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For my parents



L’hypothèse qu’il existe des planètes plus éloignées du Soleil que celles que nous

connaissons, estelle donc neuve? ... qu’un corps qui traverse des régions aussi éloignées

pourrait être soumis â des forces totalement inconnues, telles que l’action de planètes, trop

distantes pour être jamais aperçues.

Esperons seulement, ques les astres dont parle Clairaut ne seront pas tous invisibles.

The hypothesis that there are planets more distant from the sun than those we know, is it

new? ... that a body traversing such distant regions could be subjected to forces totally

unknown, such as the action of planets too distant to be ever seen.

Let us hope only that the stars of which are spoken will not all be invisible.

Urbain J. Le Verrier

Recherches sur les mouvements d’Uranus, 1846
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ABSTRACT

The dynamical interactions of our Solar System have been studied in depth since Isaac New-

ton recognized that the planets may not be stable to each others gravitational perturbations.

Recently, the discovery of exoplanet systems, including approximately a thousand planet

candidates in systems of more than two bodies, has opened an extremely vast and diverse

laboratory for planetary dynamics. In this dissertation, I describe techniques for measuring

the dynamical, post-Keplerian interactions of planetary systems. Such signals often require

numerical N-body analysis and photodynamic techniques combined with Bayesian statistics

to correctly determine the properties of the planetary systems causing them. By simultane-

ously fitting the entire lightcurve data set at once, I am able to extract low signal-to-noise

effects such as the resonance dynamics of a very faint system (Kepler-223), the slow orbital

precession of a giant planet system (Kepler-108), and transit timing variations among very

small and low mass planets (Kepler-444). I use these analyses to gain physical insight into the

systems history, such as Kepler-108’s potentially chaotic, violent past. Kepler-223’s present

structure indicates a migration origin for at least some close-in, sub-Neptune planets, which

I explore in terms of tidal dissipation, smooth and stochastic migration, and secular evo-

lution. I also analyze circumbinary systems including the newly discovered KIC 10753734.

Taken together, these results provide insight into planetary formation in a broad array of

environments for planet from compact sub-Neptune systems to Jupiters and circumbinary

planets.
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CHAPTER 1

INTRODUCTION

The modern scientific study and interpretation of the orbits of the Solar System planets began

approximately 500 years ago with the circulation of Copernicus’ “Little Commentary” on

Heliocentrism (Copernicus, 1514). In the next century, the Copernican model was refined and

improved by observers such as Tycho Brahe and theorists such as Johannes Kepler (Kepler

et al., 1627; Kepler, 1618). However, a successful explanation of the planets’ trajectories was

first presented by Newton, with his idea of mutual gravitation (Newton, 1687). Newton may

be considered the first planetary dynamicist, because he realized that using his model, the

N-body interactions among all of the planets naturally led to instabilities in the Solar System

(Newton, 1717). While he attributed the planets’ relative longevity to divine intervention, it

has since been shown that imprecise orbital measurements, masses, and approximations were

the cause of Newton’s conclusions of short-term instability (Laplace, 1779; Lagrange, 1778;

Poisson, 1809)1. Once the contemporary Solar System configuration had been determined,

and considering its uncertain future, the question of its origin followed naturally. In the

mid-18th century, Immanuel Kant developed the Nebular Hypothesis – the idea that the

planets’ orbits are nearly coplanar and all prograde relative to the spin of the star because

they all formed in a single gas and dust disk which collapsed into a flat, rotating geometry

due gravitational attraction and the conservation of angular moment (Kant, 1755). This has

proven to be the longest-standing theory of planet formation which is still considered correct

in a fundamental way; however, modern researchers have considerably improved upon our

understanding of the details of this process.

1. Nonetheless, it has recently been shown that our Solar System is indeed on the verge of instability
(Laskar & Gastineau, 2009).
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1.1 Planet Formation and Migration

Planets are generally thought to form via core-accretion, a process where solids in a proto-

planetary disk grow larger and larger due to successive collisions2. Planets are thus expected

to contain signatures of their formation environment, such as their growth rate depending

on their composition and their compositions reflecting the available materials in their neigh-

borhood. For instance, water- or ice-rich bodies are more likely to be found beyond the

‘snow line,’ the distance away from the sun where it is cool enough that water ice does not

sublimate allowing small bodies to more easily aggregate (Hayashi, 1981; Armitage, 2010).

Planets which grow massive before the dissipation of the protoplanetary disk are expected

to contain large quantities of H and He as accretion may be runaway (Pollack et al., 1996;

Lissauer et al., 2009). But protoplanets are also subject to movement within the disk and

will not generally remain in their formation locations.

In the presence of a gas disk, very small (. km-sized) objects experience significant gas

drag as they orbit, resulting in the rapid decay of their semi-major axes (Weidenschilling,

1977). However, for objects as large as planets, the effects of gas drag are small. Low-mass (.

30M⊕) planets in a quiescent disk experience Type I migration (Goldreich & Tremaine, 1979,

1980, 1982). In this scenario, the structure of the massive protoplanetery disk is perturbed

minimally by the comparatively small planet. The planet feels significant torques primarily

from deflected disk particles in Lindblad Resonances with the planet, which lie very close to

integer ratios of the planet’s orbital period (see, e.g., Binney & Tremaine, 2008; Lubow &

Ida, 2010, for discussions of Lindblad resonances). The torques the particles produce at these

locations exhibit slight asymmetries attributed primarily to the outer Lindblad resonance

residing slightly closer to the planet than the inner resonance. This causes the planet to

2. However, there are other formation mechanisms proposed for different types of planets including gravi-
tational instability for massive planets (Kuiper, 1951; Toomre, 1964; Boss, 1997) or pebble accretion of rocky
bodies in density traps in the protoplanetary disk (Cuzzi et al., 2001; Lambrechts & Johansen, 2012; Levison
et al., 2015). For an overview of planet formation theories, see, e.g., Armitage (2010), Chambers (2010), or
D’Angelo et al. (2010).
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migrate inward as it loses angular momentum in exchanges with disk particles (Ward, 1997).

The torque causes a planet’s semi-major axis to decrease on a timescale inversely proportional

to its mass because larger planets interact more strongly with the disk. The timescale of

migration is quite small compared to the lifetime of the disk, and therefore large-scale planet

migration may be expected (Ward, 1997). On the other hand, if a planet grows very massive

(& 50M⊕), it is able to clear its orbit of disk material, and enters into the regime of Type II

migration (Lin & Papaloizou, 1986). This results in migration timescales nearly independent

of the planet’s mass, but still inwards excepting rare cases.

After the protoplanetary disk dissipates, a second phase of planet formation and evolution

may occur. In some cases there are many miniature proto-planets (called planetesimals,

oligarchs, or embryos depending on their size and state), which emerge from the disk and

may collisionally merge to form larger planets (Kokubo & Ida, 1998; Chambers & Wetherill,

1998; Agnor et al., 1999). Their merging is expedited by the disk’s dissipation because there

is no longer a medium to damp orbital eccentricities – thus crossing orbits may be more

easily achieved and maintained. This is the process which is conjectured to have formed

the inner Solar System including the Earth (Wetherill, 1985; Chambers & Wetherill, 1998;

Morbidelli et al., 2000; Walsh et al., 2011; Izidoro et al., 2014). On the other hand, some

planets may emerge from the dissipating disk essentially fully formed, as the large H and

He envelopes on the giant planets suggest occurred in the outer regions of our Solar System.

These planets are not immune to drastic orbital changes, however, as the removal of the

damping disk may result in instabilities on thousand to billion year timescales depending on

their exact spacing (Wisdom, 1980; Duncan et al., 1989; Gladman, 1993; Chambers et al.,

1996; Zhou et al., 2007; Quillen, 2011; Pu & Wu, 2015; Laskar & Petit, 2017). Migration

may also still occur by the interaction with left-over planetesimals (Fernandez & Ip, 1984),

via planet-planet scattering (Rasio & Ford, 1996), by tidal forces (Rasio et al., 1996; Delisle

et al., 2012), or by interactions with nearby stars (Mazeh et al., 1997; Holman et al., 1997;

Fabrycky & Tremaine, 2007). Which formation pathways are important for different classes
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of planets remains an open question.

1.2 Mean Motion Resonances

In multi-planet systems, pairs of planets migrating at different rates naturally sweep through

a range of different orbital period ratios. Therefore, for migration lasting a sufficient length

of time, it is virtually certain that a pair of planets reaches a configuration where their orbital

periods are near integer ratios of each other, e.g., 2:1, 3:2, etc. Such a configuration is known

as a mean motion resonance (MMR). Two planets in an MMR have periods that are related

to each other via

P2

P1
=
n1

n2
≈ k + j

k
, (1.1)

where j and k are small positive integers and Pi and ni are the orbital period and mean

motion (ni = 2π/Pi) of the ith planet. The value of j is the order of the resonance, and k is

the rank.

For such a configuration, successive conjunctions (passages of closest approach) of the

planets will occur in nearly the same location in the orbits. For circular orbits, if a conjunc-

tion occurs at time t0 = 0, the next conjunction will occur when the inner (faster) planet

catches up to the outer one again at

t1 =
2π

n1 − n2
=

2π

n1
k
k+j − n1

=
k + j

j
P1

(
=

(k + j)2π

jn1

)
(1.2)

or equivalently

t1 =
k

j
P2

(
=

2πk

jn2

)
. (1.3)

For instance, define a reference line which passes through a pair of planets in a circular

2:1 first-order resonance orbit at conjunction (the first conjunction thus occurs at λ2 = 0).

The mean longitude λ of the outer planet will follow λ2 = n2t mod 2π. Then the next
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conjunction will occur at

λ2 =
2π

P2
t1 mod 2π =

2π

P2

1

1
P2 mod 2π = 2π mod 2π = 0, (1.4)

i.e., the same place in the orbit.

For eccentric planets (e 6= 0) the longitude of the periastron ($), and its precession

($̇) must also be considered since the precession of the periastron may change the relative

position of the conjunction in the orbits. In that case, the resonant angle (φ) may be generally

written

φ = l1λ1 + l2λ2 + l3$1 + l4$2, (1.5)

where the lis are integers3. For an exact resonance, the value of φ is constant. However,

the resonance has a non-zero width, and thus in general the angle is subject to libration

(oscillation) around a constant value. In resonance, this angle will vary slowly compared to

the λ angles which compose it. Note that if we take the derivative of Eq. 1.5 for the case of

circular restricted orbits in exact resonance, we recover Eq. 1.1:

φ̇ = l1λ̇1 + l2λ̇2

⇔ 0 = l1
˙(n1t) + l2

˙(n2t)

⇔ 0 = l1n1 + l2n2

⇔ n1

n2
=
−l2
l1
,

(1.6)

where l1 = k and l2 = −(k + j) and without loss of generality we use a coordinate system

where the mean longitude at conjunction is 0. However in a physical system, both orbiting

bodies can not maintain zero eccentricity as their interactions force a minimum eccentricity,

3. A more general form may be written involving the longitudes of the ascending nodes, Ω1 and Ω2;
however, we restrict our discussion here to coplanar planets where Ω1 = Ω2 = Ω̇1 = Ω̇2 = 0. Generally, the
longitude of the periastron $i = ωi + Ωi. In the coplanar case where we set Ωi = 0, $i = ωi and Eq. 1.5 is
equivalent with either ω or $ on the right hand side. We continue using $ as is convention. For a complete
discussion including non-coplanar resonances, see Murray & Dermott (1999).
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and therefore the $ terms must be included.

d’Alambert’s rule states that the sum of the integer coefficients (lis) in Eq. 1.5 is zero.

This property can be derived by an expansion of the 3-body Newtonian gravitational equa-

tions in terms of orbital elements (see, e.g., Murray & Dermott, 1999, §6.3). But it can be

demonstrated easily, because the libration angle is a physical property of the system which

must not depend on our choice of coordinate system. If we change the reference angle in our

coordinate system by an angle ε such that all of our longitude measurements are changed by

that amount, we see that

φε = l1(λ1 + ε) + (l2λ2 + ε) + l3($1 + ε) + l4($2 + ε)

⇔ φε = l1λ1 + l2λ2 + l3$1 + l4$2 + ε(l1 + l2 + l3 + l4)

⇔ φε = φ+ ε(l1 + l2 + l3 + l4).

(1.7)

Since ε may take any value, this implies
∑
i
li = 0.

For systems of three (or more) planets, one may consider the resonances between each

pair of planets:

φ1 = l1λ1 + l2λ2 + l3$1 + l4$2

φ2 = l5λ2 + l6λ3 + l7$2 + l8$3.

(1.8)

However, there is also the possibility that all three (or more) planets are involved in a

resonance. In this case, the 3-body resonant angle will be a combination of the λs of all 3

planets, and can be structured to remove the resonant angle’s dependence on $. This makes

observational determination of the resonance angle much more tenable, because a planet’s λ

is often far easier to precisely measure (e.g., via transit times) than its eccentricity vector.

As an example of a 3-body resonance, consider three planet whose period ratios are near a

4:2:1 resonant chain (sequence of resonances). This is the classic case of the three interior
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Galilean moons of Jupiter. We may take

φ1 = 1λ1 − 2λ2 + 1$2 (1.9)

and

φ2 = 1λ2 − 2λ3 + 1$2. (1.10)

and construct the 3-body resonance angle by subtracting φ2 from φ1:

φ3 = φ1 − φ2 = 1λ1 − 3λ2 + 2λ3, (1.11)

which still obeys d’Alembert’s Law and does not depend on any $.

One of the most important dynamical aspects of MMRs is the stability of resonance to

small perturbation. There are two ways to show this, the first shown below is an examination

of the equations of motion of the bodies directly.

Following Murray & Dermott (1999), we can define a coordinate system with a fixed

origin and multiple massive bodies. Each body has a position ~Ri relative to the origin and

mass mi. We designate one body (i = 0) as the primary (star) and allow it to be the origin

of a new coordinate system. At an instant in time, the ith body is located at position ~ri

relative to the primary at a distance |~ri| = ri = (x2
i + y2

i + z2
i )1/2. By Newton’s law of

gravitation, we see that the accelerations relative to the fixed origin are

m0
~̈R0 = Gm0

N∑
i=1

mi
~ri
r3
i

(1.12)

and

mi
~̈Ri = −Gmim0

~ri
r3
i

+Gmi

N∑
j=1
j 6=i

mj
~rj − ~ri
|~rj − ~ri|3

. (1.13)

To convert to the coordinate system centered on the primary body, we subtract the the

primary’s position or acceleration from the ith body’s, i.e., ~̈ri = ~̈Ri − ~̈R0. Clearly in the
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stellar-centric coordinate system the primary has no acceleration since it is fixed at the origin.

Subtracting Eq. 1.12 from Eq. 1.13, and dividing by their respective masses, we see that the

equations of motion of the N body system around the primary at the origin are governed by

~̈ri = −G(m0 +mi)
~ri
r3
i︸ ︷︷ ︸

2-body term

+G

N∑
j=1

 ~rj − ~ri
|~rj − ~ri|3

−
~rj

r3
j

mj︸ ︷︷ ︸
R

. (1.14)

The first term on the right hand side of of Eqn. 1.14 is the gradient of the two-body potential.

The second term (R) is the gradient of a function known as the ‘disturbing function’ since

it acts as a perturbation away from the Newtonian two-body trajectory. This function may

be expanded using Legendre polynomials and written in terms of orbital elements4.

For the case of two planets, with the inner much more massive than the eccentric outer

body, the disturbing function (R) averaged over the fast (orbital longitude) frequencies (R̄)

may be written:

R̄ =
Gm

a1

(
a1

a2
Rsec + e

|l3|
1 e
|l4|
2 s
|l5|
1 s
|l6|
2 F

(a1

a2

)
cosφ

)
, (1.15)

where Rsec is the secular (low frequency) contribution to the disturbing function and is

dependent on e1,2, s1,2, and Laplace coefficients, s = 1
2 sin i with i the inclination, and

F
(a1
a2

)
is a function of Laplace coefficients of the semi-major axis ratio of the two planets.

If the inner body’s eccentricity is small, and requiring the planets be coplanar (the likely

scenario in disk-damped migration), we are left with

R̄ =
Gm

a1

(
a1

a2
Rsec + e

|l4|
2 F

(a1

a2

)
cosφ

)
. (1.16)

We then consider Eq. 1.16 with libration angle

φ = l1λ1 + l2λ2 + l4$2. (1.17)

4. We do not undertake to show the expansion here because it has been carried out many times (see
Murray & Dermott, 1999, §6 for example) and is more algebraically tedious than physically informative.
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Taking the time derivative of φ and using the fact that λi = nit + εi where ε is the mean

longitude at the given epoch, yields

φ̇ = l1(ṅ1t+ n1 + ε̇1) + l2(ṅ2t+ n2 + ε̇2) + l4$̇2. (1.18)

Since the inner planet is much more massive than the outer planet in our scenario, we may

neglect variations of the inner planet due to perturbations from the outer planet (ṅ1 ≈ 0).

We also define the mean longitude of epoch in a new way: ε̇ = ε̇+tṅ, and thus λ =
∫
n dt+ε.

This is convenient as it removes the direct t dependence from time derivatives of φ. We are

left with

φ̇ = l1n1 + l2n2 + l2ε̇2 + l4$̇2. (1.19)

Taking a further time derivative yields

φ̈ = l2ṅ2 + l2ε̈2 + l4$̈2. (1.20)

Both ε̈2 and $̈2 are proportional to (m1/M?)
2, and thus can be neglected as small compared

to ṅ2 in most cases (the exception being when e is also very small). We are left with

φ̈ ≈ l2ṅ2. (1.21)

Lagrange’s planetary equation of motion for a is given by5

ȧ =
2

na

∂R̄

∂λ
, (1.22)

5. This equation is found by rewriting Eq. 1.14 as ∂2~r
∂t2 = ∇U , where ∇U is the right hand side Eq. 1.14,

noting that d~r
dt =

6∑
i=1

∂~r
∂αi

dαi

dt + ∂~r
∂t ⇒

d2~r
dt2 =

6∑
i=1

∂~̇r
∂αi

dαi

dt + ∂2~r
∂t2 for ~α = {a, e, i, ω, Ω, T0}, and completing the

coordinate conversion {~r, ~̇r} → ~α. For a full derivation see, e.g., Roy (1988) §6.7-6.10.
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which implies

ṅ = − 3

a2

∂R̄

∂λ
, (1.23)

using n−2 = a3. Inserting Eq. 1.16 for R̄, we see that

ṅ = C sinφ, (1.24)

where the value C consists of a combination of Laplace coefficients, e2, and the semi-major

axes and masses of the planets. Combinging Eqs. 1.21 and 1.24 yields

φ̈ ≈ C sinφ, (1.25)

the equation of a simple harmonic oscillator with the frequency determined by the orbital

parameters and masses of the planets. The restorative nature of the force causes φ to be

stable to perturbations around the mean value, with libration as a natural consequence.

Following Peale (1976) we now consider a physical description of the restorative nature of

resonance torques which complements the above mathematical approach and may be more

intuitive. We consider the same case discussed above, with two coplanar planets (p1 and

p2) near 2:1 resonance with at least the outer planet (p2) possessing significant eccentricity.

Should a conjunction of the two planets occur near, but just before, the apocenter of p2 then

the force the planet feels before and after transit will be asymmetric due to the asymmetry of

the orbit’s geometry. This geometry is shown in Fig 1.1, with the positions of planets p1 (red)

and p2 (blue) in conjunction at time A, indicated by the dashed line showing the distance of

closest approach. Black arrows indicate orbital velocities of the two planets – p1 travels faster

than p2 due to its interior orbit, and p2 is traveling most slowly at apocenter. We see that

just before conjunction (A′), the planets are closer together compared to just after (A′′) due

to the eccentricity. Furthermore, while p1 has a constant velocity which is more rapid than

p2’s velocity at all times, the velocity of p2 is lower at time A′′ compared to A′. Therefore
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the velocity difference between the planets is greater at A′′, and thus the planets are near

each other for a smaller amount of time. Both the distance and velocity difference cause

planet p2 to feel a stronger force before conjunction at A′ compared to afterwards at A′′.

The force felt at A′ has a component anti-parallel to p2’s velocity since p1 is slightly behind

it, whereas the force felt by p2 at A′′ has a component in the direction of the tangential

velocity since p1 is slightly ahead of it. Since the force felt at A′ is greater than A′′, the net

force in the direction of the orbital velocity is negative, i.e., it is in the opposite direction of

the velocity. This slight decrease in orbital velocity results in a loss of angular momentum

and a correspondingly shorter and more rapid orbit. The increased speed of the p2 means

that p1 will catch it later in its orbit at the next conjunction – closer to the pericenter

(marked $′). This effect will continue until the conjunction occurs at $′, at which point

the exact symmetry of the conjunction causes no net force on the next conjunction. This is

the stable equilibrium in a 2:1 resonance: conjunction at the apocenter, or φ = 180◦. If the

conjunctions progress further, the opposite situation occurs (see time B in Fig. 1.1). In this

case the force is greater at B′, implying a net force in the direction of the orbital velocity of

p2, an increased orbital velocity, a gain of angular momentum, and therefore a larger, slower

orbit once again moving conjunction towards $′6. This oscillation and stability of φ to small

changes in the orbital period of the outer planet is exactly what is expressed in Eqs. 1.21 and

1.25. Thus we again establish by physical reasoning the oscillations of a conjunction around

a stable point, and the resistance of planets in resonance to changes in orbital period ratio.

For small eccentricities (. 0.01), the contribution of $̇ and $̈ becomes important since it

is relatively easier for small perturbations to change the direction of the eccentricity vector.

In this case, a pair of planets in resonance may have successive conjunctions at different

locations in inertial space, however the motion of $ causes a planet’s apocenter or pericenter

6. This somewhat counterintuitive effect of the planet slowing down in its orbit when a force is applied in
the direction of its motion is sometimes referred to as the “Donkey Effect,” because evidently donkeys are
rather stubborn and the harder you pull on their reigns while leading them, the harder they pull back and
slow down (Lynden-Bell & Kalnajs, 1972).
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Figure 1.1: Geometry of Eccentric 2-body Resonance

A

B

ϖ' ϖ

A'

A''

B'

B''

A

B

A''

A'

B''

B'

p1

p2

The orbital geometry of a pair of planets (p1 and p2), with the outer (p2) displaying significant
eccentricity. Periastron (gray $) and apastron (gray $′) of the outer planet are indicated.
The positions of both planets are shown at two distinct conjunctions (A and B). Black
arrows represent the planets’ velocities.
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to librate about conjunctions (Sinclair, 1972; Greenberg et al., 1972). For very small e (and

thus large $̇), this may result in resonance far from the nominal value of the period ratios

as suggested in Eq 1.1; nonetheless, the resonance is still active. This regime of resonance

is not described in detail here as it is not directly applicable to most of the systems studied

here (for details, see e.g.,. Peale, 1976).

As planets migrate smoothly through a protoplanetary disk, differential migration rates

cause pairs of planets to sweep through a large range of period ratios. Suppose the outer

planet of a pair is migrating inwards faster than an interior planet due to a larger mass or

local disk properties. In this case, after the planets encounter a first order resonance, further

decrease in the period ratio may be prevented as the resonance traps them into libration

which prevents further period ratio change. In this case, they may continue migration to-

gether in lock-step at constant period ratio (Melita & Woolfson, 1996; Lee & Peale, 2002;

Ferraz-Mello et al., 2003; Cresswell & Nelson, 2006; Terquem & Papaloizou, 2007). However,

planets are not guaranteed to capture into resonance during disk migration. Rapid differ-

ential migration compared to the resonance libration time (Quillen, 2006; Ketchum et al.,

2011), high eccentricities (Henrard, 1982; Borderies & Goldreich, 1984; Murray & Dermott,

1999), non-smooth/turbulent migration (Adams et al., 2008; Lecoanet et al., 2009; Ketchum

et al., 2011; Batygin & Adams, 2017), divergent migration (e.g., Sinclair, 1972; Henrard &

Lemaitre, 1983; Peale, 1986; Chiang et al., 2002; Tsiganis et al., 2005), and other effects (e.g.,

Goldreich & Schlichting, 2014; Zhang et al., 2014; Pan & Schlichting, 2017) may cause planet

pairs to migrate past or escape resonances. Additionally, one would not expect that planets

formed in situ via giant impacts or without significant migration to end up in resonance

since the resonance width is small compared to phase space of orbital period ratios.

In our own Solar System, there is strong evidence of the migration of Neptune due to its

resonance with the Plutinos (though the migration was likely caused by plantesimals rather

than the protoplanetary disk; Fernandez & Ip, 1984; Malhotra, 1993, 1996), and possibly

significant migration of Jupiter and Saturn while the disk was still present (Tsiganis et al.
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2005; Walsh et al. 2011; Batygin & Laughlin 2015; however, cf. Minton & Malhotra 2009;

Agnor & Lin 2012; Kaib & Chambers 2016). On the other hand, the planets of the inner

Solar System are speculated to have formed in roughly their current orbits via giant impacts

after the protoplanetary disk dissipated, with no mechanism for resonant capture (Wetherill,

1985; Chambers & Wetherill, 1998; Morbidelli et al., 2000). The Solar System planetary

compositions are consistent with this picture. The large mass-fraction of Hydrogen, Helium,

and volatile elements in the outer Solar System planets suggest they formed when the natal

gas and dust disk was still present around the Sun. On the other hand, the lack of substantial

gaseous atmospheres and relatively low fraction of volatiles on the inner planets suggests they

may have formed after the gas and dust dissipated.

1.3 The Detection of Exoplanets

While the idea of planets outside our Solar System had no doubt been imagined by many

(see, e.g., Bruno, 1584; Newton, 1687), Struve (1952) describes the likely methods of their

detection with modern scientific instruments. He noted that if planets are in short period

orbits (just as binary stars were found to be), they may produce an observable reflux motion

on their host stars. This periodic motion of the star due to the planet could be measured

with high precision spectrometry which provides precise radial velocities (RVs) of the star

via measurement of the shifts of spectral lines. Additionally, Struve noted that as a planet

transits in front of its host star, it may block enough of the stellar surface for precise stellar

photometry to detect a drop in flux. This vision went unheralded for many years, but these

two methods are now by far the most successful at exoplanet discovery and characterization.

The very first extrasolar planetary mass objects discovered were found in 1992 around the

pulsar PSR1257+12 (Wolszczan & Frail, 1992). The ∼ 4M⊕ planets of the initial discovery

caused the observed interval between the star’s millisecond pulses to change. Similar to the

RV method, the pulsar timing changes are due to the gravitational reflex motion caused by

the planets and the finite speed of light. Unfortunately, finding more planets around pulsars
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has proven challenging, with only two or three more confidently detected in the past 25 years

(Wolszczan, 1994; Thorsett et al., 1993; Ford et al., 2000; Bailes et al., 2011). Additionally,

these planets have escaped widespread interest because one expects them to exist in an

extreme environment unlike Solar System objects (because they orbit a neutron star rather

than a main sequence star), and are expected to form through very different pathways.

The first planet around a main sequence star (51 Pegasi) was discovered in 1995 via the

RV method (Mayor & Queloz, 1995; Mayor et al., 1995). This discovery opened the floodgates

for thousands of observations in the following years, as well as provided impetus for countless

new theories on planet formation. The vast majority of planet formation theory up until

this point had been based on the Solar System architecture. The 51 Pegasi system looked

wildly different than the Solar System, consisting of a single Jupiter-mass planet in a four

day orbit. Such planets have subsequently been found around many stars – approximately

1% of stars are thought to host ‘hot Jupiters’ (Marcy et al., 2005; Mayor et al., 2011; Wright

et al., 2012; Howard et al., 2012).

Observationally, it is easiest to detect large planets close to their host stars, and many

more giant planets were discovered in the following years including the discovery of the

first multi-planet exoplanet system (Butler et al., 1999). Specifically, the radial velocity

change of the star induced by the planet is proportional to Mp/M?, where Mp is the mass

of the planet (Cumming et al., 1999). Searching for planets therefore requires extremely

precise radial velocity measurements over a period of many orbits (weeks to years) to detect

the periodic variations. This is accomplished by the use of reference lines as calibrations,

historically by using an iodine or thorium-argon gas cell. The known locations of the atomic

absorption lines are super-imposed on the spectra, making any stellar line shifts more readily

detectable (Butler et al., 1996; Baranne et al., 1996). Improvements in technique allow for

the RV detection of planets as small as a few Earth masses at present (e.g., Marcy et al.,

2014), although astrophysical stellar noise often becomes a concern at that level (Lovis &

Fischer, 2010; Dumusque et al., 2011b,a; Fischer et al., 2016). New technologies (e.g., Li
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et al., 2008; Yi et al., 2016), observing strategies (e.g., Delfosse et al., 1998; Marcy et al.,

1998; Kane et al., 2008; Plavchan et al., 2013), and improved data analysis techniques (e.g.,

Bonfils et al., 2007; Dawson & Fabrycky, 2010; Rajpaul et al., 2015) continue the push to

lower mass planets. To date, successful RV surveys using a variety of spectrographs have

identified hundreds of exoplanets from Jovian to super-Earth mass (e.g., HIRES, ELODIE,

CORALIE, HARPS, Vogt et al., 1994; Baranne et al., 1996; Queloz et al., 2000; Mayor et al.,

2003).

Follow-up photometric observations of known RV planets led to the first measured exo-

planet transit by detection of the missing stellar flux blocked by the planet (Charbonneau

et al., 2000). In the past 5 years, the number of exoplanets detected via transit have overtaken

those discovered via RVs. Despite significant efforts by ground-based observers (HATNet and

WASP, Bakos et al., 2004; Pollacco et al., 2006), the vast majority of discoveries have come

as a result of space-based surveys (e.g., COROT and Kepler, Baglin, 2003; Borucki et al.,

2010), which allow extremely stable photometric measurements over many years while avoid-

ing atmospheric effects. NASA’s Kepler mission has been the most fruitful, with over 2,000

confirmed planets and thousands more candidates to date (Morton & Johnson, 2011; Fressin

et al., 2013; Coughlin et al., 2016; Morton et al., 2016).

Exoplanet transits directly provide information on many planetary orbital and physical

properties, despite the inability to resolve the planet itself in transit. The timing between

successive transits gives a precise planetary orbital period (P ). The transit depth (δ) is

approximately equal to the relative areas of the planet and star, (Rp/R?)
2, where R is

radius and the subscript p refers to a planet and ? to the host star throughout. Fig. 1.2

identifies δ in a transiting lightcurve and several other quantities discussed below. Note that

in the case Fig. 1.2 illustrates, δ is not exactly equal to (Rp/R?)
2 due to non-uniform stellar

surface brightness (limb darkening).

The duration of a transit reveals the ratio of the length of the transit chord across the

surface of the star to the planet’s velocity. The velocity is a function of the stellar mass and
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the planet’s semi-major axis (or period) and the planet’s eccentricity. Therefore, a planetary

transit directly determines the ratio of a/R? (Winn, 2010, for precise relations, see). With

independent information about the star, e.g., from spectra, the planet’s semi-major axis

and insolation may then be computed. Equivalently, making use of Kepler’s third Law, the

density of the planetary host star (ρ?) may be measured via transits:

ρ? ≈
3π

GP

(
a

R?

)3

(1.26)

(Seager & Mallén-Ornelas, 2003).

The curvature of the star relative to the planet’s direction of travel at the location the

planet begins and ends its transit affects the transit shape. Specifically, the ratio of the

transit’s total duration to the ingress and egress times (the proportion of the transit which

the planet is not completely on the star, Tratio =
Tingress+Tegress+Tfully transiting

Tfully transiting
) reveals the

impact parameter (b) of the planet transit (Winn, 2010, and see Fig. 1.2). By creating a

right triangle with a leg equal to the vertical height of the planet above the center of the

star (hp) and the hypotenuse as the distance from the center of the star to the planet (rp),

the planet’s the inclination may be computed as

cos i =
hp
rp

⇔ i = cos−1
(

(b×R?)
(a(1− e2)/(1 + e sinω))

)
(1.27)

⇔ i = cos−1
(
b×

(
R?
a

)
× (1 + e sinω)

(1− e2)

)
.

For small e, this is a straightforward computation of direct lightcurve observables.

Like with RV measurements, both the overall mass scale of the system and the angle of

the planet’s projected orbit on the sky plane is undetermined (without additional information

such as stellar spectra modeling). Eccentricity constraints are also usually weak. Critically,

and unlike RV measurements, for Keplerian transits of a single planet there is no signature
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of the planet-to-star mass ratio in transits.

1.4 Orbital Properties of Exoplanets

RV surveys demonstrated that Jovian planets have a preference for low-order MMRs in

multi-planet systems (Wright et al., 2011). Additionally, observed Jovian exoplanets often

had larger eccentricities than Solar System planets (Marcy & Butler, 1996; Cochran et al.,

1997), with giant exoplanets exhibiting a broad range in e extending above e = 0.5 (Tremaine

& Zakamska, 2004; Wright et al., 2009; Winn & Fabrycky, 2015). The mechanism for the

assembly of these systems is still unclear (see Wisdom, 1980; Duncan et al., 1989; Chambers

et al., 1996; Mazeh et al., 1997; Lin & Ida, 1997; Malmberg et al., 2007), but some theories

(e.g., Chatterjee et al., 2008) suggest that highly mutually-inclined systems should be ex-

pected. Such systems remain elusive to detection via RVs (albeit, see Nelson et al., 2016, for

an RV detection of coplanarity). Additionally, low eccentricities and precise orbital period

information are challenging to extract from RV data alone.

On the other hand, transit observation missions (particularly Kepler) have been much

more successful to date at probing the detailed architectures of small exoplanet systems.

Kepler ’s photometric precision allowed for the detection of a wide range of exoplanet sizes,

from Jupiters down to Mars-sized planets (see Coughlin et al., 2016; Morton et al., 2016).

With injection and recovery tests to understand survey completeness, this enabled a pop-

ulation census of planets in our solar neighborhood including planet occurrence rates for

planets larger than ∼1 R⊕. Planets with short orbital periods are very common, with ∼30%

of Sun-like stars hosting a planet from 1-8REarth with periods less than 50 days (Howard

et al., 2012; Petigura et al., 2013), of which roughly half have an R = 2-4REarth planet. The

Solar System has no planet in this intermediate size range between that of Earth and Nep-

tune, and does not possess very short period planets. It has since been statistically revealed

that planets with R . 1.5REarth are likely to be rocky (scaled-up Earth-like planets called

super-Earths), whereas those with R & 1.5REarth are likely to have a significant gas envelope
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Figure 1.2: Transit Geometry and Lightcurve
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An example of a transiting planet’s geometry and lightcurve with realistic limb darkening.
Several observables defined in §1.3 are labeled. The planet (gray) has just entered the fully
transiting geometry.
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(scaled-down Neptune-like planets called sub-Neptunes) (Marcy et al., 2014; Rogers, 2015).

This distinction is adhered to henceforth, with small, low-density (significant gas mass frac-

tion) planets referred to as sub-Neptunes. These close-in planets with R . 4REarth are also

often found in multiply transiting systems. Some of the first Kepler systems announced had

high multiplicity (e.g., Steffen et al., 2010; Lissauer et al., 2011a), and hundreds of multi-

planet systems of R . 4REarth have since been detected in systematic searches (Coughlin

et al., 2016; Morton et al., 2016) and studied individually in great detail (e.g., Kepler-11,

Lissauer et al., 2011a; Migaszewski et al., 2012; Lissauer et al., 2013; Mahajan & Wu, 2014;

Bedell et al., 2017). Since Solar System models implicitly or explicitly avoided producing

such planets, this new class of ubiquitous yet diverse planets has sparked a fresh inquiry into

planet formation and evolution.

Kepler ’s transit observations also allow for precise measurements of the planets’ orbital

periods by virtue of the timing of their transits. Statistical studies of the period ratios of

exoplanets revealed an intriguing feature: the period ratios between pairs of planets in the

majority of multiplanet systems are drawn from a broad, random distribution; however,

there are peaks in this distribution near MMRs, especially the 3:2 and 2:1 resonances, the

latter of which also features a dearth just inside of the resonance (Fabrycky et al., 2014;

Steffen & Hwang, 2015). This is illustrated in Fig. 1.3, an updated version of the seminal

Figure 4 from Fabrycky et al. (2014) using Kepler Data Release 25 (Twicken et al., 2016)7.

Additionally, deviations from perfectly periodic Keplerian transits have been detected. These

transit timing variations (TTVs) reveal information about the masses and eccentricities of

planetary systems (discussed in §1.5).

A period dependency of the orbital architectures of planets has also recently been demon-

strated (Delisle & Laskar, 2014), suggesting tidal evolution of multiplanet systems. In gen-

eral, planets that are sufficiently close to their host stars undergo tidal distortion due to their

host star’s gravitational potential. Therefore, if planets are not synchronously rotating, or

7. See also https://exoplanetarchive.ipac.caltech.edu/docs/Q1Q17-DR25-KOIcompanion.html
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Figure 1.3: Period Ratio Distribution of Kepler Transiting Multiplanet Systems
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An update to Figure 4 from Fabrycky et al. (2014), this plot shows the distribution of period
ratios of pairs of planets (confirmed and candidates) observed by Kepler from the Data
Release 25 Kepler Object of Interest Catalog. Important MMRs are indicated with dashed
lines. Significant features include the continuity of the distribution, as well as peaks just
wide of several MMRs including 3:2 and 2:1. There is also a significant trough just inside
2:1 and peak at ∼2.17:1.

21



if they are on eccentric orbits, they will dissipate energy internally as they respond to their

orientation changing relative to the tidal forces8. The effect of tides has a strong semi-major

axis dependence, with an eccentricity damping timescale dependent on the 6.5 power of a:

τe =
4

63

Mpa
13/2Q

G1/2M
3/2
? R5

p

, (1.28)

where G is the universal gravitational constant and Q is the quality factor of the planet

(Goldreich & Soter, 1966; Rasio et al., 1996), and an even stronger a8 dependence for the

semi-major axis decay timescale (Yoder & Peale, 1981; Rasio et al., 1996). Planets in multiple

planet systems (particularly near or in MMR) force an eccentricity on each other (see, e.g.,

Murray & Dermott, 1999, §7.4), and are therefore naturally subject to tidal dissipation

regardless of their initial conditions. This tidal dissipation will spread the planets away from

resonance as their eccentricity is damped (Lithwick & Wu, 2012; Lee et al., 2013). This

process may take Gyr and in some cases can substantially change the architectures of the

planet systems. By estimating the distance planets have spread apart over their lifetimes,

insight into the quality factor (Q) and therefore internal structure of the planets can be

gleaned (Lee et al., 2013).

1.5 Transit Timing Variations

The Classical Planets including Mercury, Venus, Mars, Jupiter, and Saturn were known to

astronomers since antiquity due to their easy visibility with the naked eye and their fast

motion across the sky. William Herschel added to this list in 1780s with measurements of

Uranus which demonstrated its planetary orbit as computed by Anders Lexell (Herschel &

8. Planets may also raise tides on their host stars; however, the dissipation from this is generally negligible
given the small Mp/M? ratio, and high stellar Q values (see Goldreich & Soter, 1966; Schlaufman et al.,
2010; Penev et al., 2012).

