:03 0:02 �0:02

0:05 0:42 �0:05 �0:03 0:02 �0:02

�0:02 0:00 0:42 0:00 �0:05 0:02

0:04 0:02 �0:04 0:39 �0:02 �0:00

0:02 0:02 �0:05 �0:01 0:40 0:02

0:04 0:02 �0:04 0:04 0:04 0:32

2
6666666666664

3
7777777777775
; R̂s ¼

1:92 �0:00

0:21 1:54

" #
;

where the condition that ‖L1‖2 ¼ ‖Ls‖2 ¼ 1 is imposed and the boldfaced estimates are asymptot-
ically significant at the 10% level. It is clear that larger coefficient estimates appear mainly in the
diagonal elements of coefficient matrices, especially of the seasonal lag. Figure 2a shows the p
-values of multivariate Ljung–Box statistics for residuals being serially uncorrelated. The plot shows
that the matrix-airline model seems to fit the data reasonably well, even though some minor residual
cross-correlations exist at the seasonal lag. One possible improvement is to use a rank-2 Kronecker
product approximation for the coefficient matrix of the seasonal lag. The AIC and BIC statistics of
the fitted model are �135.04 and �134.15, respectively.

From the estimate L̂s, the seasonal parts of the model seem to show the effects of adjacent
states. For instance, the first row of L̂s shows the significant dependence of Illinois on Wiscon-
sin, the fourth row indicates Wisconsin depends significantly on Illinois and Iowa, and the fifth
row shows Minnesota depends significantly on Iowa. It is also interesting to see that, from L̂s,
Iowa does not depend on other states, yet it has negative impacts on other states except Illinois.
On the other hand, from R̂1, the insignificant off-diagonal estimates indicate that the two em-
ployment variables used seem to have weak lag-1 cross-dependence between them.

For comparison, we also fit an unrestricted airline model to the corresponding vector process
{xt}, which is of dimension 12. This model employs 288 coefficient parameters and Figure 2b
shows the p-values of multivariate Ljung–Box statistics of its residuals. From the plot, it seems
that the un-restricted model does not improve the fit over the matrix-variate model. The AIC and
BIC statistics of the vector model are �135.01 and �131.82, respectively. Therefore, the infor-
mation criteria confirm the choice of the multiplicative matrix seasonal model.
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Example Consider the monthly imports and exports of goods of four Scandinavian countries,
namely, Norway, Sweden, Denmark, and Finland, from January 1960 to December 2019 for 720 ob-
servations. The series are in US dollars, seasonally adjusted, and, again, available from FRED at
https://fred.stlouisfed.org/categories/32264. We employ the growth rate series in our analysis, that
is, the first difference of the log series. In addition, we remove the sample mean from each growth
rate series so that no constant terms are needed in the modelling exercise. Figure 3 shows the time
plots of the eight mean-adjusted growth rates of imports and exports of the four countries. The left
panel shows the growth rates of monthly imports and the right panel those of monthly exports. For
ease in viewing the plots, we add 3, 2, 1 to the top three plots so that the series can be separated. The
plots are, from top to bottom, for Norway, Sweden, Denmark, and Finland, respectively. Since the
number of series is only eight, one can easily treat the data as an 8-dimensional vector time series
or as a 4� 2 matrix-variate time series. This enables us to compare between VARMA and MARMA
models.

For VARMA modelling, if VAR models are entertained, then AIC and BIC statistics select
VAR(5) and VAR(2), respectively. If VARMA models are entertained, then the VARMA(1,1)
is selected by both AIC and BIC. Indeed, the two criterion functions prefer the VARMA(1,1)
model over VAR models with the minimum AIC of �44.86 and the minimum BIC of
�44.05 for the VARMA(1,1) model. For MARMA modelling, we entertained MAR(d) for d ¼
1; …; 5, and MARMA(1,1), MARMA(2,1), MARMA(1,2), and MARMA(5,1) models. Both
AIC and BIC statistics select the MARMA(1,1) model with AIC and BIC being �44.87 and
�44.61, respectively. These values are slightly lower than those of the VARMA(1,1) model.
Thus, in this particular instance, the MARMA model is preferred over the VARMA models.
Note that the VARMA(1,1) model contains 128 coefficient parameters whereas the MARMA
(1,1) model only uses 40. Model checking indicates that there exist some residual
cross-correlations at lags 12 and 24, indicating that some seasonality remains in the data even

Figure 2. Plots of p-values for multivariate Ljung–Box test statistics for residuals being serially uncorrelated. The x-axis
denotes the number of lags used.
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though they are seasonally adjusted. The fitted coefficient matrices of the MARMA(1,1) model
are given below, where the boldfaced estimates are asymptotically significant at the 10% level.

Ĉ 1 ¼

�0:085 0:315 �0:094 0:013

0:130 0:576 0:083 0:011

0:151 0:347 �0:000 0:054

0:220 0:574 0:039 0:064

2
666664

3
777775 ; D̂1 ¼

0:481 0:073

0:605 �0:077

" #
;

L̂1 ¼

0:455 �0:107 �0:081 �0:021

0:001 0:473 �0:022 �0:015

�0:025 �0:027 0:481 �0:002

�0:011 �0:112 �0:024 0:551

2
666664

3
777775; R̂1 ¼

1:446 �0:079

�0:015 1:384

" #
:

It is interesting to see that for the MA coefficient matrices, most large and significant estimates
are the diagonal elements of L1 and R1, indicating that the serial dependence is relatively strong
within each series. The AR coefficient matrix Ĉ 1 suggests that Norway and Sweden play a more
dominant role in the international trade of the four countries. The insignificance of estimates in
column 2 of D̂1 in conjunction with significant estimates in R̂1 indicates that the contributions
of lag-1 export growth rates to the series are mainly short-term impacts.

5 Concluding Remarks

We proposed a general rank-rmatrix autoregressive moving-average model for matrix-variate
time series and discussed its model identifiability. This enables us to leverage the relationship
between matrix time series and its VARMA representation to obtain properties of the matrix se-
ries. We also considered seasonal matrix series and generalised the multiplicative seasonal
models to the matrix case. The use of MARMA models is demonstrated by two empirical ex-
amples. On the other hand, it remains open to study the estimation of the general rank- r

Figure 3. The mean-adjusted growth rates of monthly imports and exports of Norway, Sweden, Denmark, and Finland from
February 1960 to December 2019. The original data are in US dollars and are seasonally adjusted. We added 3, 2, and 1 to
the top three series to separate the series in the plots.
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MARMAmodel. It is also of interest to further investigate the difference between VARMA and
MARMA models in applications, especially when the dimension of the matrix series under
study is not large.

Data Availability Statement

Data are available online.
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