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Abstract

Sleep is critical to a variety of cognitive functions and insufficient sleep can have nega-

tive consequences for mood and behavior across the lifespan. An important open ques-

tion is how sleep duration is related to functional brain organization which may in turn

impact cognition. To characterize the functional brain networks related to sleep across

youth and young adulthood, we analyzed data from the publicly available Human Con-

nectome Project (HCP) dataset, which includes n-back task-based and resting-state

fMRI data from adults aged 22–35 years (task n = 896; rest n = 898). We applied

connectome-based predictive modeling (CPM) to predict participants' mean sleep dura-

tion from their functional connectivity patterns. Models trained and tested using

10-fold cross-validation predicted self-reported average sleep duration for the past

month from n-back task and resting-state connectivity patterns. We replicated this

finding in data from the 2-year follow-up study session of the Adolescent Brain Cogni-

tive Development (ABCD) Study, which also includes n-back task and resting-state

fMRI for adolescents aged 11–12 years (task n = 786; rest n = 1274) as well as Fitbit

data reflecting average sleep duration per night over an average duration of 23.97 days.

CPMs trained and tested with 10-fold cross-validation again predicted sleep duration

from n-back task and resting-state functional connectivity patterns. Furthermore, dem-

onstrating that predictive models are robust across independent datasets, CPMs

trained on rest data from the HCP sample successfully generalized to predict sleep

duration in the ABCD Study sample and vice versa. Thus, common resting-state func-

tional brain connectivity patterns reflect sleep duration in youth and young adults.
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1 | INTRODUCTION

As any student struggling to function in class after an ill-advised all-

nighter can attest, sleep is critical to cognitive and executive function.

Work suggests that sleep bolsters working memory abilities (Frenda &

Fenn, 2016), long-term memory consolidation (Deak &

Stickgold, 2010; Diekelmann, 2014), attentional control (Whitney

et al., 2017), and general cognitive performance (Alhola & Polo-
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Kantola, 2007; Durmer & Dinges, 2005; Raven et al., 2018). Sleep and

cognitive function are also associated across the lifespan, as sleep

duration impacts neurocognitive development in childhood and ado-

lescence (Yang, Xie, & Wange, 2022) and declines in sleep and cogni-

tive performance occur with aging (Dzierzewski et al., 2018).

The network correlates of trait- and state-like aspects of cogni-

tion have been explored in a growing body of work utilizing functional

magnetic resonance imaging (fMRI) functional connectivity, the statis-

tical dependence between neuroimaging-signal time series in spatially

distinct brain regions. Work suggests that whole-brain patterns of

functional connectivity predict some cognitive abilities, including

aspects of attention (Kessler et al., 2016; Kucyi et al., 2021; Poole

et al., 2016; Rosenberg et al., 2016; Wu et al., 2020; Yoo et al., 2022)

and working memory (Avery et al., 2020; Galeano Weber et al., 2017;

Kardan et al., 2022; Yamashita et al., 2018). There is also evidence

that functional connectivity patterns vary with changes in cognitive

and attentional states (Gonzalez-Castillo et al., 2015; Kardan

et al., 2022; Kucyi et al., 2021; Rosenberg et al., 2020; Shappell

et al., 2019). This work, however, does not typically consider how

functional brain organization and to-be-predicted behavioral measures

are impacted by sleep, despite its well characterized impact on cogni-

tion. As such, it is important to examine the extent to which sleep is

reflected in functional connectivity patterns and thus may impact

connectome-based predictive models (CPMs) of behavior.

To that end, research has suggested that large-scale functional

connectivity patterns reflect habitual and state-like aspects of sleep.

The majority of this work focuses on connectivity changes with sleep

changes, demonstrating that sleep deprivation decreases integration

within and segregation between canonical resting-state networks

(Chee & Zhou, 2019). For example, anticorrelations between the

default model and dorsal attention networks, which have been associ-

ated with successful attentional performance (Kelly et al., 2008), are

weakened after sleep deprivation (de Havas et al., 2012; Yeo

et al., 2015). Sleep deprivation has also been shown to reduce corti-

cothalamic functional connectivity (Shao et al., 2013) and increase

interhemispheric homotopic resting-state functional connectivity (Zhu

et al., 2016). Less work has related functional connectivity to habitual

sleep, although initial studies suggest that resting-state functional

connectivity reflects “habitual short sleep” (average sleep duration of

4–6 h per night; Curtis et al., 2016) as well as habitual sleep quality

and duration (Khalsa et al., 2016). Finally, although the majority of this

work has focused on sleep in adulthood, recent evidence in the large

open-access Adolescent Brain Cognitive Development℠ (ABCD)

Study sample showed that insufficient sleep (less than 9 h per day)

predicted more behavioral problems and worse cognitive performance

in preadolescence and that this effect was mediated by cortico-basal

ganglia resting-state functional connectivity (Yang, Xie, &

Wange, 2022).