22



Watson, 1781; Doig, 1950)9. The orbit of Uranus was subsequently followed-up by many ob-

servers, and its location in the past determined by vetting old star catalogs. Considering only

the Keplerian orbit of Uranus was immediately insufficient to explain its trajectory across

the sky – the gravity of the nearby giant planets Jupiter and Saturn perturbed the perfectly

periodic orbit causing deviations from an elliptical path. However, Alexis Bouvard found

that even after including these effects the observed path of Uranus was still discrepant from

predictions (Bouvard, 1821), and perhaps another massive object needed to be considered.

In the 1840s, John Couch Adams and Urbain Le Verrier working independently both calcu-

lated the likely mass and position of such an unobserved perturber (Adams, 1846; Le Verrier,

1846). In 1846, Johann Galle identified the object now known as Neptune in the same patch

of sky both theorists had predicted (Galle, 1846)10. The discovery of Neptune demonstrated

the predictive success of multi-body planetary dynamics at determining properties of unseen

planets in our Solar System including position and mass.

In exoplanetary systems, it was recognized that the same principle could be applied to

determine the properties of observed multi-planet systems. Shortly after the discovery of

PSR1257+12 (Wolszczan & Frail, 1992), the orbital periods of its planets were predicted

to perturb each other measurably within a few years (Rasio et al., 1992). Additionally, if

the planets were in an exact MMR, the effect would be amplified considerably (Malhotra

et al., 1992). These dynamical perturbations were indeed detected (along with a 3rd planet

in the system) in the following two years, validating both the planetary interpretation of the

periodic pulsar signal and the dynamical modeling (Wolszczan, 1994).

Similarly, it was recognized that the for transiting exoplanets the timing of the planet’s

passage in front of the star due to perturbations of other planets may be detectable (Dobro-

9. Uranus had been observed before, perhaps as early as 128BCE by Hipparchos (Bourtembourg, 2013),
but certainly as early as the 1690s by John Flamsteed (Le Verrier, 1846). However, all observers prior to
Herschel mis-categorized the object as a star due to its slow proper motion and faint apparent magnitude.

10. Like Uranus, Neptune had also been observed earlier on numerous occasions but was mistaken for a
stationary star. The first definitive observation of Neptune was made by Gallileo in the early 1600s (Kowal
& Drake, 1980).
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volskis & Borucki, 1996; Miralda-Escudé, 2002), particularly if they are near MMR (Agol

et al., 2005; Holman & Murray, 2005). This recognition paralleled work on multi-star systems

going back many decades (e.g., Soderhjelm, 1975), and has since been explored in great ana-

lytic detail (e.g., Lithwick et al., 2012; Agol & Deck, 2016; Nesvorný & Vokrouhlický, 2016).

Once measured, these variations in transit times allow for the extraction of the masses and

orbital parameters of the planets that produce them (Nesvorný & Morbidelli, 2008; Nesvorný

& Beaugé, 2010).

For pairs of planets near, but not in, resonance the dominant TTV frequency and its am-

plitude reveals a combination of the mass and eccentricity (Lithwick et al., 2012). Following

the convention of binary-star observers, this frequency is commonly displayed in a plot of

the difference of the observed transit times and transit times calculated using a constant

period model (an ‘Observed Minus Calculated’ or O-C plot). Fig. 1.4 demonstrates this

effect for a pair of 0.1MJupiter planets outside 2:1 MMR. The period of the signal (the TTV

super-period) is to first order

PTTV =
P2

(k + 1)|∆|
, (1.29)

where j and k are positive integers as in Eq. 1.1, and ∆ is the offset from exact resonance:

∆ = P2
P1

j
j+k − 1 (Lithwick et al., 2012). To first order in eccentricity, the amplitude is

proportional to

ATTV 1,2 =
P1,2µ2,1

|∆|

(
1 +
|Zfree|
|∆|

)
, (1.30)

where µi is reduced mass (µi = Mi
M?

), the linear combination of the two planet’s complex

free eccentricity (Zfree) can be approximated as Zfree ≈ 2−1/2(e1e
i$1 + e2e

i$2), and the

subscripts 1, 2 indicate which body’s properties are appropriate for which TTV amplitude

(Lithwick et al., 2012; Hadden & Lithwick, 2017). This equation illustrates the intrinsic mass-

eccentricity degeneracy in measuring planet masses and orbital architectures with TTVs.

However, with more precise data that allow for the determination of more frequencies in the

TTV signal, this degeneracy may be broken via the so called synodic ‘chopping’ effect (Deck
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& Agol, 2015, and see Fig. 1.4).

Eq. 1.29 approaches a singularity for planets in exact MMR, and a different expansion is

valid (Nesvorný & Vokrouhlický, 2016):

PTTV,MMR ∝
P1 + P2

(µ1 + µ2)2/3
(1.31)

and
ATTV,MMR,1

ATTV,MMR,2
∝ m2

m1

(
P1

P2

)2/3

(1.32)

where Ai is the TTV amplitude of planet i11.

Both Eqs. 1.30 and 1.32 indicate the strong mass dependence of the planets on the size

of any TTV signal. The most extreme case of a massive planet is the extrapolation from a

Jupiter-mass planet to a brown dwarf or stellar companion. Those planets in orbit around

both stars – circumbinary planets (CBPs) – are likely to exhibit large TTVs with amplitude

of order days over a few year period because of the large motions of the stars due to the

binary orbit with periods typically observed to be on order weeks (Welsh et al., 2015). Such

systems have the largest observed TTVs to date (Doyle et al., 2011). Planets orbiting one of

the two or more stars in a multiple star system are also not uncommon (Eggenberger et al.,

2007; Roell et al., 2012; Ngo et al., 2017). However, they are likely to only exhibit small

TTVs due to the other stars over a few year observing window because the binaries’ orbits

are generally 10s to 1,000s of years long.

1.6 This Work

This work explores the implications of individual planetary system architectures on their

respective formation and evolution, and what they suggest about planet formation in gen-

eral. In order to measure precise orbital configurations and masses in multi-planet systems,

11. The exact relations may be found in Nesvorný & Vokrouhlický (2016), but we only include the scalings
here to illustrate the different dependence from non-resonant TTVs with straightforward expressions.
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Figure 1.4: TTVs of a Pair of Planets Near 2:1 Resonance
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Simulated transit times for a pair of 0.1MJupiter planets on nearly circular orbits just outside the 2:1 resonance
(P1 = 20 days and P2 = 40.8 days). The upper right hand panel shows the transit times as open circles for
the interior planet 1 (blue) and the exterior planet 2 (red) as a function of sequential transit number (the
index is arbitrary). Both closely follow a linear relationship, with the best fit dashed line plotted almost
directly atop the points. However, closer inspection shows residuals to the line: simulated photometry of the
first 52 transits of the interior planet (blue) and first 26 of the exterior (red) are shown at left, phased at the
best-fit constant linear period as plotted in the upper right panel. Because of the near 2:1 resonance, these
span nearly the same time interval. The predicted linear transit time is shown as a vertical dashed line in
the center of each panel. The observed transit photometry is seen to vary from this position and the actual
transit midtime is plotted as a solid vertical line in each panel. A strong anti-correlation between the tran-
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Figure 1.4 Continued: TTVs of a Pair of Planets Near 2:1 Resonance
sit timings of the two planets is readily visible. These transit time residuals may also be plotted as a function

of observational time in an observed minus calculated (O-C) TTV figure as shown in the lower right panel.

The transits shown on the left from bottom to top correspond to the shaded region of the plot. The same

anti-correlated features are seen. Applying Eq. 1.29 to this planet configuration yields PTTV = 1020 days,

very close to the observed N-body value in the lower right panel. Additionally, synodic chopping can be seen

in the O-C TTVs, which would allow breaking the mass-eccentricity degeneracy if measured.

a photodynamic code was developed for the analysis of Kepler light curves and RV data.

This code and its use are explained in §2. Kepler-223, a four sub-Neptune planet system

around a distant star whose faintness had hitherto precluded proper characterization is then

discussed. This system’s resonant configuration suggests a smooth disk-migration origin

– some of the first evidence that low mass (sub-Neptune) planets migrate into resonance.

Kepler-108, a pair of giant planets which exhibit a high mutual inclination which induces

a secular precession observable as transit duration variations is then presented. This is the

first confidently detected large mutual inclination between transiting planets. A descrip-

tion of mass measurements of Mars-sized planets in the compact Kepler-444 system follows

in §5. The architectures of both this system and Kepler-108 suggest departures from a

pure disk-migration origin and imply a wide variety of different planet formation/evolution

mechanisms. The dynamical detection and interpretation of planets around binaries is con-

sidered next. These CBPs represent planets from a potentially distinct birth environment,

where different physical processes than in single-star planetary systems may be important

or dominant, and the detailed characterization of a few members of this population is dis-

cussed. Lastly two brief population statistical studies are presented. The first is an updated

mass-radius relationship fit, where the differences between RV and transit detections are

considered. The second expands on Rein (2012), attempting to understand the origin of the

observed muli-transiting planet period ratio distribution.

This work draws heavily, and often directly, from several papers published over the course

of my graduate studies. The photodynamic code in §2 has been used in much of my published

work. The Kepler-223 section is a more detailed exposition of Mills et al. (2016). The Kepler-

27



108 and Kepler-444 chapters share much of the text from Mills & Fabrycky (2017a) and Mills

& Fabrycky (2017b), respectively. §6 draws from Welsh et al. (2015) and ongoing work on

KIC 10753734. §7 replicates content from Mills & Mazeh (2017) and presents ongoing work

on stochastic migration.
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CHAPTER 2

PHOTODYNAMIC ANALYSIS CODE

The purpose of this photodynamic model is to produce synthetic light curves given a tran-

siting or eclipsing multiple planet or star system, and then compare it to Kepler time series

photometry and other data including radial velocities (RVs) and spectroscopically deter-

mined stellar parameters. The photodynamic code takes as input the arrangement of a

multiple star or planetary system at a specified time and integrates it forward and backward

in time under the influence of gravity. A theoretical photometric light curve is produced by

tracking the positions of the bodies as they pass in front of or behind each other from the

perspective of a distant stationary observer1. This code can create a single synthetic light

curve for a given system and set of observation times or, along with observed photometry,

fit an initial guess at the solution through differential evolution Markov chain Monte Carlo

(DEMCMC, explained below) to estimate best fits and uncertainties.

2.1 Parameter Setup

The flux from the central star is defined by five parameters: mass (M?), radius (R?), two limb

darkening coefficients for the primary (c1 and c2), and a dilution factor (dilute). Following

Mandel & Agol (2002), we model the stellar flux as a function of position on the projected

stellar surface with a radially symmetric quadratic limb darkening law specifying intensity

as a function of radial position by

I[µ] = 1− c1(1− µ)− c2(1− µ)2, (2.1)

1. The data released by the Kepler mission has already been converted into a barycentric solar system
time scheme, barycentric Julian date (BJD).
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where the two model parameters are the coefficients c1 and c2, and µ is given by

µ = µ[x, y] = (1− (x2 + y2))1/2 (2.2)

for a 2D Cartesian coordinate system centered on the disk of the star and normalized such

that the stellar radius is unity. The dilution factor (dilute) is the fraction of observed light

that is from a constant source outside the system. For an isolated stellar system dilution

would be zero, but Kepler and other real data often have faint, unresolved background stars

providing constant illumination of a few percent which affect apparent transit depth and

therefore planet radius.

Each additional body requires either 8 or 11 parameters. Six parameters are required to

specify a unique position and velocity of the object in three dimensions. These may inputted

in Cartesian coordinates (x, y, z, vx, vy, vz) or as orbital elements with the sky plane as the

reference (period (P ), time of conjunction (T0), eccentricity (e), argument of periastron

(ω), inclination (i), and nodal angle on the sky (Ω)) and converted internally to Cartesian

coordinates. By default in the code and throughout this text unless otherwise specified,

instantaneous Keplerian orbital elements are referred to the center of mass of all interior

orbits, i.e., are Jacobian elements. To reduce correlation among eccentricity parameters,

the eccentricity vectors h = e sinω and k = e sinω or h2 =
√
e sinω and k2 =

√
e sinω are

generally used (the latter to naturally produce a flat prior on e in MCMC fitting). Every

body also requires a radius (R) and mass (M). Three additional parameters are required

only by bright (usually stellar) objects: the fraction of the system’s intensity coming from

this body (ffrac) and two limb darkening coefficients (c1,i and c2,i for the ith star) following

the same prescription as the primary star. Priors in most parameters are generally uniform,

however various e priors are also available including a Rayleigh distribution with any specified

σ, or a maximum allowed e.

Additionally, since orbital elements and Cartesian coordinates change in time due to
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dynamical interactions, the reference time when the inputs are specified is required. This

time, Tepoch, is generally chosen either near a specific transit event of interest or near the

center of the data set.

The code computes a theoretical lightcurve for the system at a list of times specified

by the user and will compute the χ2 value of the model if given associated uncertainties.

Both short and long cadence data, or a mix of both, can be given to the code. Kepler ’s

long cadence data are 30 minute photometric integrations, while short cadence data are 1

minute integrations. For short cadence points, the flux is calculated based on the positions

of the system’s bodies at the exact timestamp of the cadence. For long cadence data, the

instantaneous flux at the time of the center of an observation may not sufficiently estimate

the integrated flux over the entire time period (particularly during transit ingress and egress

when the flux is changing considerably over time periods shorter than the integration time

of the data point). Therefore, each long cadence point is divided into several evenly-spaced

sub-points spanning the long cadence time interval (typically ∼20 points), and the flux values

at each of these sub-points are averaged together to create a theoretical long cadence flux

value.

2.2 Integration

A stellar-centric coordinate system is used in the code in which one of the bodies (called

the primary hereafter) is considered to be centered at the origin at all times. The internal

coordinates are Cartesian with the x-y plane being the plane of the sky and the positive

z axis pointed away from the observer. Adapting Murray & Dermott (1999) to the many-

body case, we define the coordinate system as described in §1.2 Eqs. 1.12-1.16. We integrate

Eq. 1.16 to advance the positions of the bodies as a function of time.

The equations of motion of the initialized system are integrated using the GNU Scientific

Library’s (GSL) implementation of an explicit embedded Runge-Kutta Prince Dormand

(8,9) method (for details see Galassi & Gough, 2009). This integrator is slightly slower than
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sympleptic type integrators, but is more flexible for use from hierarchical to multiple star

systems. Adjustable time boundaries are specified to include all of Kepler ’s observational

window, and any additional data such as RV. During the integration, if any body passes

in front of any other body which has non-zero brightness, the exact time of mid transit is

computed by applying the Newton-Raphson method to the sky projected separation of the

two bodies in question (Fabrycky, 2010).

Two options exist for computing the light curve near a transit. The first assumes the

relative velocity of the transiting body to the occulted star is constant. This is known as the

rectilinear transit approximation. The instantaneous sky-projected relative velocity, ~vrel,mid,

and position, ~xrel,mid of the transiting body found from the Newton-Raphson method above

is used to compute positions of the body near the transit time by the simple relationship

~xrel = ~vrel,mid∆T + ~xrel,mid. The positions are tracked for a time in both directions of at

least
(Rs+Rp)
vrel,mid

where Rs and Rp are the transited and transiting bodies’ radii respectively.

The second method is to perform small integration steps to find the exact positions of the

planets at each time of interest near a transit. This is computationally slower, but often

necessary when several bodies are approximately the same mass in the system or otherwise

have relative velocities changing on the timescale of a transit. In the most extreme case, a

planet around a binary star system could theoretically have zero velocity relative to the star

it is transiting at some point during transit. This would occur if the untransited star slows

the rapid, sky-projected velocity of the transited star to the same speed as the planet at

the time of transit. If this is near the zero point found by the Newton-Raphson method, an

arbitrarily long transit may be erroneously computed using the rectilinear approximation.

At each time of interest near a transit event, the relative positions computed as described

above of all bodies involved (usually two, but possibly several for mutual transit events) are

passed to an adaptation of the Pál (2012) multi-body transit code. In order to save computa-

tion time, particularly for many-body systems, bodies at a large sky-projected distance from

other bodies are not passed to the transit algorithm. The radii of the relevant bodies are
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normalized such that the transited star furthest from the observer has a radius of unity. The

relevant limb darkening parameters are applied to the transited body and the normalized

amount of light blocked by the transiting bodies is computed. This amount is multiplied by

the fractional brightness this individual star is contributing to the system. If there is more

than one star being transited at the same time, this process is repeated for each star, keeping

track only of bodies between successively closer stars and the observer.

2.3 Light Travel Time Effect

So far, only instantaneous planet positions have been discussed, but in real systems the

timing of transits is affected by the finite speed of light (c). The model has an option to

compute light curves and transit times either with an infinite speed of light (for simplicity

and comparison with other models) and with the true value c. In both cases, the Newton-

Raphson method is employed to find transit times.

In the stellar-centric coordinates of this model, the light time effect (LITE) is easily dealt

with for a body occulting or being occulted by the primary star since the primary is always

stationary. The time it takes for light to travel between the primary star and another body

is simply
zbody
c where zbody is the z coordinate of the other body, c is the speed of light in

a vacuum, and we are interested only in the travel time of light towards the observer. Since

we are interested in the times as they would appear to a distant observer with a constant

clock, we must additionally compute the z distance from the primary star to the stationary

barycenter: zbary =
∑N

0 mizi∑N
0 mi

. We therefore adjust calculated transit times using the formula

ttrue = tinst −
(2 · zbary − zbody)

c
(2.3)

where tinst is the time of events computed assuming and infinite speed of light, ttrue is the

time of events corrected for the LITE, and the factor of 2 in front of the arises from adjusting

both the position of the primary star and the other body by the barycentric distance. By
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moving the second term of right hand side of Eq. 2.3 to the left, we have a formula to

compute the infinite speed of light model time necessary to find accurate relative positions

of the two bodies at a given input time. Note that zbody and zbary are both functions of

time so this formulation will create an error by assuming that these values are essentially

constant over the time tinst − ttrue, but this error is small due to the high speed of light

relative to the velocities of bodies in the system and that, geometrically, most transits occur

at times when the bodies’ z velocities are low.

Computing the LITE for transits not involving the primary star (e.g., for in CBPs) is

somewhat more complicated as both bodies are in motion in our coordinate system. Tran-

sit times are still computed iteratively using the Newton-Raphson method. We are now

interested in the position of the background object’s light after it has traveled a distance

zsep = |zback − zfore|, where zback is the background object’s z position and zfore is the

foreground object’s z position. This corresponds to a light travel time of tLITE =
zsep
c . We

then find the time at which the foreground object’s position at time t0 + tLITE is closest to

the background object’s position at time t0. The code does this to second order, making

use of the position, velocity, and acceleration of the body in front over the time interval

tLITE. Once this time of minimum is found, the transit timing must again be corrected to

the barycentric time by the formula

ttrue = t0 −
(2 · zbary − zback − zfore)

c
. (2.4)

2.4 Radial Velocities

Radial velocities for any object in the system can be computed in this model by advancing

the equations of motion to any specified time and examining the velocities of the objects.

The theoretical radial velocity in the Jacobian coordinate system is

vrad = vbody,z − vbary,z (2.5)
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where vbary =
∑N
i mivz,i∑N
i mi

. Often RV measurements can only be made for the primary body.

In this case, the formula reduces to vrad = −vbary,z since the primary body is at the origin.

The general form is useful for multiple star systems when RV measurements can be obtained

for multiple stars (e.g. a double lined binary spectrum in a CBP system).

Times for radial velocity output are user-specified and, similar to photometry data, the

code can take a list of times, radial velocities, and uncertainties to add to the total χ2

from photometry. When fitting RV data, the code adds a floating offset value (CRV) to the

measured RVs to account for the barycenter of the system traveling towards or away from

the observers at a constant rate. The value is chosen to minimize the χ2. RV data can

also optionally be flagged to be from N different telescopes such that there are N different

constant offsets. All data from the ith telescope is given the same χ2-minimizing offset, but

that may differ from the offset for the jth telescope, accounting for systematic instrument

differences.

As the positions of the bodies in a system are advanced through time to check for tran-

sits for photometry, the RV times are also monitored and computed as necessary. This

reduces computation time by only requiring one integration of the equations of motion for

all components of the model.

2.5 Monte Carlo Simulations

Discussion thus far has been limited to describing a single run of the model. The full

power of the code is realized by running it many times in Monte Carlo simulations to fit

parameters and estimate uncertainties. We implement a differential evolution Markov chain

Monte Carlo (DEMCMC) to better analyze the Kepler data. The advantages of differential

evolution over traditional MCMC are speed of convergence and calculation for even highly

linearly correlated parameters. A brief discussion of the DEMCMC with specifics relating to

photodynamics will be discussed below, but for a complete discussion of the algorithm the
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reader should consult Ter Braak (2005).

To initialize the system, an estimate by eye or using data from the Kepler Object of

Interest (KOI) catalog is used. A characteristic spread of each parameter is estimated and

the chains are initialized by adding to the initial guess of each parameter a draw from a

Normal distribution with σ equal to the chosen spread. This initial clustered setup is used

since gridding over the possible values of all parameters in a high dimensional space is

computationally impractical as too much computation time is spent in high χ2 areas early

on and chains are in danger of becoming trapped in clearly incorrect local minima.

A DEMCMC evolves of a set of parameter vectors, {~p}, each of which is known individ-

ually as a chain, ~pi. Every time the DEMCMC is evolved, the chains are said to take a step

to the next generation, adding a link to every chain. Every generation, each chain evolves all

of its parameter values by proposing new values generated by adding the difference between

two values of other randomly chosen chains, multiplied by a scale factor γ and a N(µ = 0,

σ = 0.1) random variate R. Thus a single step would evolve the ith chain’s parameters like

pi,α += γ · (1 +R) · (pj,α− pk,α) for all parameters α, where j and k are indices chosen with

at random in the range [1, Nchains] such that i 6= j 6= k, and γ is a mutable scalar discussed

further below.

The χ2 value for the proposed parameter values is computed: χ2 =
∑N
i=1

(xi−yi)2

σ2
i

where

xi are observed data points and yi are computed model points. Following a thermodynamic

Metropolis approach, new parameter values are accepted and recorded as the current values

for a given chain with probability min
(
e
χ2
old
−χ2

new
2 , 1

)
. Lower χ2 values represent a better

match of all photometry and RV data weighted by the errors. This formulation means

that new parameter sets are accepted by the system according to their relative likelihood

compared to the previous parameters. Note that if the new χ2 is less than the old value, the

new parameter vector is guaranteed to be accepted. If the new χ2 value is higher than the

old value, the probability it is accepted reduces exponentially with the difference in values.

If the proposed parameter values are not accepted, the chain’s parameter vector is kept at
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its old value. This allows the chains to explore the χ2 surface, weighting regions of low χ2

by probabilistically staying in them. Generally hundreds of thousands of steps are taken

until the chains are sufficiently converged, with parameter values being recorded every kth

step, where k is an integer (in practice set to 1000 for highly correlated, slowly converging

parameter sets). This is done to minimize the dependency of a given chain’s recorded set of

parameter values on its previous set and avoid wasting disc space by storing large quantities

of highly correlated data. If we remove the initial set of parameter values from all chains

before they were converged, we essentially eliminate the effect of the the handpicked guess as

long as it was close enough to the global minimum that the chains could find that minimum.

We may then use the remaining recorded parameter values from all chains to estimate the

posterior parameter distribution and uncertainties even for very non-Gaussian parameter

distributions.

The factor γ described above is adapted at each step to speed up convergence. Ideally,

in each generation the fraction of chains which accept their new parameters proposal is near

an optimal fraction, fopt, usually chosen to be 0.23 (Ter Braak, 2005). If a smaller fraction

of the chains’ proposals are accepted than fopt at a given step, then γ is reduced by a

multiplicative factor (1 − q), where q is called the relaxation factor and generally chosen

to be 0.1. This results in the next steps’ proposals being on average less distant from the

current parameters. If the fraction of chains which have proposals accepted exceeds fopt, γ

is increased by (1 + q) to more quickly probe the lowest regions of the χ2 surface.

The code also allows us to easily fix any parameters desired in the DEMCMC. This

is useful, for instance, to explore certain simplifying assumptions and models. Kepler data

often provides little information about the coplanarity of an individual system (although sta-

tistically most systems can be shown to be nearly coplanar, Fabrycky et al., 2014), therefore

the nodal angles are often fixed: Ωi = 0 ∀ i. This may vastly reduce the size of parameter

space which need be searched and therefore speed up DEMCMC convergence time, while

simultaneously limiting the solution set to the phase space that is likely for a given multi-
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transiting system (see, e.g., Lissauer et al., 2011a). Additionally, since the absolute nodal

angle of bodies on the sky is undetermined by photometry or radial velocities and only rela-

tive angles can be constrained due to dynamical interactions or occasionally mutual transits

(Masuda et al., 2013), Ω1 = 0 in all cases. Further, if data is limited and some parameters

are too degenerate or there are strong priors (e.g. limb darkening coefficient degeneracies or

stellar mass from asteroseismology), fixing certain additional parameters may be preferred.

Each run of the model completes a high-accuracy N-body numerical integration combined

with the computation transit photometry, generally for thousands of observation times. A

DEMCMC is often composed of dozens of chains thousands of generations long requiring the

model to be run hundreds of thousands of times. Thus for accurate error estimates, we expect

to call the model millions of times, which is very computationally expensive. To reduce the

computation time, the code is written in C, with consideration given for speed. In particular,

since each DEMCMC chain calls the model once per generation, but only interacts with other

chains at the very beginning of the step through selecting new parameters and the model

computation time for each chain is very similar, the code is amenable to parallelization. We

implement MPI to run up to 140 chains simultaneously computing the model and χ2. The

code then waits for all chains to finish the computation before continuing to the next step.

The speedup with this method is nearly linear in the number of chains.

2.6 Comparison to Conventional TTV Techniques

As discussed in §1.5, conventional TTV fitting relies on matching a model to the measure-

ments of individual transit times. In some cases, particularly for small, short-period planets,

a transiting planet is only robustly detected by stacking many transits to get the required

S/N for detection. Individual transits may have low S/N and thus uncertain timings.

In the case of Kepler data, the minimum total S/N for a planet to be considered a can-

didate was chosen to be 7.1σ (Jenkins, 2002; Tenenbaum et al., 2013). Over Kepler ’s ∼1500

day observing window, a planet with a 3-day period may transit 500 times. If the planet
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clearly passes the Kepler threshold limit with a robust 10-σ detection, then each individual

transit would be detected at only 102/500 = 0.2σ confidence. This means each transit would

be well below the noise level, making accurate determination of individual transit times

difficult if not impossible as the transit may overwhelmed in the data by noise. However,

since the photodynamic model fits all of the transit data at once, a given transit’s position

may be constrained by a combination of the physical model, and its temporally neighboring

transits. Thus the model effectively bins the transits and the TTVs with a physical model

simultaneously to extract accurate TTVs (and the planetary orbital parameters they imply)

even if individual transits are difficult to measure. Photodynamics also allows self-consistent

transit shape modeling – often the transit shape is held fixed to a globally found phased-

transit value; however, if TTVs are not simultaneously taken into account the shape of the

transit may be inferred to be more ‘V’ shaped than the true shape (Kipping, 2014).

Additionally, detecting other effects rather than simply transit timing are important for

determining orbital properties of the planets. Transit duration variations (TDVs) indicate

the transit chord of the planet changing across the face of the star. These TDVs (or the

lack thereof) may be used to constrain the elusive mutual inclinations of planets since they

are usually attributed to precession effects (see Miralda-Escudé, 2002; Pál & Kocsis, 2008;

Sanchis-Ojeda et al., 2012; Carter et al., 2012; Mills & Fabrycky, 2017a). Because of the

limb-darkening on the face of the star, transit chord changes may also lead to transit depth

changes. Therefore the conventional method of simply extracting transit times to fit to a

dynamical model may inadvertently discard important physical information. Additionally

the transit fits themselves may not be sufficient if the transit is assumed to be constant,

whereas a photodynamic model is fully self-consistent and directly fits the changing transit

shape (if any) to the observational data.
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CHAPTER 3

KEPLER-223

Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in

orbits of a few days to a few months (Mullally et al., 2015). There is debate whether in

situ assembly (Hansen & Murray, 2013) or inward migration is the dominant mechanism

of the formation of such planetary systems. Simulations suggest that migration creates

tightly packed systems with planets whose orbital periods may be expressed as ratios of

small integers (resonances, see Melita & Woolfson, 1996; Lee & Peale, 2002; Terquem &

Papaloizou, 2007), often in a many-planet series (chain, see Cresswell & Nelson, 2006). In

the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near

resonances than would generally be expected (Fabrycky et al., 2014), but no individual

system has hitherto been identified that must have been formed by migration. Proximity to

resonance enables the detection of planets perturbing each other (Agol et al., 2005). Here

we report transit timing variations of the four planets in the Kepler-223 system, model these

variations as resonant-angle librations, and compute the long-term stability of the resonant

chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering,

and our numerical simulations demonstrate that its properties are natural outcomes of the

migration hypothesis. Similar systems could be destabilized by any of several mechanisms

(Cossou et al., 2014; Pu & Wu, 2015; Terquem & Papaloizou, 2007; Chatterjee & Ford,

2015), contributing to the observed orbital-period distribution, where many planets are not

in resonances. Planetesimal interactions in particular are thought to be responsible for

establishing the current orbits of the four giant planets in the Solar System by disrupting a

theoretical initial resonant chain (Levison et al., 2011) similar to that observed in Kepler-223.

This chapter describes a dynamical model of the Kepler-223 (also known as KOI 730 and

KIC 10227020) system and discuss its implication for planet formation and evolution. The

four planets orbit a slightly evolved (6.4+1.9
−1.7 Gyr) sun-like star as shown in §3.1. During the

Kepler observing window, the ratios of orbital periods average Pc/Pb = 1.3336, Pd/Pc =
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1.5015, and Pe/Pd = 1.3339, where the planets are named in alphabetic order from the

interior (beginning with b, Lissauer et al., 2014).

3.1 Stellar Properties

The Kepler-223 star is positioned at RA=298◦.318359, dec=47◦.279491. It has a reported

Kepler magnitude of 15.344 (Brown et al., 2011). Several photometric estimates of the prop-

erties of Kepler-223 have been made as part of attempts to determine stellar properties for

the entire Kepler target sample (Rowe et al., 2014; Huber et al., 2014). However, stellar

properties such as mass and radius derived from broadband photometry from the Kepler

Input Catalog (KIC) have large uncertainties which can be the primary contributor to un-

certainty in planetary radii. For example, photometric radii from the Kepler Input Catalog

are uncertain at at the ∼35% level (Brown et al., 2011; Batalha et al., 2013; Burke et al.,

2014). Stellar age is virtually unconstrained using broadband photometry.

In order to improve our knowledge of the Kepler-223 system, collaborators Howard Isaac-

son and Erik Petigura obtained a spectrum of the host star on 10 April 2012 using the HIRES

spectrometer (Vogt et al., 1994) at the Keck-1 10 m telescope and performed a spectral fit.

This data is now publicly available on CFOP (cfop.ipac.caltech.edu). Our spectrum has

S/N = 14/pixel and a resolution of ∼60,000 at 5500Å. After normalizing the continuum,

we model the observed spectrum using synthetic spectra. Model spectra are synthesized by

interpolating within a grid of synthetic spectra from Coelho et al. (2005) that span a range of

effective temperatures, Teff ; surface gravities, log(g) = log10 g, where g is the surface gravity

in cgs units; and metallicities, [Fe/H] (the logarithm of the ratio of iron to hydrogen in the

star relative to that ratio in the sun). Teff , log(g), and [Fe/H] are adjusted in the model

spectrum until it best matches the target spectrum in a χ2 sense. We have assessed the

precision of our spectral analysis technique by analyzing standard stars with well-measured

properties from Huber et al. (2013a) and Valenti & Fischer (2005). The resulting spectro-

scopic parameters for Kepler-223 are Teff = 5821 ± 123 K, log(g) = 4.070 ± 0.096 dex, and
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[Fe/H] = 0.060± 0.047 dex.

To determine an age and mass (and therefore radius and density combined with log(g))

of the star, we match the measured properties to Y2 isochrones (Demarque et al., 2004). The

Y2 isochrones give log(g) and Teff as a function of age, mass, [Fe/H], [α/Fe], and Z (the

fraction of metals in the star). We assume [α/Fe] is 0, i.e. that the enhancement of metals

in Kepler-223 is similar to the Sun in composition, but not necessarily in total quantity.

If we choose a value of [Fe/H] with fixed [α/Fe], Z is determined, so we are left with a

vector-valued function of three variables: f(age,M?, [Fe/H]) = (log(g), Teff , [Fe/H]). We use

the interpolater provided with the Y2 isochrones to form a grid in age from 0.01 to 15.00

Gyr with 0.01 Gyr steps for a given [Fe/H]. We then use a 2D linear interpolation of the grid

to run a 2-parameter, 8-chain MCMC to estimate age and mass for that specific [Fe/H]. At

each generation of the chain, the new values were accepted with a probability proportional

to exp[((χ2
log(g)

+ χ2
Teff

)old − (χ2
log(g)

+ χ2
Teff

)new)/2], where χi = (datai − modeli)/errori.

This formulation assumes a relatively smooth function compared to the grid size, but allows

for the exploration of parameter space near the best-fit value in order to obtain uncertainty

estimates.

[Fe/H]i is gridded with a spacing of 0.01 to span several [Fe/H]err = 0.047 to ensure that

we take into account the effects of [Fe/H] over its range of likely values. In order to obtain

the final parameter distribution, we interpolate across the grid points in [Fe/H]. To do this,

the relative importance of the distribution at each point in [Fe/H] space must be determined.

A common method of determining the marginal likelihood of different models is to compare

the harmonic means of the likelihoods of each distribution. This method is susceptible to

failure in some cases due to the large variance of the harmonic mean, so we adopt a similar

method which does not have this drawback (see eqn. 16 in Newton & Raftery, 1994). The
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distribution at each [Fe/H] point is given a weight equal to

p4 =

δm/(1− δ) +
m∑
i=1

exp(−χ2
T /2)/(δp4 + (1− δ) exp(−χ2

T /2))

δm/(1− δ)p4 +
m∑
i=1

(δp4 + (1− δ) exp(−χ2
T /2))−1

(3.1)

where m is a large integer, χ2
T = χ2

Teff
+ χ2

log(g)
+ χ2

[Fe/H]
is computed from the MCMC

run, δ is small, and p4 is solved for iteratively. We compare this method with the ‘Ratio

Estimator’ described in Ford & Gregory (2007), which is a method for computing marginal

likelihoods based on importance sampling, and get consistent results. We report best-fit

values and 1-sigma uncertainties using the weighted medians of the resulting distribution

and the weighted values 15.865% away from the most extreme values. Our analysis gives age

= 6.3+1.8
−1.7 Gyr and mass = 1.125+0.095

−0.073M� (see Figs. 3.1 and 3.2). Combining with log(g),

we measure R? = 1.54+0.21
−0.18R�.

To determine the size of model-dependent uncertainties, we compare our results with an

independently developed, publicly available method for computing M?, R?, and age using the

Dartmouth isochrones (available at: https://github.com/timothydmorton/isochrones). All

three values are consistent within the 1-σ error bars, so we conclude that our measurements

are robust and model-dependent errors are small compared to our quoted uncertainties.

We use a stellar population synthesis model, TRILEGAL (Girardi et al., 2005), with

default galaxy stellar distribution and population as described therein, to determine the

expected mass distribution of single stars within 1 square degree on the sky of Kepler-223

between 15 and 16 Kepler magnitudes. The expected mass distribution is approximately

symmetric, centered on ∼1.1M�, and significantly broader than the mass estimate from

stellar parameters alone. As a result, the best fit mass and error bars described above are

essentially unaffected by reasonable priors, so we keep flat priors in all parameters.

Additionally, we consider that whether or not a given star was selected as Kepler target

was primarily a function by stellar radius and apparent luminosity: smaller, brighter stars
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Figure 3.1: Kepler-223 Isochrone Fit

Yonsei-Yale Evolution Tracks with 0.01 Gyr increments marked with dots. Each color line
corresponds to a different mass, in increments of 0.01 M� increasing from green to blue.
Isochrones are over-plotted in 2 Gyr increments from 4 to 10 Gyr (dark gray in upper left
to light gray in lower right) with each point representing a 0.01 M� increment. A point
is labeled for reference. The best fit Teff and log(g) value and 1-sigma uncertainty found
from spectral matching are indicated with a black cross and oval. The stars in this area of
parameter space have evolved off the main sequence.
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Figure 3.2: Stellar Age and Mass Posteriors

Age and mass posteriors obtained from fitting spectroscopically determined [Fe/H], log(g),
and Teff to Y2 isochrone models.

were favored as they allow for easier detection of small planets (Batalha et al., 2010). Such

selections were made with broadband photometry, notoriously poor at determining stellar

radius (for instance Kepler-223 was estimated to be ∼ 30% smaller than its true size (Brown

et al., 2011)). We therefore hesitate to alter our stellar parameter posterior based on such

effects, but point out that main sequence F, G, and K stars were the most common targets in

the sample, and Kepler-223 lies in the middle of those spectral types, albeit slightly evolved.

Thus we expect the prior to be at least moderately flat in the region of parameter space near

Kepler-223 and don’t expect dramatic changes in our stellar parameter posterior.

We derive an approximate distance of 2.29+0.34
−0.34 kpc to Kepler-223 by comparing our mea-

surement of the star’s intrinsic luminosity (based on spectroscopy and isochrone modeling)

with its apparent V-band magnitude (Everett et al., 2012). Additionally, we use the com-

puted intrinsic brightness distribution to estimate the flux received by the planets from the

host star. We find Sb = 492±47S0, Sc = 335±32S0, Sd = 195±19S0, and Se = 133±13S0,

where S0 = 1377W/m2 is the Earth’s insolation.
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3.2 Modeling Migration

Because of the low S/N and short observational window, the masses as well as the orbital

parameters (especially the eccentricities and the arguments of pericenter) of Kepler-223’s

planets cannot be precisely constrained. Although the planets’ periods are very near a chain

of resonances, the part of the parameter space which corresponds to configurations acceptably

fitting the data is much larger than that for stable, resonant systems. To demonstrate the

plausibility of the physical existence of Kepler-223, we search for a formation scenario that

results in a stable system which matches the data well.

We simulate the migration of 4 bodies which start outside of resonance into the 3:4:6:8

chain of periods that we observe following a simple model for incorporating planet-disk

interactions into an N-body model (Goździewski & Migaszewski, 2014). Such a system is a

natural outcome of disk migration: planets successively get trapped into resonant pairs as

they migrate inward (Fig. 3.3). For this sequence of trapping to occur successfully, the planets

must not migrate too fast to skip past the resonances, nor must the eccentricity excitation of

a given resonance impede capture of successive ones or destabilize the system. The planetary

migration is a physical process which depends on many parameters in a complex way. To

model it realistically, one has to use sophisticated hydrodynamical codes (see, e.g., Masset

& Snellgrove, 2001; Rein et al., 2010; Kley & Nelson, 2012). Such computations are time

consuming and it is not yet possible to follow the evolution of a short-period, few-planet

system in time-scales comparable to the disc lifetime, even for a single initial condition.

Thus more computational tractable models are often used (Correa-Otto et al., 2013; Tadeu

dos Santos et al., 2015).

