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ABSTRACT 

A security price volatility estimator that is capable of 
accurately estimating price volatility in real-time or near 
real-time, and in low noise and high noise environments. 
Embodiments cover an interactive tool that allows or 
instructs a user to make meaningful decisions based on the 
estimated volatility. The estimator is constructed based on 
the assumption that the transaction price of a security 
comprises the sum of (1) a latent efficient security price that 
follows a general Ito' semimartingale, and (2) a market 
microstructure noise component that follows a discrete-time 
moving-average (MA)(oo) process associated with the ran­
dom execution of trades. The estimator is obtained by using 
a tractable Quasi-Maximum Likelihood Estimator (QMLE), 
which relies on a simple yet mis-specified moving-average 
MA(q+l) model for observed returns. The order of q is 
preferably selected based on Akaike Information Criteria 
(AIC) or Bayesian Information Criteria (BIC). 
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ROBUST SECURITY VOLATILITY 
ESTIMATION USING INTRADAY 

TRANSACTION DATA 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] This application claims the benefit of priority of 
U.S. Provisional Patent Application No. 62/562,709 filed 
Sep. 25, 2017, which is hereby incorporated by reference in 
its entirety. 

TECHNICAL FIELD 

[0002] The present disclosure generally relates to estimat­
ing volatility of securities. More specifically, the present 
disclosure relates to estimating security volatility based on 
intraday price information in both high and low noise 
environments. 

BACKGROUND 

[0003] Estimating volatility is central to modem finance 
and has many applications, including risk management, 
derivative pricing, and a complement to credit rating. An 
approach to estimating volatility is to consider historical 
data for the security whose volatility is to be estimated. 
Volatilities calculated in this manner are called historical 
volatilities. Historical volatilities are routinely used in appli­
cations (such as value-at-risk or portfolio theory) where 
volatilities are required for quantities on which options are 
not traded. Financial analysts also might use historical 
volatilities to confirm or supplement implied volatility esti­
mates. 
[0004] Historical volatility reflects actual market fluctua­
tions. However, the data upon which historical volatility is 
based may be staleperhaps encompassing a period not 
reflective of current market conditions. As such, using 
high-frequency intra-day trades, rather than daily closing 
prices, provides a much higher accurate measure of histori­
cal volatility. However, this concept is difficult to implement 
because of market-micro-structure noise problems such as 
"bid-ask bounce." Accordingly, there is a need for an esti­
mator that (1) provides a realistic measure of volatility not 
limited by arbitrarily-selected times, and (2) accurately 
measures volatility in both low noise and high noise envi­
ronments. 