There is a growing appreciation that false-positive brain–

behavior relationships emerge when comparisons are made in small

single-cohort samples (Marek et al., 2022). Models predicting pheno-

types and behaviors from functional brain connectivity (i.e., CPMs)

are instead most robust when trained in large, heterogeneous

samples and tested across independent datasets (e.g., Poldrack

et al., 2020; Rosenberg & Finn, 2022; Woo et al., 2017). Testing

cross-dataset generalizability can also reveal neurodevelopmental

change by, for example, revealing age-related differences in the net-

work predictors of phenotypes and behavior (Kardan et al., 2022;

Rosenberg et al., 2018). Previous research relating functional con-

nectivity patterns to habitual sleep has examined small samples

within a single age group and/or not tested the generalizability of

associations in novel individuals (internal model validation) and data-

sets (external model validation). Thus, an important open question is

whether functional network predictors of habitual sleep robustly pre-

dict sleep duration in unseen individuals and datasets, and, if so,

whether the same networks predict habitual sleep in youth and

adulthood.

It is also relevant to ask whether sleep duration is better pre-

dicted by functional connectivity patterns based on task or resting-

state data. Previous work has observed better behavioral prediction

from task than rest data, presumably because tasks amplify behavior-

ally relevant individual differences in activity and functional connec-

tivity patterns (Finn et al., 2017; Greene et al., 2018; Sripada

et al., 2020). However, it is not clear whether this finding generalizes

beyond behavioral measures to phenotypes such as sleep duration.

Here, to characterize the relationship between functional brain archi-

tecture and sleep duration, we analyzed data from two large samples

with distinct participant samples: the young adult Human Connec-

tome Project dataset and developmental ABCD Study® dataset. We

trained and tested CPMs to predict sleep duration measured subjec-

tively with self-reported sleep assessments and objectively with mea-

sures of sleep using a fitness tracking device. We trained and tested

CPMs within each dataset, externally validated the models to test

their generalizability across independent youth and adult samples, and

compared the predictive power of task and rest data. We also tested

whether sleep models generalized to predict cognitive task perfor-

mance. Our results indicate that models based on both resting-state

and task-based functional connectivity data generalize to predict sleep

duration in both young adults and youth and for subjective and objec-

tive measures of sleep duration.

2 | METHODS

2.1 | Human Connectome Project Dataset

2.1.1 | Participants

The Human Connectome Project (HCP) WU-Minn 1200 Subjects

Data Release includes behavioral data from 1206 healthy young

adults between the ages of 22 and 35 years, 1113 of whom had high-

quality neuroimaging data (van Essen et al., 2013). We analyzed

usable fMRI data from all available n-back task runs (405 frames per

run) and up to two resting-state runs (1200 frames per run) to better

match the amount of task and rest data. We excluded runs with mean

frame-to-frame head displacement > 0.2 mm, which left our final
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sample with data from 896 participants with high-quality low-motion

n-back task fMRI data and 898 participants with high-quality low-

motion resting-state fMRI data (Supplementary Figure S1). Of these,

815 participants had both usable n-back and rest data. We focused on

the n-back task because n-back runs were also collected in the ABCD

Study and our focus is on cross-dataset prediction. In addition, n-back

runs assess attention and working memory processes that are thought

to be impacted by sleep duration (Baddeley, 2000; Zhang et al., 2019)

and are the longest of any HCP task (Barch et al., 2013).

2.1.2 | Sleep measures

HCP participants' sleep quality was assessed with the Pittsburgh Sleep

Quality Index (PSQI), a 19-item self-reported questionnaire compris-

ing seven components, intended to be a composite metric of sleep.

Questions included, “During the past month, how many hours of

actual sleep did you get at night?” and “During the past month, how

often have you had trouble sleeping because you cannot get to sleep

within 30 minutes?”. The components include sleep duration,

sleep disturbance, sleep latency, daytime dysfunction due to sleepi-

ness, sleep efficiency, overall sleep quality, and sleep medication use

over the last month. Each of these components yields a score ranging

from 0 to 3, with a score of 3 indicating the greatest dysfunction. The

sleep component scores are summed to yield a total score ranging

from 0 to 21 with a higher total score, referred to as a global score,

referring to worse sleep quality (Zhong et al., 2015). We analyzed par-

ticipants' responses to the following question on the PSQI: “During

the past month, how many hours of actual sleep did you get at night?

(This may be different than the number of hours you spend in bed.)”
since this measure (variable name: PSQI_AmtSleep) was most

closely related to the sleep measure available in the ABCD Study

dataset used to externally validate predictive models. Global PSQI

scores were correlated with PSQI_AmtSleep in the overlapping sam-

ples of participants with n-back task (r = �0.546) and resting-state

(r = �0.533) data.

2.1.3 | Functional MRI data preprocessing

Minimally preprocessed resting-state and n-back fMRI data were

downloaded from connectomeDB (https://db.humanconnectome.org/

) via Amazon Web Services. Minimal preprocessing included gradient

nonlinearity distortion correction, field map distortion correction,

realignment, and transformation to a standard space (Glasser

et al., 2013). We applied additional preprocessing steps, including

high-pass filtering (cutoff frequency = 0.001 Hz) and ICA-FIX

denoising (https://github.com/WashingtonUniversity/HCPpipelines)

as described in Kardan et al. (2022). We also applied a frame displace-

ment (FD) threshold of mean FD < 0.2 mm to remove fMRI runs with

excessive head motion, leaving 898 participants with at least one run

of usable resting-state data and 896 participants with at least one

run of usable n-back task data.