As neither the initial orbits nor the disc properties which led to the currently observed

configuration are known, one has to test many initial states. To do it effectively, we chose

a simple model which has been employed before (Moore & Quillen, 2013). The drag force
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Figure 3.3: Kepler-223 Resonant Configuration

Top panel: Time evolution of period ratios of planets b and c (red), c and d (green) and d
and e (blue). Remaining panels: Time evolution of the critical Laplace angles defined in the
text.
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acting on a planet moving with the astrocentric velocity ~v has the form

~F = − ~v

2 τa
− ~v − ~vc

τe
, (3.2)

where ~vc is the velocity of the planet on a circular Keplerian orbit at a given radius r. The

timescales of migration and circularization are denoted by τa and τe, respectively. In a

physical treatment of the problem, they depend on disc properties as well as on the planets’

masses and orbits. In the heuristic approach τe = K τa, where K ∈ [1, 300] is a constant and

τa = τ0

(
m

1 M⊕

)p ( r

1 AU

)α
exp

(
t

T

)
, (3.3)

where m is a planet mass, the power index p is either −1 (as in type I migration) or 0 (no

mass dependence), α ∈ [−2, 0], t is time, and T is a time scale of disc depletion. Timescales

are chosen from wide ranges, τ0 ∈ [105, 107] yr, T ∈ [106, 108] yr.

To start a single simulation, we choose values of the parameters described above from

the following ranges. Masses of the planets are chosen from a range of [1, 20]M⊕. Initial

orbits are circular, and the semi-major axes are chosen such that the periods ratios are above

resonant values, i.e., initial P2/P1 and P4/P3 ∈ [1.34, 1.4] and P3/P2 ∈ [1.51, 1.6]. The mean

longitudes are chosen randomly from a whole range, λ ∈ [0, 2 π].

For an example initial system (e.g. Fig. 3.3), the migration of the planets is convergent,

i.e., the period ratios of subsequent pairs of planets decrease in time. When Pi+1/Pi for a

given pair reaches the resonant value, the planets get trapped in a MMR. When all three

pairs are in 2-planet MMRs, φ1, φ2 and φ3 start to librate. Using the fictitious force of

Equation 3.2, it has been shown that continued migration may excite the liberation ampli-

tudes of small planets and break the resonance (Goldreich & Schlichting, 2014). We do not

commonly see such behavior in our migration simulations.

Once a given system fits the data qualitatively well (appropriate values of Pi+1/Pi and φi,

i = 1, 2, 3), the formal measure of the goodness of the fit is computed. The simulation is done
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in an arbitrary reference frame. To transform the orbits to the observational reference frame,

one has to find an appropriate value of the argument of pericenter ω (all inclinations are

π/2, and the longitudes of ascending nodes are 0), and the time in the simulation, t0, which

corresponds to a chosen reference epoch of the observations. Moreover, the sizes of orbits

stemming from a simulation, a
(sim)

i , are, in general, different from the observational values,

a
(obs)

i . Therefore, the system has to be scaled to best-fit the data. The three parameters

to be fitted are ω, t0 and s ≡ a
(obs)

i /a
(sim)

i . For each t0 (varied with a step size equal to

the period of the innermost planet), Powell’s method is used to find (ω, s) which minimizes

χ2. The best-fitting solution matches the observed TTVs qualitatively well and is used as a

starting point for the photodynamical modeling.

We also ran a series of migration simulations with more dispersed starting orbits (a > 1AU

and Pi+1/Pi > 2). Our models found that for many starting conditions, planets got stuck in

lower index, j, resonances than observed (j = 1, 2 instead of j = 2, 3 where the period ratio

is specified by (j+ 1)/j). We then slightly expand our model by following Correa-Otto et al.

(2013) to allow for planetary mass growth with time. With an appropriate choice of initial

conditions and damping parameters, planets can frequently skip over such low resonances

and become trapped in the 3:4:6:8 chain observed in Kepler-223 as their masses grow. As

the disk forces exponentially decrease in the model we continue to integrate the equations

of motion to ensure the system remains in resonance. We are able generate a stable system

which approximately matches the observed transit timing variations.

We use the the critical Laplace angles to describe the behavior of the resonant chain:

φ1 ≡ −λb + 2λc − λd and φ2 ≡ λc − 3λd + 2λe (for the mean longitudes, λi, for planets

i = b, c, d, e) and for the whole system of four planets φ3 ≡ 2φ2−3φ1 = 3λb−4λc−3λd+4λe.

For the system to be considered a sufficient match to the data, the periods ratios must

oscillate close to the nominal values, i.e., 4:3, 3:2, 4:3 for subsequent pairs of planets, and

the resonant angles stay within a limited range around the values as seen in the observations

(see Fig. 3.4) over a given time of a few hundred orbits. We find several migration solutions
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that match this criteria (e.g., Fig. 3.3). In the simulations, these angles fluctuate on a

range of timescales comparable to the length of the Kepler observing window, which can be

observed as TTVs. We only briefly mention the feasibility of such a formation history here

as a real planetary disk has much more complex disk structure, planet-disk interactions, and

planet accretion physics involved that we do not examine in detail.

3.3 TTVs

Precise photometric data from Kepler has been used to identify this system in previous

work (Borucki et al., 2011) although the low signal to noise at first caused an incorrect

orbital period identification (Borucki et al., 2011; Lissauer et al., 2011b), and has hitherto

precluded its detailed characterization. For this TTV analysis, we use Kepler long cadence

(29.4 minute integrations) data, collected from March 2009 to May 2013. Given that Kepler-

223 has planets in resonance, we strongly expect that it should exhibit time-variable transit

times; however, no such detection has yet been reported. There are two possible reasons for

this. First, many of the detections so far rely on planetary pairs that lie several percent off

of resonance (Lithwick et al., 2012), such that the timescale of variation is smaller than the

4-year length of the Kepler dataset. In resonance, an analytic expression for the timescale

of TTVs (Agol et al., 2005) predicts TTV signals to have a period of many years, so the

variations over four years could be small enough to elude detection. Second, the small transit

depth relative to the photometric uncertainties means post-Keplerian model parameters, such

as variable transit times, are hard to constrain. Therefore, we first seek to characterize how

the transit times vary over the dataset.

We begin by detrending the simple aperture photometry (SAP) flux data from the Kepler

portal on the Mikulski Archive for Space Telescopes (MAST). For long-cadence data (Kepler
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Figure 3.4: Long Term Period Ratio Distribution

Left: The distribution of period ratios for each neighboring planet pair over a randomly
selected 5 year window in the first 104 years for two 107-year stable parameter sets found in
the C3 DEMCMC posterior solution. The dotted histogram is for a solution which showed
significant periods of Laplace angle circulation. The solid histogram is for a solution for which
both φ1 and φ2 librate for 107 years. The mean period found in the data is represented by
a vertical line, and dashed lines represent the highest and lowest quarter-to-quarter period
measured. Right: The same as left panels, except over the entire 107 year interval. This
demonstrates that the observed periods for the 4 planets match well with the expected range
of observations for a resonant solution, even within only a relatively short observing window.
Since the widths of the distributions of the resonant solution and the data is similar, we do
not expect to see much larger TTV amplitudes than seen in the observing window, except
if the planets enter an epoch of circulation.
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quarters1 1-8), we fit the amplitudes of the first five cotrending basis vectors to determine

a baseline. We discard points whose quality flag had a value greater than or equal to 16.

For short-cadence data (Kepler quarters 9-17), cotrending basis vectors are not available;

first we masked out the expected transit times, plus 20% of the full duration of each transit,

intending to account for possible timing variations; then we fit a cubic polynomial model

with a 2-day width centered within half an hour of each data point to determine its baseline.

In both cases, the baseline is dominated by instrumental gains which are time-variable, thus

we divide the flux by this baseline.

In computing TTVs and in the figures shown, we only use data for transits which do not

overlap with another planetary transit, i.e., with two transit midtimes falling within 1 day

of each other, according to a preliminary photodynamic model (see Fig. 3.5). The model

shows that at the beginning of the dataset, planets b and e encroach on one another, which

complicates every eighth transit of planet b and every third transit of planet e. Similarly, from

the middle to the end of the dataset, planets c and d encroach on each other, compromising

every third transit of planet c and every other transit of planet d. Even though data with

overlapping transits is modeled directly by the photodynamic method described later; for

now we remove it to ease the interpretation.

To determine transit times, we first fit transit parameters (P , T0, Rp/R?, Tdur, b, c1,

c2) to the long-cadence dataset. Secondly, we divide the transit data into approximately 3

month segments based on the four observing quarters per year. We refit each quarter using

the globally-determined values for all parameters except for T0, which is solved for. Thus

the whole dataset constrains the transit shape, whereas the model adjusts to fit the transit

time locally. Thirdly, using these refined transit shape parameters, we slide the transit

model in time through the data for each planet in each quarter, computing the goodness-

1. The Kepler data are divided into Q1-Q17. The star was dropped from the target list for Q4, but then
the transiting planets were recognized and observations resumed. However, due to a failure of one of the
CCD arrays, Q7, Q11, and Q15 are missing. Q1 and Q17 are shorter, and so we combine the data with their
adjacent quarter for the analysis that is binned by quarter.
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Figure 3.5: Model Quarterly Binned TTVs
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An example theoretical model of the lightcurve data shown in Fig. 3.6, broken down by
quarter. Each panel is centered on the predicted transit time given a linear ephemeris
matching that of Batalha et al. (2013); and the vertical black line under the red line indicates
the mid-transit time in that case. We did not mask any transits for this example, showing
that the transit shapes interfere with each other if they are not masked out; this led us to
mask overlapping transits in Fig. 3.6.
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of-fit statistic χ2 in steps of 0.001 days. The values of that numerical χ2 function which

are within 1.0 of the minimum are fit with a parabola, the minimum of which we adopt as

our best estimate of the mid-time. The time shift at which the χ2 function rises to 1 and

9, evaluated on each side of the minimum, are adopted as narrow and conservative error

bars. If the likelihood surface of the mid-time parameter were Gaussian, these values would

correspond to 1-σ and 3-σ estimates. Table 3.1 reports the average time of the transits that

were combined to make each measurement, the best-estimate, and uncertainty estimates

of these time shifts. These data constitute our transit timing measurement, which does

not depend of the photodynamical model we develop subsequently. We confirm the orbital

periods are very close to true mean motion resonances, and detect clear TTVs (Figs. 3.6

and 3.7). Phase folding all of the long cadence data and removing TTVs allows the noisy

transits to easily be identified by eye (Fig. 3.8).

These transit times are also represented graphically, in Fig. 3.6 as the horizontal error

bar. We can see that the transits of planet d became almost half a duration earlier, whereas

transits of planet e became more than half a duration later, during the dataset. Similarly,

planet c has a clear fluctuation to earlier transits about midway through the dataset. These

transit times guided our migration fits as described above. In order to make the connection,

we take only the theoretical times which correspond to observed, non-overlapping transits

used in the above analysis.

We use these transit times to estimate the Laplace critical angles (Quillen, 2011) and

their evolution. To do so, note that for circular orbits the mean longitude λ is a linear

function of time t, related to the transit period P and a specific mid-time T ′0 as:

λ = 2π[1/4 + (t− T ′0)/P ]. (3.4)

In place of T ′0, we may use T0 + ∆T0, where P and T0 define the linear ephemeris on which
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Figure 3.6: Measured Quarterly Binned TTVs
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Long-cadence light curve for each planet, broken down by quarter. The data are binned
together as the blue curve, to reduce the scatter and reveal the transits, against a horizontal
red line showing no signal. Each panel is centered on the predicted transit time given a
linear ephemeris matching that of Batalha et al. (2013); and the vertical black line under the
red line indicates the mid-transit time in that case. On the other hand, the box and whisker
error bars indicate the best-fit mid-transit time and estimates of 1 and 3 σ errors based on
∆χ2 of 1 and 9. χ2 values are computed by sliding an overall fit to the transit horizontally
across the data and interpolating. Thus the difference in the placement of the vertical line
and the box and whisker error bars shows the magnitude of the transit timing variations.
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Figure 3.7: Photodynamically Measured TTVs
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Transit timing variations for all four planets from innermost (panel a) to outermost (panel d) with
respect to a linear ephemeris. Calculated transit times come from a linear regression of the best fit
model transit times for the linear ephemeris and epoch. Open gray circles show the transit times
from 20 different 107 year stable solutions drawn randomly from the C2 DEMCMC posterior. Open
black circles show the average of the gray circles. Black +s with 1-σ error bars indicate the TTVs
found by fitting quarterly binned data (see Fig. 3.6), and black diamonds are the corresponding
points for the black circle model binned in the same manner.
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Figure 3.8: Kepler-223 Transits

Transits of planet b (top) through e (bottom) binned together by phase-folding after remov-
ing the measured TTV for each quarter.
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Table 3.1: Kepler-223 Quarterly Binned TTVs

t̄− 2454900 (BJD) −3σ −σ Best +σ +3σ
Kepler-223b: P = 7.3840154 days, T0 − 2454900 (BJD) = 70.49489

123.32662 -0.0354 -0.0058 -0.0006 0.0059 0.0316
239.02516 -0.0517 -0.0103 0.0137 0.0101 0.0423
416.51724 -0.0200 -0.0061 -0.0010 0.0062 0.0210
521.69775 -0.0628 -0.0123 0.0068 0.0113 0.0342
699.18988 -0.0470 -0.0088 -0.0010 0.0084 0.0370
797.79657 -0.0417 -0.0097 -0.0123 0.0088 0.0243
886.54260 -0.0343 -0.0072 -0.0187 0.0074 0.0617
1073.89526 -0.0500 -0.0118 0.0730 0.0140 0.1150
1162.64136 -0.0542 -0.0071 0.0692 0.0071 0.0708
1251.38745 -0.0217 -0.0062 0.0507 0.0065 0.0333
1458.46155 -0.0379 -0.0129 0.0659 0.0090 0.0241

Kepler-223c: P = 9.8487130 days, T0 − 2454900 (BJD) = 71.37624
116.10564 -0.0362 -0.0103 -0.0168 0.0133 0.0518
242.86336 -0.0683 -0.0405 0.0023 0.0077 0.0747
420.32413 -0.0254 -0.0077 0.0264 0.0076 0.0476
509.05453 -0.0266 -0.0077 0.0166 0.0090 0.0304
701.30371 -0.0585 -0.0121 -0.0155 0.0126 0.0535
790.03418 -0.0302 -0.0075 -0.0318 0.0084 0.0268
886.15869 -0.0173 -0.0046 -0.0737 0.0048 0.0537
1071.01367 -0.1404 -0.0078 -0.0766 0.0066 0.0226
1148.65283 -0.0411 -0.0067 -0.0959 0.0064 0.0349
1252.17163 -0.0392 -0.0067 -0.0418 0.0068 0.0548
1470.30054 -0.0361 -0.0056 -0.0449 0.0051 0.0179

Kepler-223d: P = 14.7883997 days, T0 − 2454900 (BJD) = 109.76775
132.10997 -0.0416 -0.0058 0.0376 0.0054 0.0134
248.65308 -0.0221 -0.0062 -0.0169 0.0063 0.0229
427.57138 -0.0351 -0.0084 -0.0099 0.0070 0.0169
519.49268 -0.0285 -0.0070 0.0035 0.0066 0.0245
711.54260 -0.0260 -0.0086 0.0240 0.0094 0.0420
800.18097 -0.0226 -0.0060 0.0256 0.0057 0.0194
898.66815 -0.0192 -0.0057 0.0212 0.0055 0.0238
1077.35193 -0.0530 -0.0080 0.0020 0.0077 0.0210
1169.50781 -0.0354 -0.0085 -0.0236 0.0093 0.0286
1271.27771 -0.0272 -0.0131 -0.0578 0.0132 0.0328
1483.43542 -0.0298 -0.0061 -0.1612 0.0057 0.0302

Kepler-223e: P = 19.7213435 days, T0 − 2454900 (BJD) = 68.10686
135.47421 -0.0303 -0.0060 -0.0067 0.0053 0.0187
238.21753 -0.0232 -0.0067 0.0022 0.0072 0.0458
433.78842 -0.0542 -0.0095 0.0302 0.0084 0.0298
524.27625 -0.0244 -0.0061 -0.0106 0.0063 0.0296
709.21222 -0.0432 -0.0071 0.0022 0.0065 0.0208
797.82037 -0.0240 -0.0060 0.0090 0.0061 0.0240
893.81256 -0.0357 -0.0216 0.0297 0.0242 0.0513
1079.88989 -0.0662 -0.0083 0.0602 0.0078 0.0308
1170.71301 -0.1067 -0.0118 0.1167 0.0110 0.0453
1263.01343 -0.0252 -0.0049 0.1352 0.0049 0.0188
1469.48169 -0.0393 -0.0097 0.2283 0.0100 0.0467

TTVs for each planet found by binning the data quarterly and iteratively solving for transit shape as
described in the text. Mean transit time in the quarter is given in the first column followed by the measured
TTV and uncertainties.
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the quarterly ∆T0 of Table 3.1 are based. Then for Laplace’s critical angles we have:

φ1 = 2λc − λb − λd, (3.5)

= 2π{
−2T ′0c
Pc

+
T ′0b
Pb

+
T ′0d
Pd

+ t(
2

Pc
− 1

Pb
− 1

Pd
)}, (3.6)

= 2π{0.4750 + 2.39834× 10−5(t− 2454900BJD)− 2∆T0c

Pc
+

∆T0b

Pb
+

∆T0d

Pd
},(3.7)

and similarly,

φ2 = λc − 3λd + 2λe, (3.8)

= 2π{−
T ′0c
Pc

+
3T ′0d
Pd
−

2T ′0e
Pe

+ t(
1

Pc
− 3

Pd
+

2

Pe
)}, (3.9)

= 2π{0.1135 + 8.7366× 10−5(t− 2454900BJD)− ∆T0c

Pc
+

3∆T0d

Pd
− 2∆T0e

Pe
}.(3.10)

These values are plotted in Fig 3.9. We see that assuming nearly circular orbits, the four

years of data have recorded angle φ1 performing nearly a full oscillation between the values

∼173◦ and ∼190◦, and φ2 sweeping between ∼47◦ and ∼75◦. These specific values are

sensitive to phase shifts due to eccentricity; the libration centers may be different by about

30◦ if the eccentricities are as high as 0.1.

The degree to which this transit analysis faithfully reproduces the actual Laplace angles

was investigated using the migration simulations. In such simulations, we have access to

the mean anomalies directly, and can compare the Laplace angles’ true values (equations

3.5 and 3.8) with their transit-phase approximations (equations 3.6 and 3.9). We find that

orbital eccentricity shifts the libration centers by about 30◦ for an eccentricity of 0.1, and

the shift is linear in e cosω. This is about the accuracy to which this method measures

the libration centers. We also notice in Fig. 3.9 that a minimum and maximum value are

obtained, suggesting the libration amplitudes have been measured to be ∼8◦ and ∼14◦ for

φ1 and φ2 respectively. These particular values are subject to the assumption that the

eccentricities of the planets have not precessed appreciably during the dataset. Indeed, we
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Figure 3.9: Measured Quarterly Binned Laplace Angles

Laplace angle librations detected by binning transits into quarters and assuming 0 eccen-
tricity. Almost an full libration cycle is observed in the ∼1500 day observing window.
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expect the timescale of precession due to the resonance to considerably exceed the resonant

libration timescale. Therefore we believe these amplitudes are good approximations of the

true libration amplitudes.

3.4 Photodynamic Modeling

To improve the treatment of the TTV signal and to make a direct connection to planetary dy-

namics, we integrate the N-body equations of motion of the multi-planet system and directly

model the photometric transit signals (Carter et al., 2012) using long and short cadence (58.8

second integrations) where available. We use a differential evolution Markov chain Monte

Carlo (DEMCMC) coupled to this photodynamic model to estimate the parameters of the

system. Such an approach allows chains of parameter values to probabilistically explore

parameter space in order to converge on best-fit values with uncertainty estimates, even in

the event of highly-correlated parameters (Ter Braak, 2005). We report system parameters

of particular interest in Table 3.2, and describe our methodology below.

3.4.1 Fixed Parameters

Photodynamics can generally only determine densities and relative masses, except in cases

where the very precise measurement of transit times allows the light travel time effect (LITE)

to break the scale degeneracy. The low S/N of this system does not provide such accuracy.

In order to prevent the DEMCMC chains from wandering unbounded as they adjusted the

scale of the system, the mass of the star was held fixed. Masses, radii, and semi-major axes

of all other bodies found by photodynamics can be scaled appropriately to the system once

the true mass of any object (usually the star) is known from other means, such as radial

velocity measurements, asteroseismology, or spectral fitting. That is, if the true mass of the

star is different than the fixed value chosen, one need only scale the remaining parameters

appropriately, and all discussion and stability arguments will still hold true. We report
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Table 3.2: Select Kepler-223 Parameter Posteriors

Parameter Name (Unit) DEMCMC Result

Spectroscopic Stellar Mass (M�) 1.125+0.094
−0.073

Stellar Radius (R�) 1.72+0.07
−0.14

Kepler-223 b Parameters:

P (d) 7.38449+0.00022
−0.00022

e 0.078+0.015
−0.017

|i− 90| (◦) 0.0+1.8

M (MEarth) 7.4+1.3
−1.1

R (REarth) 2.99+0.18
−0.27

ρ (g/cm3) 1.54+0.63
−0.35

Kepler-223 c Parameters:

P (d) 9.84564+0.00052
−0.00051

e 0.150+0.019
−0.051

|i− 90| (◦) 0.0+1.3

M (MEarth) 5.1+1.7
−1.1

R (REarth) 3.44+0.20
−0.30

ρ (g/cm3) 0.71+0.33
−0.20

Kepler-223 d Parameters:

P (d) 14.78869+0.00030
−0.00027

e 0.037+0.018
−0.017

|i− 90| (◦) 2.06+0.26
−0.32

M (MEarth) 8.0+1.5
−1.3

R (REarth) 5.24+0.26
−0.45

ρ (g/cm3) 0.31+0.12
−0.07

Kepler-223 e Parameters:

P (d) 19.72567+0.00055
−0.00054

e 0.051+0.019
−0.019

|i− 90| (◦) 2.00+0.21
−0.27

M (MEarth) 4.8+1.4
−1.2

R (REarth) 4.60+0.27
−0.41

ρ (g/cm3) 0.28+0.12
−0.08

Medians and 68% credible intervals for 2008 106-year stable solutions randomly drawn
the C1 DEMCMC posterior with the eccentricity prior as described in the text,
(eb,max, ec,max, ed,max, ee,max) = (0.212, 0.175, 0.212, 0.175), fixed Ωj = 0 for j = b, c, d, e.
All values are valid at Tepoch = 800.0 (BJD-2454900). The stellar mass was held fixed in the
DEMCMC simulation but uncertainties in planet mass were adjusted afterward to account
for the quoted spectroscopic uncertainty in M?. See Table 3.3 for additional parameters.
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values in Table 3.3 with the spectroscopic-best-fit stellar mass. We compute the expected

spectroscopic radius, R? = 1.54+0.21
−0.18R� as described above and add it as a data point to

the DEMCMC since it better constrains the radius of the star for a fixed mass than transits

alone.

The limb darkening coefficients were found to be degenerate given the low S/N of the

transits; therefore, c2 was held fixed while c1 was allowed to float. The value for c2 was

chosen as 0.2 as this is near the median value for stars in the 4000K to 6500K range in the

Kepler bandpass (Sing, 2010). It has been shown that having only one free limb darkening

parameter is sufficient to match Kepler photometry reasonably well, although the best fit

for the free parameter may differ from the value found if both c1 and c2 are allowed to float

(Southworth et al., 2007; Southworth, 2008).

For practical reasons we do not attempt to constrain the differences in Ω through DEM-

CMC. Since the time span of the data is relatively short compared to the timescale of

precession, the duration change even for highly misaligned planets is small, and the DEM-

CMC offers almost no constraint on mutual inclinations. If we do attempt to fit the Ωs, it

takes the DEMCMC much longer to converge as there is a much larger and more complex

volume of parameter space than the nearly coplanar case, and we are offered essentially no

additional information about the system at the cost of vastly more computing time and real

time. We note that the typical mean mutual inclination (MMI) of Kepler systems, ∼1.8◦,

implies near coplanarity (Fabrycky et al., 2014). Additionally, multiplanet systems with

higher mutual inclinations between planetary orbital planes are correlated with instability

(Veras & Armitage, 2004), and we expect any observed system to be at least quasi-stable.

The low S/N also does not allow for photometric constraint of dilution of the primary

star’s light from contamination from nearby sources. Increased dilution is highly degenerate

with an increase in the radius of all planets along with a slight change in limb darkening

coefficients to alter the transits’ shapes appropriately. Uncertainty in dilution is a major

source of planet radius uncertainty in Kepler systems (Ciardi et al., 2015). United Kingdom
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Table 3.3: Full Kepler-223 DEMCMC Posteriors

Parameter Name (Unit) Eccentricity Prior (C1)
Eccentricity Prior Laplace Angle
and Stability (C2) Constraint (C3)

Stellar Parameters:
R?(R�) 1.716+0.077

−0.15 1.72+0.07
−0.14 1.622+0.078

−0.070

M?(M�) 1.125 (fixed) 1.125 (fixed) 1.125 (fixed)
c1 0.54+0.10

−0.10 0.54+0.10
−0.09 0.57+0.11

−0.10

c2 0.2 (fixed) 0.2 (fixed) 0.2 (fixed)
dilution 0.11202 (fixed) 0.11202 (fixed) 0.11202 (fixed)
Kepler-223 b Parameters:
P (d) 7.38454+0.00024

−0.00027 7.38449+0.00022
−0.00022 7.38453+0.00024

−0.00024

T0 (BJD-2454900) 801.5144+0.0044
−0.0046 801.5155+0.0044

−0.0046 801.5133+0.0042
−0.0045

e · cos(ω) 0.057+0.033
−0.029 0.054+0.022

−0.022 0.035+0.014
−0.016

e · sin(ω) 0.053+0.026
−0.12 0.047+0.020

−0.039 −0.004+0.029
−0.034

|i− 90| (◦) 0.0+1.7 0.0+1.8 0.0+1.4

Ω (◦) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)
M/M? 0.0000195+0.0000033

−0.0000030 0.0000221+0.0000032
−0.0000031 0.0000201+0.0000027

−0.0000026

R/R? 0.01595+0.00053
−0.00053 0.01597+0.00055

−0.00054 0.01584+0.00052
−0.00053

Kepler-223 c Parameters:
P (d) 9.84582+0.00084

−0.00051 9.84564+0.00052
−0.00051 9.84613+0.00046

−0.00045

T0 (BJD-2454900) 800.1460+0.0049
−0.0040 800.1459+0.0050

−0.0039 800.1489+0.0061
−0.0047

e · cos(ω) 0.030+0.049
−0.045 0.029+0.041

−0.038 −0.010+0.019
−0.022

e · sin(ω) 0.135+0.026
−0.14 0.139+0.021

−0.050 0.060+0.033
−0.038

|i− 90| (◦) 0.0+1.4 0.0+1.3 0.0+1.5

Ω (◦) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)
M/M? 0.0000156+0.0000047

−0.0000037 0.0000152+0.0000048
−0.0000033 0.0000189+0.0000032

−0.0000033

R/R? 0.01846+0.00054
−0.00055 0.01842+0.00053

−0.00053 0.01833+0.00056
−0.00057

Kepler-223 d Parameters:
P (d) 14.78881+0.00048

−0.00039 14.78869+0.00030
−0.00027 14.78862+0.00025

−0.00024

T0 (BJD-2454900) 804.8502+0.0022
−0.0023 804.8504+0.0023

−0.0024 804.8492+0.0022
−0.0023

e · cos(ω) 0.021+0.031
−0.029 0.020+0.026

−0.024 0.000+0.011
−0.013

e · sin(ω) 0.017+0.022
−0.069 0.010+0.020

−0.032 −0.001+0.015
−0.021

|i− 90| (◦) 2.02+0.29
−0.49 2.06+0.26

−0.32 1.68+0.30
−0.29

Ω (◦) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)
M/M? 0.0000201+0.0000040

−0.0000038 0.0000240+0.0000039
−0.0000035 0.0000225+0.0000032

−0.0000032

R/R? 0.02791+0.00055
−0.00064 0.02800+0.00052

−0.00059 0.02756+0.00053
−0.00058

Kepler-223 e Parameters:
P (d) 19.72552+0.00068

−0.00070 19.72567+0.00055
−0.00054 19.72568+0.00054

−0.00048

T0 (BJD-2454900) 817.5230+0.0054
−0.0048 817.5237+0.0055

−0.0051 817.5231+0.0053
−0.0046

e · cos(ω) 0.017+0.042
−0.032 0.017+0.026

−0.024 0.013+0.014
−0.014

e · sin(ω) 0.045+0.031
−0.066 0.039+0.023

−0.032 0.033+0.016
−0.023

|i− 90| (◦) 1.95+0.24
−0.44 2.00+0.21

−0.27 1.69+0.25
−0.24

Ω (◦) 0.0 (fixed) 0.0 (fixed) 0.0 (fixed)
M/M? 0.0000101+0.0000043

−0.0000041 0.0000145+0.0000039
−0.0000036 0.0000130+0.0000031

−0.0000029

R/R? 0.02448+0.00075
−0.00075 0.02466+0.00074

−0.00076 0.02421+0.00069
−0.00068

DEMCMC posterior probability estimates and uncertainties for all model parameters at Tepoch = 800.0 (BJD-
2454900). Three parameter sets are given with fixed stellar mass: (1) DEMCMC results with eccentricity
constraint C1 as described in the text, (2) A subset of the C1 DEMCMC results that only retain solutions
stable for 106 years and (3) Laplace angle constraint C3 as described in the text and fixed Ωi = 0 for
i = b, c, d, e. The first column is similar to the table which appears in the main text, except with all
parameters kept in ratio form.
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Infrared Telescope (UKIRT) archives reveal that there are 2 objects within 2” of the position

specified by the KIC (Brown et al., 2011). The brighter of the 2 objects has a distance < 0.2”

from the KIC position and has a predicted Kepler magnitude of 15.4932, based on UKIRT’s

formula to convert their measured J band magnitudes to a Kepler magnitude (Howell et al.,

2012). This value is 0.1492 magnitudes fainter than that reported in the KIC (15.344). The

second object is 1.937” away from the KIC location, but is ∼8 times fainter. The sum of

these two objects has a predicted intensity in the Kepler bandpass equal to 98.2% of the

intensity of the object reported in the KIC. The next nearest object is part of a stellar pair

which comprises KIC 10227024. Faulkes Telescope North (FTN) imaging confirms the dual

nature of the Kepler 223 object, and the nearby KIC 10227024 pair (Brown et al., 2013).

Speckle imaging done at WIYN observatory indicate no additional bodies between approx-

imately 0.2” and 1.9” of the brighter object (Howell et al., 2011). The secondary source

could be a distant background star or galaxy, faint foreground star, or could potentially be

a gravitationally bound binary. The projected physical separation of two objects ∼2” apart

at Kepler-223’s distance is thousands of AU. If the fainter source was a binary companion

with any modest eccentricity, it would not gravitationally perturb Kepler-223’s planets sig-

nificantly. While the hypothetical binary could in principle have high eccentricity (e∼0.99),

such an extreme configuation is unlikely and would probably now allow the observed tightly-

packed system to remain stable. Therefore we do not include the dynamical effects of any

additional stars, but do include the effects of its light in DEMCMC runs. The fainter of

the two objects contributes approximately 11.202% of the light in the Kepler bandpass so

we fix diluation at 0.11202 in the DEMCMC runs. This value has an uncertainty of several

percent, but the error in determining true planet radius is dominated by uncertainties in

stellar radius. Compared to an analysis without dilution included (dilution=0), the radii

of the planets should be scaled by the factor (1 − 0.11202)−1/2 ≈ 1.06. A small change in

implied planet density would also result. The other values affected by ignoring the dilution

measurement are only stellar limb darkening, which is essentially a nuisance parameter in
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this analysis, and possibly impact parameter, i.e. inclination, which will have a negligibly

small effect on predicted stellar radius due to its correlation in determining transit duration.

3.4.2 Consideration of the Planets’ Host Star

Thus far we have assumed that the Kepler-223 planetary system’s host star is the brighter

of the two objects identified as KIC 10227020. Here we examine the possibility that the

fainter star hosts the planets, and find it disfavored. Such an alternative would not alter our

main conclusions about resonance, timing variations, and migration, but it would change

the planetary masses and radii, altering our interpretation of the physical composition of the

planets. The observed change in flux due to planetary transits must be constant regardless

of which object the planets are transiting. Since the fraction of flux blocked by a planet

transit is (Rp/R?)
2 and we know the ratio of the flux from the fainter object to the total

flux, c ≈ 0.13, we may write ( rA
RA

)2
= c
( rB
RB

)2
(3.11)

where R and r denote stellar and planet radii respectively and the subscripts A and B refer

to the brighter and fainter of the two observe stars respectively. That is, the observed planet

radii would differ from their currently inferred radius, rA, by a factor
√
c ·RB/RA if B is the

true host star of Kepler-223’s planets. The relative observed fluxes of the two stars implies

R2
BLKep,B

d2
B

= c
R2
ALKep,A

d2
A

(3.12)

where LKep is the luminosity in the Kepler bandpass and d is the distance to the star. We

use standard mass-luminosity and mass-radius relations for main sequence (MS) stars and

bolometric correction factors (Cox, 2000) and normalize the distances and radii to star A in

order to get RB as a function only of dB , taking into account the fact that A is no longer on

the main sequence and is ∼ 2.5 times more luminous due to an increased radius. Thus for any

given distance of the fainter star, there is a unique MS radius which matches the observations.
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This method takes into account changes in both surface brightness and size of the stars. For

instance, if the pair is bound and thus dA ≈ dB , then RB/RA ∼ 0.6 ⇒ RB ∼ 1.0R�.

Such a radius for B implies a planetary radius larger by a factor of 0.6
√
c ∼ 1.5, while

the mass of the planets would be marginally less since the planet-star mass ratios as found

in our analysis would be unchanged, but smaller radii stars are lower in mass. Very low

density planets with relatively small radii are uncommon (Weiss & Marcy, 2014). Therefore

the scenario that A and B are a wide binary but the planets orbit the dimmer of the two

stars is modestly disfavored. However, in the case the planets do orbit B, the scenario of

gaseous/ice-rich planets migrating into resonance is unchanged.

Background stars would increase in radius and brightness as a function of distance to

match observations and exacerbate the low-density planet problem. Therefore we more

strongly disfavor star B as the planet host if it is a large background star. A small star in

the foreground could potentially host similar or smaller radii planets than star A as its flux

per unit area would be much greater than the distant star despite its cooler temperature.

We use TRILEGAL with default galaxy parameters (Girardi et al., 2005) and a simple mass-

radius scaling law (R? = M0.8
? for M < 1 and R? = M0.57

? for M > 1 in solar units) to

determine that in the direction of Kepler-223 stars between the Kepler magnitudes 17 and

18 have a radius distribution R = 0.92+0.12
−0.14R�. This suggests that a foreground star is

probably large enough that the planets of the Kepler-223 system would still need a massive

gaseous atmosphere to match the observed transit depths, again keeping the low-density

plnaet migration picture in tact. This analysis ignored evolved stars because evolved stars

exist for only a fraction of the lifetimes of MS stars, except stellar remnants. However, to

date, no planets have been found around white dwarfs (WDs), the only stellar remnant bright

enough to fit the observations. Additionally, a protoplanetary disk necessary for migration

into resonance is unlikely to be found around a WD. In summary, the most plausible option

is that the planets do indeed orbit star A, the brighter of the two KIC 10227020 objects

discussed throughout the paper, but the dynamics of the system are insensitive to this result
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regardless.

3.4.3 Eccentricity Priors

Initial DEMCMC runs had unrestricted eccentricities with a uniform prior on e cos(ω) and

e sin(ω) from 0 to 1. The chains in these DEMCMC runs explored low eccentricity parameter

space relatively rapidly, but had occasional excursions to high eccentricity (e & 0.3) param-

eter space. Some solutions with high eccentricity acceptably fit the observed data despite

planetary orbits that crossed the semi-major axis of one or more neighboring planets. The

Kepler data lone could not rule out such orbits since the observing window is much shorter

than the lifetime of the system, and the resonant behavior prevents immediate destruction

of the system by precluding close encounters on the time scale of the observations. Strong

dependencies between masses, eccentricities, and pericenter angles on all planets resulted in

slow parameter space exploration. The bulk of the volume of parameter space appeared to

remain near lower eccentricities and a modest decrease in goodness of fit had to be overcome

to reach high e space. But chains which reached high eccentricity lingered in a small area of

parameter space for several 105 generations despite the existence of equal or better-fitting

regions of parameter space, preventing DEMCMC convergence. If the total volume of high

eccentricity parameter space is much less than low eccentricity parameter space, it may be

ignored when quoting 68% confidence intervals as such a statistic does not take into account

the behavior of the tails. However, proving that the volume of high eccentricity parame-

ter space is small compared to low eccentricity requires convergence. Therefore we use a

physical argument that high eccentricities that lead to orbital crossings are unlikely to be

stable on Gyr timescales and remove that portion of parameter space by introducing a prior

that no planet may cross the semi-major axis of another planet. This eccentricity cut-off

was computed to be (eb,max, ec,max, ed,max, ee,max) = (0.212, 0.175, 0.212, 0.175), with the

symmetry of values due to the resonant chain structure of the periods. This limit is justified

in retrospect as long-lived solutions rarely have high eccentricities (see §3.5 and Fig. 3.10).

68



Figure 3.10: Kepler-223 Stability Eccentricity Dependence

The fraction of 500 random draws from the C1 posterior that survive for 107 years (solid
line) and 106 years (dashed line) as a function of mean eccentricity of the four planets in
bins of width 0.01. Dotted lines indicate the two e limits for the planets used in C1: 0.175
and 0.212 for planets c and e and planets b and d respectively. Numbers represent the total
number of draws in each eccentricity bin. The fraction of systems that last 107 years falls
sharply and is consistent with 0 well below the eccentricity cuts imposed by C1, implying
such cuts did not remove any physical areas of parameter space. The similarity of the 106

year distribution and 107 year distribution indicates that using either as a proxy for stable
solutions will yield comparable results.

With such a constraint (hereafter C1), the DEMCMC was found approach convergence in

a more computationally tenable timescale. We present posterior values subject to that re-

striction in Tables 3.2 and 3.3 with the caveat that it is, possible, if highly unlikely, that a

stable, high eccentricity solution exists outside our assumed prior.

3.4.4 DEMCMC Results and Validation

The DEMCMC runs were considered to have converged when there was no longer any visible

upward or downward trend in the parameters as a function of time and the distribution of

parameters defined by the chains were constant for ∼106 generations. Further, we compute
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the autocorrelation of individual chains and note that on average there are greater than 17

autocorrelation timescales (defined as the minimum number of samples at which there is a

zero in the autocorrelation function) in each chain, resulting in > 800 independent samples.

Since we are quoting only 1-σ uncertainties, this is sufficient statistical accuracy. In total

we run 48 chains 3.95 × 106 generations, discarding a burn-in of 3 × 105 generations. The

slowest converging parameters are the eccentricity parameters, which occasionally reach the

maximum values allowed by the eccentricity cuts and thus traverse essentially the whole

of the allowed parameter space. We also test convergence with the Brooks-Gelman-Rubin

R̂c (Gelman & Rubin, 1992; Brooks & Gelman, 1998) and R̂interval statistics (Brooks &

Gelman, 1998) and by graphically monitoring their components. Although we do not start

from a variety of different locations and our chains are not completely independent, checking

whether or not the spread of each individual chain is comparable to the spread of the chains

as a whole is still a useful test for non-convergence. Our more realistic estimate of parameter

space (C2 described below) involves taking the stable subset of such solutions, which lie in

the well-explored, low-eccentricity area of parameter space.