SUMMARY 

[0005] In view of the foregoing, one described embodi­
ment provides a method for estimating the volatility of a 
security based on intraday trading data relating to that 
security. According to the method, security transaction price 
data that is sampled during a time interval is received. Then, 
the received security transaction price data is filtered to 
remove unreliable data. A volatility estimator is calculated 
from the filtered samples of transaction price data of a 
security. In calculating the estimator, it is assumed that a 
transaction price of a security comprises: a sum of (1) a 
latent efficient security price that follows a general Ito 
semimartingale, and (2) a market microstructure noise com­
ponent that follows a discrete-time moving-average (MA) 
(oo) associated with the random execution of trades. The 
estimator is further calculated by maximizing the likelihood 
of a mis-specified moving-average (MA) model of returns 
with homoscedastic innovations. Then, a Quasi-Maximum 
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Likelihood Estimator (QMLE) is utilized to determine vola­
tility and noise for the security. Based on the determined 
volatility and noise, a user to take one or more actions via 
an interactive tool. 
[0006] Another embodiment provides a system for esti­
mating the volatility of a security based on intraday trading 
data relating to that security. The system comprises a 
memory and one or more processor coupled to the memory. 
The one or more processors perform certain functions to 
estimate volatility. Accordingly, a security transaction price 
data that is sampled during a time interval is received. Then, 
the received security transaction price data is filtered to 
remove unreliable data. A volatility estimator is calculated 
from the filtered samples of transaction price data of a 
security. In calculating the estimator, it is assumed that a 
transaction price of a security comprises: a sum of (1) a 
latent efficient security price that follows a general Ito 
semimartingale, and (2) a market microstructure noise com­
ponent that follows a discrete-time moving-average (MA) 
(oo) associated with the random execution of trades. The 
estimator is further calculated by maximizing the likelihood 
of a mis-specified moving-average (MA) model of returns 
with homoscedastic innovations. Then, a Quasi-Maximum 
Likelihood Estimator (QMLE) is utilized to determine vola­
tility and noise for the security. Based on the determined 
volatility and noise, a user to take one or more actions via 
an interactive tool. 
[0007] The foregoing has outlined rather broadly the fea­
tures and technical advantages of the present invention in 
order that the detailed description of the invention that 
follows may be better understood. Additional features and 
advantages of the invention will be described hereinafter 
which form the subject of the claims of the invention. It 
should be appreciated by those skilled in the art that the 
conception and specific embodiment disclosed may be read­
ily utilized as a basis for modifying or designing other 
structures for carrying out the same purposes of the present 
invention. It should also be realized by those skilled in the 
art that such equivalent constructions do not depart from the 
spirit and scope of the invention as set forth in the appended 
claims. The novel features which are believed to be char­
acteristic of the invention, both as to its organization and 
method of operation, together with further objects and 
advantages will be better understood from the following 
description when considered in connection with the accom­
panying figures. It is to be expressly understood, however, 
that each of the FIGs. is provided for the purpose of 
illustration and description only and is not intended as a 
definition of the limits of the present invention. 