2.2 | Adolescent Brain Cognitive Development
Study dataset

2.2.1 | Participants

The ABCD Study is an ongoing, 10-year longitudinal study of 11,875

individuals from age 9–10 to age 19–20 years conducted at 21 sites

across the United States. Youth in the ABCD Study participate in MRI

scan sessions every 2 years and in behavior-only study sessions in

intervening years. We analyzed fMRI and sleep duration data from the

2-year follow-up wave of ABCD Study data collection, when partici-

pants were 11–12-years-old (curated data release 3.0), for which we

had n-back task data from 4797 participants and resting-state data

from 5501 participants. We analyzed 2-year follow-up rather than

baseline study session data because more Fitbit data were collected in

the 2-year follow-up session (n = 4371 at the time of data download)

than the baseline session (n = 130). After excluding runs with mean

FD > 0.2 mm, we had a sample of 2077 participants with n-back task

data and 3552 participants with resting-state data. We then made fur-

ther exclusions based on visual quality control assessments of struc-

tural and functional MRI data, leaving 1178 participants with n-back

task data and 1911 participants with resting-state data. Our final sam-

ple was formed by excluding subjects that did not have Fitbit data and

included data from 786 participants with low-motion n-back task

fMRI data and 1274 participants with low-motion resting-state fMRI

data in the 2-year follow-up MRI session, of which 740 participants

had usable n-back task and resting-state fMRI data (Supplementary

Figure S2).

2.2.2 | Sleep measures

The ABCD Study dataset did not include PSQI scores but did include

daily summaries of minutes slept acquired via Fitbit. The Fitbit devices

used were capable of measuring biobehavioral features at up to a 1-s

sampling rate. A combination of photoplethysmography and acceler-

ometer data, metrics previously validated against polysomnography

and research actigraphy (de Zambotti et al., 2015; Mantua

et al., 2016; Toon et al., 2016), were used to calculate sleep duration.

Sleep summaries available for participants comprised the number of

minutes slept per night in total, accounting for awakenings during the

night. The number of daily sleep summaries available for each partici-

pant in the data collection period varied, so averages of minutes slept

(variable fit_ss_sleep_period_minutes, the sum of all minutes slept for all

included days, from abcd_fbwss01.txt) were taken for individuals

based on the number of days their data was collected. Fitbit data for

participants in the ABCD Study dataset frequently included breaks in

collection, often due to participants forgetting to collect data during

the intended collection period. Here, we refer to each contiguous

period of data collection as a session of data collection. Participants

had on average data from 7.52 sessions of data collection (variable

fit_ss_day_count, s.d. = 2.04 instances; range = 2–15 sessions). Ses-

sions of data collection lasted an average of 3.19 days (s.d.
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= 1.80 days; range = 1–7 days). Participants subsequently had an

average of 23.97 total days of data collection each (s.d. = 10.85 days;

range = 2–42 days). Fitbit-measured sleep durations were selected as

the sleep metric because of the amount of available data, as well

as because they constituted an objective sleep measure. To validate

this measure, we performed Spearman correlations with other subjec-

tive measures of sleep duration included in the ABCD Study dataset.

Fitbit data were significantly correlated with both reports of children's

sleep duration by parents, (variable sleepdisturb1_p, answering in

inverse ranges the question “How many hours of sleep does your

child get on most nights?” (1 = 9-11 hours/ 9 a 11 horas; 2 = 8-9

hours /8 a 9 horas; 3 = 7-8 hours /7 a 8 horas; 4 = 5-7 hours /5 a

7 horas; 5 = Less than 5 hours/ Menos de 5 horas// Consider each

question pertaining to the PAST 6 MONTHS of the child's life), from

abcd_sds01.txt) (rs = �0.315, p < 0.001) as well as children's estima-

tions of their own sleep durations (variable mctq_sdweek_calc, average

weekly sleep duration, in the Munich Chronotype Questionnaire from

abcd_mcqc01.txt; rs = 0.296, p < .001).

2.2.3 | MRI data and preprocessing

Minimally preprocessed n-back and resting-state fMRI data for ABCD

Study Release 3 were downloaded from the ABCD Study Data Repos-

itory (https://nda.nih.gov/) via the NIH Data Archive. These data

included 2-year follow-up MRI scans from about half of the full ABCD

Study sample (n = 5556). Up to four 5-min resting-state runs and two

5-min n-back task runs were available per participant.

Minimal preprocessing included gradient nonlinearity distortion

correction, field map distortion correction, realignment, and transfor-

mation to a standard space. Additional preprocessing steps included

alignment and normalization to T1w and then MNI space; regression

of 36 confounds including global signal, cerebrospinal fluid signal,

white matter signal, and 6 affine motion parameters and their deriva-

tives, squares, and squared derivatives; and bandpass filtering (0.008–

0.12 Hz) (Kardan et al., 2022). We performed visual quality control

and applied a FD threshold of FD mean < 0.2 mm to remove fMRI

runs with excessive head motion, consistent with previous CPM work

(Kardan et al., 2022). This left 1274 participants with low-motion

resting-state fMRI data and 786 participants with low-motion n-back

task fMRI data from 2-year follow-up scans.

2.3 | Connectome-based predictive modeling

2.3.1 | Functional connectivity matrix construction

In both datasets, we computed functional connectivity matrices as the

Pearson's correlations (Fisher's r-to-z transformed) between

the BOLD signal time courses of every pair of regions in the

268-node whole-brain Shen functional parcellation scheme (Shen

et al., 2013) for both resting-state and n-back task data separately.

