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(57) ABSTRACT 

The control of emissions from fossil-fired boilers wherein an 

injection of substances above the primary combustion zone 

employs multi-layer feedforward artificial neural networks 

for modeling static nonlinear relationships between the 

distribution of injected substances into the upper region of 

the furnace and the emissions exiting the furnace. Multi­

variable nonlinear constrained optimization algorithms use 

the mathematical expressions from the artificial neural net­

works to provide the optimal substance distribution that 

minimizes emission levels for a given total substance injec­

tion rate. Based upon the optimal operating conditions from 

the optimization algorithms, the incremental substance cost 

per unit of emissions reduction, and the open-market price 

per unit of emissions reduction, the intelligent emissions 

controller allows for the determination of whether it is more 

cost-effective to achieve additional increments in emission 

reduction through the injection of additional substance or 

through the purchase of emission credits on the open market. 

This is of particular interest to fossil-fired electrical power 

plant operators. The intelligent emission controller is par­

ticularly adapted for determining the economical control of 

such pollutants as oxides of nitrogen (NOx) and carbon 

monoxide (CO) emitted by fossil-fired boilers by the selec­

tive introduction of multiple inputs of substances (such as 

natural gas, ammonia, oil, water-oil emulsion, coal-water 

slurry and/or urea, and combinations of these substances) 

above the primary combustion zone of fossil-fired boilers. 

14 Claims, 4 Drawing Sheets 
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INTELLIGENT EMISSIONS CONTROLLER 
FOR SUBSTANCE INJECTION IN THE POST­
PRIMARY COMBUSTION ZONE OF FOSSIL­

FIRED BOILERS 

2 
furnace's stoichiometry is optimized on a very localized 
basis, avoiding the formation of fuel-rich zones and main­
taining overall fuel-lean conditions in the furnace. The 
natural gas is injected at low flue gas temperatures (2000° F. 

CONTRACTUAL ORIGIN OF THE INVENTION 

The United States Government has rights in this invention 
pursuant to Contract No. W-31-109-ENG-38 between the 
U.S. Department of Energy and the University of Chicago 
representing Argonne National Laboratory. 

5 to 2300° F.) using multiple, high-velocity turbulent gas jets 
that penetrate into the upper furnace areas which have the 
highest NOx concentrations. Because the furnace is main­
tained overall fuel-lean, no downstream overfire completion 
air is needed to maintain acceptable levels of CO in the stack 

FIELD OF THE INVENTION 

This invention relates generally to the reduction of emis­
sion levels of one or more pollutants emitted from a fossil­
fired combustion process and is particularly directed to a 
method for optimizing and controlling each of multiple 
inputs of injected substance (such as natural gas, ammonia, 
urea, oil, a water-oil emulsion, or a coal-water slurry) above 
the primary combustion zone of the process for reducing the 
emission levels of oxides of nitrogen (NOJ, carbon mon­
oxide (CO), and other pollutants, and for determining 
whether it is more cost effective to further reduce emissions 
with the injection of additional substance or to purchase 
emission credits on the open market. 

10 gas emission. These conceptual and operational differences 
of the FLGR system result in a more costeffective means of 
reducing NOx emissions over the conventional gas reburn­
ing technology. The FLGR technology requires lower 
installed capital costs and lower consumption of natural gas 

15 to achieve 35 to 45% NOx reductions. 

The problem of optimizing and controlling the FLGR 
system as well as the conventional gas reburning technology 
or other technologies involving the injection of natural gas 
and/or other substances is complicated because of (a) the 

20 dynamic nature of boiler operation where load changes 
influence furnace flow velocities, flow patterns, gas 
temperature, and residence time; (b) the nonlinear interac­
tions of many operating variables; and (c) economic con­
siderations involving the free-market pricing and trading of 

BACKGROUND OF THE INVENTION 

The introduction of the Clean Air Act Amendments of 
1990 delineated environmental. constraints requiring reduc­
tion of NOx emissions from electric utility and industrial 
boilers. Since 1990, many utilities have implemented expen­
sive physical boiler modifications, such as the conversion to 
low-NOx coal burner technology, which achieved 25 to 50% 
NOx reductions. Throughout the Eastern United States more 
stringent regulations will require power plants to reduce 
NOx emissions by an average of 55 to 65% from 1990 levels 

25 emission credits or allowances, which make it difficult for 
boiler operating personnel to interpret impacts and consis­
tently adjust the gas injection to maintain optimal, least-cost, 
control in real time. 

The present invention addresses the aforementioned con-
30 siderations of and problems encountered in the prior art by 

providing for the more efficient operation of an electric 
utility or industrial fossil-fired boiler with injected sub­
stances (such as natural gas, ammonia, and urea) above the 
primary combustion zone, including a reduction in the 

35 emission of pollutants, using an artificial neural network 
approach with multivariable nonlinear constrained optimi­
zation algorithms for automatically controlling the injection 
of the substances. 

by 2005. Additional physical/operational boiler modifica­
tions are being considered to achieve the remaining 5 to 40% 
reduction. These modifications may include a broader array 

40 
of technologies, such as the injection of ammonia or urea 
into the upper region of the furnace and/or natural gas 
reburning. 