In principle, if one runs a DEMCMC for a long enough time, eventually all of the chains

will climb over any barriers in χ2 space to escape a local minimum to find the global minimum

and majority of the chains. As discussed, real world restrictions on computational resources

and time prevent this, and even with an eccentricity prior we are forced to remove chains

trapped in local minima by hand before performing our analysis. To do this, we simply plot a

histogram of the distribution ofχ2 values of the chains and discard those that are clearly in a

higher region than others (often by ∆χ2 ∼ 104). We then proceed with all of the parameter

sets from all remaining chains to determine parameter estimates. The uncertainties are

computed by reporting the median and nearest 68.27/2% of values on either side of the

median. We do not use the more common standard deviation as an approximation for

Gaussian error bars because our parameter distributions are clearly non-Gaussian and often

asymmetric. Table 3.3 lists the mean values and uncertainties found by the DEMCMC after
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Table 3.4: Kepler-223 Best-Fit Solutions

Planet
Planet
Parameters: b c d e
Period (d) 7.384720365879194 9.845453934132928 14.788902636701252 19.726218957815664
T0 (BJD-2454900) 801.516262774051825 800.146170501596430 804.851045349929109 817.521944355066694
e 0.105758145660053 0.172729064427036 0.037330052890247 0.051464531998599
i (◦) 90.701847866139545 90.301811036839879 92.189693102657941 92.056638725826986
Ω (◦) 0.0 0.0 0.0 0.0
ω (◦) 62.597372675420416 85.015828120049491 76.465729705828863 111.706814565803512
Mass (MJup) 0.022730704097050 0.017312231285438 0.019623186719198 0.009576406850388
Radius (Rp/R?) 0.015954404145479 0.018346434846992 0.027674878130791 0.024759859857039
Stellar M? (M�): 1.125 R?(R�): 1.744528317200141
Parameters: c1: 0.479330549583184 c2: 0.2

dilute: 0.11202

Planet
Parameters: b c d e
Period (d) 7.384583733215798 9.845639757204141 14.788880252356291 19.725687523818440
T0 (BJD-2454900) 801.513943095097261 800.144691508369419 804.849755312464254 817.519383441790524
e 0.061453702027857 0.112391047984129 0.026604678672708 0.060783217179960
i (◦) 91.105539095271382 91.085286013475226 91.966288309512123 91.806556478578258
Ω (◦) 0.0 0.0 0.0 0.0
ω (◦) 37.604238003695137 86.059011138583742 58.807213313926120 76.156009027159996
Mass (MJup) 0.020503806935496 0.019192688432573 0.025560722351934 0.015467248730564
Radius (Rp/R?) 0.015793288256059 0.018609959659302 0.028232411829371 0.024265426463497
Stellar M? (M�): 1.125 R?(R�): 1.683974231305496
Parameters: c1: 0.532243950638929 c2: 0.2

dilute: 0.11202

Best fit solutions found by DEMCMC under C1 (top) and C3 (bottom) constraints at
Tepoch = 800.0 (BJD-2454900) with χ2 = 746480 and 746489 respectively.

removing the burn in. The χ2 of the best fit is 746480 for 783724 data points, yielding a

reduced χ2 of 0.95 (see Table 3.4).

In order to check that our parameter estimates and uncertainties were reasonable, we ran

our fitting procedure on several mock data sets. To imitate the regime we were exploring,

we used one of the preliminary migration results with best guess planetary radii to create a

synthetic light curve at all data points in the Kepler-223 lightcurve. We masked out data

near transits in the actual light curve and found the standard deviation of the remaining

photometric points in both short and long cadence data. We used these values to add

Gaussian noise to our synthetic light curve. We then used the photodynamic DEMCMC to

attempt to find the injected planet parameters, but begin with a different solution found

by migration with eccentricities and masses differing by factors of 1-3 and small variations

in other parameters. This imitates our attempt to find the true Kepler-223 parameters by

starting at a solution found by migration that generally matches the observed TTVs. The
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parameters of the artificial injected data are quickly converged upon in the trial and after

pruning a few DEMCMC chains that became stuck in clear local χ2 minima, errors were

found to be consistent with expectations, except the stellar radius which is overestimated.

The injected model had i = 90.0◦, but the low S/N does not allow for precise characterization

of the transit shapes, meaning fitted inclinations varied by several degrees. To match the

observed transit duration, the fitted stellar radius correlated with inclination. Since the

impact parameter is positive definite, the mean b of the posterior is greater than zero, and

thus the fitted R? is found to be greater than the true value. Thus the stellar radius for

Kepler-223 found by DEMCMC may also be slightly overestimated, but the spectroscopic

density constraints make this effect quite small. Fixing one of the planets at 90◦ inclination

for the injected parameter DEMCMC allows for recovery of the true stellar radius, but for

the real system we do not know the inclination of a given planet a priori.

3.5 Planetary System Parameters and Stability

The density of the star is constrained by the photometric transit lengths and shapes, in ad-

dition to spectroscopic constraints on stellar mass and radius. The transit depths determine

the ratio of the planets’ radii to the star’s. Since the star is evolved and somewhat larger

than the Sun, the planet radii are ∼2.5-5.5 R⊕.

The TTV signal (Fig. 3.7) is sensitive to the strength of gravitational interactions among

the planets. Combined with transit shape information, this constrains eccentricities and

provides significant, non-zero mass detections for all bodies between 3 and 9 M⊕. The

planets are thus a large fraction of Neptune in size, but a factor of a few lower than Neptune

in mass. Such planets require non-negligible gas in their composition to reach the observed

radii, particularly the lowest mass planet, e (see, e.g., Lopez & Fortney, 2014). It is notable

that the density of the planets decreases with semi-major axis, consistent with scenarios

involving atmospheric loss due to stellar irradiation or formation in increasingly gas-poor

areas nearer the star.
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The planets possess low to moderate (. 0.15) eccentricity. A planet’s eccentricity is

only loosely negatively correlated with mass from the TTVs in the data, so small changes in

allowed eccentricity will have only a small effect on the posterior mass estimate. Additionally,

since higher eccentricities do loosely correspond to lower masses, removing the maximum

eccentricity constraints would have the effect of decreasing density of the planets, i.e., making

them slightly more gaseous. Though the eccentricities are comparable to those in the Solar

System, they are slightly higher than other compact systems of sub-Neptunes such as Kepler-

11 (Lissauer et al., 2011a). The eccentricities may be excited and stabilized by the resonances,

a property unique to Kepler-223. Periods near a 3:4:6:8 chain are maintained in all the stable,

data-fitting solutions. Even in solutions where resonance is observed to occur in both Laplace

angles for millions of years, the planets’ periods are not instantaneously precisely integer

multiples of each other. Because of the planet-planet interactions, the periods oscillate and

therefore so do the period ratios, but remain close to the nominal resonant values. The

range of period ratios implied by the observed TTVs are typical for the range of period

ratios observed in a resonant system (Fig. 3.4). On the other hand, long-lived (&10Myr)

solutions which experience long epochs of Laplace angle circulation generally have a wider

range of period ratios on the timescale of the observations. This suggests that the system is

currently in a state of libration, although it can not be definitively ruled out that the libration

is temporary and periods of Laplace angle circulation may have occurred previously or may

occur in the future for this system (Ketchum et al., 2013).

Although we could find parameters which matched the data well over the observing

window, we want to ensure that such solutions are physical by considering their long-term

stability. We expect that, even with non-crossing orbits, tightly-packed systems with higher

eccentricities are likely to be unstable. To assess the stability of the solutions in the posterior

distribution, we selected 500 random draws from the posterior parameters sets obtained by

the DEMCMC. We numerically integrated each of these solutions for 107 years, more than

108 orbits of the outermost planet. We use the MERCURY symplectic integrator (Chambers
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& Migliorini, 1997) and stop integration if a close encounter between any two bodies occurs.

40% of systems lasted the entire 107 year integration. We also explore whether stability is

correlated with eccentricity. Since the eccentricities of the planets are correlated, we reduce

the eccentricity parameters for the planets into a single dimension: the mean eccentricity

of the planets. It is notable that although 27% of the draws from parameter space had a

mean eccentricity > 0.1, < 1% of those solutions remained stable for 107 years, compared

to the ∼ 80% which remained stable with mean e < 0.06. Thus we may broadly say higher

eccentricities are correlated with instability in this resonant configuration and thus our orbit-

crossing eccentricity cuts are unlikely to have removed much stable area of parameter space

(see Fig. 3.10). We also note that after 106 years the general structure of the stability region

is well defined, with most high eccentricity solutions going unstable before that (Fig. 3.10).

Using that fact, we draw 5,000 parameter sets at random from the posterior of DEMCMC

and run them for 106 years. We use the 2,008 stable ones to define the “long-lived” posterior

constraint C2 in Table 3.2 and Table 3.3. We recognize that such a cut potentially allows

many solutions which go unstable on a timescale greater than 106 years but less than the

age of the system (few billion years), but testing all solutions for billions of years is not

computationally feasible. Therefore these constraints are permissive, allowing a slightly

larger area of parameter space than may be stable (particularly at high eccentricity) but we

do not expect this to change any of our conclusions.

In our photodynamic code, we do not include the effects of general relativity (GR) because

its precession effects are well below the observational noise level. GR precession is known

to affect long-term secular evolution of planetary systems (Laskar & Gastineau, 2009), po-

tentially altering the stability of systems compared to a purely Newtonian analysis. To test

if neglecting GR for Kepler-223 is a reasonable approximation in our Myr integrations, we

modify MERCURY by introducing a simple potential which approximates GR precession
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suitable for a planetary system dominated by the mass of the central star:

UGR = −3

(
GM?

c r

)2

, (3.13)

where c is the speed of light and r is the distance from a planet to the star (Lissauer et al.,

2011b). We randomly draw 100 parameter sets from the posterior C1 and run them with

this GR modification and without it. We find that there is no change in stability for any

of the 100 draws and neglecting GR is justified. This is likely because the planet-planet

interactions dominate the precession effects of GR because of their strong interactions due

resonance.

3.5.1 DEMCMC Stability Heuristic

In order to further explore parameter space which was more likely to be stable, we ran an

additional DEMCMC with a constraint that encouraged (but doesn’t guarantee) stability.

We first considered using the Mean Exponential Growth Number (MEGNO), which is a proxy

of the Lyapunov Exponent and may predict future instability of the system (Goździewski

et al., 2001). Two problems exist with such an indicator. The first is that near orbital

resonances regions of ‘stable chaos’ exist in which some stability indicators, such as the

MEGNO, may indicate instability, whereas other indicators, such as Frequency Map Analysis

in frequency space, suggest long-term stability may remain (Mahajan & Wu, 2014). This

would cause the MEGNO to be an overly strict constraint. More concerning is the fact

that the MEGNO number may stay quite low (< 2) and be well-behaved for fairly long

integration times & 105 days before experiencing an abrupt upward trend as the system

begins to go unstable. Integrating the divergence of paths on a timescale long enough to

constrain stability for > 106 years is untenable at each step in DEMCMC, so we pursued an

alternative option.

Kepler-223 is a system of resonant planets with what appears to be two librating Laplace
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Figure 3.11: Migration Model Libration Angles
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angles between the inner 3 and outer 3 planets, as discussed earlier. Migration simulations

suggest that very large Laplace angle libration amplitude is unlikely in stable solutions (see

Fig. 3.11 for a typical resonant libration). Further, in stable solutions in the C2 posterior, we

note long-lived Laplace angle libration is likely to occur (occasionally stably for > 105yr).

Numerical integrations revealed that the characteristic pericenter precession secular period

of the system is ∼17 years, largely independent of the exact mass values chosen for the

system. In order to a stable set of the system’s parameters while balancing computational

efficiency, at every step in the DEMCMC we integrate the parameter initial conditions for

100 years (&5 secular cycles) and penalize Laplace angle oscillation amplitudes that grew

too large, in addition to fitting the Kepler photometry.

Our Laplace angle criteria penalize both large libration amplitudes and the speed at

which the amplitudes grow. If the total variation in φ1 or φ2 exceeds a cutoff value K1

over the integration time (Tmax in years), then the time at which that occurred is recorded

(Trunaway). A value −1 + (Trunaway/Tmax)−2 is added to the χ2. All χ2 values were also

penalized by an amount (∆φi − Vi)
2 for each ∆φi > Vi and 0 if ∆φi < Vi for angles Vi
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(i = 1, 2) and with ∆φ = φmax − φmin. This way if the Laplace angles were well enough

behaved not to run away, but either or both still grew in amplitude above specified values

for each angle V1 and V2, then a χ2 penalty was assigned and the parameter set was less

likely to be accepted. We impose no direct eccentricity constraint. We report a version with

(Tmax, K1, V1, V2) = (100yr, 170◦, 30◦, 50◦), hereafter C3, where the numbers are roughly

based on the results of migration and DEMCMC results which had long-term libration.

This methodology of penalizing χ2 based on Laplace angles in a short time is essentially

a method of requiring some of short term stability diagnostic to be passed for the chain’s

proposed parameters to be accepted. It should be emphasized that this method neither guar-

antees to reject all unstable systems, as they may pass this test, nor include all stable ones,

as some Gyr-stable systems may fail. It guides the chains to stable solutions, primarily by

ensuring eccentricities do not grow excessively large so that close encounters in the immedi-

ate future upset the Laplace resonances. The DEMCMC posterior constrained by the above

Laplace angle prescription prefers smaller values of eccentricity than the posterior with no

stability indicator, even though there is no eccentricity cutoff imposed on the DEMCMC

with the Laplace angle constraint.

We initialize the DEMCMC from the same stable solution found from migration as before,

but with this additional constraint. We run for 4.25×105 generations and throw away a 5×

104 generation burn-in. This is significantly shorter than the C1 runtime since a simpler and

more compact region of parameter space could be explored with this constraint. Each chain

on average experiences > 25 autocorrelation timescales, and we ensure for all parameters

that R̂interval ≤ 1.01, which is suitable for our non-Gaussian distributions. Running a

similar stability check as before by choosing 300 chains from the posterior distribution then

resulted in 100% of the parameter sets lasting 107 years. Posteriors of all parameters are

reported in Table 3.3. We conservatively report values from C2 in Table 3.2 of the main

text to avoid removing any non-librating, physical (stable) solutions that fit the data, but

suggest C3 parameters more closely reflect the true planet values due to the likelihood that
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the planets are stable and in a long-lived resonance.

3.6 Resonance

In both for parameters taken from the explicitly libration-constrained DEMCMC posterior

(C3) and that with only the eccentricity constraint (C1), some libration of the Laplace

angles is observed in all stable solutions. In these stable solutions the inner Laplace angle

(φ1) generally shows oscillations around 180◦ with amplitudes . 40◦ on ∼ 105year intervals.

Occasionally the Laplace angle circulates, then begins oscillation around a different value, or

‘nodding’ (Ketchum et al., 2013). Such chaos in multi-resonant systems does not preclude

stability and is not unique to this system (Batygin et al., 2015). The outer Laplace angle (φ2)

often switches modes with lengthy periods of circulation between, even in stable solutions

(see Fig. 3.12), although it also occasionally maintains ∼ 105 year oscillations. Such mode

switching does not preclude the system from being a true resonance, but rather indicates

that the best fit solution lies close to a separatrix.

For stable systems, two body resonances are observed to occur between adjacent pairs

of bodies and for the 2:1 resonances. Drawing a set of planet parameters from the posterior

found by the C3 DEMCMC which shows both φ1 and φ2 oscillations for 107 years (see

Fig. 3.13), we investigate the 2-body angle behavior. We define the resonance angles φbc,in =

3λb−4λc+$b, φbc,out = 3λb−4λc+$c, φcd,in = 2λc−3λd+$c, φcd,out = 2λc−3λd+$d,

φde,in = 3λd − 4λe + $d, φde,out = 3λd − 4λe + $e, φbd = λb − 2λc + $b, and φce =

λc − 2λe + $c. Their libration centers are approximately -3, 179, 16, 155, 24, 177, 7, and

-50 degrees respectively.

3.7 Tidal Dissipation

Whereas Kepler-223 is consistent with being in resonance, most Kepler systems near res-

onances lie slightly outside of a true resonance (Fabrycky et al., 2014). Although several
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Figure 3.12: Chaotic Longterm Laplace Angle Example

The two Laplace angles for a 107 year stable sample drawn from the C3 DECMCMC pos-
terior. The inner Laplace angle, φ1, librates near the observed value initially but quickly
switches to other libration centers. The center changes chaotically among 3 values. Some
solutions librate around the observed angle for much longer time periods (see, e.g., Fig. 3.13),
but nodding is not uncommon. Despite the constraint on the outer Laplace angle, φ2, there
are long periods of circulation with intermittent libration.
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Figure 3.13: Periodic Longterm Laplace Angle Example

The librating Laplace angles, φ1 (red) and φ2 (blue), for a 107 year stable solution found
in the C3 DEMCMC posterior. Laplace angles librate over the entire 107 years. The period
distribution in Fig. 3.4 is taken from this model.
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dissipation mechanisms exist to move planets off resonances, some suggest the Kepler data

implies that the surplus of periods exterior to resonances is a signature of tidal dissipation

disrupting resonant pairs, since the pile-up outside of resonance is strongly dependent on

planetary semi-major axis (Batygin & Morbidelli, 2013; Delisle & Laskar, 2014). Kepler-80

is a system with 4 confirmed planets that is similar to Kepler-223, as it also demonstrates a

series of near-resonant pairs (Xie, 2013). However, the planets of the Kepler-80 system are

closer to its host star than Kepler-223’s, and each resonant pair sits noticeably wide of the

resonance. We therefore suggest that Kepler-80 may have started in a resonant chain, but

eventually lost its resonance from tidal dissipation that spread throughout the system due

to the resonant couplings of the planet (as subsequently studied by MacDonald et al., 2016).

If otherwise stable, Kepler-223 may be destined for the same fate in the distant future. The

fact that tidal effects on resonance is not seen can be used to constrain the tidal dissipation

parameter, Q, of the planets.

Although there is very large uncertainty in tidal dissipation rates, one may write the tidal

circularization timescale as a result of tides raised on the planet by the star, te as

te =
4

63

mpa
13/2
p

(GM3
? )1/2R5

p

Q′p yr, (3.14)

with Mp, Rp, and ap the planet’s mass, radius and semi-major axis respectively, and Q′p

a dissipation parameter =
3Qp
2k2

(Goldreich & Soter, 1966). Qp is the specific dissipation

function of the planet and k2 is the dimensionless Love number representing the ratio of

additional potential produced by the redistribution of mass due to tides to the initial de-

forming potential. In the solar system, Q′p is approximately bounded by ∼ [10, 500] for rocky

bodies, and ∼ [104, 106] for ice and gas giants (Goldreich & Soter, 1966; Peale, 1999). In the

case of Kepler-223, eccentricity damping because of tides raised on the star by the planet

(Goldreich & Soter, 1966) is many orders of magnitude less strong and therefore is neglected

here. Using characteristic masses of the star (M? = 1.125M�) and planet b (Mb = 7.4M⊕)
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from our fits, we find that the tidal dissipation time of planet b is te,b ≈ 3.7× 105 Q′p years.

If the Q′p values of Solar System objects are similar to extrasolar systems and the innermost

planet of Kepler-223 were rocky that planet would have te ≈ 106 to 108 year, while if it were

gaseous the timescale would be & 109 years.

To compute the approximate time that it would take to move the inner planet away from

resonance, we follow Lee et al. (2013). Their prescription is for 2 planets in resonance, but

we apply it to the resonance of the inner two planets, b and c, of Kepler-223, expecting a

similar result. Interaction between all of the planets would allow tidal dissipation to push

all of the planets away from resonance, not just the inner two. To alter the period ratio

of planets b and c a distance δ away from resonance requires time tδ = δ3te/Dj , for the

j : (j − 1) resonance, where

Dj =
9j2

(j − 1)3

(
M1

M?

)2

β(1 + β)C2
1 . (3.15)

Here β = (M2/M1)(j/(j − 1))1/3, C1 is a numerical constant depending on the particular

resonance (C1 = −1.190 for a 2:1 resonance, C1 = −2.025 for a 3:2 resonance, and C1 =

−2.840 for a 4:3 resonance), and M1 and M2 are the masses of the first and second planets

respectively.

Again using characteristic masses of the star (M? = 1.125M�), planet b (Mb = 7.4M⊕),

and planet c (Mc = 5.1M⊕), we compute for the 4 : 3 resonance of the inner two planets

D4 = 2.2× 10−8. This means the amount of time it takes for planet b to move a distance δ

away from its resonant period is approximately 1.6×1013 Q′pδ
3yr. Based on the distribution

of periods in Fig 3.4, we would expect to confidently notice that the planets are not in

resonance if the shift in period ratios is on order 3/1000. Spectroscopic constraints put

the age at 6.4+1.9
−1.7 Gyr, but with fairly large tails (see §3.1 and Fig. 3.2). There is no star

spot signal for Kepler-223, and thus no age estimate can be made from gyrochronology, but

the lack of spots implies that the star is not extremely young. Therefore we conservatively
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expect that the time in which any shift took place to be at least 109 years assuming the

system’s current state is about as old as the star. Solving for Q′p, we see that Q′p & 2× 103,

which places the tidal dissipation of Kepler-223 b consistent with a gaseous planet, but rules

out the low Q′p observed in rocky Solar System bodies. We repeat this analysis considering

the 2:1 resonance between Kepler-223 d and Kepler-223 b, and find a similar, but slightly

higher, lower limit of Q′p & 6 × 103. Thus if this interaction dominates over the closer 4:3

resonance, our results are essentially unchanged. We conclude that the current resonance,

combined with the spectroscopically determined stellar age, rule out Q . 1000, consistent

with the planets being gaseous mini-Neptunes rather than rocky (Peale, 1999) – matching

the results determined photodynamically. In order to place additional constraints on the

inner planet’s composition, this result can be expanded to multi-layer planetary models with

a solid or astrophysical ice core and a gaseous envelope (Remus et al., 2012; Storch & Lai,

2015). We leave as future work a complete, self-consistent tidal analysis of the system in

which all planets are simultaneously experiencing dissipation and interacting rather than

considering pairs of planets one at a time.

3.8 Implications for Planet Formation

Because (i) the orbital parameters of Kepler-223 are consistent with it being in a resonant

state, (ii) solutions that are stable for 100 Myr exist within the parameter posteriors, and (iii)

resonance greatly helps a system this compact to remain stable, we conclude that the system

is probably a true resonant chain. Planetary migration in a disk has been extensively studied

and often leads to resonant chains of planets (Melita & Woolfson, 1996; Lee & Peale, 2002;

Terquem & Papaloizou, 2007; Cresswell & Nelson, 2006). We find that four planets starting

well wide of resonance migrate inwards and converge to the 3:4:6:8 chain of periods that

we observe with certain choices of simulation parameters (Fig. 3.3). Thus the Kepler-223

system is a plausible outcome of disk migration, but the full set of disk migration parameters

and initial conditions that would lead to this system remains an open question.
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In a migration scenario, systems trapped in resonances for which the orbital semi-major

axes are small (less than about 0.5 au) can potentially be used to constrain the rate of disk

photoevaporation and the lifetimes of disks, because a gaseous disk must exist in the 0.02–0.2

au range long enough for planets of moderate mass to migrate. It also provides constraints

on turbulence and magnetic fields in the disk (see §7.2 and, e.g., Adams et al., 2008), and the

structure of the disk that causes the planets to stop migrating (Masset et al., 2006; Liu et al.,

2017). An alternative to gas-disk migration for trapping planets into resonances is migration

via planetesimal scattering (Fernandez & Ip, 1984; Raymond et al., 2009; Minton & Levi-

son, 2014). It is possible for planetesimal scattering to migrate two planets in a convergent

manner, establishing a resonance. However, this convergent migration would excite the ec-

centricities of the planetesimal population, which would probably prevent additional planets

from joining the resonance (Ormel et al., 2012; Chatterjee & Ford, 2015). The presence of a

large volatile later (greater than about 10% H/He by mass; Lopez & Fortney, 2014) layer on

the outer planets also suggests that the planets formed in the presence of a gas-containing

disk at cool temperatures, further suggesting large-scale migration (Inamdar & Schlichting,

2015; Lee & Chiang, 2016).

Several other exoplanet systems have (GJ 876; Nelson et al., 2016), or are speculated to

have (HR 8799; Goździewski & Migaszewski, 2014), resonant chains, but these are composed

of planets that are substantially more massive and have much greater orbital distances; hence,

these observations may not be relevant to the formation of systems of close-in sub-Neptunes.

Several Kepler systems are probably in a true resonance (as opposed to near resonance; for

example, the 6:5 system Kepler-50 and the 5:4:3 system Kepler-60; Goździewski et al., 2016);

however, owing to the large number of known multi-planet systems, even if the orbital-period

ratios of planets are essentially random, consistent with in situ, giant-impact formation, we

would expect to observe some systems whose period ratios were near enough to integer

values that they entered true dynamical resonances. By contrast, the precise conditions for

the four-planet resonant chain of Kepler-223 cannot be accounted for by random selection
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of period ratios (Fabrycky et al., 2014), and the system is probably too fragile to have been

assembled by giant impacts (Raymond et al., 2008).

The dynamical fragility of Kepler-223 suggests that resonant chains were precursors to

some of the more common, non-resonant systems and that planet–planet scattering post-

formation is probably an important step in creating the observed period distribution (Pu &

Wu, 2015). A model of the formation of the Solar System that has parallels with observed

exoplanets involves the four giant planets entering a series of resonances, reaching their

current configuration only after destabilization hundreds of millions of years later (Levison

et al., 2011). Numerical simulations for Kepler-223 indicate that only a small mass of orbit-

crossing planetesimals is needed to move Kepler-223 off resonance (Moore et al., 2013), but

that it could escape this fate if intrinsic differences in protoplanetary disks resulted in the

lack of such a planetesimal population. In fact, various mechanisms including disk dissipation

(Cossou et al., 2014), planet–planet scattering (Pu & Wu, 2015), tidal dissipation (Terquem

& Papaloizou, 2007) and planetesimal scattering (Chatterjee & Ford, 2015) could break

migration-induced resonances in the majority of exoplanet systems. It has been suggested

that some multi- resonant systems (for example, Kepler-80, which has planetary pairs near,

but not in, two-body resonances) might have undergone resonant disruption as a result of

tidal dissipation, which would explain most of the period ratios that are slightly greater than

resonant values in Kepler data (Batygin & Morbidelli, 2013; Delisle & Laskar, 2014). It is

possible that the Kepler-223 resonance has survived as a result of its relatively more distant

innermost planet. Overall, we suggest that substantial migration of planets, including epochs

of resonance that are typically only temporary, rather than in situ formation, leads to the

final, observed planetary orbits for many close-in sub-Neptune systems.

3.9 Future Observations

Further measurements could much more tightly constrain the parameters of Kepler-223.

Since less than one libration cycle has been observed so far, uncertainties in transit times
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grow rapidly with time (see Fig. 3.14). For reference we predict future transit times and

uncertainties by using the 152 107-year-stable solutions from the C1 posterior, integrating

them forward for several years, and averaging the resulting predicted transit times from the

models. We report transit times quarterly for 10 years including over the Kepler observing

window in Tables 3.5, 3.6, 3.7, and 3.8.
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Figure 3.14: Transit Timing Variation Future Uncertainties

Transit timing variations over a 10 year period beginning with Kepler ’s first observations for
20 parameter sets drawn randomly from the C1 DEMCMC which are stable for 107 years.
All solutions are very similar during the epoch of data collection (to the left of the vertical
line), but diverge quickly afterwards indicating the variety of system architectures consistent
with the data. These are a subset of the draws used to predict future transit times and
errors found in Tables 3.5 to 3.8.
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Table 3.5: Kepler-223 b Transit Times

Transit Number Time (BJD-2454900) 1-Sigma Uncertainty (d)
-100 63.0887 0.0090
-87 159.1056 0.0082
-75 247.7220 0.0086
-63 336.3269 0.0080
-50 432.3078 0.0071
-38 520.9068 0.0072
-25 616.8956 0.0075
-13 705.5094 0.0064
-1 794.1301 0.0048
0 801.5152 0.0048
13 897.5250 0.0063
25 986.1462 0.0084
37 1074.7620 0.0087
50 1170.7562 0.0073
62 1259.3647 0.0067
74 1347.9759 0.0078
87 1443.9784 0.0097
99 1532.6046 0.0126
112 1628.6229 0.0176
124 1717.2574 0.0234
136 1805.8886 0.0294
149 1901.8986 0.0369
161 1990.5140 0.0449
173 2079.1234 0.0541
186 2175.1148 0.0647
198 2263.7253 0.0750
210 2352.3415 0.0863
223 2448.3486 0.1002
235 2536.9742 0.1144
248 2632.9840 0.1304
260 2721.6049 0.1450
272 2810.2207 0.1584
285 2906.2177 0.1702
297 2994.8290 0.1777
309 3083.4439 0.1815
322 3179.4500 0.1823
334 3268.0776 0.1810
346 3356.7097 0.1789
359 3452.7288 0.1766
371 3541.3596 0.1751
384 3637.3711 0.1747
396 3725.9939 0.1752
408 3814.6150 0.1760
421 3910.6233 0.1768
433 3999.2493 0.1778
445 4087.8797 0.1805
458 4183.8997 0.1865
470 4272.5348 0.1960
482 4361.1688 0.2090
495 4457.1861 0.2259
507 4545.8143 0.2423
520 4641.8253 0.2587
532 4730.4507 0.2714
544 4819.0767 0.2816
557 4915.0896 0.2911
569 5003.7167 0.2995
581 5092.3423 0.3090
594 5188.3495 0.3209

Transit times and uncertainties for Kepler-223 b. Transits times and errors are estimated from
integrations of the randomly selected 107year-stable chains from the C1 posterior. Transit times
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Table 3.5 Continued: Kepler-223 b Transit Times
are listed quarterly to conserve space (the nearest transit every 3 months) and extend for 10 years
past the end of the Kepler mission. The transits are indexed from 0 at BJD 2455700, the data
epoch used in our fits.
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Table 3.6: Kepler-223 c Transit Times

Transit Number Time (BJD-2454900) 1-Sigma Uncertainty (d)
-75 61.5205 0.0108
-65 159.9930 0.0087
-56 248.6329 0.0102
-47 337.2847 0.0103
-38 425.9405 0.0083
-28 524.4408 0.0064
-19 613.0752 0.0066
-10 701.6938 0.0062
-1 790.3012 0.0048
0 800.1461 0.0047
10 898.5969 0.0047
19 987.2140 0.0058
28 1075.8474 0.0057
38 1174.3478 0.0055
47 1263.0059 0.0062
56 1351.6619 0.0065
65 1440.3070 0.0065
75 1538.7846 0.0103
84 1627.4012 0.0160
93 1716.0133 0.0205
102 1804.6307 0.0231
112 1903.1082 0.0265
121 1991.7538 0.0319
130 2080.4096 0.0386
140 2178.9176 0.0463
149 2267.5663 0.0545
158 2356.2017 0.0659
167 2444.8241 0.0792
177 2543.2857 0.0922
186 2631.9022 0.1007
195 2720.5283 0.1064
204 2809.1678 0.1111
214 2907.6683 0.1162
223 2996.3251 0.1202
232 3084.9789 0.1241
242 3183.4735 0.1293
251 3272.1091 0.1338
260 3360.7395 0.1358
269 3449.3713 0.1334
279 3547.8608 0.1260
288 3636.5121 0.1183
297 3725.1732 0.1116
306 3813.8398 0.1060
316 3912.3571 0.1008
325 4001.0181 0.0975
334 4089.6725 0.0963
344 4188.1723 0.0972
353 4276.8218 0.0981
362 4365.4757 0.0977
371 4454.1364 0.0963
381 4552.6567 0.0950
390 4641.3287 0.0954
399 4730.0003 0.0976
408 4818.6680 0.1014
418 4917.1799 0.1073
427 5005.8348 0.1139
436 5094.4859 0.1206
445 5183.1356 0.1264

Predicted TTVs as in Table 3.5, but for planet c.
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Table 3.7: Kepler-223 d Transit Times

Transit Number Time (BJD-2454900) 1-Sigma Uncertainty (d)
-50 65.4447 0.0072
-44 154.1447 0.0047
-38 242.8598 0.0044
-32 331.5817 0.0042
-26 420.3152 0.0037
-19 523.8387 0.0034
-13 612.5824 0.0032
-7 701.3208 0.0028
-1 790.0609 0.0024
0 804.8496 0.0023
6 893.5815 0.0022
13 997.0849 0.0023
19 1085.7975 0.0023
25 1174.4962 0.0027
31 1263.1929 0.0032
37 1351.8803 0.0041
43 1440.5709 0.0048
50 1544.0418 0.0067
56 1632.7313 0.0111
62 1721.4245 0.0188
68 1810.1174 0.0302
74 1898.8123 0.0455
80 1987.5064 0.0647
87 2090.9840 0.0922
93 2179.6785 0.1188
99 2268.3760 0.1489
105 2357.0723 0.1795
111 2445.7696 0.2115
118 2549.2464 0.2471
124 2637.9368 0.2750
130 2726.6220 0.2993
136 2815.3015 0.3205
142 2903.9760 0.3371
148 2992.6468 0.3513
155 3096.0946 0.3626
161 3184.7651 0.3687
167 3273.4360 0.3741
173 3362.1111 0.3749
179 3450.7875 0.3756
185 3539.4691 0.3729
192 3642.9321 0.3726
198 3731.6211 0.3709
204 3820.3123 0.3733
210 3909.0089 0.3759
216 3997.7067 0.3824
223 4101.1912 0.3894
229 4189.8933 0.3953
235 4278.5902 0.4036
241 4367.2873 0.4094
247 4455.9766 0.4173
253 4544.6648 0.4232
260 4648.1247 0.4338
266 4736.8036 0.4412
272 4825.4789 0.4512
278 4914.1553 0.4604
284 5002.8312 0.4712
291 5106.2912 0.4814
297 5194.9768 0.4888

Predicted TTVs as in Table 3.5, but for planet d.
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Table 3.8: Kepler-223 e Transit Times

Transit Number Time (BJD-2454900) 1-Sigma Uncertainty (d)
-38 68.0961 0.0084
-34 146.9947 0.0052
-29 245.6060 0.0045
-25 324.4947 0.0051
-20 423.0960 0.0054
-15 521.7036 0.0053
-11 600.5790 0.0048
-6 699.1903 0.0046
-1 797.7976 0.0051
0 817.5244 0.0051
4 896.4141 0.0058
9 995.0482 0.0062
13 1073.9507 0.0068
18 1172.5999 0.0072
23 1271.2455 0.0076
27 1350.1725 0.0074
32 1448.8244 0.0092
37 1547.4801 0.0182
41 1626.4056 0.0318
46 1725.0591 0.0566
51 1823.7144 0.0904
55 1902.6306 0.1256
60 2001.2820 0.1764
64 2080.1989 0.2253
69 2178.8518 0.2901
74 2277.5047 0.3626
78 2356.4352 0.4209
83 2455.1002 0.4967
88 2553.7756 0.5692
92 2632.7191 0.6235
97 2731.4064 0.6847
101 2810.3580 0.7279
106 2909.0518 0.7709
111 3007.7434 0.8016
115 3086.6969 0.8204
120 3185.3800 0.8305
125 3284.0570 0.8349
129 3362.9868 0.8261
134 3461.6404 0.8156
138 3540.5478 0.7970
143 3639.1727 0.7767
148 3737.7784 0.7475
152 3816.6534 0.7261
157 3915.2343 0.6929
162 4013.8034 0.6596
166 4092.6588 0.6342
171 4191.2188 0.6010
175 4270.0718 0.5771
180 4368.6341 0.5480
185 4467.2088 0.5270
189 4546.0679 0.5101
194 4644.6591 0.5010
199 4743.2570 0.4967
203 4822.1446 0.5026
208 4920.7617 0.5152
213 5019.3859 0.5379
217 5098.2951 0.5610
222 5196.9309 0.5959

Predicted TTVs as in Table 3.5, but for planet e.
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CHAPTER 4

KEPLER-108

The vast majority of well studied giant-planet systems, including the Solar System, are nearly

coplanar which implies dissipation within a primordial gas disk. However, intrinsic insta-

bility may lead to planet–planet scattering, which often produces non-coplanar, eccentric

orbits. Planet scattering theories have been developed to explain observed high eccentric-

ity systems and also hot Jupiters; thus far their predictions for mutual inclination (I) have

barely been tested. Here we characterize a highly mutually-inclined (I = 24+11
−8 degrees),

moderately eccentric (e & 0.1) giant planet system: Kepler-108. This system consists of two

approximately Saturn-mass planets with periods of approximately 49 and 190 days around a

star with a wide (∼ 300AU) binary companion in an orbital configuration inconsistent with

a purely disk migration origin.

4.1 Introduction

NASA’s Kepler mission has discovered thousands of planets and planet candidates (Coughlin

et al., 2016; Morton et al., 2016). The periods, phases, and radii (relative to their host stars)

of transiting planets are straightforwardly measured (e.g. Winn, 2010). Transits may only be

seen if the orbital plane is nearly edge-on to the observer (i.e., the inclination, i ≈ 90◦). The

impact parameter, the distance of closest projected approach between planet and star, can

often be determined by the shape of the transit ingress/egress (Seager & Mallén-Ornelas,

2003)1.

Of the numerous candidates identified, nearly half are found in multiple-transiting planet

systems (Burke et al., 2014). The Kepler data set also has over 200 cases of planets with

1. However, it is usually difficult to distinguish an inclination of just above 90◦ from just below 90◦ (both
nearly edge-on orbits) with the same impact parameters. In some many body systems it is possible to
distinguish these through either dynamical interactions (Huber et al., 2013b) or overlapping mutual transits
(Masuda et al., 2013).
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time-varying orbital periods (Holczer et al., 2016). These variations are usually attributed to

interplanetary gravitational perturbations. These perturbations lead to measurable transit

timing variation (TTV) amplitudes for very massive planets, or if planets are close to low-

order resonances (Agol et al., 2005), which many pairs of super-Earths or Neptunes are

(Fabrycky et al., 2014). Measurements of TTVs can put tight constraints on planet masses

and eccentricities (Nesvorný & Morbidelli, 2008).

The absolute nodal angle of bodies on the sky is undetermined by photometry and only

relative angles can be constrained due to dynamical interactions (or, in rare cases, mutual

transits, e.g., Hirano et al., 2012). Mutual inclinations can be measured by the change (or lack

thereof) in transit duration and depth as a function of time due to orbital plane precession

(Miralda-Escudé, 2002; Sanchis-Ojeda et al., 2012; Carter et al., 2012). Planetary orbits that

are highly misaligned will cause rapid precession, causing the chord of the transit to move

up or down the face of the star. As a result, the chord will lengthen or shrink as it passes

through different projected widths of the star, changing the transit duration. Rapid apse

precession with very high eccentricities may also cause transit duration and depth changes

(Pál & Kocsis, 2008). Combining TTVs, ingress/egress information, and duration/depth

changes gives full 3D information on the system, up to a rotation in the plane of the sky.