Separate functional connectivity matrices were generated for

each run and averaged within each run type for participants with

more than one usable rest and/or task run.

2.3.2 | Within-dataset prediction

We first used connectome-based predictive modeling (CPM; Finn

et al., 2015; Shen et al., 2017) with 10-fold cross-validation to predict

measures of sleep duration in the HCP and ABCD Study datasets sep-

arately. CPM code was adapted from https://github.com/esfinn/cpm_

tutorial. First, in 90% of individuals (the training set), we selected func-

tional connections (edges) that were correlated with participants'

sleep duration beyond a partial Pearson correlation threshold of

jrj > 0.1. At the feature selection stage, mean frame-to-frame head

displacement, participant sex, age, and number of runs included for

each participant were included as covariates. Mean frame-to-frame

head displacement for each individual was measured by taking the

average FD of the n-back task blocks (8 per run) for n-back task

models, and by taking average FD of rest runs for resting-state

models. We next separated selected edges into those positively and

negatively correlated with sleep duration. A linear regression model

was then trained to learn the coefficients, where the dependent

variable was participants' PSQI sleep duration score (HCP) or Fitbit-

recorded average minutes slept per night (ABCD) and the indepen-

dent variable was the difference between the summed functional con-

nection strength in the positively and negatively predictive edge sets.

This linear model was then applied to functional connectivity data

from the held-out 10% of individuals to predict their sleep scores. The

partial Spearman correlation (rs) was computed between predicted

scores from all rounds of cross-validation and observed sleep scores,

again controlling for frame-to-frame head displacement, participant

sex, age, and number of runs included in the analysis. The rs computa-

tion was repeated 1000 times to generate 1000 partial rs-values

reflecting the relationship between observed and predicted sleep

scores. Nonparametric significance was calculated by comparing the

mean observed rs values to a null distribution generated by shuffling

sleep scores and re-running analyses 1000 times. P-values were calcu-

lated as p = (1 + (number of null rs-values > mean observed rs-value))

� 1001. All rs-values were Fisher-z transformed before averaging. The

resulting mean Fisher z value was then inverse Fisher-z transformed

for significance testing and reporting.

2.3.3 | Comparing the predictive power of resting-
state and task-based connectivity

We next asked whether resting-state or n-back task-based functional

connectivity data better predicted sleep duration. To do so, we

equated the number of participants and approximate amount of data

used for resting-state and n-back task prediction models by under-

sampling and re-ran models when necessary.
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In the HCP dataset, there was at most about three times as much

resting-state data as n-back task data per person (2 rest

runs � 14:33 min each = 29:06 min for rest; 2 task runs � 5:01 min

each = 10:02 min for task). To match the amount of rest and task

data more closely, we subset rest data to only those participants with

runs collected in both the right–left (RL) and left–right (LR) phase-

encoding directions data (n = 652). For each of these individuals, we

randomly selected either the RL or LR run for use in analysis. We then

randomly selected 652 participants with two n-back task runs. We

trained and tested CPMs to predict sleep duration in each of these

subsets using 10-fold cross-validation as described above. Finally, we

repeated this process 1000 times, generating a measure of predictive

power (rs) for 1000 subsamples of task and rest data.

In the ABCD Study dataset, participants had up to four runs of

resting-state data and two runs of n-back task data (approximately

5 min per run). Because more participants had at least two runs rest

than had two runs of n-back task data, we used all available n-back

task data (n = 786). We randomly subsampled 786 participants with

at least two runs of resting-state data. Of these participants

with more than two runs of rest data, we randomly selected two runs

to use in this analysis. This left us with two resting-state runs from

786 participants. We trained and tested CPMs to predict sleep dura-

tion in this new rest data subset using 10-fold cross-validation as

described above. Finally, we repeated this process 1000 times, gener-

ating a measure of predictive power (rs) for 1000 subsamples of

rest data.

We tested whether task and rest predictions significantly differed

in the HCP and ABCD Study data sets. To do so we compared the

mean rs value generated from rest data to the distribution of rs values

generated from task data and vice versa. Specifically, p-values were

calculated as p = (1 + (number of resting-state rs values > mean

observed n-back task rs value)) � 1001 and p = (1 + number of n-back

task rs values > mean observed resting-state rs value)) � 1001.

2.3.4 | Across-dataset prediction

Internal validation (i.e., within-dataset prediction) does not guarantee

that a connectome-based model of sleep duration will generalize

across independent populations. To ask whether models generalize to

unseen individuals a completely independent sample, we performed

external (cross-dataset) validation. To predict sleep across datasets,

we trained a CPM using data from one dataset (e.g., HCP) in the same

manner as described above. We then applied the model (the network

mask and network strength coefficients) to the other dataset

(e.g., ABCD Study) to predict sleep duration.

2.3.5 | Across-dataset prediction of cognitive
performance

Given the consequences of sleep for cognitive processes including

attention and memory, we asked if predictions of sleep models were

related to participants' cognitive task performance, operationalized as

percent accuracy on the n-back task. To do so we trained a CPM to

predict sleep duration in the full HCP dataset, applied it to data from

the ABCD Study sample, and correlated predicted sleep scores with

observed n-back accuracy scores in the ABCD Study dataset and vice

versa. N-back task accuracy was selected as the behavioral metric

because it provides an overall measure of attention and working

memory (Kardan et al., 2022) and was collected in both the HCP and

ABCD Study samples. For a summary of all predictive model results,

see Supplementary Table S1.