Natural gas reburning has been shown to be an effective 
control technique to significantly reduce the NOx emissions 45 
of coal-fired boilers. In conventional gas reburning, 10 to 
20% of the total heat input to the boiler is provided by 
natural gas injected into the upper region of the furnace 
above the primary combustion zone. This produces a slightly 
fuel-rich zone where NOx is chemically reduced to form 50 
atmospheric nitrogen. Overfire air is injected downstream of 
the reburn zone to provide sufficient air to complete the 
combustion process and minimize CO emissions. The 
amount of NOx reduction from reburning typically increases 
with the amount of natural gas injected. 55 

Energy Systems Associates (ESA) of Pittsburgh, Penn­
sylvania and the Gas Research Institute (GRI) of Chicago, 
Illinois have developed and tested a new, more cost­
effective, natural gas reburning process for NOx control 
called the Fuel Lean Gas Reburn (FLGR) technology. FLGR 60 

relies on the controlled injection of 3 to 7% natural gas heat 
input into the upper region of the furnace of coal-fired 
boilers to achieve a 35 to 45% NOx reduction. Similar to 
conventional gas reburning systems, FLGR employs natural 
gas injected above the furnace's primary combustion zone to 65 

reduce much of the NOx to atmospheric nitrogen. However, 
with FLGR, the natural gas is injected in such a way that the 

OBJECTS AND SUMMARY OF THE 
INVENTION 

Accordingly, it is an object of the present invention to 
reduce emissions of one or more pollutants from a fossil­
fired combustion process by optimizing and controlling each 
of multiple inputs of injected substances (such as natural 
gas, ammonia, oil, water-oil emulsion, coal-water slurry and 
urea) or combination of such or other substances above the 
primary combustion zone. 

It is another object of the present invention to automati­
cally control the injection rate of various inputs above the 
primary combustion zone to reduce the emission of 
pollutants, such as NOx and CO, for various process oper­
ating conditions. 

Yet another object of the present invention is to determine 
for a fossil-fired combustion process with injected sub­
stances above the primary combustion zone, whether it is 
more cost-effective to achieve additional increments in 
emission reductions through the injection of additional sub­
stance or through the purchase of emission credits in the 
open market based upon considerations of the optimal 
operating conditions of the substance injection system, the 
cost of the incremental injected substance, and the open­
market price per ton of emission credits. 

A still further object of the present invention is to deter­
mine optimal operating conditions for the injected sub­
stances using nonlinear constrained optimization methods 
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and artificial neural networks for modeling the nonlinear 
relationships between the emissions exiting the furnace and 
the distribution of the injected substances into an upper 
region of the furnace. 

This invention operates to control emissions from fossil­
fired boilers through the optimization of the distribution of 
injected substances above the primary boiler combustion 
zone. The invention employs artificial neural networks for 
modeling the nonlinear relationships between the emissions 
exiting the furnace and the distribution of substances 
injected into an upper region of the furnace. The mathemati­
cal expressions derived from the artificial neural networks 
are used to solve this multivariable nonlinear constrained 
optimization problem that provides the optimal substance 
distribution that minimizes emission levels for a given 
substance consumption rate. The invention further contem­
plates an advisory operations support system which deter­
mines whether it is more cost-effective to achieve additional 
increments in emission reductions through the consumption 
of additional substance (e.g., natural gas, ammonia, oil, 
water-oil emulsion, coal-water slurry and/or urea) or 
through the direct purchase of emission credits in the open 
market based upon the optimal operating conditions deter­
mined from the aforementioned multivariable optimization, 
the cost of incremental injected substance, and the open­
market price per ton of emission credits. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The appended claims set forth those novel features which 
characterize the invention. However, the invention itself, as 
well as further objects and advantages thereof, will best be 
understood by reference to the following detailed descrip­
tion of a preferred embodiment taken in conjunction with the 
accompanying drawings, where like reference characters 
identify like elements throughout the various figures, in 
which: 

FIG. 1 is a simplified schematic diagram of the clustering 
of injected natural gas into four zones in the upper region of 

4 
DETAILED DESCRIPTION OF PREFERRED 

EMBODIMENT 

Plant data from demonstration tests conducted at the 
Commonwealth Edison Joliet Station 9 Unit 6 (JSU-6) 

5 coal-fired electric power plant in Joliet, Illinois during the 
summer of 1997 were used in developing this invention. 
JSU-6 is a 320 MWe cyclone design boiler that is fueled with 
low-sulfur Western Powder River Basin subbituminous coal. 
The boiler consists of a single furnace divided into superheat 

10 and reheat regions. The unit is fired with nine horizontal 
cyclones; four cyclones are located along the north wall of 
the furnace and five are located along the south wall. The 
boiler is capable of delivering a maximum of 2.2 million 
pounds of steam per hour at 2000 psi, 1015° F. on the 

15 superheat side, and 1005° F. on the reheat side. 
The FLGR system installed at JSU-6 consists of a total of 

36 natural gas injectors divided equally between the north 
wall of the reheat side of the furnace and the south wall of 
the superheat side of the furnace. The four zones of the 

20 furnace 10 are shown in the simplified schematic diagram of 
FIG. 1, as is the clustering of the injected gas into the four 
zones. The gas injectors 12 and 14 are located at two 
different furnace elevations and are designed so that a 
maximum of 26 injectors can operate simultaneously. 

25 Twenty-six gas injectors are located at 208 feet, which is 
approximately 56 feet below the entrance of the convective 
section of the boiler, and the remaining 10 injectors are 
located 21 feet higher at 229 feet. The gas system was 
designed to supply a maximum of 12% gas heat input with 

30 the unit at full load and the maximum gas flow rate per 
individual injector ranged from about 6 to 24xl06 Btu per 
hour, or equivalently 6 to 24 kscfh. The gas jets were 
designed to operate at sonic conditions at 35 psig of gas 
pressure. The system also makes use of extraction steam as 

35 a gas carrier to improve the gas jet penetration. Steam is 
supplied to each injector at a one-to-one mass ratio with 
natural gas. 

a furnace above the primary combustion zone of a coal-fired 40 
boiler for reducing emissions; 

Twenty probes for measuring NOx and CO emissions, as 
well as excess oxygen (02) in the flue gas, are also installed 
at JSU-6. All 20 probes are located at one elevation down­
stream of the gas injection and beyond the economizer 

FIG. 2 is a graphic representation of the measured NOx 
versus predicted NOx using neural networks in accordance 
with the present invention; 

outlet. The probes are uniformly distributed throughout the 
cross-sectional area of the furnace with 10 probes in the 
reheat side of the furnace and 10 probes in the superheat 

FIG. 3 is a graphic representation of the NOx response to 45 

changes in total gas flow for uniform gas distribution in the 
four zones of the furnace shown in FIG. 1; 

side. Since it takes approximately one hour to collect mea­
surements from the 20 probes and the time response of the 
furnace to changes in the gas injection is on the order of a 
few minutes, the NOx, CO, and 0 2 probe measurements 
were taken during steady-state operation of the plant and the 

FIG. 4 is a graphic representation of the NOx response to 
changes in the gas flow in zone four of the furnace shown in 
FIG. 1 while holding the gas flows constant in the other three 50 injectors. 