The vast majority of observed exoplanet systems are statistically consistent with having

low (. 5◦) mutual inclinations (Fabrycky et al., 2014). Only a few giant–planet systems

have individually measured mutual inclinations, and these are composed of nearly-coplanar,

low eccentricity, often resonant orbits (e.g., GJ 876 (Rivera et al., 2010; Nelson et al., 2016),

Kepler-30 (Sanchis-Ojeda et al., 2012), KOI-872 (Nesvorný et al., 2012), Kepler-56 (Huber

et al., 2013b), and Kepler-119 (Almenara et al., 2015)), consistent with a disk migration

origin (Goldreich & Tremaine, 1980; Lee & Peale, 2002). The giant planets of our own

solar system are also nearly coplanar and potentially experienced disk migration (Tsiganis

et al., 2005; Morbidelli et al., 2007). Stochastic behavior due to many-body interactions in

the form of resonance overlap or secular chaos may disrupt the architectures of planetary
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systems after formation and dissipation of the natal disk (e.g. Wisdom, 1980; Duncan et al.,

1989; Chambers et al., 1996; Lin & Ida, 1997; Lithwick & Wu, 2011; Davies et al., 2013;

Lithwick & Wu, 2014). This process can lead to highly eccentric and mutually-inclined

orbits (e.g. Lin & Ida, 1997; Chatterjee et al., 2008; Laskar & Gastineau, 2009), and may be

the cause of some of the observed hot Jupiters (Wu & Lithwick, 2011; Lithwick & Wu, 2014).

Therefore theory suggests that we may expect to see the signatures of instability and planet–

planet scattering in giant planet systems (e.g., Chatterjee et al., 2008). However, only two

systems are observed to have significant, measured mutual inclinations to date2: Kepler-419

b and c are observed to have a marginally detected mutual inclination of 9◦+8
−6 from TTV and

transit duration variation (TDV) constraints, which is very modest considering the planets’

high eccentricities (Dawson et al., 2014), and Upsilon Andromeda c and d are reported to

have a mutual inclination of ∼ 30◦, based on astrometric measurements using the Hubble

Space Telescope fine guidance sensor (McArthur et al., 2010).

Here we present a photodynamic analysis of Kepler-108 (also known as KOI-119 and KIC

9471974) (Rowe et al., 2014), a system of two giant planets (Kepler-108b and Kepler-108c,

the inner and outer planets respectively) with a large mutual inclination detected through

transit duration and depth changes over the Kepler observing window. In §4.2, we describe

our methods for identifying the system as one of interest and analysis of its parameters.

In §4.3-4.5, we summarize the results of the analysis, present the system parameters, and

discuss what further constraints can be made on the system. We conclude in §4.6 with a

discussion of the system’s dynamics and a general outlook.

2. There are several known circumbinary systems where the planet is slightly mutually inclined to the
binaries and exhibit spectacular precession effects (e.g. Kostov et al., 2014; Welsh et al., 2015), but all
currently known systems have low (. 5◦) mutual inclinations (Doyle et al., 2011; Welsh et al., 2012; Orosz
et al., 2012b,a; Schwamb et al., 2013; Kostov et al., 2014; Welsh et al., 2015). Additionally, as such systems
are likely to have vastly different histories, here we consider only systems with a single star and multiple
planets.
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4.2 Methods

4.2.1 Identification of the System

To identify Kepler-108 as a mutually inclined system, we searched the Kepler Object of

Interest (KOI) catalog for systems which exhibited possible transit duration variations

(TDVs) using the first 13 quarters of data. We began by detrending the simple aperture

photometry (SAP) flux data from the Kepler portal on the Mikulski Archive for Space

Telescopes (MAST). For this initial search we used long-cadence (29.4 minute exposure)

data. To determine a flux baseline, we used the amplitudes of the first five cotrending

basis vectors (the largest magnitude vectors from a singular value decomposition of the

photometry for a given CCD channel, which dominate the systematic effects as given at

https://archive.stsci.edu/kepler/cbv.html). We discarded points whose quality flag had a

value equal to or greater than 16. We fit the individual transits to a time-binned transit

function (Mandel & Agol, 2002) using a Levenberg-Marquardt algorithm with the uncer-

tainties for the data points as reported in the Kepler photometric data using a globally fit

transit shape. In our search, we used the periods given in the KOI catalog and discarded

any transits within 1 day of each other to avoid spurious signals caused by overlapping tran-

sits. We fit a cubic polynomial with a 1 day width to the light curve in order to take into

account stellar variability and additional systematic effects. We then binned the data into

Kepler observing quarters (approximately 3 months) by shifting the transits to the same

phase in each quarter according to their fitted transit times. We refit these transits to the

raw SAP data, allowing the duration and depth of the transits to vary between quarters.

Using an entire quarter of data for each fit allowed lower signal-to-noise (S/N) transits to

be fitted and the uncertainties to be small, while still allowing enough distinct data points

to see if any duration trends were present. We computed a linear fit to the quarterly best

fit durations and compare it to the uncertainty of the duration. Since our data are already

subdivided by quarter we can determine by inspection if there are quarterly instrumental
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issues causing spurious duration changes. We are not aware of any instrumental effects that

could produce such a signature, but expect that if one were to exist it would repeat every

four quarters. We see no such trend. Another concern is that in different observing sea-

sons, a given pixel or group of pixels in the aperture sum might observe a slightly different

group of stars causing the transit depth to change as the transit is diluted by background

stars. Again, such effects are readily noticeable as spikes or dips occurring every four quar-

ters. Several candidate systems were found in our search, with Kepler-108 being the most

convincing, and exhibiting strong TDVs (Fig. 4.1), as well as TTVs (Fig. 4.2). We redid

the analysis with several different detrending timescales and found little dependence on the

result (Fig. 4.1) since the timescales are much longer than the transits’ ingress and egress

timescales. We continue using this timescale for detrending as it allows us to remove stellar

variability without distorting the transit shape significantly.

We note that the TTV super-period, Psup, may be predicted analytically: Psup :=

Pc/(4|∆|) = 1416 days, where ∆ = Pc/(4Pb) − 1 = 0.0336 is the distance from the 4:1

resonance for planets b and c in our case (Lithwick et al., 2012). This agrees very well with

the observed TTV data (Fig. 4.2). On the other hand we may also consider the affects

of stellar variability, particularly spots, on the measured TTVs and TDVs. Star spots are

darker than surrounding areas on the face of the star. Thus planet transits which cross a

star spot may bias the measured transit time or duration. Crossing star spots in the first

half of the transit may cause the transit center time to appear later than the actual time

and crossing spots in the second half may cause the transit to appear earlier than it actually

occurs (see Holczer et al., 2015). Such an effect is generally small, but we consider it here. In

order to reproduce the long-period sinusoidal TTVs present in the planets, the spots would

have to be in nearly the same location for successive transits, only slowly moving over the

course of the 4 year observing window. This implies that it is merely a coincidence that Psup

is well-matched by the data, and the observed TTVs are caused by a near-commensurability

of the planets’ orbital periods with the stellar rotation period or a multiple of it. This
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Figure 4.1: Kepler-108 Transit Duration Variations
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Transit durations and 1-σ uncertainties for planet b (top) and planet c (bottom) found by
fitting the long-cadence data. The durations are measured using 4 different polynomial de-
trending lengths as described in the text from black to light gray: 7200 minutes (diamonds),
2880 minutes (triangles), 1440 minutes (squares), and 1000 minutes (xs). There is mini-
mal variation among the different timescales, so we conclude that our choice of 1 day (1440
minute) detrending is justified. A clear trend appears in planet c.
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Figure 4.2: Kepler-108 Transit Timing Variations
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Individually measured TTVs with 1-σ uncertainties (gray). Plotted in black are the mean
and variance for TTVs measured by taking 100 random draws from the posterior of photody-
namical fit as described in §3. Therefore the black points combine the Kepler observational
data with a physically possible N-body gravitational model to better constrain the TTVs.
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does not make physical sense because the period ratios of the two planets have nearly a 4:1

commensurability yet their TTVs are anti-correlated, even in places where they transit very

closely in time (e.g., tBJD ≈ 2455907 − 2455909), indicating the effects of spots is small

compared to the implied gravitational TTV effects. Durations may be similarly affected by

star spot crossing, but we would predict that any star spots that would make ingress appear

later or egress appear earlier would both cause the duration to decrease. For the duration to

experience a net decrease as observed, it would require an increase in the number of spots as

a function of time over the observing window regardless of location, but no signs of this are

seen in the TTVs. We would expect the durations to decrease when the TTVs are greatest

in absolute value if caused by star spots, and this correlation is not observed in the data.

Thus we rule out star spots as causing the observed TTV and TDV variations.

4.2.2 Analysis of Stellar Properties

An asteroseismology study conducted by Huber et al. (2013a) found Kepler-108’s mass to

be 1.377± 0.089M�. However, Kepler-108 has been the subject of several follow-up studies

which have revealed that it is a binary star system. Adaptive optics (AO) measurements

in the i (Law et al., 2014), J, and K bands (Wang et al., 2015) have revealed a companion

star 1.05” from Kepler-108A, which is highly likely to be associated with the system (Wang

et al., 2015). The binary nature of the star system is also seen in archival UKIRT images

(Lawrence et al., 2007).

To determine which star is the planet host, we examine the Kepler pixel level data and

the Data Validation Report (DVR) (Bryson et al., 2013). Kepler ’s pixels are approximately

4 arcsec and thus the two sources are not resolved, but we may still determine where within a

given pixel a planet’s host star lies. Because the field is crowded (including by KIC 9471979,

a star within 1 apparent magnitude of the target stars, located approximately 10 arcsec to

the south and 3 arcsec to the east), detecting the centroid shift while the planets are in and

out of transit is not effective at determining which member of the binary the planets are
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transiting because the centroid is affected by these bright stars that are somewhat further

away (Bryson et al., 2013). Finding the centroid of the flux difference image (the difference

in flux between when the planets are in and out of transit) should reveal the true location

of the star being transited, though this method is potentially more uncertain. The DVR

indicates that the host star of both planets b and c is approximately 0.5 arcsec east and

0.15 arcsec south of the nominal KIC location at the 4.6-σ and 2.2-σ levels for each planet

respectively. Since the KIC location reflects the combined light of the binary star, its reported

position is in between the two observed stars (with the fainter, planet-hosting star lying to

the southeast). This is confirmed by centroid fitting of the UKIRT J-band images with

find.pro and starfinder.pro (Diolaiti et al., 2000) and explains why the centroid offset

is only ∼0.5 arcsec, rather than the 1.05 arcsec separation reported by AO imaging (Law

et al., 2014; Wang et al., 2015). We find that stars A and B are located at approximately

(αA = 294◦33′32”.085, δA = 46◦03′44.98) and (αB = 294◦33′33”.390, δB = 46◦03′44”.43)

respectively, whereas the DVR indicates the star hosting planets b and c is located at (αb =

294◦33′33”.334± 0.085, δb = 46◦03′44”.236± 0.097) and (αc = 294◦33′33”.352± 0.155, δc =

46◦03′44”.267 ± 0.359) respectively. Thus the planets are consistent with each other and

Kepler-108B, but not Kepler-108A. The position angles (PAs) from the KIC location of

the host star of planets b and c are 125◦ ± 12◦ and 111◦ ± 37◦ respectively, matching the

reported PA of the fainter binary companion of 118◦ in both AO images (Law et al., 2014;

Wang et al., 2015), and 180◦ from what would be expected from the brighter star. In

summary, this analysis reveals that the position of the planets’ host star is consistent with

the southeastern star of the binary pair (Kepler-108B), and rules out the brighter star to the

northwest (Kepler-108A) at & 5σ.

We use the publicly available Dartmouth stellar isochrone modeling package isochrones

(Morton, 2015, available at: https://github.com/timothydmorton/isochrones) to character-

ize the stars based on the AO flux measurements. We have apparent system magnitudes

(taken from https://cfop.ipac.caltech.edu) and the magnitude differences between the two
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Table 4.1: Kepler-108 Stellar Properties

Kepler-108 A Kepler-108 B (Planet Host)
Asteroseismologya

M?(M�) 1.377± 0.089 -
R?(R�) 2.192± 0.121 -

Photometry

Keplermag
b 12.654 (Both Stars Combined)

imag
cd 12.90± 0.22 13.77± 0.22

Jmag
ce 12.087± 0.15 12.287± 0.15

Kmag
ce 11.640± 0.15 11.840± 0.15

M?(M�)f 1.26+0.33
−0.23 0.96+0.29

−0.16
R?(R�)f 1.45+0.73

−0.41 0.97+0.56
−0.21

a Huber et al. (2013a)
b KIC Catalog
c https://cfop.ipac.caltech.edu
d Law et al. (2014)
e Wang et al. (2015)
f Morton (2015)

stars in the i (Law et al., 2014), J, and K (Wang et al., 2015) bands (Table 4.1). Based

on these, we compute the magnitudes of both Kepler-108 stars to use as input parameters

to the isochrones package. We find that stellar parameters from the AO color constraints

are consistent within 1-σ of the asteroseismology for the brighter star Kepler-108A (the

non-planet hosting star); however the isochrone method has uncertainties a factor of a few

greater than asteroseismology. Lower accuracy is expected from the photometric method

because asteroseismology is one of the most precise methods of determining stellar density,

and thus masses and radii combined with stellar models, developed to date. Nonetheless,

the agreement between the different methods of estimations confirms that photometry can

determine the properties of the planet host star, albeit with large uncertainties. We suggest

therefore that our results be interpreted more as broad priors on the scale of the system

and stellar density rather than a precise stellar measurement. We summarize our inputs and

fitted values in Table 4.1 and find that the planet-hosting star has R? = 0.97+0.56
−0.21R� and

M? = 0.96+0.29
−0.16M�.
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4.2.3 Photodynamic Analysis

We followed up our initial analysis of Kepler-108 by applying a photodynamic model. The

model integrates the 3-body Newtonian equations of motions for the central star and two

planets, including the light–travel–time effect. When the planets pass between the star

and the line of sight, a synthetic light curve is generated (Pál, 2012), which can then be

compared to the data. For computational efficiency, we assume that the planets’ velocities

are changing negligibly over the face of the host star due to eccentricity effects. By neglecting

the change in planet velocity, this approximation ignores asymmetries in the ingress and

egress that are on the order of .1 second, translating to errors in the normalized light curve

of only .10−6 (see, e.g., Winn, 2010), much less than the uncertainty on the data. For

the photodynamics, we took advantage of the short-cadence (58.8 second exposure) data

available in Kepler Quarters 5-8 and 12. Cotrending basis vectors are not available for

short-cadence data. To detrend this data, first we masked out the expected transit times

and then fit a cubic polynomial model with a 1 day width (as done for the long-cadence

data) centered within half an hour of each data-point, to determine its baseline. We divided

the flux by this baseline. We continued using long-cadence data where short-cadence was

not available (Kepler Quarters 1-3, 9-11, and 13-17). We detrended that data identically

as described above for the short-cadence data. We performed detrending with and without

using the CBVs and found statistically negligable difference in the fitting results. We used the

photodynamic model to produce theoretical normalized flux values at the timestamp of each

short-cadence data point. For long-cadence data, we computed the flux value at 15 equally

spaced points in time over a cadence’s integration and averaged them together to produce

the theoretical result. A small amount of correlated noise (fractional variations . 10−4,

with a peak in a Lomb-Scargle periodgram of the out-of-transit short-cadence data near 45

minutes) was still present in the data likely due to known spurious instrumental frequencies

(Garćıa et al., 2011; Christiansen et al., 2013) and, more broadly, the stellar variability which

allowed for asteroseismology measurements. Our detrending algorithm did not address this
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short time-scale noise to avoid distorting the transit shapes, but its amplitude is far below

the data uncertainties. We multiplied the quoted data uncertainties by a factor of 1.075 such

that the reduced χ2 of our best-fitting model was 1.03. By increasing our uncertainties, we

conservatively widen our posteriors to take into account the scatter introduced by unmodeled

aspects of the system, such as star spots or instrumental noise, whose affects may be small

but non-zero and bias our results. One of the planets, Kepler-108b, had only partial transits

observed at ∼BJD 2455959, 2456106, and 2456204 due to pauses in data collection. Our

detrending algorithm performs poorly on cases where there is not a baseline on both sides of

the transit. Therefore the data within 1 day of these transits was removed from the fits to

avoid incorrectly influencing the fit by changing the measured depths. Since the mid-time

and duration measurements of these transits is highly uncertain due to having only either

the ingress or egress, retaining them would add minimal information to our fits. To expedite

the computation, we fit only data within 1.0 days from any transit, because the model of

data far from transit is always a constant: the transit parameters do not affect it. In total

we were left with 25,425 photometric data points.

The parameters for each planet in the differential evolution Markov chain Monte Carlo

(DEMCMC, Ter Braak, 2005) fit are {P, T0, e
1/2 cos(ω), e1/2 sin(ω), i, Ω, Rp/R?, Mp/M?},

where P is the period, T0 is the mid-transit time, e is eccentricity, ω is the argument of pe-

riapse, i is inclination, Ω is nodal angle, and R and M are radius and mass respectively

(with subscripts p = b, c for the planets and ? for the star). The star had five additional

parameters: {M?, R?, c1, c2, dilute}, where {ci} are the two quadratic limb-darkening co-

efficients and dilute is the amount of dilution from other nearby sources. We use flat priors

in all parameters unless otherwise stated below, including uniform priors on e1/2 cos(ω) and

e1/2 sin(ω), resulting in a flat prior in total e.

The relative flux from each star in the Kepler bandpass is uncertain, so we allowed the

3. A more careful treatment could, in principle, be done using Gaussian process noise modeling (e.g.
Ambikasaran et al., 2014), however this was computationally untenable for our study since we have ∼ 6×105

data points for a model that needed to be run > 109 times to provide posteriors on all of our models.
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fractional amount of flux from the non-host star to vary as a free parameter. We ran photo-

dynamic fits assuming Kepler-108B is the host with the the stellar mass fixed at the value

found as described in §2.2 because photometry alone can only determine the stellar density

when Mp �M?. Our DEMCMC fits also used the measured stellar radius and uncertainty

(R? = 0.97+0.56
−0.21R�) as a data point along with the Kepler photometry. Since dilute is highly

degenerate with the size of the planets (Rp/R?), our planetary radii are significantly more

uncertain than previously reported values, which did not take into account contamination

from another blended source. The shape of the transit does offer some constraints on the

dilution so it is not a completely degenerate parameter. We did not include the compan-

ion star in our photodynamic model directly because its great distance (at minimum, the

measured sky-projected distance of 327 AU; Wang et al., 2015) prevents it from detectably

influencing the Kepler-108 planets over the Kepler observing window. We discuss potential

long-term effects in §6. Although it is disfavored, we also ran a second, nearly identical set

of DEMCMCs assuming that the asteroseismologically measured star is the host star, and

thus fixed stellar mass at 1.377M� and used the constraint R? = 2.192 ± 0.121R� (Huber

et al., 2013a). We include these posteriors in the appendix.

To test whether our detection of changing transit durations and depths (and therefore

mutual inclination) was robust, we ran 3 different DEMCMCs for each host star: (MI —

“Mutually Incline”) allowing the inclinations and relative nodal angle of the planets to vary

independently; (NC — “Nearly Coplanar”) allowing only the planets inclinations to vary

independently and fixing both planets to a nodal angle of Ω = 0; and (CO — “Coplanar”)

forcing the planets to be coplanar, i.e. fixing Ω = 0 and ib = ic, but allowing the value of

the inclination to vary.

Requiring strict coplanarity (CO) results in a far worse fit to the data (∆χ2 & 100) than

the other two models (MI and NC) regardless of host star, because each planet must have

the same inclination. As a result, the impact parameter of both planets is determined by

a single inclination, and the transit shapes and durations of both planets cannot be fit well

105



compared to the case where two different inclination values are allowed. We no longer discuss

CO as a viable candidate model since with only one additional free parameter compared to

NC we vastly improve the fit and provide a more realistic model.

The NC (Ωb,c = 0) DEMCMC was initialized with the periods of the two planets as

reported in the Kepler catalog (Batalha et al., 2013), and at a variety of eccentricities below

0.1 for both planets. The DEMCMC chains slowly explored increasingly higher eccentricities,

with the chains preferring for the inner planet (b) to have e > 0.7. Once the DEMCMC

chains found this high-eccentricity space, they did not travel back to lower eccentricities

because high eccentricity allowed a better fit to the data. Restarting the DEMCMC from

a variety of solutions with planet b having e ∼ 0.75 and ω ∼ 150◦ (near the best fit found

previously), resulted in none of the chains seeking lower-eccentricity regions. Therefore we

conclude that for the nearly coplanar case (NC), high-eccentricity solutions are robustly

preferred. We ran a parallel 46-chain DEMCMC until the parameters appeared stationary;

the chains were well mixed (> 50 autocorrelation time scales for every parameter for each

chain on average), and their Rubin-Gellman R̂interval statistic (Brooks & Gelman, 1998)

was below 1.05 for every parameter. We recorded the parameters for each chain every 1000

generations for 5× 106 generations to reduce correlation and required disk space, and threw

out the first 2 × 105 generations of all chains as a burn-in. We thus obtained 2 × 105

samples of the posterior for each DEMCMC, of which at least 50×46 = 2300 are completely

independent.

The MI DEMCMC was initialized similarly to NC, with all eccentricities below 0.1.

This DEMCMC also explored higher eccentricities for planet b, but rather than remain high

as in NC, eccentricities continually varied between high and low values (0.0 . e . 0.7).

Concerned that this DEMCMC was not finding the same very high eccentricity parameter

space found by NC, we ran MI again but starting from solutions drawn from NC. All

chains in this case quickly found lower-eccentricity solutions and did not return to the very

high-eccentricity starting conditions. We ran the (MI) DEMCMC for 1.25×107 generations,
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with a 2 × 105 generation burn-in. This DEMCMC was run much longer because the wide

range of acceptable eccentricities caused slower convergence. When the DEMCMC was

stopped, each parameter had experienced > 30 autocorrelation time scales (at least 1000

independent points) and had R̂interval statistic below 1.1. These values are still acceptable

for convergence and continuing running was not computationally feasible. The complex

nature of the parameter space (see Figs. 4.3 and 4.4) slows down the convergence significantly,

particularly at high eccentricity. DEMCMC runs with Kepler-108A as host have similar

statistics.

Concerned that we could potentially miss additional minima distant from our initializa-

tion on the χ2 surface, we also ran a 4-temperature parallel-tempered DEMCMC (Earl &

Deem, 2005) with both the MI and NC constraints. This approach is similar to a tradi-

tional DEMCMC, but it allows some chains (those with high temperatures) to have a much

higher probability chance of exploring high χ2 regions of parameter space, allowing them

to easily traverse local maxima. This is accomplished by multiplying the ∆χ2 between a

proposed step and the chain’s current location by a given “temperature” value, which in-

creases the probability that higher χ2 proposals are accepted. We initialized this DEMCMC

from our best-fit solutions, but the high-temperature chains rapidly spread out over a much

broader range of parameter space than explored before. The high-temperature chains may

swap with low temperature chains once near a sufficiently low χ2 minima and allow for a

more refined exploration of parameter space in that area. This allows for efficient discovery

and exploration of multimodal posteriors (for further discussion, see Earl & Deem, 2005).

We find very similar posteriors and no additional minima which would affect our fits with

this method.

4.3 Photodynamic Results

The data generally allow for two classes of solutions which cause the observed duration and

depth changes in the transits (see Fig. 4.5). The first case, explored byMI, we will describe
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Figure 4.3: Kepler-108 Planet Posteriors
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Figure 4.4: Kepler-108 Stellar Posteriors
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as the low eccentricity, high mutual inclination case. The second case, explored by NC,

refers to the nearly coplanar, highly eccentric case. In this case, the mutual inclination

between the planets is . 1◦. The very large (∼ 0.75) eccentricity of the inner planet

along with its increased mass causes faster precession of the node (and apse) of the outer

planet. Along with the larger eccentricity of the outer planet, this results in similar transit

duration and depth changes (see Fig. 4.6). DEMCMC posterior median values and 1- and

2-σ uncertainties at Tepoch = 640.0 (BJD-2454900) for the mutually inclined (MI) and

nearly coplanar (NC) models are given in Table 4.2. Note that the distributions in many

parameters are not Gaussian and the 2-σ interval is generally not twice as wide as the 1-

σ interval. The distributions and correlations between parameters for MI are shown in

Figs. 4.3 and 4.4. Correlations in other fits are similar. Confidence intervals higher than 2-σ

are not given as the number of independent parameter values mean that there are relatively

large fractional uncertainties on the confidence intervals of higher σ; however, the two sets

of confidence intervals given are sufficient to understand the posteriors. Best-fit solutions

found by DEMCMC under MI (top) and NC (bottom) constraints assuming Kepler-108B

as the host star at Tepoch = 640.0 (BJD-2454900) are given in Table 4.3.

In a random sample of 100 draws from each posterior distribution, 99% were stable for

> 107 years in MI and 100% were stable over the same time period in NC, so stability

alone can not easily rule out either regime.

The fixed nodal angle solution (NC) around Kepler-108B had a best-fit χ2 = 25407

for 25,425 data points, and the system allowing non-zero mutual nodal angles (MI) had

χ2 = 25435. Since only 1 additional free parameter is added from the NC toMI models, we

would expect an improvement of χ2 of order unity if both models describe the data well, i.e. if

it were true that large mutual inclination was not required to fit the data effectively (Akaike,

1974). The large difference in χ2 suggests that the fit allowing large mutual inclinations is

superior to the others by > 4σ as follows.

Rigorously, we can define the F-ratio as the improvement in χ2 normalized by the number
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Figure 4.5: Phase-Folded Kepler-108 Transits
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Top: Detrended flux over the Kepler observing window. The two planet transits appear
clearly as periodic dips of different depth. Color is changed incrementally from violet to
red such that each transit has a distinct color in the data. To reduce visual scatter, only
long-cadence data is displayed although short-cadence data was used where available in the
fitting procedure. Bottom: Left and Right columns are planets b and c respectively. The
top panel shows the data (dots) and photodynamic best-fit model (line) phase-folded with a
constant period (the best fit at Tepoch = 640.0 (BJD-2454900), see Table 4.3). Bottom panels
show the transits phase folded with the TTVs removed. This allows clear identification of
the change in planet c’s duration and depth with time (as indicated by color in the top
panel). Model points are produced only where real data points are found and are connected
by straight lines resulting in the apparent sharp corners on some of the transits.
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Figure 4.6: Kepler-108 Transit Geometry
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Table 4.2: Kepler-108 Posteriors

Host: Kepler-108B
MI - Mutually Inclined NC - Nearly Coplanar

Median 68.3% (1-σ) 95.4% (2-σ) Median 68.3% (1-σ) 95.4% (2-σ)
Parameter Name (Unit) Uncertainties Uncertainties Uncertainties Uncertainties
Stellar Parameters:
R?(R�) 1.57 +0.13

−0.16
+0.38
−0.29 1.939 +0.098

−0.11
+0.96
−0.25

M?(M�) 0.96 a 0.96 a

c1 0.503 +0.069
−0.065

+0.16
−0.13 0.54 +0.10

−0.10
+0.22
−0.21

c2 0.01 +0.12
−0.12

+0.24
−0.24 0.02 +0.14

−0.14
+0.29
−0.28

dilute 0.699 +0.062
−0.13

+0.10
−0.50 0.22 +0.19

−0.15
+0.35
−0.21

Kepler-108 b Parameters:
P (d) 49.18341 +0.00033

−0.00033
+0.00082
−0.00075 49.18356 +0.00015

−0.00018
+0.00026
−0.00038

T0 (BJD-2454900 (d)) 665.12253 +0.00069
−0.00072

+0.0014
−0.0016 665.1095 +0.0035

−0.0068
+0.0057
−0.024

e1/2 cos(ω) −0.258 +0.10
−0.10

+0.22
−0.24 −0.758 +0.012

−0.011
+0.035
−0.023

e1/2 sin(ω) −0.196 +0.093
−0.22

+0.18
−0.32 −0.483 +0.026

−0.027
+0.053
−0.078

etot
b 0.135 +0.11

−0.062
+0.20
−0.094 0.810 +0.023

−0.023
+0.050
−0.047

i (◦) 90.42 +0.33
−0.22

+0.75
−0.36 91.96 +0.26

−0.29
+0.54
−0.63

Ω (◦) 0.0 0.0
M (MJup) 0.44 +0.24

−0.11
+0.91
−0.20 1.39 +0.41

−0.32
+0.96
−0.76

R/R? 0.0678 +0.0081
−0.011

+0.015
−0.024 0.0439 +0.0061

−0.0034
+0.014
−0.0047

Kepler-108 c Parameters:
P (d) 190.353 +0.017

−0.010
+0.078
−0.024 190.540 +0.11

−0.093
+0.23
−0.21

T0 (BJD-2454900 (d)) 816.676 +0.019
−0.012

+0.087
−0.028 816.835 +0.10

−0.090
+0.22
−0.18

e1/2 cos(ω) 0.047 +0.083
−0.073

+0.15
−0.10 −0.2411 +0.0085

−0.0075
+0.019
−0.015

e1/2 sin(ω) −0.347 +0.035
−0.034

+0.12
−0.086 −0.4528 +0.0085

−0.0088
+0.017
−0.020

etot
b 0.128 +0.023

−0.019
+0.062
−0.052 0.2631 +0.0062

−0.0060
+0.014
−0.012

i (◦) 90.379 +0.069
−0.10

+0.19
−0.22 90.557 +0.041

−0.047
+0.078
−0.11

Ω (◦) 24 +11
−8

+40
−15 0.0

M (MJup) 0.169 +0.095
−0.068

+0.22
−0.11 0.0202 +0.0055

−0.0051
+0.011
−0.0099

R/R? 0.05946 +0.0070
−0.0092

+0.013
−0.021 0.0398 +0.0056

−0.0031
+0.013
−0.0043

a Note that the stellar mass is held fixed in these simulations so the values and uncertainties on the planets’ masses
may easily be scaled with future measurements of the stellar mass.
b etot is not actually a fitted parameter, rather it is derived from e cos(ω) and e sin(ω).
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Table 4.3: Kepler-108B Best-Fit Solutions

Planet

Parameters:a b c

Period (d) 49.183083085839172 190.353737335237525
T0 (BJD-2454900) 665.122619366413346 816.676288054934048
e 0.080502815440656 0.135150900332772
i (◦) 90.447992776533482 90.402707451208229
Ω (◦) 0.0 21.230171600736064
ω (◦) -151.443327788289849 -74.804240921039195
Mass (MJup) 0.413341841865039 0.202792331316081
Radius (Rp/R?) 0.067139110107278 0.059698074950235

M? (M�) 0.96
R?(R�): 1.60826681434233
c1 0.519093256451504
c2 -0.021614974187020
dilute 0.692460493291417

Planet

Parameters:a b c

Period (d) 49.183505940179316 190.557066614127535
T0 (BJD-2454900) 665.111210027200173 816.849801840698206
e 0.800786833080398 0.260953132882452
i (◦) 91.960040412229276 90.557754765511007
Ω (◦) 0.0 0.0
ω (◦) -147.461456894507307 -117.953198816245759
Mass (MJup) 1.494038810020510 0.022840632640538
Radius (Rp/R?) 0.042211249374808 0.038215416346983

M? (M�) 0.96
R?(R�): 1.942786847021155
c1 0.520024994427787
c2 0.056552930588019
dilute 0.155848582719487

a Valid at Tepoch = 640.0 (BJD-2454900) for the mutually-inclined (MI) model on top and nearly-
coplanar (NC) model below.
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of new free parameters, DOF :

∆χ2/∆DOF = (25435− 25407)/(18− 17) = 28 (4.1)

to the final reduced χ2
f :

χ2
f /νf = 25407/25425 = 0.999 (4.2)

The F-test gives the probability (p-value) that the F-ratio is as high as observed by chance.

In our case the p-value is 1× 10−7, so we may reject that the planets have the same nodal

angle on the sky. We note that the χ2 being slightly below 1.0 suggests we have overestimated

our uncertainties and therefore only strengthens our reasoning.

To compare the entire distribution of parameters found by MCMC rather than just the

best-fit solution, we computed the Bayes Factor, K, using Newton and Raftery’s p4 estimator

(Newton & Raftery, 1994) and found the odds ratio to be > 1010 in favor of MI, i.e. large

mutual inclination is strongly favored (Kass & Raftery, 1995).

Lastly, a physical argument can be made in support ofMI. The radii of the two planets

of Kepler-108 differ by only ∼20% (in all scenarios). In the MI model, the planet masses

differ by a significant, but reasonable, factor of ∼3. In the NC model, the masses must

differ by a factor ∼70, implying that planet c, with a radius Rc ≈ 0.7RJupiter has a mass

of only Mc ≈ 0.02MJupiter, which implies a lower density than all but the most extreme

sub-Neptune planets (Masuda, 2014).

Here we have compared the coplanar models only for the case where Kepler-108B is

the planet host. However, we perform an identical analysis for the case with Kepler-108A

as the planets’ host, and this analysis also favors the mutually inclined case to a similar

significance. Thus, even if there is some doubt regarding which star the planets orbit, we

may say unambiguously that the planets are mutually inclined.
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4.3.1 Mutual Inclination Discussion

The mutual inclination, I, between the orbital planets of two planets b and c is given by

I = cos−1 ( cos ib cos ic + sin ib sin ic cos(Ωb − Ωc)
)
. (4.3)

In our case we have defined Ωb = 0 and both planets have i ≈ 90◦ since they are both

transiting. This means that the value of I ≈ Ωc. Using the MCMC posteriors on the planets

i and Ω values, we compute I = 24.2◦+10.8
−7.8 , with a 95% confidence interval of [9.6◦, 64.4◦].

This is a significant departure from the . 5◦ mutual inclination expected from a pure disk

formation origin.

4.4 Observation Statistics

Since the planets in this system are precessing due to the high mutual inclination between

them, they will eventually change their orientation so dramatically that they no longer

transit. This has been observed in circumbinary systems (Kostov et al., 2014; Welsh et al.,

2015), but never in a single-star planetary system. Few other known extrasolar systems are

likely to exhibit large inclination variations due to self-excitation (Becker & Adams, 2016).

To investigate the timescale of the precession in this system, we integrate the best-fit solution

forward for 105 years (Table 4.3). We find that both planets periodically precess on and off

the star (see Fig. 4.7). From our viewing perspective, this system has two planets transiting

3% of the time, one planet transiting 4% of the time, and no observable transits 93% of the

time. The precession timescale, Pprec, is found numerically to be on average ∼ 5700 years,

somewhat longer than an analytic prediction ∼ 4100 years using the frequency for Ω and i

oscillations found by applying the Laplace-Lagrange secular solution to first order in planet

mass and second order in inclination (e.g. Murray & Dermott, 1999).

In order to better understand the statistics of observing systems like Kepler-108, we

explore the likelihood that this system is observed as two transiting planets experiencing
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Figure 4.7: Kepler-108 Impact Parameter Evolution
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Evolution of the impact parameter (b) of both planets of Kepler-108 over 3 × 104 years.
While b is usually reported as a positive definite quantity, we have assigned a negative value
for b whenever the position of the planet at minimum b for a given transit is below the
center of the star (negative y value). This allows us to visualize the planet moving up and
down, on and off the star. Dashed lines show the maximum b where the planet will transit
(bmax = (R? + Ri)/R?, i = b, c). This data is taken from a portion of the 105 year run of
the best-fit solution (see Table 4.3). The asymmetry with respect to b = 0 is due to the
invariant plane being inclined to the observer.
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TDVs from any orientation. We track the position in 3-dimensional space of both planets in

our best-fit model every minute for one complete orbit of the outer planet at the beginning

and end of the Kepler observing window. That is, we produce two ~x(t) functions for each

planet (~xb,1(t), ~xb,2(t), ~xc,1(t), and ~xc,2(t)) each 190 days long and ∆t ∼1300 days apart.

We then randomly draw 10,000 different observing orientations and compute the impact

parameter (bj,k, j = b, c, k = 1, 2) for each planet (b and c) in both windows (1 and 2) from

each orientation. We compute the implied duration (Dj,k) of the transit corresponding to

each bj,k using (Winn, 2010):

Dj,k =
Pj

π

√
1− e2

j

1− ej sin(ω)
sin−1

(√(R? +Rj)
2 − b2j,k

aj sin(i)

)
(4.4)

where the orbital elements come from the instantaneous position and velocity of the planets

at the time of minimum b. This is a good approximation for the true duration. The change

in duration over the observing window (∆D)j is given by Dj,2 − Dj,1. We establish as a

detectability threshold (∆D)j = 30 minutes (the approximate limit of a confident detection

of duration change in Kepler-108) and compute the fraction of observation angles for which

(∆D)j exceeds the threshold. We use the same threshold for both planets since they are

approximately equal in radius, i.e. transit signal.

The results of this analysis are summarized in Table 4.4 which lists the fraction (and

uncertainty) of randomly chosen viewing angles for which the Kepler-108 system would be

observable as a two-planet system, one-planet system, and a no-planet system by the Kepler

mission. Because the planets are highly mutually inclined, seeing a single planet transit does

not guarantee that the second will be visible (see Fig. 4.8). The simulations demonstrate this

as the two-planet observations are much fewer in number than the one-planet observations,

which are dominated by the interior planet due to its closer orbit to the star. The second

column shows the fraction of viewing angles for which Kepler-108 would appear to have

duration variations in either planet of greater than 30 minutes (the approximate limit on a
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Table 4.4: Kepler-108 Observational Likelihood

Fraction of Viewing Angles Fraction with Planets and a
With Planets Observed Measurable Duration Drift

Two Planets 0.0006(2) 0.0005(2)
Single Planet 0.0439(21) 0.0080(9)
None Visible 0.9555(98) n/a

confident detection of the duration change in Kepler-108). Approximately half of the cases

where two planets are visible show measurable duration drift; however, in the case where

only one planet is visible, measuring a duration drift will happen only ∼18% of the time.

It is clear from these statistics that our current viewing geometry is unusual. Since we

have observed Kepler-108 as a 2-planet system exhibiting TDVs, it is probable that we have

also observed similar systems in different viewing configurations. In other words, it is likely

that some observed single-Jupiter systems may actually be members of mutually inclined

multi-Jupiter systems. Thus, unless we are very unlucky, we expect that a close analysis of

many systems with a single transiting Jupiter will reveal duration and depth changes in a few

systems due to a non-transiting, mutually inclined companion. However, the measurement

of a single planet’s duration change gives very degenerate information about the perturbing

planet’s parameters, and it is more challenging to rule out systematics without a well-defined

perturbing planet.

4.5 Future Observations

To assist potential future follow-up measurements, we predict TTVs and 1-σ uncertainties

based on 100 random draws from the MI posterior up to 10 years after the end of Kepler

data collection (Table 4.5).