3 | RESULTS

3.1 | Within-dataset prediction

3.1.1 | Functional connectivity patterns predict
sleep duration in the HCP sample

We performed connectome-based predictive modeling to predict

HCP participants' PSQI sleep duration scores (reflecting the self-

reported average number of minutes slept per night over the last

month), controlling for mean frame-to-frame displacement, number of

included low-motion fMRI runs, and participant sex and age. Models

based on functional connectivity patterns observed during n-back task

performance predicted self-reported minutes slept (partial rs = 0.133,

nonparametric p < .001, n = 896; Figure 1a). CPMs trained and tested

on resting-state data also predicted minutes slept (partial rs = 0.164,

nonparametric p < .001, n = 898; Figure 1b). Results were consistent

across a range of feature-selection thresholds (Supplementary

Table S2). Thus, task and rest functional connectivity patterns pre-

dicted adults' self-reported mean sleep duration.

3.1.2 | Functional connectivity patterns predict
sleep duration in the ABCD Study sample

We replicated the 10-fold cross-validation approach applied to HCP

data in 2-year follow-up data from the ABCD Study sample, controlling

for mean frame-to-frame head displacement, number of included runs,

and participant sex and age. Frame-to-frame head displacement values

were derived from average FD across n-back task runs in the task sam-

ple and rest runs in the rest sample. In the ABCD Study dataset, n-back

task (partial rs = 0.143, nonparametric p < .001, n = 786; Figure 1c)

and rest (partial rs = 0.238, nonparametric p < .001, n = 1274;

Figure 1d) data predicted youth's Fitbit-measured sleep duration.

3.1.3 | Resting-state functional connectivity
patterns better predict sleep duration in the ABCD
Study dataset

Within-dataset prediction results showed numerically better predic-

tion from rest than n-back task data in both datasets. Because this

could be due to differences in the number of participants or amount
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(d)   Within-Dataset Prediction: ABCD Rest(c)   Within-Dataset Prediction: ABCD Task

(a)   Within-Dataset Prediction: HCP Task (b)   Within-Dataset Prediction: HCP Rest

F IGURE 1 Within-dataset Spearman partial correlations between observed and CPM-predicted sleep measures, controlling for potential
confounds. Distributions of 1000 true model predictions are shown in green and null model predictions in gray. Scatter plots show observed and
predicted values for one model whose predictive power matches that of the full distribution. HCP models are shown in the top row and ABCD
Study models in the bottom. Predictions from n-back task data are shown in the left column and predictions from resting-state data in the right.
(a) Within-dataset prediction: HCP task. (b) Within-dataset prediction: HCP rest. (c) Within-dataset prediction: ABCD task. (d) Within-dataset
prediction: ABCD rest.
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of data included per participant, we subsampled groups and runs to

match the number of participants and more closely equate the

amount of data per participant and redefined within-dataset CPMs.

In the HCP dataset, the predictive power of task and rest CPMs

trained on size-matched subsamples did not significantly differ

(n = 362; mean task partial rs = 0.131; mean rest partial rs = 0.139;

task vs. rest p = .330; rest vs. task p = .447). In the ABCD Study data-

set, however, rest CPMs significantly outperformed task CPMs when

trained and tested on size-matched groups (n = 786; mean task partial

rs = 0.143; mean rest partial rs = 0223; task vs. rest p = .002; rest

vs. task p < .001).

Interestingly, this pattern of results is in contrast with work show-

ing that task-based data better predicts cognitive performance scores

(Greene et al., 2018) although here we focus on sleep duration rather

than behavioral performance. Tasks have been hypothesized to mag-

nify behaviorally relevant individual differences in functional connec-

tivity, and thus paradigms that most directly perturb cognitive

processes may best predict those processes (Finn et al., 2017). In both

samples analyzed here, correlations between sleep duration and n-

back task accuracy are statistically significant but modest (HCP:

0-back accuracy: rs = 0.066; 2-back accuracy: rs = 0.104; average

accuracy: rs = 0.099; ABCD: 0-back accuracy: rs = 0.138; 2-back

accuracy: rs = 0.163; average accuracy: rs = 0.165; all p values

< 0.05). Thus, tasks for which performance more closely tracks sleep

duration may better predict sleep measures.

3.2 | Across-dataset prediction

3.2.1 | HCP models generalize to predict sleep
duration in youth

A model based on whole-brain functional connectivity patterns pre-

dicted self-reported sleep duration in adults. Does this same model

generalize to predict a different measure of sleep—objectively mea-

sured sleep duration—in youth? To ask this question, we trained a

CPM on the full HCP dataset. We then applied the resulting mask of

predictive edges and network strength coefficients to ABCD Study

data to predict participants' sleep duration.

The CPM trained on HCP data significantly predicted sleep dura-

tion measured with Fitbit in the ABCD Study dataset when trained

and tested on n-back task (partial rs = 0.097, nonparametric p = .003,

n = 786; Figure 2a) and resting-state (partial rs = 0.215, nonparamet-

ric p < .001, n = 1274; Figure 2b) functional connectivity data, again

controlling for frame displacement, number of usable runs, age,

and sex.