Approximately 80 steady-state parametric optimization 
tests of the FLGR system (including baseline tests without 
injected gas) were conducted at JSU-6 over an eight-week 
period. The purpose of these tests was to establish the effect 

zones; 
FIG. 5 is a simplified schematic diagram of a neural 

network controller/emissions model system used as an illus­
tration of the present invention; 

FIG. 6 is a simplified schematic diagram of an iterative 
procedure for establishing the optimal operating conditions 
for the Fuel Lean Gas Reburn system in accordance with the 
present invention; 

FIG. 7 shows the optimal operating curve (the minimum 
achievable NOx levels as a function of total gas flow) 
obtained with the neural network-based optimization 
method of the present invention and the incremental fuel 
cost per ton of NOx reduction; and 

FIG. 8 graphically shows the optimal gas flow distribution 
for the four injection zones of the furnace shown in FIG. 1 
for various values of total gas flow. 

55 of the spatial distribution of natural gas on NOx and CO 
formation and to manually obtain the gas distribution 
required to achieve the maximum NOx reduction while 
maintaining CO emissions below 200 parts per million 
(ppm). The tests were conducted over a range of boiler loads 

60 and operating conditions with heat input from natural gas 
ranging from approximately 3 to 8% of the total fuel heat 
input to the plant. The injected gas distribution was also 
varied in the tests. Different distributions between the super­
heat side of the furnace and the reheat side as well as 

65 different distributions within each of the two sides were 
used. In addition, gas was injected with and without the 
inclusion of steam. 
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where the vector w denotes the weights, or the adjustable 
parameters, of the neural network model. 

A NO emissions model was developed for full-load 
boiler op~rating conditions with heat input from natural gas 

Using the available data, a database consisting of the 
entire set of parametric tests performed was constructed. The 
database documents the spatial flow rates of natural gas to 
the boiler and the corresponding spatial distribution of the 
concentrations of NOx, CO, and 0 2 exiting the furnace 
beyond the economizer outlet. In addition, the database 
contains important boiler operating data such as boiler load. 
The available data were then analyzed to determine key 
process interactions necessary to develop a framework for 
the neural network modeling. 

5 ranging from approximately 6 to 8% of the total fuel heat 
input to the plant. For the JSU-6 at 320 MWe, 6% of natural 
gas heat input corresponds to a flow rate of about 177 kscfh 
and 8% corresponds to 236 kscfh. The model development 
was based on the 20 test results tabulated in Table 1. These 

Analyses of the test results indicate a 35 to 40% average 
NO reduction for boiler loads ranging from. 200 MWe to 
320xMWe (full load) using 7% natural gas heat input, with 
slightly greater NOx reductions being achieved at reduced 
( <320 MWe) boiler load. NOx reduction at full load seems 

10 were basically the only tests, of the 80 parametric tests of the 
FLGR system performed at the JSU-6, that were performed 
at full boiler load with injected gas ranging from 6 to 8% of 
heat input. As can be determined from Table 1, the majority 
of these tests, however, were performed with about 7% or 

15 206 kscfh of heat input from natural gas. 
to be insensitive to the elevation of the gas injection, but the 
optimum gas distribution profile is load dependent and is 
influenced by operational fluctuations of the unit. Also, the 
use of extraction steam as a gas carrier did not seem to 
provide any significant improvement in NOx reductions. The 
parametric tests show that the limiting factor to greater NOx 
reduction and often for sustained reductions at 40%, is the 
formatio; of excessive levels of CO (>200 ppm). CO 
formation tended to be very non-uniform throughout the 
furnace and somewhat erratic, and high CO levels often 

25 
correlated with low 0 2 levels, suggesting that decreasing the 
input of natural gas in regions with high CO would raise the 
excess oxygen and decrease the CO. 

A three-layer feedforward neural network architecture 
was used for developing the model with training performed 
using the conjugate gradient version of the backpropagation 
algorithm. The network units in the input layer are mapped 

20 by a linear function and the units in the hidden layer and the 
output layer are mapped by a sigmoid function. The sigmoid 
function mapping the output xn (I) of the n'th unit in the l'th 
layer, with l>l, is given by 

The percentage of NOx reduction is not necessarily lin­
early correlated to the amount of natural gas heat input. 

30 
Under certain conditions, increasing the amount of natural 
gas heat input results in little to no further improvement in 
the amount of NOx reduction. Since the general direction of 
future NOx control strategies will be based on a least-cost 
approach involving the free-market pricing and trading of 

35 
emission allowances, and since on a heat-equivalent basis 
gas is more expensive than coal, a user of the FLGR system 
should only increase the gas heat input when it is cost­
effective with respect to the value of the emissions abated. 
Therefore, plant operators need to know when each incre-

40 
ment of natural gas heat input is cost-effective with respect 
to the additional NOx reduction achieved. 