DESCRIPTION OF DRAWINGS 

[0008] For a more complete understanding of the present 
disclosure, reference is now made to the following descrip­
tions taken in conjunction with the accompanying figures, in 
which: 
[0009] FIG. 1 illustrates an overview of a method for 
estimating volatility of a security according to an embodi­
ment; 
[0010] FIG. 2A shows a quadratic representation of an 
exact weighting matrix (QMLE) in the case of i.i.d. noise 
according to an embodiment; 
[0011] FIG. 2B shows a quadratic representation of a 
Whittle weighting matrix in the case of i.i.d. noise according 
to an embodiment; 
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[0012] FIG. 2C shows a quadratic representation of an 
exact weighting matrix (QMLE) in the case of MA(5) noise 
according to an embodiment; 
[0013] FIG. 3A shows a histogram for the standardized 
estimate of volatility under a first estimated asymptotic 
condition according to an embodiment; 
[0014] FIG. 3B shows a histogram for the standardized 
estimate of the variance of the under the first estimated 
asymptotic condition according to an embodiment; 
[0015] FIG. 3C shows a histogram for the standardized 
estimate of the variance of noise under the first estimated 
asymptotic condition according to an embodiment; 
[0016] FIG. 3D shows a histogram for the standardized 
estimate of the first order auto-covariance of noise under a 
second estimated asymptotic condition according to an 
embodiment; 
[0017] FIG. 3E shows a histogram for a second standard­
ized estimate of the second order auto-covariance of noise 
under a third estimated asymptotic condition according to an 
embodiment; 
[0018] FIG. 3F shows a histogram for a second standard­
ized estimate of the third order auto-covariance of noise 
under a fourth estimated asymptotic condition according to 
an embodiment; 
[0019] FIG. 3G shows a histogram for a second standard­
ized estimate of the fourth order auto-covariance of noise 
under a fifth estimated asymptotic condition according to an 
embodiment; 
[0020] FIG. 3H shows a histogram for a second standard­
ized estimate of the fifth order auto-covariance of noise 
under a sixth estimated asymptotic condition according to an 
embodiment; 
[0021] FIG. 4A illustrates a histogram for a selected order 
using AIC according to an embodiment; 
[0022] FIG. 4B illustrates a histogram for a selected order 
using BIC according to an embodiment; 
[0023] FIG. 4C illustrates a histogram for the standardized 
volatility estimates using AIC according to an embodiment; 
[0024] FIG. 4D illustrates a histogram for the standardized 
volatility estimates using BIC according to an embodiment; 
[0025] FIG. SA shows a histogram for the standardized 
volatility estimates using the central limit results given by 
Theorem 4(i) in a low noise environment. 
[0026] FIG. 5B shows a histogram for the standardized 
volatility estimates using the central limit results given by 
Theorem 4(i) in a medium noise environment according to 
an embodiment; 
[0027] FIG. SC shows a histogram the standardized vola­
tility estimates using the central limit results given by 
Theorem 4(i) in a high noise environment according to an 
embodiment; 
[0028] FIG. SD shows a histogram for the standardized 
volatility estimates using the central limit results given by 
Theorem 4(ii) in a low noise environment according to an 
embodiment; 
[0029] FIG. SE shows a histogram for the standardized 
volatility estimates using the central limit results given by 
Theorem 4(ii) in a medium noise environment according to 
an embodiment; 
[0030] FIG. SF shows a histogram for the standardized 
volatility estimates using the central limit results given by 
Theorem 4(ii) in a high noise environment according to an 
embodiment; 
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[0031] FIG. SG shows a histogram for the standardized 
volatility estimates using the central limit results given by 
Theorem 4(iii) in a low noise environment according to an 
embodiment; 
[0032] FIG. SH shows a histogram for the standardized 
volatility estimates using the central limit results given by 
Theorem 4(iii) in a medium noise environment according to 
an embodiment; 
[0033] FIG. SI shows a histogram for the standardized 
volatility estimates using the central limit results given by 
Theorem 4(iii) in a high noise environment according to an 
embodiment; 
[0034] FIG. 6A illustrates the time series of estimated 
annualized volatility according to an embodiment; 
[0035] FIG. 6B illustrates the time series of the variance 
estimates of noise innovation according to an embodiment; 
[0036] FIG. 7A shows a plot of percentage bias in the 
cross-sectional medians of 5-minute volatility estimates, 
relative to the corresponding QMLEs according to an 
embodiment; 
[0037] FIG. 7B shows a histogram of the ratios of standard 
errors between the 5-minute realized volatility estimator and 
the QMLE, for each stock-day pair in 2016 according to an 
embodiment; 
[0038] FIG. 7C shows a plot of percentage bias in the 
cross-sectional medians of 15-minute volatility estimates, 
relative to the corresponding QMLEs according to an 
embodiment; 
[0039] FIG. 7D shows a histogram of the ratios of standard 
errors between the 15-minute realized volatility estimator 
and the QMLE, for each stock-day pair in 2016 according to 
an embodiment; 
[0040] FIG. SA shows selected orders using BIC for 
constituents of various indexes in 2016 according to an 
embodiment; 
[0041] FIG. 8B provides a histogram of the durations of 
auto-correlations for tickers with selected lags greater than 
or equal to 1 in 2016 according to an embodiment; 
[0042] FIG. SC shows selected orders using BIC for 
constituents of various indexes in 2006 according to an 
embodiment; 
[0043] FIG. SD provides a histogram of the durations of 
auto-correlations for tickers with selected lags greater than 
or equal to 1 in 2006 according to an embodiment; 
[0044] FIG. SE shows selected orders using BIC for 
constituents of various indexes in 1996 according to an 
embodiment; 
[0045] FIG. SF provides a histogram of the durations of 
auto-correlations for tickers with selected lags greater than 
or equal to 1 in 1996 according to an embodiment; 
[0046] FIG. 9 illustrates a computer-implemented system 
for estimating volatility of a security according to an 
embodiment; 
[0047] FIG. 10 illustrates certain aspects of an interactive 
tool for estimating volatility presented to a user according to 
an embodiment; and 
[0048] FIG. 11 illustrates additional aspects of an interac­
tive tool for estimating volatility presented to a user accord­
ing to an embodiment; and 

DETAILED DESCRIPTION 

[0049] Embodiments are directed to a security price or 
future price volatility estimator that is capable of accurately 
estimating price volatility in real-time or near real-time 
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based on intraday trading, and in low noise and high noise 
environments. Embodiments are further directed to an inter­
active tool that allows or instructs a user to make meaningful 
decisions based on the estimated volatility. The inventive 
concepts are discussed herein with further reference to the 
disclosure documents filed herewith, which are incorporated 
by reference in their entirety. 