ABCD Study data are collected at 21 sites and 28 MRI scanners

across the United States. To test whether a single outlying scanner

drove successful cross-dataset prediction in our full sample, we sepa-

rately tested the HCP-trained model on data from each ABCD Study

scanner with more than 10 participants. In the n-back task data, we

observed significant correlations between predicted and observed

sleep duration in data collected on one scanner, while in the resting-

state data, we observed significant correlations in data collected on

three scanners (Supplementary Figure S3).

3.2.2 | ABCD models generalize to predict sleep
duration in adults

We next trained a CPM on the full ABCD Study dataset and applied it

to predict HCP participants' self-reported sleep duration. The ABCD-

trained model significantly predicted sleep duration in the HCP data-

set for both n-back task (partial rs = 0.054, nonparametric p = .045

n = 896; Figure 2c) and resting-state (partial rs = 0.173, nonparamet-

ric p < .001, n = 898; Figure 2d) data, again using frame displacement,

participant sex, age, and number of runs as covariates in a Spearman

partial correlation. The success of both across-dataset prediction

models indicated the existence of networks of edges that generalize

across participant populations to predict sleep duration.

3.2.3 | Sleep models generalize to predict n-back
task accuracy

Models based on whole-brain functional connectivity patterns gener-

alized across datasets to robustly predict sleep duration. Do these

models also generalize to predict cognitive performance? To ask this

question, we correlated predicted sleep duration values with observed

n-back accuracy scores in each dataset.

The CPM trained to predict sleep in HCP data significantly pre-

dicted n-back task accuracy in the ABCD Study dataset when trained

and tested on n-back task (partial rs = 0.090, nonparametric

p = .001, n = 1178; Figure 3a) and resting-state (partial rs = 0.154,

nonparametric p < .001, n = 1886; Figure 3b) functional connectivity

data, again controlling for frame displacement, number of usable runs,

age, and sex. The ABCD-trained model, on the other hand, did not

significantly predict n-back accuracy in the HCP dataset when trained

on n-back task data (partial rs = �0.007, nonparametric p = .562,

n = 794; Figure 3c), but did so for resting-state data (partial

rs = 0.064, nonparametric p = .014, n = 604; Figure 3d), again using

frame displacement, participant sex, age, and number of runs as cov-

ariates in a Spearman partial correlation. Interestingly, models pre-

dicting sleep trained on rest data better predicted n-back task

accuracy than models trained on n-back data themselves in both

datasets.

3.2.4 | Predictive network anatomy

We visualized the edges predicting more sleep (the “high-duration”
network) and the edges predicting less sleep (the “low-duration” net-

work) in both the HCP and ABCD Study datasets. The HCP and ABCD

Study networks based on n-back task data did not share any edges, so

no shared network was calculated. The shared network based on

resting-state data, though included 39 positively predictive edges
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(12.62% of all positively predictive edges found in the HCP-trained

model and 7.44% of those found in the ABCD-trained model) and

118 negatively predictive edges (3.40% of those found in the HCP-

trained model and 45.56% of those found in the ABCD-trained model;

Figure 4). This overlap was significantly greater than would be

expected by chance (significance determined with the hypergeometric

probability density function; p < .001).

The edges predictive of sleep duration in both the HCP and

ABCD Study datasets were broadly distributed across cortical, subcor-

tical, and cerebellar regions (Figure 4). The shared high-duration net-

work comprised contralateral connections between the cerebellum

and motor cortices and ipsilateral connections between the subcorti-

cal regions and the temporal and parietal lobes but was otherwise rel-

atively asymmetrical. In comparison, the low-duration network was

more broadly distributed, including edges in the parietal, temporal,

and occipital lobes, as well as motor cortices, limbic regions, and sub-

cortical regions. Connections between the occipital lobes and motor

cortices were particularly pronounced, with connections extending

both contralaterally and ipsilaterally. The same was true for limbic and

parietal regions and the motor cortices.

We next compared the prevalence of high-duration-network

vs. low-duration-network edges within and between different canoni-

cal functional networks (Figure 5). Connections between the subcorti-

cal and motor networks were more common in the high-duration

network, whereas connections between motor and visual II and visual

association networks were more common in the low-duration net-

work. More motor-visual connections in the low-duration network

aligns with previous observations of increased functional connectivity

between primary sensory and supplementary motor regions in individ-

uals with difficulty falling asleep (Killgore et al., 2013).

(a) Cross-Dataset Prediction: ABCD Task (b) Cross-Dataset Prediction: ABCD Rest

(c) Cross-Dataset Prediction: HCP Task (d) Cross-Dataset Prediction: HCP Rest

F IGURE 2 Across-dataset Spearman partial correlations between observed and CPM-predicted sleep measures, controlling for frame-
to-frame head displacement, sex, age, and number of included runs. Models trained on HCP data and tested on ABCD Study data are shown in
the top row. Models trained on ABCD Study data and tested on HCP data are shown in the bottom row. Predictions from n-back task data are
shown in the left column and predictions from resting-state data in the right. (a) Cross-dataset prediction: ABCD task. (b) Cross-dataset
prediction: ABCD rest. (c) Cross-dataset prediction: HCP task. (d) Cross-dataset prediction: HCP rest.
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4 | DISCUSSION

Sleep is critical to executive and cognitive functioning, has been impli-

cated in the consolidation of long-term memory, and supports

working-memory capacity and general cognitive abilities (Alhola &

Polo-Kantola, 2007; Durmer & Dinges, 2005; Whitney et al., 2017).