Due to the limited amount of data collected for each load 
level in the parametric tests of the FLGR system at JSU-6, 
the dependency of emissions formation on boiler load, and 45 
the erratic behavior of CO, modeling was restricted to NOx 
emissions at full boiler load. Moreover, to reduce the num­
ber of inputs and outputs of the model, the multi-point 
spatial distribution of injected natural gas was lumped into 
four zones and the 20 probe measurements of NOx emissions 50 
were averaged to yield a representative steady-state NOx 
level at the furnace exit. The aggregate amount of gas 
injected in the west-half of the reheat side of the furnace was 
represented in the model by the flow rate in zone 1, g1 , and 
the aggregate amount of gas injected in the east-half of the 55 
reheat side of the furnace was represented in the model by 
the flow rate in zone 2, g2 . Similarly, the gas injected in the 
superheat side of the furnace was represented by the flow 
rates in zones 3 and 4, g3 and g4 . The gas flow rates in these 
four zones served as the four inputs to the neural network 60 
model and were used to predict the boiler average steady­
state NOx emissions levels, the output of the model. Hence, 
the neural network model used here has four units in the 
input layer and one unit in the output layer and relates the 
natural gas flow rate in each of the four zones gj G=l,2,3,4) 65 
to an average steady-state NOx level exiting the furnace, 

NOx-f(g,, g2, g3, g4, w), (1) 

(2) 

Here netn CIJ denotes a linear weighted sum over the 1;_1 units 
of the outputs xm (l-l) (m=l,2, ... ,11_ 1) of the immediately 
preceding layer plus a threshold 8n (I) of the n'th unit in the 
l'th layer: 

1t-l 

net~)= I 
m=l 

(3) 

where w CIJ is the weight connecting the output of them-th 
unit in th; (1-l)'th layer to the n'th unit in the l'th layer. 

Many different emission models were developed by vary­
ing (1) the initial weights at the onset of the network 
training, (2) the number of nodes in the hidden layer, and (3) 
the subset of experiments used for training purposes. Since 
the conjugate gradient method dynamically optimizes the 
learning parameter and the momentum parameter, these did 
not enter as study parameters. The neural network model 
which was selected for use with the controller was trained 
( or developed) with input/output data pairs from 15 of the 20 
tests in Table 1. This neural network model produced the 
smallest overall differences between the predicted and the 
measured values of NOx for the remaining five tests (5, 10, 
15, 17, and 20) which were reserved for validation purposes 
and were not used for training. For developing the neural 
network model, the gas flows were normalized between 0 
and 1 with O corresponding to the smallest flow rate, 
gmin=34.90 kscfh, observed in any one of the four zones in 
the 20 tests and 1 corresponding to the largest flow rate, 
gmax=72.l3 kscfh, in any one zone. Similarly, NOx was 
normalized between 0.2 and 0.8 corresponding to 0.47 
Ibm/MBtu and 0.68 Ibm/MBtu, respectively. The choice of 
0.2 instead of O and of 0.8 instead of 1 was made to avoid 
the slow training process at the saturation regions of the 
sigmoid function. 

FIG. 2 shows the values of measured versus predicted 
NO for the 15 experiments used for training the model and 
the 5 experiments used for validating the model. In spite of 
the limited amount of available data, the model was able to 
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predict NOx emission levels as a function of the distribution 
of injected gas in the four zones within 6% of the measured 
values. The achieved accuracy is quite adequate since it falls 
within measurement uncertainties. NOx emission measure­
ments differed by about 6.5% in repetitive experiments, such 5 

as in tests 5 and 6 and tests 9 and 10, where the same gas 
flow was injected in each of the 36 injection points. 

10 

Sensitivity analysis of the model was also performed 
through various simulation tests. For instance, in a test 
designed to establish the dependency of NOx on the overall 
natural gas input into the furnace, the neural network pre­
dicted NOx values were evaluated for changes in the total 
gas flow between 6% (177 kscfh) and 8% (236 kscfh) for a 
uniform gas distribution among the four zones. As indicated 15 

in FIG. 3, NOx decreases monotonically but not linearly as 
the amount of natural gas is increased uniformly in the four 
zones. While the qualitative behavior of the model for this 
simulation test confirms our expectations, its quantitative 
estimates are probably not very accurate due to the limited 20 

amount of available data for training the model. In other 
simulation tests, however, we were uncertain about the 
qualitative behavior of the model. For example, in a simu­
lation test where the gas flow rate in one of the four zones 
was varied from the minimum to the maximum value, i.e., 25 

from 34.90 to 72.13 kscfh, and the gas flow in the other three 
zones was held constant at predefined levels, the NOx 
response was highly dependent on the three fixed gas flow 
rates and varied significantly with changes in them. In some 

30 
cases, the NOx behavior was flat. In other cases, NOx 
increased monotonically, decreased monotonically, or varied 
non-monotonically. FIG. 4 illustrates the results of three 
simulation tests obtained when the gas flow in zone 4 was 
varied and the gas flow in the other three zones was held 35 
fixed at different sets of constant values. Each curve corre-
sponds to one simulation, e.g., the curve with the smallest 
gradient was obtained by varying g4 while holding g1 and g2 

at 35 kscfh and g3 at 70 kscfh. For zone 4, the model 
indicated that the NOx emission levels depend on the gas 
distribution of the other three zones, but in all cases NOx 
decreases monotonically with increasing gas flow. Similar 
model behavior was not observed in the other zones. 

40 

4 

G=Ig1,and 
j=l 

8 
-continued 

gmin :;; gj:;; gm~, for all j = 1 to 4 

where gmin=34.90 kscfh and gmax= 72.13 kscfh correspond to 
the minimum and maximum, respectively, gas flow rate 
allowed in each zone. As NOx is a nonlinear function of gj, 
this is a nonlinear programming problem with equality and 
inequality constraints in the control variables which can be 
solved by any number of well-established nonlinear con­
strained optimization techniques. 

Here, we propose a new approach based on multilayer 
feedforward neural networks for solving this multivariable 
nonlinear constrained optimization problem with equality 
and inequality constraints. Although the description below is 
geared to this specific problem, the approach applies to a 
large class of optimization problems including problems 
with nonlinear constraints and inequality constraints other 
than the bounding or box constraints that appear in this 
problem. The function f to be minimized does not need to be 
represented by a neural network model. The function f only 
needs to have continuous first derivatives-a universal 
requirement for optimization algorithms based on gradient 
calculations-that can be numerically evaluated. The same 
requirements apply to the constraint functions; they need to 
be continuously differentiable. No other requirements or 
assumptions on the functions appearing in the problem, such 
as convexity, are needed to apply the method. 