4.5.1 Spin-Orbit Alignment

There is limited observable star spot activity on Kepler-108 in the Kepler data due to low

S/N. Thus identifying the alignment of the stellar spin with the planets’ orbits was not pos-
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Figure 4.8: Projection of Transiting Geometry onto Celestial Sphere

The orbits of Kepler-108 b and c are shown as thin blue and red lines respectively, to scale
with the central star (yellow). The left hand panel shows a celestial sphere at 1AU (gray),
with the blue and red bands indicating the regions of the sky where distant observers could
view planets b and c in transiting geometries. Note that the surface area of these bands
relative to the sphere is independent of the radius of the chosen sphere. The right hand
panel shows a close-up of the section of the celestial sphere which is pointed towards the
Earth. The small, approximately parallelogram-shaped overlap of red and blue is the only
portion on the sky where both planets may be seen transiting simultaneously (like observed
by Kepler).
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Table 4.5: Kepler-108 Transit Times

Kepler-108 b Kepler-108 c

n Time (d)ab Uncertainty (d) Time (d)ab Uncertainty (d)
-12 74.908250 0.00096
-11 124.09378 0.00085
-10 173.27866 0.0010
-9 222.46292 0.00069
-8 271.64736 0.00059
-7 320.83251 0.00085
-6 370.01828 0.0013
-5 419.20153 0.00066
-4 468.38528 0.00061
-3 517.56942 0.00099 245.68312 0.0025
-2 566.75554 0.0014 435.99272 0.0019
-1 615.93794 0.00075 626.31298 0.0019
0 665.12108 0.00060 816.64113 0.0019
1 714.30417 0.00098 1006.9681 0.0022
2 763.49001 0.0011 1197.2870 0.0023
3 812.67222 0.00069 1387.5972 0.0032
4 861.85535 0.00061 1577.9021 0.0059
5 911.03791 0.00091 1768.2075 0.0092
6 960.22324 0.00072 1958.5204 0.010
7 1009.4060 0.00068 2148.8441 0.010
8 1058.5897 0.00068 2339.1728 0.0090
9 1107.7724 0.00088 2529.4974 0.0088
10 1156.9574 0.00071 2719.8132 0.010
11 1206.1410 0.00067 2910.1212 0.012
12 1255.3256 0.00065 3100.4256 0.016
13 1304.5089 0.00086 3290.7329 0.019
14 1353.6939 0.00081 3481.0495 0.020
15 1402.8782 0.00069 3671.3758 0.019
16 1452.0636 0.00079 3861.7039 0.018
17 1501.2478 0.0011 4052.0257 0.018
18 1550.4325 0.0011 4242.3386 0.020
19 1599.6171 0.0010 4432.6449 0.023
20 1648.8026 0.0013 4622.9495 0.027
21 1697.9878 0.0017 4813.2595 0.029
22 1747.1717 0.0015 5003.5798 0.029
23 1796.3560 0.0015 5193.9076 0.028
24 1845.5408 0.0018
25 1894.7268 0.0022
26 1943.9097 0.0018
27 1993.0932 0.0017
28 2042.2770 0.0019
29 2091.4631 0.0022
30 2140.6453 0.0017
31 2189.8284 0.0016
32 2239.0112 0.0017
33 2288.1969 0.0018
34 2337.3792 0.0015
35 2386.5625 0.0015
36 2435.7451 0.0015
37 2484.9303 0.0015
38 2534.1133 0.0014
39 2583.2973 0.0015

a BJD-2454900
b TTVS measured over the duration of the Kepler observing window are emboldened while future predicted TTVs
are Roman.
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Table 4.5 Continued: Kepler-108 Transit Times

Kepler-108 b Kepler-108 c

n Time (d)ab Uncertainty (d) Time (d)ab Uncertainty (d)
40 2632.4801 0.0015
41 2681.6651 0.0016
42 2730.8490 0.0016
43 2780.0339 0.0017
44 2829.2174 0.0019
45 2878.4024 0.0020
46 2927.5869 0.0021
47 2976.7723 0.0023
48 3025.9569 0.0026
49 3075.1414 0.0026
50 3124.3259 0.0027
51 3173.5113 0.0029
52 3222.6968 0.0033
53 3271.8804 0.0031
54 3321.0644 0.0031
55 3370.2489 0.0032
56 3419.4350 0.0036
57 3468.6176 0.0033
58 3517.8009 0.0032
59 3566.9843 0.0033
60 3616.1703 0.0034
61 3665.3525 0.0031
62 3714.5356 0.0031
63 3763.7183 0.0031
64 3812.9037 0.0031
65 3862.0863 0.0029
66 3911.2698 0.0029
67 3960.4523 0.0028
68 4009.6375 0.0029
69 4058.8207 0.0029
70 4108.0051 0.0030
71 4157.1881 0.0030
72 4206.3731 0.0032
73 4255.5572 0.0032
74 4304.7423 0.0034
75 4353.9262 0.0035
76 4403.1110 0.0037
77 4452.2956 0.0038
78 4501.4811 0.0040
79 4550.6660 0.0043
80 4599.8502 0.0043
81 4649.0346 0.0043
82 4698.2198 0.0045
83 4747.4055 0.0049
84 4796.5888 0.0047
85 4845.7725 0.0047
86 4894.9566 0.0048
87 4944.1428 0.0050
88 4993.3252 0.0047
89 5042.5083 0.0047
90 5091.6915 0.0047
91 5140.8773 0.0048
92 5190.0576 0.0037

a BJD-2454900
b TTVS measured over the duration of the Kepler observing window are emboldened while future predicted TTVs
are Roman.
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sible using star spot crossings (Nutzman et al., 2011). Previous spectroscopic measurements

of Kepler-108 gave v sin(i?) = 5.3± 0.6 km s−1 where i? is the inclination of the stellar spin

axis to the line of sight and v is the star’s rotational velocity (Huber et al., 2013a). For a

star of radius R? = 2.192R�, this suggests a maximum rotation period (i? = 90◦) of ∼22.4

days, but provides little information regarding the star’s inclination relative to the observer.

More importantly, it is not clear for which of the two stars in the binary this measurement

is relevant.

The sky-projected angle between the stellar spin axis and the planets’ orbit normals can

be measured spectroscopically by identifying the change in apparent radial velocity of the

stars as the planet crosses (known as the Rossiter-McLaughlin effect, see, e.g., Gaudi & Winn,

2007). The expected Rossiter-McLaughlin amplitude for the observed spin is KRM = 6.9 m

s−1, which is potentially observable (see e.g. Plavchan et al., 2015), though the transits are

quite lengthy. These planets likely went through some chaotic destabilization event to get

into mutually inclined orbits from their presumably coplanar, protoplanetary disk formation

configuration. We therefore predict that the planets could be highly misaligned with the

star’s spin-axis4.

4.5.2 Radial Velocity Constraints

Although we are confident that this system has a large mutual inclination, a small number

of RV data points could help further constrain the system’s parameters. RV measurements

may be able to determine which star the planets are truly around and thus refine our fit

significantly. Additionally, the RV curves are vastly different in shape between theMI and

NC models due to the different eccentricities in the models. If the RV curve is observed to be

saw-toothed, it would also give additional constraints on e and ω which are not well-measured

in the photometry. Further, because the RV K amplitude is dependent on eccentricity (as

4. This would not be particularly abnormal, even without the large mutual inclination, because similarly
massive stars commonly exhibit misalignment between planet orbits and stellar-spin (Winn et al., 2010;
Mazeh et al., 2015b).
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Figure 4.9: RV Signal Amplitudes
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Theoretical K amplitude of the inner planet (P ≈ 49.2 d) as a function of mutual inclination
of the two planets for both MI (blue) and NC (red). Plotted are 10,000 randomly chosen
points from both posteriors. Not only will a K amplitude give further weight toMI, but it
can also be seen that theMI region (& 7◦) has K dependence, implying RV measurements
will better constrain mutual inclination there.

well as several other factors, Cumming et al., 1999),

K =

(
2πG

P
(m1 +m2)

)1/3 m2

(m1 +m2)

sin(i)√
1− e2

, (4.5)

the overall amplitude of the RV signal will be drastically different in the nearly coplanar

case NC compared to MI, allowing for additional confirmation (Fig. 4.9). In addition,

the K amplitude alone will help constrain the value of the mutual inclination in the highly

mutually inclined case (MI) since theK amplitude varies as a function of mutual inclination.

A foreseeable challenge for RV measurements is that the two stars are only 1 arcsec apart,

roughly the seeing limit for ground-based observations.
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4.5.3 Non-transiting Planets

So far our discussion has included only the two planets observed in transit. The TTVs of

the two observed planets can, in principle, put constraints on the orbits of non-transiting

planets. Since the observed planets have moderate eccentricities and mutual inclinations,

we must consider that any unobserved planet also may also have a substantial eccentricity

and mutual inclination (which may be the cause of it not transiting). While constraints on

non-transiting planets in systems where circular, coplanar orbits are assumed can be quite

tight (Agol et al., 2005; Steffen & Agol, 2005; Agol & Steffen, 2007), considering eccentricity

to first or higher orders vastly complicates this process (Agol & Deck, 2016). The addition

of mutual inclinations will add further allowable TTV frequencies and amplitudes for unseen

planets at a given period, and thus decomposing observed signals into the sums of transiting

and hypothetical non-transiting planets to set upper limits on unseen planets of a given mass

as a function of period becomes untenable.

Since the two planets completely explain the TTVs and the observed Psup matches the

expected result from two planets in the observed orbital periods (the residuals are consistent

with no signal), we do not appeal to the existence of more planets. Additionally, more

planets, particularly in a system of moderately high eccentricities and mutual inclinations,

increases the chance that the system would be unstable.

The two known planets in Kepler-108 should both produce observable K amplitudes

(Planet b: & 10 m s−1, Planet b: & 3 m s−1), and we expect that other Jovian-mass planets

in the system with periods shorter than the outermost transiting planet (P ≈ 190.3 days)

may also be detectable through RV measurements. Since we speculate that this system

experienced a planet–planet scattering event, it is likely that any other planets in the system

may not be coplanar with the observed ones and thus only detectable through RVs, not

transits. Small (. 0.1MJup) or longer period (& 200d) planets would likely not be detectable

by RVs.
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4.6 Dynamical Discussion

We have presented a photodynamic analysis of the orbital parameters of the giant planet

system Kepler-108. Planetary systems formed in disks are likely to be coplanar and nearly

circular. However, the planets in Kepler-108 are shown to have a high mutually inclination

(I & 10◦) and eccentricity (ec & 0.1), not what one would expect from a purely disk

formation origin. Instead, this system shows signs of a more violent, chaotic past as is

predicted by theories of secular chaos and the formation of hot Jupiters, establishing an

observational link between theoretical stages of planetary system evolution.

The presence of an additional companion star increases the richness of the dynamics of

Kepler-108. Kozai-Lidov cycles from a distant companion have been suggested as a means

of exciting eccentricities of planets, which may lead to strong planet–planet interactions

including scattering and ejection (Malmberg et al., 2007). The timescale for Kozai-Lidov

cycles is

τ =
2

3π

P 2
?

Pp

M1 +M2 +Mp

M2(1− e2
?)

3/2
(4.6)

(Kiseleva et al., 1998; Fabrycky & Tremaine, 2007), where 1 refers to the planet-hosting

star, 2 the companion star, p the planet, and P? refers to the binary star period. We do

not know the period or eccentricity of the outer star, only its sky-projected distance, which

is approximately 327 AU (Wang et al., 2015). The true distance is likely larger because

this measurement ignores the separation of the stars along the axis in the direction of the

observer. RV measurements could track the change in velocity as a function of time (i.e.

az, where a is the acceleration and the subscript z represents the direction along the line

of sight), which would allow an estimate of rz, since M2 and r⊥ are known, where r is the

distance between the objects and ⊥ denotes the sky-plane direction, by solving the following

for rz:

az =
GM

(r2
⊥ + r2

z )3/2
rz (4.7)

However, even knowing the true separation of the stars would not reveal the period of the
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companion star because the star’s orbit may not be circular. Rather, the star may be near

pericenter of much larger semi-major axis orbit or near apocenter of a much shorter, highly-

eccentric orbit. Still, we desire to understand whether or not Kozai cycles from interactions

with this companion star could be influencing the dynamics of Kepler-108 system.

If we assume the binary orbit is nearly circular and has a semi-major axis approximately

equal to the sky-projected distance (327 AU), we derive P? ∼ 3900 year and τ ∼ 10 Myr.

This means that if the inclination of the companion star to the Kepler-108 c is large, it

could potentially drive Kozai-Lidov oscillations and cause strong planet–planet interactions

on this timescale. It is also entirely possible that the Kozai-Lidov timescale is longer than

the age of the system (in large part because the timescale depends on the extremely uncer-

tain Pout to the second power), or that the companion star is on a nearly coplanar orbit

with the planets, in which case the Kozai-Lidov mechanism does not apply. Additionally,

since the planet–planet precession interaction timescale is relatively short Pprec � τ , this

can dominate the dynamics and prevent Kozai-Lidov cycles from occurring. To test this, we

ran several realizations of the system by integrating forward in time the best-fit solution,

with the additional companion star on a circular orbit at 327 AU, using the MERCURY inte-

grator (Chambers, 2012). We run the simulations for 200 Myr, many times the expected

Kozai-Lidov timescale of the system. The inclination of the companion star is varied by 10

degree intervals from 0 to 180 degrees. To ensure that the Kozai-Lidov mechanism works as

expected in a three-body system, we also run the same set of simulations without the inner

planet (Kepler-108 b). We find that the planet–planet interactions in the two-planet systems

dominate and do not allow Kozai-Lidov eccentricity cycles to occur (see, e.g., Fig. 4.10). All

two-planet systems tested remained stable for 2× 108 years.

It is plausible that an additional planet at a much greater orbital period than of the ob-

served 2 planets could have been subject to Kozai-Lidov oscillations shortly after dissipation

of the natal disk, reached a high eccentricity, and caused a planet–planet scattering event.

This could result in the large mutual inclination of the two observed planets. However, the
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Figure 4.10: Kozai-Lidov Suppression
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The eccentricity of Kepler-108 c as found by numerical simulation in the presence of a
perturbing 1.377 M� star in a circular 327.5 AU orbit and i = 10◦. The blue points
represent the true 2-planet Kepler-108 system. The planet–planet interactions suppress the
Kozai-Lidov oscillations and keep Kepler-108 c’s eccentricities at moderate values. Kozai-
Lidov oscillations driving Kepler-108 c are clearly present in a simulation with all other
parameters identical, but not including the interior planet Kepler-108 b. These points are
represented in red and show the very large and potentially destabilizing eccentricity swings
that would result in Kepler-108 without taking the strong planet–planet interactions into
account.
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parameter space for unobserved, possibly-ejected, long-period planets is very large and we

do not complete any numerical analysis of this scenario.

The rough similarity between the observed nodal precession timescales and the possible

period of the binary star presents another intriguing possibility of the origin of this system:

excitation of the planets’ mutual inclination through a Laplace-Lagrange evection resonance

(Touma & Sridhar, 2015). Studying the Kepler-108 system in this context may require

additional data, particularly about the nature of the stellar binary’s orbit, and theory, so we

leave it to future work.

4.7 Summary

We have shown that the two gas giant planets in the Kepler-108 system in 49 and 190 day

orbits are mutually inclined. A photodynamic TTV and TDV analysis produces a well-

measured precession rate and reveals that a high mutual inclination model (I = 24◦+11
−8 )

is strongly preferred by the data to a purely high eccentricity case with I less than a few

degrees. We compute the likelihood of observing a system similar to Kepler-108 from any

orientation and show that the probability of seeing it as a two-planet system with TDVs is

very low, suggesting other similar systems exist but have not yet been identified as inclined

multiplanet systems.

4.8 Appendix: Posteriors with Kepler-108A as the Planetary

Host

Although it is strongly disfavored (see §4.2.2), for completeness we also report DEMCMC

posteriors assuming Kepler-108 A is the stellar host (Tables 4.6 and 4.7).
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Table 4.6: Disfavored Kepler-108A Posteriors

Host: Kepler-108A
MI - Mutually Inclined NC - Nearly Coplanar

Median 68.3% (1-σ) 95.4% (2-σ) Median 68.3% (1-σ) 95.4% (2-σ)
Parameter Name (Unit) Uncertainties Uncertainties Uncertainties Uncertainties
Stellar Parameters:
R?(R�) 2.13 +0.12

−0.13
+0.24
−0.25 2.21 +0.080

−0.083
+0.16
−0.17

M?(M�) 1.377 1.377
c1 0.539 +0.10

−0.092
+0.21
−0.19 0.541 +0.11

−0.10
+0.22
−0.21

c2 0.00 +0.14
−0.14

+0.28
−0.27 0.02 +0.14

−0.14
+0.28
−0.28

dilute 0.42 +0.18
−0.22

+0.31
−0.38 0.19 +0.15

−0.13
+0.28
−0.18

Kepler-108 b Parameters:
P (d) 49.18336 +0.00045

−0.00034
+0.0022
−0.00075 49.183551 +0.00015

−0.00018
+0.00027
−0.00038

T0 (BJD-2454900 (d)) 665.12230 +0.00070
−0.00075

+0.0014
−0.0017 665.1099 +0.0033

−0.0063
+0.0053
−0.018

e1/2 cos(ω) −0.270 +0.094
−0.16

+0.20
−0.34 −0.758 +0.011

−0.011
+0.023
−0.023

e1/2 sin(ω) −0.116 +0.060
−0.049

+0.40
−0.23 −0.480 +0.025

−0.025
+0.050
−0.052

i (◦) 91.06 +0.18
−0.23

+0.34
−0.51 92.01 +0.21

−0.20
+0.43
−0.42

Ω (◦) 0.0 0.0
M (MJup) 0.48 +0.25

−0.14
+0.61
−0.22 1.93 +0.45

−0.39
+0.96
−0.71

R/R? 0.0504 +0.0097
−0.0068

+0.021
−0.010 0.0431 +0.0044

−0.0028
+0.0096
−0.0039

Kepler-108 c Parameters:
P (d) 190.348 +0.012

−0.015
+0.027
−0.023 190.535 +0.10

−0.087
+0.22
−0.16

T0 (BJD-2454900 (d)) 816.669 +0.013
−0.017

+0.031
−0.036 816.831 +0.10

−0.084
+0.21
−0.15

e1/2 cos(ω) 0.081 +0.078
−0.072

+0.15
−0.13 −0.2408 +0.0083

−0.0077
+0.017
−0.015

e1/2 sin(ω) −0.353 +0.059
−0.036

+0.66
−0.078 −0.4516 +0.0083

−0.0085
+0.017
−0.017

i (◦) 90.542 +0.053
−0.056

+0.12
−0.11 90.567 +0.030

−0.031
+0.059
−0.063

Ω (◦) 22 +19
−9

+36
−14 0.0

M (Mjup) 0.193 +0.095
−0.074

+0.20
−0.12 0.0295 +0.0079

−0.0073
+0.016
−0.014

R/R? 0.0449 +0.0085
−0.0061

+0.018
−0.0094 0.0391 +0.0041

−0.0026
+0.0088
−0.0037

The same format as Table 4.2, except with Kepler-108A as the host star, which is strongly disfavored (§4.2.2).
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Table 4.7: Kepler-108B Best-Fit Solutions

Planet

Parameters:a b c

Period (d) 49.183166276551468 190.351354671141621
T0 (BJD-2454900) 665.122980583247113 816.671779290328345
e 0.089986885710435 0.149122863867700
i (◦) 91.010811057553170 90.522221912212288
Ω (◦) 0.0 20.253567886356745
ω (◦) -154.480618347210282 -78.537503362093275
Mass (MJup) 0.431852109916838 0.177045842528898
Radius (Rp/R?) 0.051276491383251 0.045709799425805

M? (M�) 1.377
R?(R�): 2.081902708396573
c1 0.548773346700056
c2 -0.020139937332240
dilute 0.440556667838008

Planet

Parameters:a b c

Period (d) 49.183540428579263 190.565864464644363
T0 (BJD-2454900) 665.111007882649574 816.860367107108004
e 0.801635029977613 0.260981406054698
i (◦) 91.977223010429583 90.561723018566155
Ω (◦) 0.0 0.0
ω (◦) -147.861103185700557 -118.243316256653287
Mass (MJup) 2.113070778746788 0.029094474876061
Radius (Rp/R?) 0.043754954793284 0.039569609624921

M? (M�) 1.377
R?(R�): 2.199762169565716
c1 0.540272159974162
c2 0.011661927881225
dilute 0.213472272691092

The same format as Table 4.3, except with Kepler-108A as the host star, which is strongly disfavored
(§4.2.2). The χ2 values here are 25409 and 25432 for the top and bottom parameters respectively.
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CHAPTER 5

KEPLER-444

Kepler-444 is a five planet system around a host-star approximately 11 billion years old.

The five transiting planets all have sub-Earth radii and are in a compact configuration with

orbital periods between 3 and 10 days. Here we present a transit-timing analysis of the

system using the full Kepler data set in order to determine the masses of the planets. Two

planets, Kepler-444 d (Md = 0.036+0.065
−0.020M⊕) and Kepler-444 e (Me = 0.034+0.059

−0.019M⊕),

have confidently detected masses due to their proximity to resonance which creates transit

timing variations. The mass ratio of these planets combined with the magnitude of possible

star-planet tidal effects suggests that smooth disk migration over a significant distance is

unlikely to have brought the system to its currently observed orbital architecture without

significant post-formation perturbations.

5.1 Introduction

Probing the mass-radius relationship for planets smaller than Earth is interesting to theorists

as it may be used to constrain the formation and composition of these bodies, a topic of

debate in the current literature (e.g Armitage, 2010; Chambers, 2010; Sinukoff et al., 2013;

Chatterjee & Tan, 2014; Dupuy et al., 2016). A few planets in this size regime have been

characterized (e.g. Sinukoff et al., 2013; Rappaport et al., 2013; Jontof-Hutter et al., 2015;

Gillon et al., 2017); however, due to the small number of characterizable systems, little is yet

known about the masses or compositions of the smallest (. 1R⊕, . 1M⊕) planets, despite

them being among the most common in the galaxy (Malhotra, 2015).

Recent work has demonstrated the effectiveness of using photodynamic modeling to ex-

tract transit timing variations (TTVs) and planetary properties from systems with low S/N

(e.g., Carter et al., 2012; Barros et al., 2015; Mills et al., 2016). This technique takes ad-

vantage of the many transits of short-period planets observed in the Kepler data by fitting
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Table 5.1: Kepler-444 Planet Periods and Period Ratios

Planet b Planet c Planet d Planet e Planet f
Period (d) 3.600105 4.545876 6.189437 7.743467 9.740501
Period Ratio 1.262707 1.361550 1.251078 1.257899
TTV Period (d)a 89.5 73.1 1780.3 308.5

a TTV super-period timescales calculated analytically based on the planet pair’s distance
from MMR (see, e.g., Lithwick et al., 2012).

the entire light curve and all transits simultaneously. Here, we apply this technique to

Kepler-444.

Kepler-444’s planets (b, c, d, e, and f from inside to out) range in radii from 0.4 to

0.8 R⊕ and in orbital period from 3.6 to 9.8 days (Rowe et al., 2015; Campante et al.,

2015). Their period ratios are near, but not exactly on, mean motion resonances (MMRs;

see Table 5.1). Despite the compact architecture of the system, it is around a star 11.2± 1.0

Gyr old (Campante et al., 2015) and therefore has likely been in a stable configuration for

billions of years. A tight binary pair of M-dwarf stars also orbit together around Kepler-444

with a period of approximately 460 years and a distance of ∼ 60 AU (Campante et al., 2015).

Such a configuration poses a puzzle regarding the early history of the Kepler-444 system, as

planetary formation and migration in a truncated protoplanetary disk in the presence of a

very nearby binary star pair is not well understood, with several effects newly proposed (e.g.,

Touma & Sridhar, 2015; Xu & Lai, 2016). Recent studies have attempted to understand the

possible histories of the system and use it to place constraints on formation mechanisms

(Dupuy et al., 2016; Papaloizou, 2016). However, such studies were unable to use the actual

compositions or masses of the Kepler-444 planets since they were hitherto unknown. In

this paper, we use photodynamics to put constraints on the masses of the planets in the

Kepler-444 system and report mass detections for two of the planets: Md = 0.036+0.065
−0.020M⊕

and Me = 0.034+0.059
−0.019M⊕.
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5.2 Methods

We initially identified potential transit timing variations in the Kepler-444 system by simul-

taneously fitting the raw Kepler light curve with a planet transit model (Mandel & Agol,

2002) and a one-day wide polynomial to take into account systematic effects and stellar

activity. Following Lithwick et al. (2012), we also compute the expected period of the TTV

signal between each pair of planets analytically (Table 5.1), noting that period of the ex-

pected signal for planets d and e matches the TTV observations well (Fig. 5.1). We find

statistically significant TTV between planets d and e, but the signal for all other planets is

undetectably low as theoretically expected. The same conclusion was reached independently

by (Hadden & Lithwick, 2017), a survey of many Kepler systems showing TTVs.

In order to perform a more robust, simultaneous fit for all planetary parameters, we first

reprocessed the raw Kepler lightcurve data. We use short-cadence (58.8 second integration)

data when it was available (Kepler observing quarters 4, 6, and 15-17) and long cadence

data (29.4 minute integrations) otherwise. We first discarded points whose quality flag had

a value equal to or greater than 16. We then detrended the light curves by masking out the

expected transit times plus 20% of the transit duration to account for possible TTVs and

then fit a cubic polynomial model with a 1000-minute width centered on photometric data

points spaced by 30 minute intervals. We interpolated between these points to determine a

baseline and divide the measured flux at each data point by these values. This detrending

method produces two regions of extreme curvature in the lightcurve due to edge effects,

so we discard the small regions with times BJD-2454900 = 1405.10 to 1405.18 days and

1490.88 to 1490.97 days. To account for certain Quarters showing higher noise levels than

others despite all quarters having similar quoted uncertainties, we assign an uncertainty of

5.3030402e-05 to points in Quarter 12, 2.3470900e-04 in Quarter 16, and 6.5361999e-04 in

Quarter 17, an increase over other regions by a factors of roughly 5, 4, and 11 respectively

(the ratio of their out of transit standard deviation). Lastly, we increase the uncertainties in

all points by a multiplicative factor of 1.38073 so that a fiducial fit to the light curve has a
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χ2 = 1.000. This approach substantially increases the uncertainties on the fitted parameters

compared to using the values reported by Kepler, allowing unmodeled noise to propagate to

the final uncertainties on our parameter posteriors. We used data from Kepler Data Release

21 (DR21) for this analysis because there is less scatter in the DR21 data compared to the

DR25.

Our photodynamic model integrates Newtonian equations of motions for the star and

five planets including the light travel time effect (which in this case is negligible). When

any of the planets pass in front of the star along the line of sight, a synthetic light curve

is generated (Pál, 2012), which can then be compared to the data. The parameters we

include for each planet in the differential evolution Markov chain Monte Carlo (DEMCMC;

Ter Braak, 2005) fit are {P, T0, e
1/2 cos(ω), e1/2 sin(ω), i,Ω, Rp/R?,Mp/M?}, where P is the

period, T0 is the mid-transit time, e is eccentricity, ω is the argument of periapse, i is

inclination to the sky plane, Ω is nodal angle on that plane, and R and M are radius and

mass respectively (with subscripts p = b, c, d, e, f for the planets and ? for the star). The

star had five additional parameters: {M?, R?, c1, c2, dilute}, where ci are the two quadratic

limb-darkening coefficients and dilute is the amount of dilution from other nearby sources.

We put physically sensible, but permissive, minima (ρp = 0.0) and maxima (ρp = ρFe)

on the bulk planet densities, where ρp is a planet’s bulk density and ρFe is the density of

iron for a body of planet p’s size. Taking values from (Seager et al., 2007), the maximum

densities for the 5 planets from b to f respectively are (9.5, 9.7, 10.3, 10.5, 12.2) g/cm3,

differing due to the compressibility of iron. The prior on mass is otherwise flat between 0

and these values.

Since the mass and eccentricity implied by TTVs may be degenerate (Lithwick et al.,

2012) and result in measured eccentricity values so high that the system go unstable on

timescales much shorter than the age of the system (Pu & Wu, 2015), we use a Rayleigh

prior on the eccentricity of all planets with width parameter σ = 0.02. This is consistent with

the values measured in other tightly packed planetary systems (Hadden & Lithwick, 2014;
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Fabrycky et al., 2014), and is consistent with long term stability because even moderate

eccentricity has been shown to destabilize tightly packed systems (Pu & Wu, 2015).

The dilution is well-measured (Campante et al., 2015) so we fix dilute = 0.0394 since it

would otherwise be highly degenerate with Rp/R?. This implies that the Rp/R? value

uncertainties may be slightly underestimated, but since (Campante et al., 2015) report

dilute = 0.0394 ± 0.0001, this will have only a very small effect on the reported poste-

riors. We also fix Ωp = 0 for all planets since we expect very small mutual inclinations

between the planets because we see five planets transit (see, e.g., Lissauer et al., 2011a). Ad-

ditionally, even modest values of Ω may greatly increase likelihood that the system becomes

unstable over the system’s lifetime due exchange of eccentricity and inclination on secular

time scales. Since the transit information gives only the stellar density and planet-to-star

mass ratio (via TTVs), we model with a fixed M? = 0.758M�, which sets the overall scale

of the system. We use generic flat priors in all other parameters.

5.3 Results

Median values and 68.3% confidence intervals from the of photodynamic model are reported

in Table 2. The full data set of the DEMCMC chains can be downloaded from the online

version of this article. We ran a 64-chain DEMCMC for 900,000 generations recording every

1,000 generation, conservatively throwing out the first 50,000 generations as a burn-in. The

autocorrelation timescale for the slowest converging parameters was approximately 60,000

generations, thus we are left with & 850 independent samples for each parameter. By

numerically fitting the TTVs, the model produces mass constraints based on the Kepler

data. Consistent with the measurement of individual transit times described in §5.2, planets

b, c, and f do not induce significant TTVs on the other planets, which means their masses

are not significantly detected. However, the TTVs in planets d and e are both significant

enough to confidently place upper and lower bounds on the mass. The posteriors in mass

are inconsistent with zero mass and fall off much more rapidly than the prior near m = 0.
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Photodynamically measured TTVs are shown in Fig. 5.1, with the resulting mass constraints

for planets d and e shown in Fig. 5.3 and reported for all planets in Table 5.2. Compared to

the masses derived in Hadden & Lithwick (2017, Md = 0.2+0.5
−0.1M⊕ and Me = 0.1+0.2

−0.1M⊕),

these new measurements (Md = 0.036+0.065
−0.020M⊕ and Me = 0.034+0.059

−0.019M⊕) are more precise.

This is due in part to more a more restrictive and physical prior and in part to due to the

photodynamic analysis method used in this study. We also compare individually measured 1-

σ TTV posteriors from Holczer et al. (2016), to the photodynamic TTV posteriors in Fig. 5.2.

We note that the relatively small error bars are a result of using the underlying physical

model combined with the data of each transit and its neighboring transits to determine the

best fit transit location and uncertainty. This dependence on neighboring transits due to

model restrictions results in correlated measurements (unlike the independent Holczer et al.

(2016) measurements), and therefore the quadratic sum of all of the points’ distances from

a nominal model normalized by their uncertainties may not be used to construct a simple

χ2 goodness of fit where independence is assumed.

We compute the posterior of Zj+1,j for each neighboring planet pair by approximating

the value as |zj+1 − zj |/
√

2 (see, e.g., Hadden & Lithwick, 2017, Eq. 4), where zj = eje
iωj

for each planet j and i is the imaginary unit. We find the median and 68% confidence

intervals or upper limits Zc,b = 0.022+0.013
−0.011, Zd,c = 0.021+0.013

−0.010, Ze,d ≤ 0.023, Zf,e ≤ 0.020.

We note that the interior planets are consistent with the prior alone, but the planet pair

with detected masses (d and e) has a smaller value preferring low free eccentricity (Fig. 5.3).

The absence of measurable TTVs induced by planet f on planet e also constrains Zf,e. We

compare these plots with similar M–|Z| plots for all planets to demonstrate the full, joint

mass-eccentricity constraints placed on planet f, and the unconstrained nature of planets b

and c (Fig. 5.4). For completeness, we show the transits with TTVs removed in Fig. 5.5.

We also numerically integrate 100 draws from the DEMCMC posterior for 100 Myr to

make sure we are exploring regions of parameter space stable for times comparable to a rea-

sonable fraction of the system’s age. 95% of the samples remain stable. Since approximately
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Table 5.2: Photodynamic DEMCMC Posterior Median Values and 68.3% (1-σ equivalent)
Uncertainties

Planet Parametersa

Planet b Planet c Planet d Planet e Planet f
P (days) 3.600105+0.000031

−0.000037 4.545876+0.000030
−0.000031 6.189437+0.000053

−0.000037 7.743467+0.000060
−0.00010 9.740501+0.000078

−0.000026

T0 (days) 815.08383+0.00052
−0.00055 819.13903+0.00042

−0.00044 816.70059+0.00072
−0.00072 819.21772+0.00087

−0.00083 817.89759+0.00038
−0.00032√

e cosω −0.03+0.14
−0.10 0.01+0.12

−0.13 0.098+0.065
−0.12 −0.035+0.12

−0.090 −0.059+0.12
−0.078√

e sinω 0.048+0.099
−0.15 −0.02+0.13

−0.11 −0.014+0.10
−0.091 0.038+0.074

−0.11 0.052+0.075
−0.12

i (◦) 92.00+0.26
−0.30 92.79+0.12

−0.11 91.95+0.11
−0.10 90.62+0.27

−0.35 92.087+0.058
−0.054

Ω (◦) 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed)
Mp/M? (×10−7) 2.3+1.6

−1.6 4.5+3.5
−3.2 1.45+2.6

−0.81 1.34+2.35
−0.74 4.5+12

−3.5

Rp/R? (×10−3) 4.967+0.070
−0.067 6.380+0.090

−0.087 6.613+0.079
−0.077 6.799+0.078

−0.076 9.39+0.13
−0.12

Stellar Parameters

M? (M�)b 0.758 (±0.043)
R? (R�) 0.749+0.014

−0.013

c1 0.45+0.13
−0.14

c2 0.32+0.20
−0.19

dilute 0.0394 (fixed)

Planet Mass Posteriors Convolved with Stellar Uncertaintiesb

Planet Radius Median Mass 68.3% CI 95% CI 99% CI Density 68.3% CI 95% CI 99% CI
(R⊕) (M⊕) (g cm−3)

b 0.406+0.013
−0.013 < 0.079 < 0.11 < 0.13 < 6.6 < 9.1 < 9.4

c 0.521+0.017
−0.016 < 0.16 < 0.24 < 0.27 < 6.2 < 9.1 < 9.6

d 0.540+0.017
−0.016 0.036 [0.016, 0.10] [0.0092, 0.20] [0.0070, 0.27] 1.27 [0.56, 3.5] [0.32, 7.2] [0.25, 9.2]

e 0.555+0.018
−0.016 0.034 [0.015, 0.093] [0.0087, 0.19] [0.0065, 0.25] 1.08 [0.48, 3.0] [0.28, 6.1] [0.21, 8.0]

f 0.767+0.025
−0.024 < 0.22 < 0.71 < 0.94 < 2.6 < 8.8 < 11

a Valid at Tepoch = 815 (BJD - 2454900 days).
b M? is held fixed at 0.758M� in the DEMCMC, but the posteriors are convolved with the uncertainties on stellar
mass (0.758±0.043M�) from Campante et al. (2015) when determining uncertainties in physical units in the bottom
panel.
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Figure 5.1: Kepler-444 Photodynamic TTVs.
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TTVs and uncertainties as measured by the photodynamic DEMCMC as described in §5.2.
The values and error bars were generating by drawing from 100 parameter sets from the
posterior and integrating the equations of motion to generate median and 1-σ uncertainties.
The anti-correlated TTV signal between planets d and e with a ∼10 minute amplitude is
readily visible by eye and results in a secure mass detection for both planets. All other TTV
signals are below the noise level.
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Figure 5.2: Comparison of Photodynamic and Individually Measured TTVs
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Photodynamic TTV posteriors for planets d and e (see Fig. 5.1) compared to individually
measured TTVs in long cadence data from Holczer et al. (2016).
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Figure 5.3: Planets d and e Mass and Eccentricity Posteriors
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The posterior distributions of the masses of planets d (left, yellow) and e (right, red) against
the Ze,d posterior (top) and marginalized over all parameters (bottom). The distribution of
the mass prior for each planet is plotted in gray (note that the prior is flat in linear space).
Box-and-whisker figures show the median, 68.3%, 95%, and 99% confidence intervals above
the bottom panels. These panels illustrate how the posteriors cut off more rapidly than the
prior at very low masses and also disfavor large masses because of the declining probability
on the right hand of the distributions despite the increasing prior.
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Figure 5.4: Planets b, c, and f Mass–Eccentricity Posteriors
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The mass–|Z| posteriors for planets without confidently detected masses – note that pos-
teriors extend continuously to M = 0. The top two panels indicate that the data show no
preference away from the prior. However the lack of TTV in planet e sets a clear upper limit
on the combination of mass and eccentricity in planet f. Note the different horizontal and
vertical scales in each panel.

143



Figure 5.5: Kepler-444 Transit Lightcurves
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Transits are binned into 0.005 day intervals after phasing at the measured period and re-
moving transit timing variations.
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Figure 5.6: Planet Composition
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The mass and radius (and 1-σ uncertainties) of planets d (yellow) and e (red) are plotted on
top of contours of constant composition taken from Seager et al. (2007). The solid green line
represents pure iron planets, the brown lines pure rock (MgSiO3), an Earth-like rock/iron
ratio, and a Mercury-like rock/iron ratio from top to bottom, and the blue line represents a
pure water planet. The vertical lines with arrows are the 95% and 99% upper bounds from
the MCMC posterior, showing that the planets are inconsistent with a pure iron composition,
and instead have a rockier composition consistent with the Solar System terrestrial planets.
Mercury (Y) and Mars (M) are shown in pink.

equal numbers of systems are likely to go unstable in logarithmic bins of time (Pu & Wu,

2015), we expect > 80% of our posterior to be stable for the measured system age of ∼11

Gyr.

Importantly, we note that at the 95% confidence level, both planets are inconsistent with

being purely iron. Planet d requires a composition with a fraction of rock as least as great

as Mercury (∼30%), and, like Earth, planet e can be no more than 30% iron by mass. These

measurements are plotted in Fig. 5.6 along with theoretical composition tracks taken from

(Seager et al., 2007).
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If we more speculatively suggest that the eccentricity of the planets is indeed very small

(|Ze,d| < 0.005) as may be expected given tidal dissipation and a lack of strong external

perturbations, then stricter mass constraints result (see Fig. 5.7). These constraints are

more consistent with rocky bodies than those without a strict eccentricity upper bound,

and are potentially more physically likely for such low-mass, highly-irradiated planets (e.g.,

Lopez & Rice, 2016).

5.4 Followup Observations

5.4.1 Radial Velocities

The radial velocity (RV) signal induced on a host star by a planet is given by (Cumming

et al., 1999):

K =

(
2πG

P
(M? +Mp)

)1/3 Mp

(M? +Mp)

sin(i)√
1− e2

, (5.1)

where K is the RV amplitude, G the Newtonian gravitational constant, P the planet’s period,

M? the stellar mass, and Mp the planet’s mass. Inserting values for for Kepler-444 planets,

we see that the expected K values range from ∼4-20 cm/s. This is below the current RV

detection threshold (e.g., Plavchan et al., 2015).