Changes in sleep patterns and sleep quality have also been associated

with the general decline in cognition related to aging. Work in cogni-

tive network neuroscience has identified patterns of functional brain

connectivity that predict individual differences in cognitive measures

as well as changes in these measures over time (e.g., Kardan

et al., 2022; Rosenberg et al., 2020).

Although functional connectivity patterns predicting behavior are

sometimes taken to reflect “intrinsic” signatures of cognitive

processes, the connections themselves (Rakesh, Cropley, et al., 2021;

Rakesh, Seguin, et al., 2021) and their associations with behavior

(Ellwood-Lowe et al., 2021) also vary as a function of experiences and

the environment.

Here, we asked whether one salient feature of an individual's

experience known to affect cognitive functioning—how much they

sleep—is reflected in their whole-brain functional connectivity pat-

terns. To do so we analyzed resting-state and task-based fMRI data

from the HCP adult sample and ABCD Study developmental sample.

Internally validated CPMs revealed that, in both datasets, n-back task

and resting-state functional connectivity patterns predicted sleep

duration in novel individuals. We then externally validated models

across datasets. A CPM trained to predict a subjective measure of

sleep duration (self-reported hours slept per night over the past

(a) Cross-Dataset Prediction: ABCD Task (b) Cross-Dataset Prediction: ABCD Rest

(c) Cross-Dataset Prediction: HCP Task (d) Cross-Dataset Prediction: HCP Rest

F IGURE 3 Across-dataset Spearman partial correlations between observed n-back task accuracy and CPM-predicted sleep measures,
controlling for frame-to-frame head displacement, sex, age, and number of included runs. Models trained on HCP data and tested on ABCD Study
data are shown in the top row. Models trained on ABCD Study data and tested on HCP data are shown in the bottom row. Predictions from n-
back task data are shown in the left column and predictions from resting-state data in the right. (a) Cross-dataset prediction: ABCD task.
(b) Cross-dataset prediction: ABCD rest. (c) Cross-dataset prediction: HCP task. (d) Cross-dataset prediction: HCP rest.
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month) in the HCP sample generalized to predict an objective measure

of sleep duration (Fitbit data) in the ABCD Study sample and vice

versa. Successful cross-dataset prediction suggests that functional

connectivity robustly predicts sleep duration in 11–12-year-old youth

and young adults.

In the ABCD Study dataset, resting-state data predicted sleep

duration significantly better than the n-back task data, even when the

quantity of data (number of participants and TRs) was matched

between conditions. In the HCP dataset, predictive power was similar

when the number of rest and task participants was matched. This is

somewhat surprising in light of the well-replicated findings that task

and movie-watching data predict behavior better than rest data,

although this work has been focused on cognitive rather than sleep

measures (e.g., Finn & Bandettini, 2021; Greene et al., 2018; Yoo

et al., 2018). One hypothesis for this pattern of results is that tasks

engage cognitive processes of interest, amplifying individual differ-

ences in the functional networks underlying them. In contrast to net-

works studied previously, individual differences in sleep networks

may be most salient at rest, when participants must lie still and remain

awake without the benefit of images or sounds to capture attention

and increase arousal. It is, however, possible that other tasks could

benefit sleep prediction. Although lack of sleep has been shown to

impair performance on working memory and attentional control tasks

(Frenda & Fenn, 2016; Whitney et al., 2017), sleep duration was only

modestly correlated with n-back task accuracy in the datasets ana-

lyzed here (r values < 0.17). Functional connectivity observed during

tasks on which performance is more affected by sleep may better pre-

dict an individual's typical sleep duration.

Although correlations between sleep duration and n-back task

accuracy were modest, n-back task accuracy was significantly corre-

lated with sleep duration predicted by models trained on HCP n-back

task and resting-state functional connectivity, as well as ABCD

resting-state connectivity. This indicates that sleep-prediction models

capture some variance in individual differences in cognition. Interest-

ingly, n-back accuracy was more strongly correlated with the predic-

tions of models trained on rest—not n-back task—data, further

underscoring the fact that rest may be the best state in which to mea-

sure functional connectivity patterns relevant to sleep.

Networks predicting sleep duration from resting-state functional

connectivity in the HCP and ABCD Study samples shared 39 edges

predicting more sleep (i.e., edges stronger in individuals who slept

more) and 118 edges predicting less sleep (i.e., edges stronger in indi-

viduals who slept less). The former set of edges, the “high-duration”
network, includes cerebellar-motor cortex connections in both hemi-

spheres as well as subcortical connections with motor, parietal, and

temporal cortex. A recent study observed decreased functional con-

nectivity between the caudate and putamen with parietal regions

after sleep deprivation, hypothesized to reflect impaired fine motor

F IGURE 4 Resting-state functional connections (edges) shared between the HCP and ABCD Study networks predicting more sleep (left) and
less sleep (right). In the circle plots, generated using Circos (Krzywinski et al., 2009), network nodes are grouped into macroscale brain regions and
lines between them represent edges. Line width corresponds to the number of edges between two regions. Glass brain plots, created with
Nilearn (Abraham et al., 2014), show network nodes (spheres) and edges (lines). Nodes are sized according to their number of edges.
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control caused by lack of sleep (Wang et al., 2021). Although the reso-

lution of our functional parcellation scheme precludes investigations of

connectivity with individual subcortical structures, this is consistent

with our observation of increased subcortical-parietal connectivity in

individuals who get more sleep. While speculative, increased cerebellar-

motor cortex connectivity in individuals who sleep more may also

reflect improved motor control relative to individuals who sleep less.