In the inventive neural network formulation, the solution 
of an N-dimensional constrained optimization problem is 
obtained by solving a sequence of M-dimensional (with 
M>N) unconstrained optimization problems with a modified 
objective function where M represents the number of 
weights or adjustable parameters of the neural network. 
Each solution of the unconstrained problem is a feasible or 
candidate solution of the original problem, that is, it satisfies 
the original problem constraints, and is used in an iterative 
search for the optimal solution. Constrained optimization 

With the emissions model in place, we then pursued the 
development of the FLGR system controller. The approach 
is to use the neural network emissions model to develop and 
fine tune an optimal controller which can subsequently be 
integrated with the actual plant. This controller, described in 
detail below, determines the optimal gas distribution among 
the four zones that results in the largest NOx reduction for a 
given amount of total injected gas. 

45 problems are transformed into unconstrained ones by incor­
porating the constraint functions in a "modified" objective 
function of the original problem. Such a practice is widely 
used in mathematical programming algorithms, as is the 
case for methods using penalty functions where the objec-

50 tive function is augmented by the penalty functions associ­
ated with the constraints. In our indirect approach of han­
dling constraints, for each equality constraint and for each 
inequality constraint ( except for bounding inequality con­
straints on individual variables) there is a corresponding 

Given the static neural network emissions model relating 
the natural gas flow rate in each of the four zones gj 
G=l,2,3,4) to the average NOx level exiting the furnace, 
optimization of the FLGR system for steady state operation 
can be cast as a mathematical programming problem. For 
example, we might want to find the steady state gas distri­
bution that minimizes NOx subject to a given total gas 
consumption rate G and range of values for gj. 
Mathematically, this optimization problem can be expressed 60 

as a minimization of the objective function in Eq. (1) 

minimizeNOx = f(g1, g2, g3, g4) 
gj 

subject to 

(4) 

55 term in the objective function. 

The solution of the nonlinear constrained optimization 
problem in Eq. ( 4) is obtained through a sequence of training 
sessions of the neural network controller/model system 
representation illustrated in FIG. 5. Each training session 
confirms if a given setpoint value for NOx, NO}P, is a 
feasible solution to the original problem, and if so, the 
training session provides the corresponding gas distribution 
gj. For a given NO}P and the total gas flow rate G, the 

65 controller/model system is trained by finding the weights w 
of the multilayer feedforward neural network representing 
the controller so that the objective function 
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(5) 

5 

is minimized. The first term of the "modified" objective 
function E assures that the control laws provided by the 
controller yield the desired NOx setpoint and the second 
term accounts for the equality constraint. The objective 10 

function E is therefore formed by the sum of the squares of 
the deviations of given values (NO}P and G) from predicted 
values (NOx and g), which is very similar to the objective 
function used in least squares fitting. Appropriate normal­
ization of the controller outputs directly accounts for the 15 

inequality bounding constraints on each of the four gas flow 
rates gF 

For a fixed total gas flow G, say, G1 , the optimum NOx, 
NOx *, and the corresponding optimal gas distribution gj 

20 
G=l,2,3,4) are obtained through a sequence of training 
sessions of the controller/model system representation in 
FIG. 5. We start this iterative approach by selecting a large 
value for NO}P, say, NO}P(l), and providing the same two 
inputs, NO}P(l) and G1 , repeatedly to the controller/model 25 
system during the first training session of the sequence. If 
the training is successful, i.e., if weights w can be found that 
minimize Eq. (5), then NO}P(l) is a feasible solution to the 
original problem and the controller outputs provide the 
corresponding gas distribution gF Next, we select another 30 
value for NO}P, say, NO}P(2), with NO}P(2)<NOxsP (1), 
and perform a second training session. If the training is 
successful, then NO}P(2) is another feasible solution of the 
original problem. Otherwise, a value of NOxsP between 
NO}P(l) and NO}P(2) is selected. By repeating such a 35 
procedure for additional values of NO}P we can find the 
smallest NOx for which the training converges.13 This 
smallest NOx is the desired optimal NOx, NOx *, for a given 
total gas flow G 1 . This can then be confirmed by showing 
that the estimated optimal solution satisfies the Karush- 40 
Kuhn-Tucker (KKT) necessary conditions for local optimal-
ity of nonlinear constrained functions to within a certain 
tolerance. 12 By repeating such a procedure for different 
values of G, we can then obtain the optimal operating 
conditions of the FLGR system throughout the range of 45 
allowable total gas flow rates. FIG. 6 provides a graphical 
illustration of such an approach. 

10 

(6) 

If the l'th layer is the output layer, i.e., l=L, then 

(7) 

where JL =4, x/Ll=gj G=l,2,3,4), and aNOx;ax/Ll, derived in 
the Appendix, is computed by noting that the outputs of the 
neural controller xll are the inputs of the neural network 
emissions model. For any unit in a subsequent hidden layer, 
i.e., 1</<L, 

1t+l (8) 
olli. = xill(l -xill)°\' oil+l)w(/+l) and 

lJ J J L....,. Im mJ , 

m=l 

1t+l 

o~} = x1/1(1 - x1/1) I 
m=l 

This algorithm is very similar to the backpropagation algo­
rithm used to compute aE/awj0 for stand-alone feedfor­
ward multilayer neural networks.2 The major differences are 
the presence of two /ls, as opposed to only one Ii, corre-
sponding to the two components of E, E1 , and E2 , in Eq. (5) 
and the extra term aNO)axll in 01ll in Eq. (7) corre­
sponding to the derivative of the emissions model output 
with respect to its inputs. 