[0050] According to disclosed embodiments, the estimator 
is constructed based on the assumption that a transaction 
price of a security comprises the sum of (1) a latent efficient 
security price that follows a general Ito semimartingale, and 
(2) a market microstructure noise component that follows a 
discrete-time moving-average (MA)(oo) associated with the 
random execution of trades. The estimator is obtained by 
maximizing the likelihood of a mis-specified moving-aver­
age (MA) model ofreturns with homoscedastic innovations. 
While embodiments have features in common with a MA 
model, their asymptotic design is "in-fill;" i.e., the number 
of observations of volatility increases in a specified time 
period. A tractable Quasi-Maximum Likelihood Estimator 
(QMLE) can be utilized, which relies on a MA(q+l) model 
for observed returns. The order of q is preferably selected 
based on Akaike Information Criteria (AIC) or Bayesian 
Information Criteria (BIC). 

[0051] While embodiments generally rely upon either AIC 
or BIC for model selection, they also develop a uniformly 
valid post-selection inference on volatility, allowing for 
imperfect model selection. Further, the estimator is adaptive 
to the presence of the noise, and its convergence rate varies 
from n114 to n 112

, depending on the noise magnitude. That is, 
as noise diminishes, the estimator convergence rate 
increases from n114 to n 112

. Accordingly, embodiments pro­
vide a uniform inference on volatility across both low noise 
and high noise environments. In high noise environments, 
the estimator can be regarded as an iterative flat-top realized 
kernel. Yet, unlike kernel and other nonparametric estima­
tors, embodiments are tuning-free barring order selection, 
and warrant positive estimates in finite samples. 

[0052] Embodiments provide consistent estimators of 
noise auto-covariances and auto-correlations as by-products 
that do not rely on a bandwidth choice and guarantee 
positive volatility estimates. Accordingly, both AIC-QMLE 
and BIC-QMLE embodiments, as described herein, provide 
better finite-sample performance than alternative nonpara­
metric estimators. 

Notation And Assumptions 

[0053] An explanation of notation and certain assumptions 
used herein is provided to assist in understanding the inven­
tive concepts. 

[0054] For any matrix A, Ar, and At denote its transpose 
and Hermitian conjugate, respectively. The Kronecker delta 
is denoted by o,,f" The imaginary unit and the indicator 
function are written as rr and, Il { ·} respectively. All vectors 
are colunm vectors where (a, b, c) are written in place of (ar, 
br, crf for simplicity. Also, d-dimensional vectors of Os and 
ls are written as Od and ld and 11•11 is used to denote the IL 2 

norm. B denotes the backward (lag) operator associated with 
a discrete-time time series. K represents a generic positive 
constant that may vary from line to line but does not depend 
onn. 
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[0055] All limits are taken as 

n ➔ co and ~ and ~ 

denote convergence in law and stable convergence in law, 
respectively. The mixed normal distribution is denoted by 
MN and ansbn if ansKbn for all n. Also, an-bn if ansbnsan. 
[0056] At each stage n;;el, the transaction price of a 
security X is observed at time points Ost0 st1 s ... stn sT. 
Throughout, nr, the number of observations within [O, TI, is 
assumed to be an observed random variable, where n is a 
non-observable mathematical abstraction. If sampling is 
performed at regular intervals, n=nr is used. 
[0057] According to embodiments, it is assumed that X, 
has two components: ' 