The “low-duration” network, on the other hand, was more widely

distributed with strong involvement of occipito-motor and occipito-

parietal connections. This pattern conceptually replicates previous

findings that insomnia and difficulty with sleep initiation are associ-

ated with increased functional connectivity between primary visual

and auditory cortex and supplementary motor regions (Killgore

et al., 2013). These strengthened sensory-motor connections are

hypothesized to reflect a heightened awareness of and sensitivity to

perceptual input that can make it more difficult to fall asleep (Killgore

et al., 2013). In contrast, we observed stronger occipito-parietal con-

nections in individuals who sleep less whereas previous work showed

decreased parahippocampal gyrus–intraparietal sulcus connectivity

during sleep-deprived task performance (Lim et al., 2010). This dis-

crepancy suggests that lack of sleep deprivation may have different

effects on functional connectivity during task performance and rest. It

is also possible that sleep deprivation (studied previously) and day-

to-day sleep duration (characterized here) differentially affect func-

tional brain organization. Comparing associations between typical

sleep duration and transient sleep deprivation and functional connec-

tivity in different cognitive states is an important direction for future

research.

Finally, previous work found decreased connectivity in the default

mode network (DMN) and increased connectivity between the DMN

and task-positive regions with sleep deprivation (i.e., reductions in their

typical anticorrelation; Yeo et al., 2015) and sleep disturbance (Yang,

Liu, & Wang, 2022). We did not observe this pattern of results but did

find more connections between DMN and motor regions in the low-

duration network (Figure 5). This may be because there is not just one

“sleep network,” but several component networks related to different

aspects of sleep. For example, sleep quality is considered to involve

components including sleep duration, sleep latency, sleep disturbances,

and daytime dysfunction (Zhong et al., 2015). Different aspects of

sleep, such as how much a person sleeps on average or the quality of

their sleep, could modulate (or be modulated by) different brain net-

works. The high- and low-duration networks demonstrated here, for

example, relate specifically to overall sleep duration, while the default

mode and dorsal attention networks were related to sleep deprivation

and disturbance. While these facets of sleep may not be completely

independent, it will be important for future work to delineate networks

associated with different aspects of sleep quality and quantity.

The current work has limitations. First, the accuracy of cross-

dataset sleep prediction models is numerically small, with partial cor-

relations between predicted and observed sleep duration between

F IGURE 5 Differences in the
number of resting-state functional
connections between canonical
networks, calculated by subtracting the
number of edges in the low-duration
network from the number of edges in the
high-duration network.
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rs = 0.054 and 0.215. These relationships are theoretically meaning-

ful, demonstrating consistency between functional connectivity pat-

terns related to getting relatively more versus less sleep in youth and

adulthood. They also motivate future fMRI-based prediction work to

consider how an individual's states (such as their recent typical sleep

duration) affect their supposed traits (such as their performance on a

cognitive task). Despite the statistical and theoretical significance of

these findings, however, the current sleep-prediction models are not

necessarily practically significant in that they do not provide highly

precise information about how much sleep any one person typically

gets. Second, this work is correlational and does not provide causal

evidence about relationships between functional connectivity and

sleep duration. Such associations could reflect multiple causal influ-

ences. For example, average sleep quantity could affect functional

connectivity patterns, functional connectivity patterns could affect

sleep, and/or both could be affected by a common cause, such as

aging or stress. Further, the present models assume that the relation-

ship between functional connectivity patterns and sleep duration is

linear, and do not account for a potentially nonlinear relationship.

Insight on the directionality, shape, and causation of sleep-related

brain changes could provide information on the occurrence of neuro-

cognitive disorders. Future work analyzing longitudinal or dense phe-

notyping data can investigate causal relationships between sleep and

functional connectivity across the full lifespan.

The current work complements previous findings that sleep,

including sleep deprivation and insomnia (Killgore et al., 2013;

Lee et al., 2017), is related to large-scale functional connectivity pat-

terns (Chee & Tan, 2010; Cross et al., 2021; Verweij et al., 2014). This

result necessitates careful interpretation of other connectome-based

models of phenotypes and behavior. For example, sleep deprivation

can diminish working memory capacity (Zhang et al., 2019). CPMs of

working memory, therefore, may be impacted by sleep deprivation,

and models trained to predict working memory could include edges

more closely tied to sleep than to working memory itself. Looking

ahead, researchers should consider how sleep and other lifestyle fac-

tors affect their outcome measure of interest when building and inter-

preting connectome-based predictive models.

In sum, we show that CPMs can be trained to predict sleep dura-

tion from functional brain connectivity in independent, demographi-

cally distinct datasets.

Models trained on functional connectivity data in one dataset can

also successfully predict sleep duration in the other, and an overlap-

ping set of resting-state functional connections predicted sleep in

each sample. Thus, common functional brain connectivity patterns

reflect sleep duration across youth and young adulthood.
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