In summary, we invented a new method for solving 
multi-dimensional constrained nonlinear optimization prob­
lems through feedforward neural networks. The approach is 
to transform a constrained optimization problem in the 
N-dimensional control-space into a sequence of uncon­
strained optimization problems in the larger M-dimensional 
weight-space of a multilayer feedforward neural network. 
The constraints of the original problem are handled indi­
rectly through the transformation of the original objective 
function into a modified objective function which incorpo­
rates each equality constraint and each inequality constraint 
( except for bounding inequality constraints on individual 
variables) into an additional term of the objective function. 
The sequence of unconstrained optimization problems is 

Training the controller/model system in FIG. 5 consists of 
solving an unconstrained nonlinear minimization problem, 
in the generally large, M-dimensional weight-space w of the 
multilayer feedforward neural network controller. The dif­
ficulty in solving this optimization problem in a larger 
dimensional space in comparison with the N-dimensional 
control-space (N=4 for this problem) is more than offset by 
the simplicity of solving an unconstrained optimization 
problem as opposed to a constrained one. The unconstrained 
minimization of E(w) in Eq. (5) is solved interactively based 

50 solved by training the neural network controller in the 
combined controller/model system architecture for a 
sequence of different inputs. The training is based on gra­
dient calculations of the modified objective function with 
respect to the neural network controller weights through the 

55 method of conjugate gradients. Each solution of the 
sequence, i.e., each input/output of the neural network, is a 
feasible solution of the constrained problem and the last 
solution of the sequence corresponds to the sought optimal on calculations of the gradient VE(w) through the method of 

conjugate gradients. The components of VE(wk) are com­
puted recursively, for iteration k, by starting at the units in 60 

the output layer of the neural controller and working back­
ward to the units in the input layer. To simplify the notation 

solution. 
The inventive neural-network-based optimization algo-

rithm was then applied to solve the mathematical program­
ming problem of Eq. (4). That is, the algorithm was applied 
to find the steady state gas distribution in the four zones gj 
that minimizes NOx subject to a given total gas consumption 

in the discussions to follow we suppress the iteration sub­
script k and the pattern subscript p corresponding to the 
inputs NO}P and G. A component of VE(w) corresponding 
to the weight wj0 connecting the i'th unit in the (1-l)'th 
layer to the j'th unit in the l'th layer is given by 

65 rate G and range of allowable values for gF Following the 
controller/model representation depicted in FIG. 5, a 2-6-4 
architecture was selected for the feedforward neural network 
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representing the controller. The two units in the input layer 
correspond to NO}P and total gas G, and the four units in 
the output layer correspond to the gas flow rates gj in the four 
zones. The one hidden layer with six units was arbitrarily 
selected. This neural network architecture contains a total of 
46 weights, i.e., M=46, which were obtained by minimizing 
the unconstrained objective function E in Eq. (5) through the 
method of conjugate gradients based on the gradient calcu­
lations of Eq. (6). 

FIG. 7 shows the optimal operating curve (the minimum 
achievable NOx levels as a function of total gas flow) 
obtained with the neural-network-based optimization 
method. This entire curve is outside of the region-total 
gas~l 76.5 kscfh and NOx~0.47 Ibm/MBtu-where all of 
the points used for training (developing) the NOx emissions 
model are located. This is not surprising because during the 
data collection the optimal gas distribution for each value of 
total gas was not known. The degree of the emissions model 
extrapolation beyond the training region is moderate, 
however, in that the optimal curve is not more than 3% 
below 176.5 kscfh and 14% below 0.47 Ibm/MBtu. 

The controller was used to find minimum values of NOx 
levels for six values of total gas, 171, 173, 175, 178, 180, and 
190 kscfh. The obtained results are consistent with our 
expectations; minimum achievable NOx, NOx *, decreases 
monotonically with increasing total gas flow. The corre­
sponding optimal gas flow distribution in the four zones, gj *, 
for each one of the six values of total gas flow is illustrated 
in FIG. 8. The optimal control strategy thus obtained is to 
keep the gas flow in zones 1-3 near the lower bound limit 
of 34.90 kscfh and increase the flow in zone 4 to meet the 
constraint on the total gas flow. Once the upper bound limit 
of 72.12 kscfh is reached in zone 4, the optimal solutions for 
total gas flow larger than 176.82 kscfh (3x34.90+ 72.12) 
primarily are achieved by increasing the gas flows in zones 
1 and 3 to satisfy the total gas flow constraint. These optimal 
solutions are consistent with the strategy of adding gas to the 
zone which provides the largest NOx reduction per unit 
increase in gas. Zone 4 (depicted in FIG. 4) has the largest 
unit NOx reduction over the range of gas values for this 
problem, making it the preferred control variable. 

The optimal gas flow distribution obtained in accordance 
with the present invention was first confirmed by showing 
that the computed gj * for each one of the six values of total 
gas satisfy the KKT conditions for optimality. Further vali­
dation was performed by solving the same constrained 
optimization problem with an off-the-shelf optimization tool 
that uses a version of the well-known Generalized Reduced 
Gradient method. For the six optimization problems, the 
maximum deviation between the proposed method and the 
off-the-shelf tool for the optimal NOx was 0.73% (with the 
tool estimating the smaller value) and the maximum devia­
tion for the four control variables was 3.6%. Tightening of 
the neural network convergence criteria would decrease the 
small discrepancies in the results. 

12 
FLGR system. Based on the optimal operating conditions, at 
180 kscfh each additional increment of NOx reduction costs 
$400 per ton, at 183.50 kscfh the additional cost matches the 
open-market price of $1500 per ton, and at 190 kscfh the 

5 additional cost is $3400 per ton. Hence, the theoretical most 
economic operating point is at 183.50 kscfh, independent of 
the NOx requirement for the plant. If the plant NOx emission 
levels are below the allowed environmental maximum, the 
excess reduction can be sold on the open-market at a profit 

10 and if they are above, the deficit can be purchased from the 
open-market for less than the cost of the additional gas. 