where X, is the efficient equilibrium security price and U, is 
the micr~structure noise associated with the ith observation. 
[0058] Assumptions regarding the efficient price X, the 
sampling scheme, and the microstructure noise U, are also 
discussed herein to highlight certain improvements provided 
by the inventive concepts over other known estimation 
methods. 
Assumption 1: The logarithm of the efficient security price 
X, is a continuous Ito semimartingale defined on a filtered 
probability space (Q, '.F, ( '.F ,), P), which satisfies: 

where µ, is predictable and locally bounded, at is a locally 
bounded Ito semimartingale, and W is a Brownian motion. 
Assumption 2: For each n;;el, the sampling intervals are 
regular. That is, tj-tj-l=lrn for all lsjsnr, where lrn=T/nr, 
and nr=n. 
With respect to U, consider a sequence of MA( oo) models 
with parameters indexed by n for each stage n. The param­
eters are indexed to facilitate the subsequent discussion 
regarding uniformity. 
Assumption 3: For each n;;el, the noise Uhas an MA(oo) 
representation: 

U; = /nle(n1(B)s;, with e(n1(x) = (2) 

1 + ~:
1 

e(n) E 0(co), where Os /nl s K, and 

(3) 

Recognizing the strong independence assumption is impor­
tant for distinguishing volatility associated with the efficient 
security price from that of the transaction price itself. 
[0059] According to embodiments, the model of noise is 
also nonparametric in that eCn) is an infinite-dimensional 
parameter vector. It satisfies equation (3 ), so that the 
sequence of the MA processes are uniformly invertible and 
their long-range serial dependence cannot be arbitrarily 
large." The parameter space 8(00) is not restrictive. For 
instance, it allows for any stationary ARMA(p,q) model and 
any MA(oo) model with coefficients {8J1,, 1 decaying at a 
polynomial rate that is faster than f 2