5.4.2 PLATO

Because of the shallow transit depth, photometric follow-up is precluded for most exist-

ing instruments. However, the ESA’s Planetary Transits and Oscillations of Stars Mission

(PLATO) has recently received approval with operational dates of 2024-20201. The preci-

sion goal for PLATO is 3.4× 10−5 in 1 hour for stars with mV ≤ 11. Since Kepler-444 is 2

magnitudes brighter, we may expect a factor of ∼10 times more photons and thus a precision

of 1 × 10−5 per hour. Each planned 50 second exposure should therefore have a precision

1. See PLATO SCIRD - http://sci.esa.int/plato/42730-scird-for-plato/.
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Figure 5.7: Low Eccentricity Mass Posteriors
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The distribution of mass posteriors for planets d and e when |Ze,d| is restricted to values
below 0.005 assuming significant tidal dissipation. Due to the inverse correlation of mass
and eccentricity, removing the high-eccentricity part of the posterior leaves only high mass
values (see Fig. 5.3). Resulting 1-σ uncertainties are consistent with higher-density, rockier
planets than suggested in Fig. 5.6.
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of
√

3600/50 × 10−5 ≈ 8 × 10−5. Taking several solutions from the Kepler data posteri-

ors, based on the planned observing strategy we produce two-year sets of simulated PLATO

transits beginning in 2025. We then add Gaussian noise to this data with σ = 8 × 10−5.

Finally, we refit the combined actual Kepler data and simulated, noisy PLATO data to

test how informative the PLATO measurements will be in further constraining the planet

masses. We find that the mass constraints of planets d and e are improved to having ∼20%

1-σ uncertainties. Such a measurement may allow tight constraints on the fraction of the

planet which is iron, rocky, or volatile, potentially distinguishing a water-rich planet from

an Earth-like composition. Additionally, we find that in some cases Planet b (the smallest

radius planet Rb = 0.406±0.013R⊕) interacts with Planet c sufficiently to induce observable

TTVs and a 99.7% confidence (3-σ equivalents) non-zero mass detection of Planet b. Such

a measurement would make it (as of right now) the smallest exoplanet with a detected mass

orbiting a main sequence star. To conclude, we note that the results in this section are de-

pendent on the true noise properties and observing strategy of PLATO, which are currently

uncertain.

5.5 Implications for Formation and Tidal Evolution

Papaloizou (2016, hereafter P16) performs an in-depth analysis of the possible migration

history of the Kepler-444 system, considering both migration and circularization effects due

to planet-disk interactions. Since the planets are very low mass, P16 assumes they are in

the Type I migration regime with migration timescale, τmig ∝ M−1
p . If the planets migrate

at different rates (due to mass and local disk density), then one would expect them to ap-

proach MMRs with the other planets, at which point they would get trapped near those

MMRs (Melita & Woolfson, 1996; Lee & Peale, 2002; Terquem & Papaloizou, 2007). An

equilibrium would be reached where the resonant repulsion due to eccentricity damping is

balanced by the differential migration rates of each pair of planets. Since the planets are

up to 2% away from resonance, P16 speculates that significant relative contraction of the
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planets did not occur, although significant migration as a unit might have. In order to

match the observed period ratios, P16 assumes that planet e is significantly (by a factor

of ∼3) more massive than d. This allows e to easily migrate more quickly than, and thus

contract and approach resonance with, planet d while the other planets remain relatively

more distant from resonances since they would not be as effective at overcoming the repul-

sive eccentricity damping force. Our photodynamical fit finds that Me/Md = 0.93+0.14
−0.13, a

significant departure from that assumption (see Fig. 5.8). This suggests that the present-day

observed period ratios combined with smooth disk migration alone are generally insufficient

for modeling specifics of the formation of the system. Many factors may have changed the

migration of the planets while the disk was present, including local disk properties (Cossou

et al., 2014) or turbulence in the disk (Oishi et al., 2007; Rein & Papaloizou, 2009). Alter-

nately, the planets may have moved after the dispersal of the gas and dust disk, for instance

via a combination of planetesimal crossings (Fernandez & Ip, 1984; Levison et al., 2007)

or damping from tides raised by the star (Lee et al., 2013). Therefore, we caution against

strict interpretations of observed exoplanet masses and architectures (or ensembles of these

architectures) when it is likely that the systems have evolved substantially since their natal

formation. We infer from the Me/Md ratio that the system underwent significant orbital

period changes after a migration formation, or formed in situ. We also note that very high,

iron-like densities are disfavored, suggesting that large amounts of collisional stripping due

to high velocity giant impacts likely did not occur (Marcus et al., 2010; Asphaug & Reufer,

2014).

Since the planets orbit very close to their host star, we consider the effects of tidal dis-

sipation on the observed orbital period ratios. It is possible that tides on planets in or near

a MMR causes their proximity to orbital resonance to change (generally spreading planets

apart away from resonance) over Gyr timescales (Papaloizou, 2011; Lee et al., 2013). Follow-

ing Papaloizou (2011, henceforth P11), we define δj as the distance from orbital resonance
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Figure 5.8: Planet e to Planet d Mass Ratio
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by

δ =
nj
nj+1

− (k + 1)

k
, (5.2)

where nj is the jth planet’s mean motion and k is the degree of the near first order resonance

between planets j and j + 1. P11 equation (40) gives the relation between the change in

δj as a function of time and orbital parameters of the system. To determine analytically

the amount tides would move planets away from exact resonance as a function of time P11

integrates Equation (40) from t′ = 0 to t′ = t and assumes δj,t=0 = 0, i.e., the system begins

in exact MMR (P11, Equation (42)). If, however, we integrate from t′ = 0 to t′ = 11 Gyr

(the age of Kepler-444), and we know δj,t=11Gyr based on the observed system, we may solve

for δj,t=0 as a function of Q/k2, the ratio of the tidal Q factor and the love number. This

factor enters via the tidal circularization time

tc,j =
4

63

Mja
13/2
j

(GM3
? )1/2R5

j

3Q

2k2
, (5.3)
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for the jth planet (Goldreich & Soter, 1966; Rasio et al., 1996). We solve for the total change

in distance from resonance since the planets’ formation ∆j = δj,t=11Gyr − δj,t=0. For the

inner pair of planets (b and c, k = 4), we find that ∆1 ≈ 7 × 10−4 − 7 × 10−7 for values

of Q/k2 ranging from 1 to 1000, using the approximation that (Q/k2)b ≈ (Q/k2)c which

is reasonable given their similar size and proximity in the system. In the solar system, the

rocky planets and large, rocky moons have 10 . Q/k2 . 500 (Goldreich & Soter, 1966).

Since the observed δ1,t=11Gyr = 1.27 × 10−2, we see that tidal dissipation was insufficient

to have moved the innermost pair a significant distance from its current period ratio and

rules out tidal dissipation breaking a natal MMR. These findings are confirmed by long-term

numerical N-body integrations, following (MacDonald et al., 2016).

The other pairs of planets have longer periods and, in the case of c and d, are further

from resonance. They are thus generally less affected by tides. However, the period ratio of

planets d and e are very close to resonance (Table 5.1) so even a small amount of dissipation

may significantly impact their δ3. Following Lee et al. (2013), we can set a limit on the tidal

Q/k2 factor for the innermost planet by using their equation (18) with the observed system

age and planet parameters. We find (Q/k2)d & 12. This limit is very near solar system values

for rocky bodies, and possibly hints that the pair started in an exact MMR and was driven

apart via this mechanism. This suggests that disk migration may have driven this pair of

planets together, but the lack of tidally-broken commensurabilities among the other planets

suggests the migration was not smooth or there were significant external perturbations after

the disk dissipated.
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CHAPTER 6

CIRCUMBINARY PLANETS

To date there have been 11 planets identified orbiting two main sequence stars (circumbinary

planets or CBPs; Doyle et al., 2011; Welsh et al., 2012; Orosz et al., 2012b,a; Schwamb et al.,

2013; Kostov et al., 2014; Welsh et al., 2015; Kostov et al., 2016; Orosz et al., in prep.). While

it is natural to speculate that the same processes that form planets around single stars would

prevail in forming planets in circumbinary disks, new processes due to the second massive

star may be important (e.g., Ford et al., 2000), or the relative importance of the processes

may be different compared to single-star systems. To understand these differences requires a

well-characterized sample of CBPs to match their single-star counterparts. Here I summarize

a few key characteristics ascertained with the relatively small sample of CBPs thus far.

All of the CBPs discovered to date have low (. 5◦) mutual inclinations between the

planets and their host binary. Additionally, the three planets of the only known multiplanet

circumbinary system, Kepler-47, are coplanar to within 2◦ (Orosz et al., 2012a). Since

dissipation in disks keeps planets coplanar, this suggests migration through a protoplanetary

disk that was aligned with the binary pair brought the planets to their current positions

(Foucart & Lai, 2013). However, this conclusion is affected by observational bias – planets

aligned with their binary hosts are more likely to be observed as transiting eclipsing binaries

(Borucki & Summers, 1984; Martin & Triaud, 2015). We await the completion of ongoing

studies of non-transiting CBPs to understand the full distribution of binary-planet mutual

inclinations (cf. Armstrong et al., 2014; Li et al., 2016).

The orbital periods of the first eight published CPBs were within a factor of 2 of the

critical period (Welsh et al., 2015; Winn & Fabrycky, 2015),

Pcrit ≈
(
1.60 + 5.10ebin− 2.22e2

bin + 4.12µ− 4.27ebinµ− 5.09µ2 + 4.61e2
binµ

2)3/2Pbin, (6.1)

where µ = MB/(MA + MB), below which planets go unstable (Eq. 3, Holman & Wiegert,
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1999). This result is consistent with expectation based on planet migration (Pierens &

Nelson, 2007, 2013; Kley & Haghighipour, 2014, 2015), although could also be in part due to

observational bias (Armstrong et al., 2014; Winn & Fabrycky, 2015; Li et al., 2016). More

recent results cast doubt on the robustness of the clustering, with Kepler-453 b’s period

more than a factor of two greater than the critical instability period (Welsh et al., 2015),

and Kepler-4153 b’s nearly a factor of 10 larger (Kostov et al., 2016).

Lastly, there are no Earth-like CBPs observed, with the smallest CBP to date having

R = 3REarth (Orosz et al., in prep.). This result may also be attributed to observing bias

from a combination of several factors. A single transit of a planet of a given radius will be

less deep if it transits a star in a binary compared to the same transit across an isolated star.

This is because the other star’s light dilutes the transit depth. Additionally, conventional

planetary transit search algorithms rely on the periodicity of the transits to bin together

many transits to increase signal to noise of the detection. These searches generally work by

phasing the data at a constant period throughout the data set and fitting a transit model.

This approximation fails dramatically for CBPs where TTVs can exceed the transit duration

by a large factor, thus smearing out the transits (Armstrong et al., 2013). Additionally,

transits can start and stop over the course of the data set due to rapid precession induced by

the binary (e.g., Kostov et al., 2014; Welsh et al., 2015). Eclipsing binary light curves have

a lot of additional astrophysical signal which may mask transit events: in addition to the

normal stellar noise and starspot signals, the stellar eclipses themselves are generally orders

of magnitude deeper than planetary transits and can obscure them (e.g., Kostov et al., 2016).

In this chapter I will introduce KIC 10753734, a new addition to the CBP sample,

and briefly review my contribution to the analysis of Kepler-453. This work is part of a

community effort to characterize many individual systems with high precision so that physical

models can be applied to individual systems as discussed above, and statistical studies may

be begun. Additionally, these systems serve as probes to uncertain stellar physics which

circumbinary planets can uniquely access (see, e.g., Orosz et al., 2012a; Boyajian et al.,
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2012; Tal-Or et al., 2013)

6.1 KIC 10753734

This section describes the discovery of a planet in the binary star system KIC 10753734 and

its initial modeling. This work is still in progress – for a complete analysis and final results

see Mills et al. in prep.

6.1.1 Binary System

The KIC 10753734 stellar system is a known binary pair of of main sequence G dwarf stars

with a 19.39220 day period (Prsa et al., 2011). We label the primary star A, the secondary B,

and the planet p throughout. Radial velocity (RV) observations of KIC 10753734 were also

obtained from BJD 2456504 to BJD 2456530 at the Hobby Eberly Telescope (HET), shortly

after the Kepler observing window (Table 6.1). The spectra were double-lined, allowing RV

measurements for each star in the system. The RV data are consistent with photometric

measurements – a joint fit of eclipse times and RV data is show in Fig. 6.1, including a

constant RV offset CRV as a free parameter. The RV uncertainties quoted in the table were

increased by a factor 5.1 so that our nominal model has χ2
ν = 1.00.

Inspection of the Kepler lightcurve after the removal of systematics using the CBVs

as discussed in §4.2.1 reveals large amplitude (∼1%) variability in the flux from the KIC

10753734 binary away from eclipse (see Fig. 6.2). This is indicative of stellar rotation with

starspot activity. The total observed flux decreases (increases) as the colder, darker starspots

rotate into (out of) view. Variations in the shape of the eclipses confirm the starspots and

reveal that both of the stars possess star spots and are rotating asynchronously with the

orbit (since the location of the spots is changing). The bumps in the fit residuals indicate

the passage of the eclipsing star over a spot on the background star, thus decreasing the
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Table 6.1: KIC 10753734 RV Observations

Time RV 1-σ Uncertainty

(BJD-2454900) (m s−1) (m s−1)
KIC 10753734 A

1604.8675950 -22045 692
1605.6377210 -20439 642
1606.6488530 -17080 700
1608.8633230 -6132 702
1609.6419980 1908 26291
1610.8373720 7532 828
1613.8455570 76649 741
1616.6215630 4134 26093
1617.8395860 -11013 433
1621.8319380 -25036 455
1622.8193050 -24325 422
1626.7271850 -15920 493
1630.8064110 17459 823
1633.6783800 86019 724
1634.7017760 60281 779

KIC 10753734 B
1604.866813 30026 1574
1605.636940 27861 1542
1606.648071 24511 1347
1608.862542 11958 1473
1609.641217 1908 27178
1610.836590 -2737 1822
1613.844776 -78370 1720
1616.620781 4134 26093
1617.838804 18097 869
1621.831157 33595 1123
1622.818524 32709 1275
1626.726404 21823 1096
1630.805629 -12562 1027
1633.677599 -88072 706
1634.700994 -59097 1010
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Figure 6.1: KIC 10753734 RV Model
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Measured RV data (×s with 1-σ uncertainties) phased at the binary orbital period compared
to a joint eclipse timing and radial velocity fit model (open squares). The RV of the primary
is shown in black, and the secondary in gray.
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total flux blocked and causing a small apparent spike in intensity during the eclipse1 (see

Figs. 6.3 and 6.4).

The frequency of the star spot modulations reflects the stellar rotation periods. Since the

eclipses reveal that both stars have spots we may expect two dominant frequencies, one at

the rotation period of each star. We prepare the lightcurve for starspot frequency analysis

by taking the Kepler photometric data set with CBV detrending (as shown in Fig. 6.2), and

masking out the full duration plus a 10% buffer of every primary and secondary eclipse. We

then apply a Lomb-Scargle (LS) periodogram (Lomb, 1976; Scargle, 1982) to this lightcurve.

A dominant frequency peak (along with its first harmonic) is seen at P ≈ 8.6 days in the

periodogram (Fig. 6.5). Fig. 6.6 shows the autocorrelation function of the lightcurve taking

into account missing data, which may be more effective at determining periods if the phase

of the spots is changing or the spots are short-lived relative to the observing window. A

single dominant mode is again present, suggesting a period of 8.8 days. This period does not

match either the orbital period of the binary pair (19.4 days), nor the pseudo-synchronous

rotation period (6.1 days), which may result if the stellar rotation rates are dominated by

the binary pericenter passage speed where tides are strongest (Hut, 1981). The similar

amplitude of the starspots in the eclipse measurements for both stars suggests that if both

stars were rotating they should have similar amplitude effects on the lightcurve, and therefore

two equally strong periods may be measured. The existence of a single dominant frequency

tentatively suggests that both stars have a similar rotation period. This is indeed consistent

with empirical and theoretical models of stellar rotation of main sequence stars, where stars

that are nearly the same mass and likely the same age (due to binaries forming together

from the same protostellar cloud) should have similar rotation periods (gyrochronology, see,

e.g., Skumanich, 1972; Barnes, 2003; Mamajek & Hillenbrand, 2008; Angus et al., 2015; van

Saders et al., 2016). However, in this case stellar tides have likely reduced the spin-down

1. In principle, faculae and other bright features may also be eclipsed resulting in downward spikes in
transit, but this effect is generally smaller than the dimming caused by starspots for active and fast-rotating
stars (Montet et al., 2017).
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Figure 6.2: KIC 10753734 Lightcurve
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The KIC 10753734 lightcurve showing percent-level quasi-periodic variability due to
starspots. The top panel shows the entire lightcurve, with the data in each observing quarter
divided by the quarterly mean value to normalize the flux values. The lower panel focuses
on a single observing quarter so that the detailed nature of the variation may be observed.
In both panels primary eclipses are highlighted in blue and secondary in yellow, but the full
depth is cut off to show detail in the out-of-eclipse lightcurve.
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Figure 6.3: A Sample of Primary Eclipses
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Six primary eclipse observations (black) and a naive global fit (blue), with residuals and
uncertainties plotted below each eclipse. Outside of eclipse the residuals are relatively flat,
but during eclipse their correlated nature suggests the presence of star spots on the primary
star.
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Figure 6.4: A Sample of Secondary Eclipses
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Similar to Fig. 6.3, but instead showing six secondary eclipse observations (black) and a naive
global fit (yellow), with residuals and uncertainties plotted below each eclipse. Again, the
out-of-eclipse data are consistent with a flat line, but inside their correlated nature suggests
the presence of star spots on the secondary star as well.
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Figure 6.5: Starspot LS Periodogram
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LS periodogram of the KIC 10753734 lightcurve after removing instrument systematics and
masking out stellar eclipses, revealing a strong periodicity of 8.6 days and its first harmonic
at 4.3 days.

(Hut, 1981).

6.1.2 Identification of Planetary Transits

Three planetary transits in KIC 10753734 were identified by visual inspection of the lightcurve.

The first visually identified transit was detected at approximately BJD 2456137, roughly 1200

days into Kepler ’s observing window (the transit marked by the dashed vertical line in the

second panel from the bottom of Fig. 6.7). Two subsequent transits were identified when

they occurred ∼250 days later separated by only ∼6.5 days (Fig. 6.7, bottom panel). This

suggests a planet orbital period of ∼250 days, with the second pair of transits corresponding

to transits of both stars during a single barycenter passage. A preliminary N-body transit

model identified an additional transit location in the light curve: a small but statistically

significant dip is indeed observed approximately 7 days prior to the first identified transit,

bringing the total planet number of observed planetary transits to four.

161



Figure 6.6: Starspot Autocorrelation Function
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Autocorrelation function of the KIC 10753734 lightcurve after removing instrument system-
atics and masking out stellar eclipses, revealing a single decaying periodicity of 8.8 days.

We understand the lack of transits earlier in the data as due to a non-zero mutual

inclination between the planet and the binary pair, causing the planet to only precess into

a transiting geometry in the last few hundred days of the Kepler observing window. This

is similar to the behavior observed in Kepler-413b (Kostov et al., 2014) and Kepler-453 b

(Welsh et al., 2015). The following section describes the detailed modeling of the system to

determine the full 3D architecture of the system.

6.1.3 N-body Modeling Procedure

The nominal model of spherical, radially symmetric stars as described in §2 is insufficient

due to the prevalence of starspots. The starspots result in two primary effects: they (1) bias

the eclipse depths and (2) affect the eclipse timings. The depths of the eclipse in large part

determines the ratio of the stellar radii. When there are abundant, significant starspots, the

large upward scatter at the bottom of the eclipse due to a star’s occultation of the other’s

spots results in an average eclipse depth which is less than for a spotless background star

(Fig. 6.8) (Oshagh et al., 2013). Therefore, we select a subset of eclipses to fit with our
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Figure 6.7: Transits and Closest Stellar Approaches of KIC 10753734 b
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Twelve-day sections of the lightcurve near planet conjunction of the binary barycenter in chrono-
logical order as observed by Kepler. Times of closest approach between the planet and the primary
(solid vertical line) and secondary star (dashed vertical line) are shown at each conjunction. In the
bottom two panels, the most recent conjunctions in the Kepler observing window, transits of both
host stars are visible. The third frame from the bottom has no data due to instrument malfunction,
but our model predicts a single transit occurred in that window. No earlier conjunctions exhibit
transits. Note that the vertical scale of the bottom and third from the bottom panels is compressed
relative to the other panels to show the entire transit depth. Deep downward dips in flux that
extend beyond the panel boundaries correspond to primary and secondary eclipses. To ensure no
transits were missed, the twelve-day window was chosen well in excess of both the model’s range of
closest approaches and the ∼8 day theoretical maximum CBP TTV range computed analytically
following Armstrong et al. (2013).
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Figure 6.8: Phased Eclipses and Best Fit Nominal Model for All Eclipses
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All primary (left) and secondary (right) eclipses phased together after ETV removal. Resid-
uals to a nominal model of all this data illustrates the large scatter in eclipse due to starspot
crossing events, as suggested in Figs. 6.3 and 6.4.The top panel shows the entire Kepler
photometry data set after detrending.

photodynamic stellar eclipse model which have ‘luckily’ avoided passage over starspots to

accurately find the stellar radii (Welsh et al., 2015). These are shown in Fig. 6.9. The

application of these fits to the entire dataset reveals upwards spikes are consistent with the

model of eclipse crossings of dark starspots (Fig. 6.10).

The second major effect is a result of the starspot crossing events producing an asymmet-

ric eclipse shape. The ‘U’ shaped eclipse model is pushed away from the starspot crossing

spike, causing the measured eclipse time to be biased away from the side of the eclipse with

the starspot event (Alonso et al., 2009). If the binary pair orbits prograde relative to the

stellar spin, then starspots that have just rotated into view will be occulted early in the
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Figure 6.9: Photodynamical Model Data Including Starspot-Free Transits
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Similar to Fig. 6.8, except the eclipses of the primary (left) and secondary (right) stars have
been selected as showing limited starspot activity. This data, along with the portions of the
lightcurve near planet conjunctions, including the locations of observed transits and where
transits are notably observed not to occur (see the top four panels of Fig. 6.7), is used for
photodynamical modeling. The complete detrended dataset used in the photodynamical
model shown in the top panel. The eclipse times of eclipses not included in the photometry
are simultaneously fit to avoid starspot timing biases as described in the text.
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Figure 6.10: Phased Eclipses and Best Fit Clean Model for All Eclipses
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Similar to Fig. 6.8, all primary (left) and secondary (right) eclipses phased together after
ETV removal. However, this stellar model and residuals are from a fit of the ‘lucky’ starspot-
free transits as shown in Fig. 6.9. The vast majority of large residual excursions are now
upwards, consistent with the darkening effect of starspot crossing, and suggesting these
stellar models more accurately reflect the true radii of the stars.
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eclipse, and spots that are rotating out of view will be occulted later in the eclipse (Fig. 1,

Mazeh et al., 2015a). Spots rotating into view corresponds to a loss of flux due to the darker

surface of the spot compared to the rest of the star, and therefore an overall downward flux

trend in the lightcurve. Similarly, spots rotating out of view, and therefore appearing as

a bump near the end of the eclipse lightcurve, will cause a corresponding increase in total

measured flux out of eclipse. This leads to an anti-correlation between measured eclipse

timing and the local lightcurve slope (Orosz et al., 2012a; Mazeh et al., 2015a; Welsh et al.,

2015). Fig. 6.11 shows this effect for both primary and secondary eclipses – the first time this

effect has been observed in both host stars of a CBP – and Fig. 6.12 graphically illustrates

the reduction in ETV scatter.

Fitting a dynamical lightcurve model to the data without taking into account this effect

may significantly bias the planetary parameters because the starspot induced ETVs would

be interpreted as perturbations due to the planet (this effect was strong enough to cause

Kepler-453 b to show a “negative” mass detection at 3-σ confidence for a naively applied

photodynamic model on the uncorrected data; §6.2 Welsh et al., 2015). Therefore we adopt

the strategy of fitting only the ‘lucky’ spot-free eclipses directly with the photodynamic

model, as well as the portions of the data where transits are observed or expected (see

Fig. 6.9)2. We will now address our approach to recovering information about the planetary

perturber contained in the starspot affected eclipses rejected from the photodynamic model.

We initially measure individual eclipse times by fitting a time-binned transit model from

Mandel & Agol (2002) with quadratic limb darkening to the Kepler photometry and the

reported uncertainties. We simultaneously fit all of the eclipses of a given star so that the

radius ratio, transit duration, limb darkening coefficients, and impact parameter are self-

consistent across all transits. Additionally, we fit a midtransit time tETV,i for each observed

eclipse (i). We generate a model by multiplying the transit shape by a third order polynomial

2. This is somewhat analogous to ‘lucky imaging,’ where by taking many image observations (eclipses),
occasionally one gets very good seeing and an image (eclipse) with minimal distortion is obtained (see, e.g.,
Hufnagel, 1966; Fried, 1978; Brandner & Hormuth, 2016)
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Figure 6.11: Local Lightcurve Slope ETV Correlation
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Measured ETVs of the primary (black) and secondary (gray) eclipses shown as a function of
the local lightcurve slope (see Fig. 6.2). The anti-correlation expected for prograde rotation
of both stars is observed, but significant scatter remains. This scatter is a combination of
the planetary signal and residual starspot noise.
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Figure 6.12: Linearly Corrected KIC 10753734 ETVs
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Measured ETVs of the primary (black) and secondary (gray) stars as measured initially (Xs)
and after removing the linear trend shown in Fig. 6.11 (squares connected with dotted lines).
The scatter in the ETVs is reduced, but structure remains. Typical measured uncertainties
(solid) are shown in the lower right for primary (black) and secondary (gray), along with
the inflated uncertainties (dashed) required for the planetary model to have χ2

ν = 1.0. If all
of the remaining ETV structure was due to planetary signal, it would not be necessary to
rescale these uncertainties.
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fit to a one-day segment of data surrounding each eclipse event with the eclipse masked

out. We use a Levenberg-Marquardt algorithm to find the best fits and uncertainties. The

reported uncertainties are substantially underestimated since they do not take into account

stellar noise that the polynomial fit doesn’t remove, such as the starspot eclipse effects. For

preliminary fits with these times, we multiply our extracted uncertainties by a factor of 5.06

so χ2
ν = 1.00 for a nominal model (see Fig. 6.12).

Using only the times rather than the lightcurve directly allows for the systematic cor-

rection of the local lightcurve slope effect, while losing only minimal information about the

nature of the eclipsing stars since the ‘lucky’ eclipses contain all of the eclipse depth, dura-

tion, and shape information. While this technique has been successful in previous studies

(Welsh et al., 2015), the residual scatter on the star-spot induced ETVs remains high (see

Figs. 6.11). The local slope is not tightly correlated with ETV bias in this system due to

both stars possessing spots. Thus the local lightcurve slope may be substantially affected by

a star which is not being eclipsed.

Therefore, we take a new approach to measuring the ETVs of the spotty eclipses by

modeling the spots directly. We use spotrod, a semi-analytic starspot transit lightcurve

code with integrated MCMC capabilities (Béky et al., 2014; Foreman-Mackey et al., 2013).

We choose this code because of its speed relative to purely numerical codes while maintaining

accuracy and its ease of use. Each eclipse is fit individually, allowing complete freedom in

starspot size, location, and flux deficit. In principle, a self-consistent model of the rotating

spots on the surface of the star could be attempted, but changes in star spot latitudes,

differential rotation, and other effects would make such a model computationally intensive

and beyond the scope of this project. In order to keep the stellar properties self-consistent

between starspot models, we apply a Guassian approximation of the posteriors of global

parameter fits (RA, RB/RA, c1,A, c2,A, c1,B , c2,B , PAB, MA, MB/MA, e cos$, e sin$,

and iB) from the clean eclipse fit (Figs. 6.9 and 6.10) as priors on each individual starspot

eclipse. Each eclipse thus has 16 free parameters: each of the above with the strong priors
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from the global fit, T0 of each transit with a uniform prior, and four starspot parameters. The

starspot parameters are the position on the eclipsed star (with uniform prior on the surface

of a sphere), spot radius (circular spot assumed, uniform radius prior), and spot contrast

(uniform prior). We use a 10-temperature parallel-tempered MCMC to avoid local minima

and expedite convergence (Earl & Deem, 2005; Foreman-Mackey et al., 2013). Fig. 6.13

shows an example of models generated from draws from the MCMC posteriors of a spotrod

fit to the primary eclipse at BJD 2456360.3 and residuals from each fit model. The significant

residuals of the spot are largely captured by the model (Fig. 6.13, bottom panel), and the

uncertainty in the transit midtime is comparable to the uncertainties of a spot-free fit after

multiplicative increase of 5 as described above to yield χ2
ν = 1.00 for a nominal model. This

indicates that marginalizing over the effects of a single starspot on the eclipse timing accounts

for the majority of the discrepancy between the N-body radially symmetric star model and

the true system. We use these star-spot-marginalized eclipse times and uncertainties in our

final full parameter fit.

In summary, to complete a modified photodynamic model, we detrend the Kepler pho-

tometric data with a polynomial of width 1 day after masking out eclipses and transits.

We photodynamically fit only observed transits, closest planet-star approaches, and spot-

free eclipses (Fig. 6.9). Some short-term correlated noise remains in this lightcurve, but

detrending on shorter timescales is avoided to prevent introducing artificial variation to

the transits or eclipses, whose duration is ∼0.2 days. We simultaneously fit this data and

eclipse times of all remaining eclipses measured by marginalizing over the size, shape, and

location of starspots. A 30 measurement RV data set spanning 30 days (Table 6.1) is

also simultaneously fit. The 22 free parameters in the DEMCMC fit as described in §2 are

{RA, c1,A, c2,A, PB, T0,B, e
1/2
B cos(ωB), e

1/2
B sin(ωB), iB, RB/RA, MB/MA, c1,B, c2,B,

brightB, Pp, T0,p, e
1/2
p cos(ωp), e

1/2
p sin(ωp), ip, Ωp, Rp/RA, Mp/MA, CRV} are all subject

to uniform priors. In this model dilute = ΩB = 0 and MA is fixed at the spectroscopically

measured value of 1.06M�. This comprehensive model results in an accurate measurement
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Figure 6.13: Starspot Marginalization Example

Eclipse fit including a four-free-parameter starspot. Top: The total eclipse shape after
polynomial detrending as measured (blue), modeled using the clean-transit fit (green), and
from 100 models drawn from the posterior of the starspot marginalization MCMC fits (red).
Middle: Measured flux subtracted from the clean-transit model (green with Kepler uncertan-
ities), and the starspot model subtracted from the clean-transit model (red). The starspot
model reproduces the observed residual anomaly very well. Bottom: Residuals between the
observed flux and the starspot model. While some scatter remains in transit, it is drastically
reduced compared to the clean-transit model (middle panel) and comparable to out-of-transit
scatter.
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of the system’s 3D architecture as well as a significant planetary mass detection.

6.1.4 Preliminary Results and Discussion

Full system posteriors are still in preparation, however a few key features can be confidently

reported. The mass and radius of the stars are precisely measured by the transit and eclipse

shapes and times, with MA = 1.053 ± 0.014M� and RA = 1.063 ± 0.005R�. The has

measured Mp ∼ 0.25MJupiter and Rp = 0.61 ± 0.02RJupiter. The mutual inclination be-

tween the planet’s and the binary’s orbital planes is precisely measured by the precessing

planet’s transit depths at I = 2.56◦ ± 0.02. Pcrit ≈ 139 days for KIC 10753734, and thus

Pp/Pcrit ≈ 1.8. These values are all consistent with the previously measured population.

Figs. 6.14 and 6.15 show preliminary DEMCMC fit results for all parameters, but explicit

values are not tabulated here since the final analysis is ongoing. For full results see Mills et

al. in prep. We expect the technique developed here combining starspot crossing models,

photodynamic code, and RV data will be applicable to future high quality photometric data

such as PLATO3.

6.2 Kepler-453 b

This section summarizes the dynamical measurement work in the characterization of the

tenth Kepler transiting circumbinary planet, Kepler-453 (KOI-1451 and KOI-3151) from

Welsh et al. (2015, henceforth W15). For a complete discussion of all aspects of the system,

refer directly to W15. Like KIC 10753734, the planetary transits of Kepler-453 b were

identified by visual inspection of a known Kepler eclipsing binary KIC 9632895 (Prsa et al.,

2011). Three transit events were identified with an approximate 230 day period, beginning

at BJD 2455781.7 (Fig. 6.16). However the first transit occurs nearly halfway through

the Kepler observing window. This is interpreted as significant precession changing the

3. see, e.g., http://sci.esa.int/plato/42730-scird-for-plato/.
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Figure 6.14: KIC 10753734 DEMCMC Posteriors Part I
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Figure 6.15: KIC 10753734 DEMCMC Posteriors Part II
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Identical to Fig. 6.14, but for remaining DEMCMC parameters.
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transit geometry on the timescale of Kepler observational window. The change in transit

durations and timings allows for precise measurement of the planet-binary mutual inclination.

Additionally, the uncertainty in the planet’s radius is only 0.63%, and the secondary star’s

radius uncertainty is 0.65%, making it one of the most precisely measured low-mass stars.

6.2.1 Photodynamic TTV Model

The binary consists of a G Dwarf (M1 = 0.944± 0.01M�) and an M Dwarf (M2 = 0.195±

0.002M�) in a relatively low eccentricity (e = 0.0524 ± 0.0037) orbit of 27.3 days. The

effects of starspots are clearly visible in eclipses of the brighter primary star (Fig. 6.17).

Similar to the strategy discussed in §6.1.3, in order to get accurate and unbiased eclipse

times only three primary eclipses without evidence of starspot activity were used directly

in the photodynamic model (Fig. 6.18). The eclipses of the fainter secondary did not show

signs of starspots so they are all included directly into the photodynamic model.

Individual eclipse times for all of the remaining primary eclipses were measured first

by iteratively fitting the eclipse shape of the clean transits to a Mandel & Agol (2002)

model. For all other eclipses, this shape was kept fixed and allowed to vary only in the

specified midtime. The lightcurve was modeled by fitting a fifth-order polynomial multi-

plied by the eclipse shape to the Kepler photometry within three eclipse durations of each

eclipse. The fits and 1-σ uncertainties were computed using the χ2 statistic combined with

a Levenberg-Marquardt minimization routine. The measured eclipse timing variations were

then statistically corrected taking by linear regression with respect to the local light curve

slope (see §6.1.3 and Mazeh et al., 2015a). After correction, no periodic trend in ETVs is

observed (Fig. 6.19).

Our full photometric dataset thus includes the Kepler Simple Aperture Photometry

(SAP) within a factor of three of the duration of three primary eclipses, each secondary

eclipse, and the three observed transits. Additionally, three portions of the lightcurve near

planet conjunction with the stars that do not show transit events were included to ensure
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Figure 6.16: Kepler-453 b Transits and Conjunctions

Observed planet transits (bottom row) and regions of the lightcurve near the closest sky-
project star-planet approach which lack transits (top row) as predicted by the photodynamic
model (red). The lower center and right panels contain short cadence data and thus have
higher temporal cadence and more scatter around the model. Note the bottom three panels
all have the same horizontal scale, emphasizing the significant changes in transit duration.
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Figure 6.17: Kepler-453 Starspot Activity Examples

Top: One year of short cadence observation with instrument systematics removed showing
residual percent-level variability due to star spot activity. Bottom: From left to right,
an example of a secondary eclipse, planet transit, and two primary eclipses along with their
residuals to a dynamical model (red). The second panel from the right shows a characteristic
starspot crossing bump, which is present on the majority of primary eclipses and biases ETV
measurement.
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Figure 6.18: Eclipses Minimally Contaminated by Starspots

Top: The starspot-free primary eclipses that are directly fitted by the photodynamical model
(red) to recover the geometric properties of the primary eclipse. Note the residuals in and out
of transit are very similar for these three eclipses. Bottom: An example of three secondary
eclipses. All secondary eclipses were used directly in the photodynamic model because no
sign of starspot bias was present in the eclipses (again noting the residuals in and out of
transit are statistically similar).
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Figure 6.19: Corrected Eclipse Timing Variations
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ETVs after removing the linear lightcurve-slope–ETV correlation. Primary ETVs are
shown in black and the secondary ETVs are shown in red. No periodic variation or trend
above the noise level is observed in either case.
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the model did not introduce unobserved transits. The uncertainties reported in the Kepler

data itself were increased by a multiplicative factor of 1.44 so that the reduced χ2 = 1.0

for a nominal model. This was necessary because the Kepler uncertainties underestimate

the scatter of the data after fifth-order polynomial detrending was used in each lightcurve

segment (with the eclipses masked out) to normalize the data and remove low frequency

variations. We also include starspot statistically corrected ETVs for the remaining primary

eclipses, and RV observations (see W15). We simultaneously fit these data to a photody-

namic model. The tight constraints placed on the relative positions, velocities, and sizes of

the three bodies in the system by the times, durations, and depths of the eclipses and transits

allow very precise determinations of the geometric aspects of the system. The overall mass

scale of the system was determined by fitting templates to high resolution spectroscopy in

order to determine stellar mass, temperature, and metallicity (see W15).

6.2.2 Results and Discussion

MCMC photodynamic posteriors for the system are shown in Table 6.2. The starspot cor-

rection is highly significant for the interpretation of the mass of Kepler-453 b. A naive

model which directly included all of the primary eclipses in the photodynamic code favored

a −90MEarth planet at 3-σ significance because the starspots induced a periodic variation

in primary eclipses that was out of phase with the planet detected by transit observations.

The relatively larger uncertainties on the secondary eclipses due to lower signal to noise are

permissive enough to allow the primary ETVs to dominate the fit. If the planet was forced

to have a physically plausible positive mass, these uncorrected ETVs strongly preferred near

zero mass for the planet. With the statistical starspot correction implemented, the flat ETVs

(Fig. 6.19) are insufficiently precise to measure the planet mass, but result in a broad (±16

MEarth 1-σ range) posterior centered at zero mass as expected. This allows us to place a

sensible upper bound on the planet’s mass (ruling out a low-mass stellar companion), but

does not require an anomalously low density planet (see, e.g., Lissauer et al., 2011b; Weiss
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& Marcy, 2014; Mills & Mazeh, 2017).

The lack of transits early in the Kepler observing window as well as the precisely measured

transit durations and depths in the latter half allow for an accurate measurement of the

geometry of the system. The mutual inclination of the planet with respect to the binary is

2.258◦ ± 0.039 and the planet’s orbit is nearly circular e = 0.0359 ± 0.0088 (see Fig. 6.20).

Forward modeling reveals an inclination precession amplitude of 2.25◦ with a 103.5 year

period. This geometry is consistent with models of circumbinary disk formation (Pierens &

Nelson, 2008; Foucart & Lai, 2013).