Even if the FLGR system in practice cannot be operated 
at the theoretical optimum due to measurement and other 
uncertainties, but only in some neighborhood of the optimal 

15 operating point, the Al-based controller would still produce 
substantial savings and NOx reductions. For example, if the 
controller can reduce the average NOx emission rate by just 
0.02 Ibm/MBtu ( <5% of the baseline value) on a 200 MWe 
average boiler load, then the total NOx tonnage reduction 

20 during a typical May through September ozone season will 
be about 60 tons of NOx. Assuming that NOx allowances 
have a value based on current estimates at $1500 to $2000 
per ton during the ozone season, the annual savings of using 
the Al controller would be about $90,000 to $120,000 for a 

25 single unit. 
There has thus been shown an approach for investigating 

artificial neural network techniques for controlling the spa­
tial distribution and total rate of injection of natural gas of 
a Fuel Lean Gas Reburn system for NOx control in coal-fired 

30 boilers. Multilayer feedforward artificial neural networks are 
applied in developing a static model of the process repre­
senting the nonlinear relationships between the distribution 
of the injected natural gas into the upper region of the 
furnace and the average NOx exiting the furnace. The neural 

35 network process model is then used to develop a neural 
network controller that provides the optimal control solu­
tions for steady state plant operating conditions. Plant data 
from a full-scale demonstration of the FLGR system con­
ducted at one of Commonwealth Edison's cyclone-type 

40 coal-fired electric power plants were used in developing the 
present invention. The invention development was based on 
gas flow rates and NOx emissions data from 20 parametric 
tests performed at 100% of nominal power and total injected 
gas ranging from 6 to 8% of heat input. In spite of the limited 

45 amount of available data, the model was able to predict NOx 
emission levels for injected gas data not used in developing 
the model within measurement uncertainties. 

The established neural network NOx model is integrated 
with a neural network controller to provide optimal control 

50 of the FLGR system for steady state operating conditions. 
This controller provides the optimal distribution of the 
injected natural gas that yields the largest NOx reductions for 
a given rate of total gas consumption. Very good agreement 
was obtained by comparing the neural controller results 

55 against optimization results obtained with an off-the-shelf 
mathematical programming routine. In addition to providing 
the gas distribution that results in the minimum achievable 
NOx emission levels for a given rate of natural gas heat 
input, these results permit the use of a least-cost approach 

In addition to leading to consistently improved average 
NOx reductions and lower average rates of natural gas 
consumption, the results of the optimal controller would also 
allow plant personnel to make decisions regarding the best 
operation of the FLGR system based on economic consid­
erations utilizing a least-cost approach involving the free­
market pricing and trading of emission allowances. For 
instance, based on the minimum achievable NOx results 
discussed above and assuming that the fuel price differential 
between natural gas and coal is $1.50/Mbtu, the cost can be 65 

calculated, as shown in FIG. 7, in dollars per ton for each 
additional increment of NOx reduction achieved with the 

60 for NOx control involving the free-market pricing and trad­
ing of emission credits. Additional expenditure associated 
with each increment of natural gas heat input is considered 
only when it is cost-effective based on the value of the 
emissions abated. 

The neural network controller consists of a new method­
ology for solving multivariable nonlinear constrained opti­
mization problems. The approach is to transform an original 
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10 

constrained optimization problem in the N-dimensional con­
trol space into a sequence of unconstrained optimization 
problems in the larger M-dimensional weight-space of a 
multilayer feedforward neural network. The difficulty in 
solving an optimization problem in the larger 5 

M-dimensional weight space is more than offset by the 
simplicity of solving an unconstrained optimization 
problem, as opposed to a constrained one, in the smaller 
N-dimensional control space. The constraints of the original 
problem are handled indirectly through the transformation of 
the original objective function into a modified objective 
function which incorporates each equality constraint and 
each inequality constraint into an additional term of the 
objective function. Bounding inequality constraints are 
directly accounted for through the appropriate normalization 15 

of the neural network outputs. The sequence of uncon­
strained optimization problems is solved by training the 
neural network controller in the combined controller/model 
system architecture for a sequence of different inputs where 
each solution of the sequence is a feasible solution of the 20 

original constrained problem and the last solution of the 
sequence corresponds to the sought optimal solution. Train­
ing of the controller is accomplished with the method of 
conjugate gradients based on gradient calculations of the 
modified objective function with respect to the neural net- 25 

work controller weights. In addition to its simplicity, another 
advantage of the approach relates to the very mild restric­
tions on the functions appearing in the mathematical pro­
gramming problem. The original objective function and the 
constrained functions only need to have continuous first 30 

derivatives, and no other requirements, such as convexity, 
are needed to apply the method. 

While particular embodiments of the present invention 
have been shown and described, it will be obvious to those 
skilled in the art that changes and modifications may be 35 

made without departing from the invention in its broader 
aspects. Therefore, the aim in the appended claims is to 
cover all such changes and modifications as fall within the 
true spirit and scope of the invention. The matter set forth in 
the foregoing description and accompanying drawing is 40 

offered by way of illustration only and not as a limitation. 
The actual scope of the invention is intended to be defined 
in the following claims when viewed in their proper per­

Test No. 

18 
19 
20 

14 

TABLE 1-continued 

Test data used for training and validation 
of the neural network NO emissions model 

Gas Flow Rate (kscfh) 

Zone 1 Zone 2 Zone 3 Zone 4 Total 

35.87 36.52 69.71 41.55 183.7 
52.25 57.8 48.49 47.95 206.5 
53.94 54.41 48.72 49.39 206.5 

APPENDIX 

NOX 

(lbm/MBtu) 

0.65 
0.6 
0.6 

For a multilayer feedforward neural network, the ordinary 
partial derivative of the output xn c0 of the n'th unit in the l'th 
layer (n=l,2, ... ,11 and 1=2,3, ... ,L) with respect to the l'th 
network input in the input layer xc0 (i=l,2, ... ,11) is given 
by 

(A) 

where JI-l denotes the number of units in the (I-l)'th layer. 
Using the definitions of xn c0 and netn (0 in Eqs. (2) and (3) in 
the first partial derivative under the summation sign of the 
expression above, we obtain 

(BJ 

This expression allows us to calculate, through recursive 
computations in the forward direction, i.e., from 1=2 to l=L, 
the ordinary partial derivative of the network output with 
respect to the network input, and hence obtain aNO)agj. 
Once the activation levels of the network units x (0 have 
been computed through a standard forward pass, ;e com-
pute ax}Ll/ax/ll by starting with 1=2 in Eq. (B) and pro­
ceeding forward layer by layer until l=L=3 is reached, where spective based on the prior art. 

45 the desired quantity axn (L)/axYl=aNO)agj is calculated. 

Test No. 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

TABLE 1 

Test data used for training and validation 
of the neural network NOx emissions model 

Gas Flow Rate (kscfh) 

Zone 1 Zone 2 Zone 3 Zone 4 Total 

46.52 36.06 51.26 46.91 180.8 
39.5 40.4 49.05 49.05 178 
35.86 36.88 66.03 65.71 204.5 
39.57 41.03 47.87 48.03 176.5 
62.16 45.05 43.01 59.35 209.6 
62.17 45.06 43.01 59.35 209.6 
40.75 41.75 50.8 50.8 184.1 
49.07 48.87 45.84 46.94 190.7 
56.29 56.2 51.93 46.86 211.3 
56.29 56.2 51.93 46.86 211.3 
56.56 57.11 51.15 46.44 211.3 
43.88 51.89 54.14 47.9 197.8 
51.12 51.37 52.38 52.14 207 
50.17 59.32 61.84 54.75 226.1 
45.73 57.86 54.82 46.44 204.9 
49.94 69.79 72.13 34.9 226.8 
56.28 56.22 51.91 46.92 211.3 

NOX 

(lbm/MBtu) 

0.58 
0.63 
0.61 
0.67 
0.5 
0.47 
0.61 
0.63 
0.63 
0.67 
0.68 
0.66 
0.62 
0.62 
0.62 
0.63 
0.66 

The embodiments of the invention in which an exclusive 
property or privilege is claimed are defined as follows: 

1. For use in a fossil-fired boiler wherein steam is gen­
erated and emissions are produced, said fossil-fired boiler 

50 including a furnace having a primary combustion zone and 
an upper region above the primary combustion zone having 
a plurality of injectors for directing a substance into said 
upper region for reducing the emissions from said furnace, 
a method for determining a minimum cost to operate said 

55 injectors in the boiler, said method comprising the steps of: 

60 

modulating a plurality of flow rates of said injected 
substance above the primary combustion zone in the 
furnace over a range of flow rate values and measuring 
the level of emissions from said furnace at each of said 
flow rates values, wherein said injected substance 
includes natural gas, urea, ammonia, oil, a water-oil 
emulsion, or coal-water slurry and combinations 
thereof; 

providing a model relating a distribution of the injected 
65 substance over said range of flow rate values to levels 

of emissions, wherein said model includes adjustable 
parameters determined for a specific boiler installation 
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and is in the form of a multivariable nonlinear math­
ematical function; 

determining for each flow rate value an optimal distribu­
tion of the injected substance that minimizes the level 
of emissions by applying an iterative optimization 
approach to said multivariable nonlinear mathematical 
function subject to constraints; 

calculating an incremental substance cost per unit of 
emissions reduction for each optimum distribution; and 

determining a most cost-effective rate of substance injec­
tion by comparing the incremental substance injection 
costs with an open-market price of emission credits. 

2. The method of claim 1 wherein each of said multivari-

16 
7. The method of claim 6 further comprising the step of 

providing said artificial neural network in the form of a 
multi-layer feedforward neural network. 

8. The method of claim 7 wherein the step of providing 
5 said artificial neural network further includes providing a 

three-layer feedforward neural network tuned with a conju­
gate gradient version of a backpropagation algorithm. 

10 

9. The method of claim 1 wherein the step of determining 
the minimum cost to reduce emissions through the substance 
injectors includes a decision-making advisory software sys­
tem. 

10. The method of claim 9 wherein the decision-making 
advisory software systems includes an expert system. 

able nonlinear mathematical function has a continuous first 
15 

derivative. 

11. The method of claim 1 wherein the determination of 
the optimal distribution of the injected substance for a fixed 
total injection rate that minimizes the level of emissions 
includes iterative classical non-linear constrained optimiza­
tion methods. 

3. The method of claim 2 wherein the step of determining 
a minimum level of emissions for the range of flow values 
includes calculating instantaneous partial derivatives of the 
emissions with respect to each of a plurality of substance 

20 
injection points for said multivariable nonlinear mathemati-

12. The method of claim 1 wherein the determination of 
the optimal distribution of the injected substance for a fixed 
total injection rate that minimizes the level of emissions 
includes non-classical artificial-intelligence-based non­
linear constrained optimization methods. 

cal function. 
4. The method of claim 1 wherein the emissions include 

NOx, CO and other pollutants. 
5. The method of claim 1 wherein the step of modulating 

the flow rates of said injected substance includes varying an 
operating load of the boiler over a range of operating load 
values. 

6. The method of claim 1 wherein said multivariable 
nonlinear mathematical function is represented in the form 
of an artificial neural network model. 

13. The method of claim 12 wherein the non-classical 

25 
artificial-intelligence-based non-linear constrained optimi­
zation methods are in the form of artificial neural networks. 

14. The method of claim 1 wherein a fossil-fired boiler 
includes coal-fired boilers, oil-fired boilers, and gas-fired 
boilers. 

* * * * * 
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