This summary of the dynamical modeling of Kepler-453 is part of a broader analysis. For

a complete discussion of stellar properties (including spectroscopic measurements), transit

probabilities, and the binary habitable zone of Kepler-453, refer to W15 (Welsh et al., 2015).
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Table 6.2: Kepler-453 Photodynamic MCMC Posteriors

Parameter Namea Median 68% (1-σ) Uncertainty Unit

Binary Parametersb

M1 0.944 ± 0.010 M�
M2 0.1951 ± 0.0020 M�
R1 0.833 ± 0.011 R�
R2 0.2150 ± 0.0014 R�
P 27.322037 ± 0.000017 days
Tconj -34.574013 ± 0.000060 BJDc

i 90.266 ± 0.052 degrees
e sinω -0.0520 ± 0.0037
e cosω -0.006339 ± 0.000016

ed 0.0524 ± 0.0037
ω 263.05 ± 0.48 degrees
c1,1 0.41 ± 0.06
c1,2 0.07 ± 0.11
c2,1 0.33 ± 0.11
c2,2 0.07 ± 0.07
T2/T1 0.584 ± 0.015 K
dilute 0.02 ± 0.02

Planet Parameters
Mp 0.2 ± 16.0 MEarth
Rp 6.204 ± 0.039 REarth
Pp 240.503 ± 0.053 days
Tconj 69.020 ± 0.054 BJDc

inclination 89.4429 ± 0.0091 degrees
e sinω -0.00322 ± 0.00023
e cosω -0.0358 ± 0.0088

ed 0.0359 ± 0.0088
ω 185.1 ± 3.7 degrees
Ω 2.103 ± 0.055 degrees
Mutual Inclination (I) 2.258 ± 0.039 degrees

a The reported Keplerian parameters are the instantaneous (osculating) values at the refer-
ence epoch Tepoch=2,454,964 BJD.
b Subscript 1 refers to the primary star and 2 the secondary star throughout.
c date with respect to BJD–2,455,000.
d This quantity is not directly fitted, but rather derived from the e cosω and e sinω values.
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Figure 6.20: Kepler-453 System Geometry

In addition to the observed transit times, durations, and
depths, Table 5 includes predicted near-future transit times. The
near-future timescale is by necessity—we predict the transits
will stop being visible after 2015 July and not return until 2066.

4.4. Stability and Long Term Evolution

Following Dvorak (1986), Dvorak et al. (1989), and
Holman & Wiegert (1999), we calculated the orbital period

Figure 8. Scaled views of the orbital configuration. The upper left panel shows a face-on view, and the lower panel shows the edge-on view of the system at the first
observed transit time (BJD–2,455,000 = 781.82). The upper right panel shows the evolution of the planetʼs orbit due to precession, from time 1800 to 10,500 days
(BJD–2,455,000). The location of the blue dot (size not to scale) is at day 10,000. For clarity, the vertical scale is exaggerated by a factor of 15.

Figure 9. Upper panel shows the ∼103 years oscillation of the planetʼs sky-projected orbital inclination. For comparison, the binaryʼs orbital inclination curve is also
shown (dashed curve) and appears completely flat on this scale. The red horizontal marker shows the duration of the Kepler Mission. The middle panel shows the
mutual inclination of the orbits. The bottom panel shows the variations in the impact parameter. Transits occur when the impact parameter is less than unity; this
criterion is shown by the horizontal green lines. In each panel, the vertical lines bracket the times when the planet transits the primary star as viewed from Earth. These
transit windows, half a precession cycle apart, only encompass 8.9% of the cycle.

12
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Views of the orbital geometry of Kepler-453, beginning with a top-down (face-on) view in
the upper left. The bottom panel shows the transiting configuration as seen from Earth at
BJD 2455781.8. The upper right panel shows the same edge-on orientation of the system
as viewed from Earth, but with a stretched vertical axis. The predicted path of the planet
Kepler-453 b for 10,000 days beginning from the Kepler observing window is shown in gray.
The blue dot is the planet’s location at BJD 24565000, on a path which is no longer transiting
due to precession. The next transits are expected in year 2066.
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CHAPTER 7

POPULATION ANALYSES

7.1 The Planetary Mass-Radius Relation and its Dependence on

Orbital Period as Measured by Transit Timing Variations

and Radial Velocities

The two most common techniques for measuring planetary masses—the radial velocity (RV)

and the transit timing variations (TTVs) techniques, have been observed to yield systemat-

ically different masses for planets of similar radii. Following Steffen (2016), we consider the

effects of the observational biases of the two methods as a possible cause for this difference.

We find that at short orbital periods (P < 11 day), the two methods produce statistically

similar results, whereas at long periods (P > 11 day) the RV masses are systematically higher

than the TTV ones. We suggest that this is consistent with an RV detection-sensitivity bias

for longer periods. On the other hand, we do find an apparently significant difference be-

tween the short and the long-period planets, obtained by both observing techniques—the

mass-radius relationship parameterized as a power law has a steeper index at short periods

than at long periods. We also point out another anticipated observational bias between the

two techniques—multiple planet systems with derived RV masses have substantially larger

period ratios than the systems with TTV mass derivation.

7.1.1 Introduction

Several thousand exoplanets have been discovered and characterized to date. The transit

method has been the most numerically successful, with the Kepler survey alone character-

izing the periods and radii of more than 4,000 planets and planet candidates (e.g., Coughlin

et al., 2016; Morton et al., 2016). Usually, the transit light curves yield only the radii of

the transiting planets, provided we know the radii of their parent stars. However, if a star
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hosts multiple planets, the mutual gravitational perturbations of the planets may induce

observable transit timing variations (TTVs), yielding constraints on the planetary masses

(e.g., Agol et al., 2005; Holman & Murray, 2005; Deck & Agol, 2015; Jontof-Hutter et al.,

2016; Hadden & Lithwick, 2017). The second most prolific method of planet observation is

the radial velocity (RV) technique, in which the stellar reflex motion of the parent star is

measured as the planet moves in its orbit (e.g., Udry & Santos, 2007; Mayor et al., 2011).

Combined with transits, this method also yields planetary masses and radii.

The many planetary masses and radii derived from the RV and TTV techniques enabled

us to study the mass-radius (M–R) relation of exoplanets (e.g., Weiss et al., 2013; Weiss &

Marcy, 2014), which is crucial for our understanding planetary formation, evolution, and

structure (e.g., Seager et al., 2007; Lopez & Fortney, 2014; Lee & Chiang, 2016). We use

these findings to study the M–R relation below 8 REarth here. Above this limit the planetary

radius depends only weakly on the mass, because of the dominance of electron degeneracy

pressure (e.g., Zapolsky & Salpeter, 1969; Seager et al., 2007; Swift et al., 2012).

However, it has been pointed out that for planets of radii less than ∼8 REarth, planetary

masses measured via RVs seem to be systematically larger than the masses measured by

TTVs (Steffen, 2016, henceforth S16). This observation can not be explained by the fact that

the two techniques are sensitive to different radius regimes, because the difference between

the two techniques holds true at any given specific radius, not merely for the distribution as

a whole. This can be seen in the left panel of Figure 7.1, an update to Figure 1 of S16, with

planets color-coded by the means of their mass characterization—blue color for the TTVs,

red for RVs, and green for simultaneous characterization.

The planet data in the figure come from Jontof-Hutter et al. (2016) and references therein,

as well as updates from Hadden & Lithwick (2016); Gettel et al. (2016); Mills et al. (2016);

Dai et al. (2016); Petigura et al. (2016); MacDonald et al. (2016); Mills & Fabrycky (2017b),

cases where masses are robustly inferred in Hadden & Lithwick (2017), and a more complete

inclusion of all positive mass planets from Marcy et al. (2014). We do not include measured
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Figure 7.1: TTV and RV Mass, Radius, and Period Relationships
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Masses, radii, and orbital periods (along with 1-σ uncertainties) for all planets as measured
by RV (red), TTV (blue), or a combined RV-TTV analysis (green). The opacity of the
points is decreased as the fractional uncertainties of the measurements rise so that points
with large error bars do not distract the eye. Note that in both the left (M–R) panel and
the right (M–P) panel, the red (RV) points generally lie above and to the left of the blue
(TTV) points.

“negative mass” RV planets from Marcy et al. (2014), which are the result of statistical

fluctuations, because a similar set of “negative mass” statistical planets from TTV data is

not available. We also use the default prior masses from Hadden & Lithwick (2017) for

consistency with all other measurements.

We show in Section 7.1.2 that for most of the systems with masses derived by the two

techniques, the two resulting masses are consistent with each other. Therefore the mass

difference can not be explained by assuming that one technique is systematically biased.

As pointed out by S16, one basic difference between the two techniques is their sensitivity

as a function of the planetary orbital period. We discuss this difference in Section 7.1.3

and show that indeed the masses and radii coming from the two techniques have different

period ranges. Furthermore, there seems to be a significant difference between the M–R

relation for planets at short and long orbital periods. We show that these two effects, with

an assumed threshold detection for the RV techniques for long orbital period, can account

for the observed difference between the RV and TTV masses. Section 4 points to another

difference, the period ratio of the orbital periods of adjacent planets, between the systems
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studied by the two techniques. Section 7.1.7 briefly summarizes our findings.

7.1.2 Observational Overlap

Several exoplanet systems have both well-measured RV and TTV signals that allow for the

determination of the mass of the same planet by both techniques. It is interesting to consider

these systems to see if we can detect any significant difference between the masses derived

by the two techniques. We restrict the discussion here to non-zero mass measurements at

the 2-σ level published for both methods at the time of writing. In Table 7.1 we quote the

RV and the TTV masses, in Earth masses, and the RV−TTV mass difference in units of σ

for each planet. Our sample totals 8 planets including one hot Jupiter (Cochran et al., 2011;

Masuda et al., 2013; Weiss et al., 2013; Barros et al., 2015; Dai et al., 2016; Hellier et al.,

2012; Becker et al., 2015). We do not include Kepler-9 (Holman et al., 2010), since there are

no published RV analyses independent of TTV analysis. We see that, excepting Kepler-89

d which differs at the 4-σ level, the mass measurements of both methods for an individual

planets are all consistent at the 1- to 2-σ level. The mix of negative and positive difference

values do not reveal any obvious systematic bias of the two methods relative to each other.

A one-sample Kolmogorov-Smirnov Test of the offsets suggests that the distribution is not

distinguishable from a Normal distribution—as one would expect if the two techniques are

unbiased.

In Table 7.1 we also compare the reported mass values of small planets with RV masses

based on measurements done by two different instruments, namely HIRES and HARPS-

N, and again report their difference HIRES−HARPS-N. This sample contains 4 planets

including Kepler-10 c, which has measured masses discrepant between different instruments

at the 3-σ level (Weiss et al., 2016; Petigura et al., 2016; Dai et al., 2016). Thus the differences

between different RV instruments performing mass measurements is similar to the differences

between RV and TTV measurements. The similar scale of discrepancy suggests that the small

difference between RV and TTV observations of individual systems is insufficient to claim

188



Table 7.1: Masses of Planets Measured with Both RVs and TTVs

Planet RV Mass TTV Mass RV−TTV
(MEarth) (MEarth)

Kepler-18 b 12± 5 a 18± 9 a −0.58σ
Kepler-18 c 15± 5 a 17.3± 1.7 a −0.44σ
Kepler-18 d 28± 7 a 8± 1.3 a +1.7σ

Kepler-89 d 106± 11 b 52.1+6.9
−7.1

c +4.2σ

Kepler-89 e 35+18
−28

b 13.0+2.5
−2.1

c +0.78σ

K2-19 b 31.8+6.7
−7.0

d 44± 12 e −0.89σ

K2-19 c 26.5+9.8
−10.8

d 15.9+7.7
−2.8

e +0.80σ

Wasp-47 b 362± 16 f 341+73
−55

g +0.28σ

Planet HIRES RV Mass HARPS RV Mass HIRES−HARPS
(MEarth) (MEarth)

Kepler-10 b 4.61± 0.83 h 3.30± 0.49 h +1.4σ

Kepler-10 c 5.69+3.19
−2.90

h 17.2± 1.9 h −3.1σ

K2-24 b 21.0± 5.4 i 19.8+4.5
−4.4

j +0.17σ

K2-24 c 27.0± 6.9 i 26.0+5.8
−6.1

j +0.11σ
a Cochran et al. (2011)
b Weiss et al. (2013)
c Masuda et al. (2013)
d Dai et al. (2016)
e Barros et al. (2015)
f Hellier et al. (2012)
g Becker et al. (2015)
h Weiss et al. (2016)
i Petigura et al. (2016)
j Dai et al. (2016)

one of the methods is systematically biased compared to the other.

7.1.3 Effect of Planet Period

7.1.4 Period Differences

A possible clue to the difference between the RV and TTV masses might be seen in the right

panel of Figure 7.1, which shows mass determination versus the planetary orbital period.

One can see that on the average, the TTV (blue) periods are substantially longer than the

RV (red) ones. As pointed out by S16, this difference could be the result of the dependence

of the SNR of the two techniques on the orbital period.
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S16 showed that the SNR for an RV measurement is

SNRRV ∼
Mp

σRVP
1/3

, (7.1)

where σRV is the intrinsic uncertainty of a given RV measurement, Mp is the planetary mass

and P is the orbital period of the planet. For a TTV measurement S16 obtained

SNRTTV ∼
MpR

3/2
p P 5/6

σTTV
, (7.2)

with Rp the radius of the planet and σTTV the uncertainty of a point in the light curve

(S16).

We agree with these forms for an individual RV and TTV measurement, but point out

that the vast majority of transiting exoplanets in the <8 REarth range of our interest have

been discovered and characterized by the Kepler mission, whose observing window was 4

years. Therefore, when fitting, e.g., a sine curve to the TTV measurements, shorter period

planets have more data points in the fixed observational window (Mazeh et al., 2013; Holczer

et al., 2016). The number of transit (and thus TTV) observations, N , is∝ P−1 and, assuming

statistical white noise properties, SNR ∝ N1/2. Thus we suggest that Equation 7.2 need be

multiplied by a factor P−1/2 to yield

SNRKEPLER ∝
MpR

3/2
p P 1/3

σTTV
. (7.3)

The SNR of an RV data set also increases as N1/2 after the first orbital period (S16).

However, unlike TTV measurements which relied nearly exclusively on Kepler, there is not

a clear practical limit to the length of time over which RV measurements may be made.

Thus there is no period dependency on N , and the RV proportionality still holds when

Equation 7.1 is multiplied by N1/2 (excluding planets whose periods are so long that less

than a few orbital periods have been observed). With or without our modification, it is
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obvious that it is easier for the RV technique to obtain a short-period solution, all other

parameters being equal, while the TTV techniques can obtain masses more easily for a

longer period. The two relations can therefore account for the substantial period difference

between the RV and TTV populations. A dependence of M–R relation of the orbital period

might therefore explain the mass difference between the two populations.

7.1.5 M–R Relation for Different Periods for the RV and the TTV Masses

To study the mass-radius relationship and its dependence on observational technique, we fit

all known masses and radii with a power-law M–R relation—Mp ∝ Rxp , where Mp and Rp are

the planetary mass and radius. We then separated the data into RV and TTV measurements,

and for each subsample we performed a weighted total (or orthogonal) least squares linear

fit (e.g., York, 1966; Krystek & Anton, 2007) to the logarithmic mass and radius with a

Markov chain Monte Carlo search. The linear best fits for all measurements (green), RV

measurements (red), and TTV measurements (blue) are shown as straight lines in the upper

panel of Figure 7.2 and listed in the first line of Table 7.2.

Table 7.2: Power Law Model Fits of the Form M = 10C ×RE

Period Range Combined Data Fit RV Fit TTV Fit
Exponent Constant Exponent Constant Exponent Constant

All 0.99± 0.04 0.45± 0.02 1.45± 0.07 0.41± 0.03 0.64± 0.06 0.50± 0.03
P < 11 days 1.46± 0.06 0.34± 0.03 1.50± 0.08 0.36± 0.03 1.34± 0.19 0.31± 0.07
P > 11 days 0.69± 0.06 0.51± 0.03 0.73± 0.19 0.83± 0.09 0.61± 0.06 0.49± 0.03

The upper panel of Figure 7.2 shows the linear logarithmic regressions obtained separately

for the TTV and the RV masses using planets of all orbital periods. The linear fit for the

RV mass measurements, with exponent of 1.45 ± 0.07, is substantially steeper than that of

the TTV measurements, with exponent of 0.64 ± 0.06. The larger exponent could suggest

that masses measured via the RV technique increase with radius significantly more quickly

than the masses obtained by the TTV measurements.

To see if this is true, and based on the previous subsection, we divided the measurements
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Figure 7.2: Mass Radius Relationship Power-Law Fits
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Power-law fits to the masses and radii of planets measured via RVs (red), TTVs (blue), and
both (green) including all data (top panel) and then broken into short and long period bins
(bottom 2 panels). Note that the slopes of the power laws are consistent in each period bin,
but a constant offset is remains in the long period bin. Parameters of the fits can be found
in Table 7.2.
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into short- (P < 11 day) and long-period (P > 11 day) ranges. This period boundary was

chosen empirically by identifying the maximum period for which planets with lower periods

showed a similar M-R relationship. Figure 7.2 and the two lower lines of Table 7.2 reveal

a clear difference in planet properties in each period bin. In each of these bins we again

fitted linear regressions to the RV and TTV masses, and for these two data sets combined.

Three surprising features emerged. First, the difference between the exponents of the M–R

relation obtained for the TTVs and the RVs at the same period range disappeared. Second,

there is a significant difference between the logarithmic slope of the M–R relation in the

short-period range, 1.46± 0.06, and the long-period range, of 0.69± 0.06. These values are

similar to the slopes obtained by the RV and TTV measurements individually over all period

ranges, suggesting the different masses obtained by RVs and TTVs are probably a result of

the different period range observed. As previously noted, this observational difference is due

to the different period dependency of the methods’ sensitivities (see Equations 7.1 and 7.3).

Additionally, none of the measured M-R relationships agree with the frequently used power-

law slope of 2.06 inspired by Solar System objects (Lissauer et al., 2011b). We also confirm

that the few points at small R and M values do not dominate these effects by refitting the

data while including a range of different minimum mass and radii cutoffs.

A third feature that emerged in Figure 7.2 lower panel is a statistically significant offset

between the RV and TTV measurements in the long-period bin. Almost all the masses

derived by RVs are higher than those derived by TTVs. In fact, there is no significant

RV mass determination below 3–4MEarth. We attribute this difference to the fact that

TTVs readily can detect long-period planets of low mass, whereas RV measurements are

decreasingly sensitive to low-mass planets at longer orbital periods (see Equation 7.1). This

decline in sensitivity could lead to a higher-mass threshold for the RV detection and the

apparent observed mass discrepancy. Additionally, when the stellar rotation period (∼10–

50 days for main sequence FGKM stars) approaches the planetary orbital period, the RV

amplitude detection threshold can worsen due to challenges distinguishing between star spot

193



activity and the planet signal. This degeneracy may prevent low-mass planets with long

periods from being confidently detected by the RV technique even with a large amount of

observational data.

7.1.6 Planet Period Ratios

The SNR of TTV signals depends strongly on the period ratio of the perturbing adjacent

planet. The signal is greatest for compact systems near low-order mean motion resonances

(e.g., Agol et al., 2005; Lithwick et al., 2012; Hadden & Lithwick, 2017, Figure 8), all else

equal. On the other hand, RV mass detection of a planet is potentially hampered by the

existence of another planet with a similar period. As a result, there is an inherent obser-

vational bias for more tightly-spaced planetary systems measured with TTVs compared to

RVs, as shown in Figure 7.3. A two-sample Kolmogorov-Smirnoff test returns α = 4× 10−6,

indicating a clear statistical difference between the two distributions. More RV observations

of compact systems near MMR are necessary to shed light on the possibility that planets of

a given radius in widely-spaced systems may have systematically different masses than those

in more compact systems.

7.1.7 Summary

Following S16, we have shown that the difference between RV and TTV masses can be

attributed to the different SNR dependence on orbital period between the two techniques.

This difference causes a substantial difference in the period range of the two techniques—

RV masses are mostly obtained for relatively short orbital periods, while the TTVs masses

are weighted towards longer periods. When we divide the data into short- and long-period

orbits, most of the differences between the masses of the two techniques disappear. This

suggests that the underlying mass distribution measured by the RV and TTV techniques

has similar properties.

We have found that the exponent in the power-law relation Mp ∝ Rxp that presumably
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Figure 7.3: RV and TTV Multiplanet Period Ratio Distributions
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Left: The period ratios of pairs of planets with masses measured via TTV (blue) and RV
(red) are marked as ticks on the horizontal axis with logarithmic scaling. A broad Gaussian
kernel is used to produced a smooth histogram of both distributions. Note that many RV
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characterizes the M–R relation is substantially different for the short and the long orbital

periods—the exponent best value is 1.46± 0.06 for the short-period planets and 0.69± 0.06

for the long-period range. Both values suggest that, on average, the density of the planets

(proportional to Mp/R
3
p), is decreasing as a function of the planetary radius, as expected

from considerations of planetary composition. However, our analysis suggests that the rate

of density decrease depends on the orbital period. If confirmed, this has to be accounted

for by planetary formation or evolution theories. We also demonstrate the expected more

compact orbital period ratios of planets measured via TTVs compared to RVs.
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7.2 Stochastic Migration of Low Mass Planets in a Turbulent

Disk

7.2.1 Introduction

NASA’s Kepler space observatory program is the most prolific exoplanet discovery mission

to date, identifying over 4,000 confirmed planets and candidates likely to be actual planets

(Coughlin et al., 2016; Morton et al., 2016). Of these, over 800 are found to be in multiplanet
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systems with multiplicities ranging from 2 to 7. The distribution of the ratio of the periods

of pairs of adjacent planets in multiplanet systems in the Kepler data set is broad, but has

several significant features. Period ratios near first order mean motion resonances (MMRs:

planet period ratios of the form (j + 1)/j where j is the integer ‘rank’ of the resonance)

are preferred, particularly near 2:1, 3:2, and 4:3 (Fabrycky et al., 2014; Steffen & Hwang,

2015). Indeed, some systems have many planets in or near resonance (a “resonant chain,”

e.g., Goździewski et al., 2016; Mills et al., 2016; MacDonald et al., 2016). This, along with

theoretical modeling, has been used to suggest that planets in the population discovered by

Kepler formed via migration in a natal disk (Terquem & Papaloizou, 2007; Ida & Lin, 2008;

Cossou et al., 2014; Mills et al., 2016). However, the majority of pairs of planets in Kepler

multi-planet systems do not lie very close to resonances (Fabrycky et al., 2014). Guided

by intuition based on our own inner Solar System, this has led others to suggest that these

planets formed primarily in situ via giant impacts resulting in nearly random period ratios

(Raymond et al., 2008; Hansen & Murray, 2012; Chiang & Laughlin, 2013). However, any

theory that successfully describes the planet formation process of the multiplanet systems

observed by Kepler must reproduce both a broad distribution of period ratios and the fea-

tures near MMRs. Several solutions have been proposed, including considering dynamical

effects which may sculpt the distribution near MMRs from a previously random distribu-

tion (Petrovich et al., 2013), dissipation away from resonance (Lithwick & Wu, 2012; Delisle

et al., 2012; Batygin & Morbidelli, 2013), and migration processes which lead to planets not

getting caught in MMRs permanently (Goldreich & Schlichting, 2014; Rein, 2012; Batygin &

Adams, 2017; Pan & Schlichting, 2017). This paper focuses on the suggestion by Rein (2012,

henceforth R12) that migration with stochastic forces, likely arising from MRI-induced tur-

bulence in the disk (see, e.g., Balbus & Hawley, 1998), causes some planets to get trapped

in MMRs but most to escape them (Adams et al., 2008).

R12 shows (Fig. 2) that the period ratio distribution (PRD) of Kepler can be closely

matched by this method. We extend this result by considering the effects of this mechanism
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on resonant chains and and with a slightly more sophisticated model. The existence of a

subset of systems with 3- and 4-planet chains suggests that the level of turbulence must not

be so great that all such chains are disrupted.

7.2.2 Methods

Our first step is to construct a set of multi-planet systems to numerically evolve and com-

pare to the Kepler data set. We generate probability distribution functions (PDFs) of the

multiplicity, masses, and period ratios of planet systems by convolving the observed Kepler

distributions with a Gaussian kernel. This is straightforward for multiplicity and period

ratio, as both quantities are well-measured, however the majority of Kepler planets do not

have well known masses. Following R12, we therefore use the Mp = R2.06
p M⊕ power law

from Lissauer et al. (2011a) as nominal Kepler points, before applying the Gaussian kernel.

We then produce a synthetic planet population by drawing a multiplicity and the appropri-

ate number of masses and period ratios from their respective distributions, and setting each

star to 1M�. This method produces a sample which broadly resembles Kepler but does not

have identically matching architectures or correlations between planet sizes (Lissauer et al.,

2011b; Ciardi et al., 2013; Weiss et al., 2017). Finally, we scale the systems so that the

innermost planet has a 100 day orbital period. This allows dissipative forces to move the

planets inward to the presently observed short-period orbits.

We evolve the system using the REBOUND N-body code (Rein & Liu, 2012), with

semi-major axis and eccentricity damping. While R12 applied damping forces only to the

outermost planet, we extend this method to include damping on all planets. We set the

semi-major axis damping timescale of the innermost planet (τa,1) to 104 years, and its

eccentricity damping timescale (τe,1) to 10−2τa,1. For every other planet (i), we set the

damping timescales to

τa,i = τa,1(ai/a1)−3/2(mi/m1)−1, (7.4)

198



and

τe,i = 10−2τa,i. (7.5)

This migration timescale is shorter than nominally expected for planets in the mass range

of the majority observed by Kepler (τa & 105 years; see, e.g., Lubow & Ida, 2010), but

produces similar inward migration behavior.

We use a parameterized turbulence model following R12, where the radial and azimuthal

stochastic forces are independent Markov processes. The strength of turbulent forces is

measured relative to the gravitational force from the central star and represented by αT
1.

To prevent correlation timescales longer than an orbital timescale for inner planets of a

system, we set the correlation timescale for the turbulence to be half of the orbital period of

each planet, rather than the outermost planet as in R12 .

We also consider the effects of the disk evolution on these forces. We expect that for a

large portion of a protoplanetary disk’s evolution it is optically thick to ionizing radiation

(Roberge & Kamp, 2010). This results in a dead zone in the mid-plane of the disk that

is cooler and less susceptible to MRI turbulence. The dead zone is favorable for planet

formation and, once formed, protoplanets remain there due to inclination damping. Planets

in this region are likely to experience smoother migration due to the low turbulence levels

very near the planet (Oishi et al., 2007; Armitage, 2015). Therefore, for t = [0, τa,1], we

reduce the nominal stochastic force (αT) in the model by a factor of β = 103. We find that

most planets have already locked into resonant pairs or chains after t = τa,1, and we have

structured our initial conditions to yield planets entering the approximate period regime of

observed Kepler planets at this time. Therefore, additional low-turbulence migration time

is unlikely to have significant effect on the distribution of period ratios, but would require

further numerical integration from greater starting semi-major axes in order to approximately

reproduce the Kepler observations.

1. R12 uses α for this value. Here the subscript T is added to remove any ambiguity between this
turbulence parameter and the Shakura-Sunyaev viscosity α parameter often used to describe disks.
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As the disk dissipates, it eventually becomes thin to ionizing radiation, increasing turbu-

lence into the disk midplane relative to the damping forces. Once the disk surface density

is ∼ 100 g cm−2, the approximate depth at which cosmic rays can penetrate to the disk

midplane, MRI turbulence and eliminates the dead zone and the disk becomes fully turbu-

lent (Gammie, 1996; Ciesla & Dullemond, 2010). Therefore, we set β = 1 and allow the full

effects of the stochastic forcing to be felt over 104 years representing the final stages of disk

dissipation. This may underestimate the amount of time which the disk spends fully turbu-

lent, but the effects of turbulence are readily seen in our simulations at this timescale. Since

the Kepler planets are in short period orbits (P . 200 days), we consider only disk properties

inside a few AU. In this region the disk dissipates relatively evenly across the small range in

semi-major axis spanned by a multiplanet system (as opposed to the disk at & 10AU which

may dissipate more from the inside out; Ciesla & Dullemond, 2010). We are not concerned

with the exact dissipation method, but fit the decay of the disk surface density as given in

Ciesla & Dullemond (2010) at 0.1AU. We set the amplitude of the stochastic forcing relative

to the gravitational force from the star proportional to the disk surface density. We also

adjust the semi-major axis and eccentricity damping timescales inversely proportionally to

the surface density of the remaining disk. Our surface density evolution follows

log10 Σ = f1(ef2tf − 1) + f3tf , (7.6)

where f1 = −3.281×10−6, f2 = 13.824, and f3 = −0.879. tf is the fractional amount of time

which has passed since the beginning of the disk dissipation to the end after 104 years and

thus ranges from 0 to 1 during the disk dissipation phase (tf = (t− 104 years)/(104 years)).

After the surface density reaches 0, we continue integrating the N-body equations of motion

with no damping or stochastic forcing until time t = 105years.

We integrate 2,500 sets of initial conditions over a wide range of turbulences from αT =

5× 10−4 to 10−10, spanning the range expected from a fully turbulent disk to that which is
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Figure 7.4: Post Dead Zone Migration Period Ratio CDF.
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The cumulative distribution of period ratios of neighboring pairs of planets after the dead
zone migration with β = 103 for a wide range of αT values (broken, colored lines) compared
to the observed Kepler distribution (black, solid line). The majority of planets become
trapped in resonances.

very smooth (Rein, 2012; Rein & Papaloizou, 2009). We also integrate 500 initial conditions

over the same turbulence range, but stop integration after 106 years.

7.2.3 Results

During the dead zone migration (the first t = τa,1 years), the planets consistently encounter,

and get trapped in, mean motion resonances for all chosen values of αT (Fig. 7.4). These

systems are compact compared to observed Kepler systems, stabilized by the damping forces

in the disk. Due to the low levels of turbulence in the initial migration stage and the

relatively widely-spaced initial conditions matching observed Kepler data, the MMRs in

which migrating planet pairs get trapped are usually widely-spaced (low-rank).

After setting β = 1, i.e. assuming that the disk has becoming optically thin to ionizing
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radiation, we allow the turbulent disk to dissipate as described in §7.2.2, which has a signif-

icant effect on the PRD. Figure 7.5 shows the PRDs after integration has been concluded.

This represents the states of the systems after approximately 3 × 106 orbits of the inner

planets without any damping or stochastic forces to allow short-term instabilities to occur,

following disk dissipation. Very low level turbulence results in only a small effect on the final

period distribution, with the resonant systems remaining stable. This is because at typical

Kepler planet masses, the planets are many mutual Hill radii apart:

RH,m =
a1 + a2

2

(
m1 +m2

3M?

)1/3

, (7.7)

where ai and mi are the semi-major axis and radius of the ith planet. Scale-free separations

can be described in units of mutual Hill radii:

∆H = (a2 − a1)/RH,m. (7.8)

For instance, planets at a 2:1 orbital period ratio at 0.1 AU will have ∆H ≈ 20, for m1 ≈

m2 ≈ 6MEarth, near the peak of the assumed observed Kepler mass distribution. On Gyr

timescales, planets at such great separations are unlikely to go unstable even accounting

for the possible eccentricity excitation due to resonance and many-planet chains (Chambers

et al., 1996; Smith & Lissauer, 2009; Obertas et al., 2017). However, the more tightly-spaced

resonant planets may indeed subsequently go unstable (Obertas et al., 2017).

On the other hand, high levels of turbulence (αT & 10−6) result in the removal of

planets near resonance and fewer compact systems survive. Intermediate levels of turbulence

(αT ∼ 10−6) generate more compact systems on average than even low turbulent levels

however (see Fig. 7.5 below the 3:2 period ratio). The turbulence helps break planet pairs out

of MMR so that their relative contraction continues, but it is not so high that it allows them

to skip over all MMRs or brings them into collisional trajectories. As a result, many of these

systems get caught in higher-rank first-order MMRs than when there is no turbulence (see
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Figure 7.5: Final Period Ratio CDF.
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Fig. 7.5). Additionally, the 2:1 resonance is nearly devoid of planet pairs as the turbulence

allows planets to escape this resonance and move towards more compact resonances. This

level of turbulence is consistent with that predicted to represent the forcing on a small planet

in a fully turbulent disk (Rein & Papaloizou, 2009).

We also consider the length of resonant chains (3 or more planets in a series of 2-body

resonances) for the different turbulence levels (see Fig. 7.6). We define a resonant chain as a

sequence of 3 or more planets with each pair of planets within 0.5% of a nominal low-order

MMR period ratio. We consider here the resonances 2:1, 3:2, 4:3, 5:4, and 3:1. For low

eccentricity planets with µ = Mp/M? = 10−5 (between MEarth and MNeptune) the width of

the low-rank, first-order MMRs is ∼0.1% (Petrovich et al., 2013). Thus for the Kepler planet

mass distribution, which is dominated by sub-Neptune mass planets, the observed period

ratios of resonant planets will be within a factor of a few of this value. For low levels of

turbulence, virtually all neighboring pairs of planets get trapped in resonance, so resonance

chains are a natural result (Fig. 7.6). For high turbulence levels, resonant chains are even

more rare than resonant pairs, because they require multiple pairs of nearby planets to all

maintain resonances.

We also consider the effect of observational bias on the PRD. We correct for this bias by

taking the set of simulated multiplanet systems, picking a random system (with replacement)

and observer orientation, and calculating how many planets in the system would have an

impact parameter less than 1.0 from that perspective. We repeat this procedure until we

have 3000 simulated observed multiplanet systems. As expected, compact systems become

more strongly represented (Fig. 7.7).

We also run a sample of 500 systems at each turbulence level for 106 years after disk

dissipation to test if dynamical instabilities would significantly change the PRD on this

timescale. The PRD has no significant changes, with <2% of resonant chains destabilizing

in this order of magnitude increase in integration time. This is likely due to the large

dynamical spacing between low-mass planets in low rank MMRs.
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Figure 7.6: Distribution of Resonant Chains.
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the deadzone migration with β = 103, turbulent disk dissipation, and damping-free N-body
integration after 105 years for a wide range of αT values (broken, colored lines) compared
to the observed Kepler distribution (black, solid line). Binomial uncertainties are shown in
the column showing resonant chains, slightly horizontally offset from each other for visual
clarity.
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Figure 7.7: PRD Corrected for Observational Bias
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The same as in Fig. 7.5, except corrected for observing bias that results in systems with more
compact planet spacings to more frequently be actually observed as a multiplanet system.

7.2.4 Discussion

We find that planet migration in a disk with turbulent strength αT ≈ 10−5 reproduces both

the PRD and the resonant chain production observed in Kepler. Planet pairs may have

commonly entered resonance early in their migration histories, but are efficiently removed

from resonance as turbulence sets in and the disk dissipates. Resonant trapping along with

turbulence ensures that planets are fairly widely dynamically spaced, so that the systems do

not dramatically change their PRD within Myr timescales after the disk dissipates due to

dynamical instabilities.

Izidoro et al. (2017, henceforth I17) came to the conclusions that most systems do capture

into resonance but subsequently go unstable, and that turbulence does not have significant

effect on planet’s migration histories. §7 of I17 suggests that R12 suffered from several

deficiencies that led them to this different conclusion. I17 first questions R12’s decision to
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include stochastic forcing on all planets, but only semi-major axis and eccentricity damping

on the outermost planet (which guarantees convergent migration). We address this issue by

explicitly including these damping forces on all planets in theoretically predicted proportions

(see Eqs. 7.4-7.5), along with the stochastic forces. They also argue that the length of the

integration of the planets in the disk may have been insufficient in length to allow capture of

planets into MMRs. In this study we demonstrate that after our initial dead-zone migration

phase, the majority of planet pairs have indeed reached resonance. Lastly, I17 questions

the turbulent force implementation. They comment that (1) the implementation is less

sophisticated than their own, and (2) the levels of turbulence were chosen to explicitly to

reproduce observations. We have a very similar turbulent scheme for numerical simplicity,

but this work covers a broad range of resulting turbulences. Additionally, one may consider

the simplicity of our turbulent scheme an advantage rather than a drawback, because it does

not rely on the specifics of the parameterized density wave scheme employed (see Laughlin

et al., 2004; Ogihara et al., 2007). By addressing these issues, we consider a comparison

between results here and I17 to be valid.

In the stage where the disk is present our simulations are somewhat consistent with

that found in I17; however, I17 produces systems that are even more compact (more than

half of systems possess period ratios ≤ 1.25) and posses more planets. Whereas our initial

conditions assume widely spaced protoplanets drawn from the observed Kepler distribution,

I17 began with many compact embryo spacings in the disk of ∼ 5RH,m. These embryos

therefore often begin interior to low rank MMRs, and results in a population of extremely

compact resonant systems post disk-dissipation. These often naturally go unstable on Myr

timescales, but sub-Neptune planets in more widely spaced chains may remain stable for

Gyrs (Obertas et al., 2017). This suggests that the present planetary architectures provides

some insight into the natal spacings of the planetary embryos.

I17 concludes in part that N-body destabilization of compact resonant chains may lead to

the observed Kepler PRD. However, their simulations produce too many planets in resonance
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which do not go unstable after the disk dissipates, leading to a remnant population of

resonant systems that has not been observed in abundant enough numbers by Kepler. For

turbulence to have significant influence on the results of I17, it would need to occur at much

higher levels than implemented by I17; however, Laughlin et al. (2004) suggests this may

indeed be the case, with planets following a random walk more than an inward path in some

regimes.

Our results indicate that a stage of significant turbulence during disk dissipation due to a

fully turbulent disk may contribute to the PRD, as suggested in R12. This effect may result

in (1) a larger fraction of planets away from resonance at the time of disk dissipation and

(2) a set of resonant chains in 3:2, 4:3, and 5:4 MMRs but have few planets in 2:1 resonance,

and that are likely to remain in stable resonant chains due to wide dynamical spacings. This

would more faithfully reproduce the entire observed Kepler planet population – the sample

of planets observed by Kepler suggest that 2:1 resonances among sub-Neptune resonant

chains are rare (see, e.g., Goździewski et al. 2016; MacDonald et al. 2016; Mills et al. 2016;

Luger et al. 2017, but cf. Lee & Peale 2002; Wright et al. 2011 for giant planets), with the

excess of pairs near 3:2 much more statistically significant (Steffen & Hwang, 2015). Any

model that produces resonant chains of sub-Neptune planets at a 2:1 orbital period ratio

at ∼0.1 AU would require a robust destabilization method since such systems are likely to

otherwise remain stable. On the other hand, the observed resonant chains – including the

outstanding example Kepler-223 (Mills et al., 2016) – may be considered a natural part of

the distribution of planetary systems without requiring any special circumstances in the disk

to form.
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Miralda-Escudé, J. 2002, ApJ, 564, 1019

Montet, B. T., Tovar, G., & Foreman-Mackey, D. 2017, ArXiv e-prints, arXiv:1705.07928

Moore, A., Hasan, I., & Quillen, A. C. 2013, MNRAS, 432, 1196

Moore, A., & Quillen, A. C. 2013, MNRAS, 430, 320

Morbidelli, A., Chambers, J., Lunine, J. I., et al. 2000, Meteoritics and Planetary Science,

35, 1309

Morbidelli, A., Tsiganis, K., Crida, A., Levison, H. F., & Gomes, R. 2007, AJ, 134, 1790

Morton, T. D. 2015, isochrones: Stellar model grid package, ascl:1503.010

Morton, T. D., Bryson, S. T., Coughlin, J. L., et al. 2016, ApJ, 822, 86

Morton, T. D., & Johnson, J. A. 2011, ApJ, 738, 170

Mullally, F., Coughlin, J. L., Thompson, S. E., et al. 2015, ApJS, 217, 31

Murray, C., & Dermott, S. 1999, Solar System Dynamics (Cambridge University Press)

Murray, C. D., & Dermott, S. F. 1999, Solar system dynamics

Nelson, B. E., Robertson, P. M., Payne, M. J., et al. 2016, MNRAS, 455, 2484
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