. These restrictions 
facilitate an approximation to the likelihood function upon 
which embodiments of the estimator are constructed. 
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[0060] With the foregoing concepts in mind, FIG. 1 illus­
trates an overview of method 100 for estimating volatility of 
a security according to inventive concepts described herein. 
The method can be executed by a specialized computer for 
performing volatility estimation, and the computer system 
components can be co-located or distributed relative to each 
other. 
[0061] At step 101, a time interval over which security 
transaction price data will be collected is determined. This 
can be manually selected by a user or automatically selected 
according to system parameters and the like. However, 
according to a preferred embodiment, security transaction 
price data will be collected or sampled at a high frequency 
during one or more trading days. 
[0062] Referring step 102, the total period over which 
volatility is estimated may be selected by the user to be one 
or higher of a minute, hour, day, week, month, year, or 
multiple years. For simplicity, the description hereinafter 
shows the constants used to determine an intraday volatility, 
i.e., an intra-period volatility for one day. 
[0063] A security or underlying asset involved with intra­
period volatility may include but is not be limited to fol­
lowing instruments: security, bonds, loans, private place­
ments, forward contracts, futures contracts, swaps, forward 
swaps/delayed start swaps, break forwards, calls, puts, 
straddles/strangles/butterflies, reverse floating rate loan/bull 
floating rate notes, dual currency bonds, callable/puttable 
bonds, puttable stock, bond with warrant, convertible bonds, 
liquid yield option notes, commodity-linked bonds, auction 
rate notes/debentures, collateralized mortgage obligations/ 
real estate mortgage investment conduits, commercial real­
estate backed bonds, credit enhanced debt securities, dollar 
bills, foreign exchange paper, floating/rate sensitive notes, 
floating rate tax-exempt revenue bonds, increasing rate 
notes, indexed currency option notes or principal exchange 
rate linked securities, caps/floors/collars, interest rate reset 
notes, mortgage pass-through certificates, negotiable certifi­
cates of deposit, adjustable tender securities, puttable/ex­
tendable notes, real yield securities, receivable pay-through 
securities, remarketed reset notes, stripped mortgage backed 
securities, stripped treasuries/municipals, variable coupon 
renewable notes, variable rate renewable notes, yield curve/ 
maximum rate notes, adjustable rate preferred stock, auction 
rate preferred stock, convertible adjustable preferred stock, 
remarketed preferred stock, single point adjustable rate 
stock, state rate auction preferred stock, variable cumulative 
preferred stock, adjustable rate convertible debt, convertible 
exchangeable preferred stock, convertible reset debentures, 
debt with mandatory common stock purchase contracts, 
exchangeable preferred stock, synthetic convertible debt, 
zero coupon convertible debt, puttable common stock. 
[0064] At step 103, received data is filtered to remove data 
which may be unreliable. As an example, consider a large­
scale study of realized volatilities and noise auto-covari­
ances for S&P 1500 index constituents from Jan. 1, 1996, to 
Dec. 31, 2016. There are approximately 1,500 tickers every 
day, and over 3,500 tickers in total due to changes in the 
index constituents. Data relating to trades and quotes of all 
equities was collected at a high frequency ( e.g., a millisec­
ond after Jan. 1, 2007, and a microsecond from Jul. 27, 
2015) from the TAQ database. Next, trades and quotes with 
special condition codes, as well as those that occur outside 
regular trading hours, were removed. National Best Bid and 
Offer (NBBO) data was constructed using quotes from all 
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exchanges at a I-second frequency. Trades with NBBOs 
were matched by their recorded time points and those trades 
that are outside the range of the corresponding NBBOs were 
removed. Redundant trades were then removed, retaining 
only non-zero returns. This helps alleviate model misspeci­
fication due to, for example, the effect of rounding, latency 
or delay across exchanges, and so on. Because this approach 
allows for general sampling schemes, removing zeros only 
results in a small cost of efficiency. Finally, any stock days 
that have less than 12 observations after cleaning were 
removed. 
[0065] At step 104, an estimation/sampling interval can be 
selected, e.g., manually by a user or automatically by the 
system. The intervals at which security transaction price data 
can be sampled can be random or uniform. Also, there may 
be ambiguity in the duration of the sampling interval. 
According to one embodiment, a desired minimum change 
in intra-period price of the underlying security is selected to 
use as an estimation interval. It is at each of these estimation 
intervals, i.e., the time between two observations of a price, 
that inventive concepts utilize information to execute steps 
described herein. The selected estimation intervals can 
remain the same throughout the period. For determining an 
underlying security's movement through an interval, price 
can be defined as the bid price, if the underlying security 
price increases, or the ask price, if the underlying security 
decreases. 
[0066] At step 105, a volatility estimator is constructed. 
According to a preferred embodiment, the estimator is 
constructed based on the assumption that a transaction price 
of a security comprises the sum of (1) a latent efficient 
security price that follows a general Ito semimartingale, and 
(2) a market microstructure noise component that follows a 
discrete-time moving-average (MA)(oo) associated with the 
random execution of trades. The estimator is obtained by 
maximizing the likelihood of a mis-specified moving-aver­
age (MA) model ofreturns with homoscedastic innovations. 
[0067] At step 106, volatility and noise estimates are 
obtained. According to a preferred embodiment, this is 
performed using a Quasi-Maximum Likelihood Estimator 
(QMLE), where the logarithm of the efficient equilibrium 
security price is treated as a Brownian motion with constant 
volatility. According to such an embodiment, the QMLE is 
expressed as: 

dX,~adW,; U;~i0(B)c;• with 0(x)~U:1~1q0_r1, and E, 

Nco,1). 

[0068] Further, exact quasi-likelihood estimates of X.2 (q) 
and 0(q)1, for lsjsq+l, can be estimated using the state­
space representation of equation (19), where q is either 
determined by minimizing the AIC or BIC as defined in 
equation (10) or is pre-specified as described herein. 
[0069] At step 107, based on the estimates obtained at step 
106, a user or the system is instructed to take one or more 
actions. These instructions can be communicated as part of 
an interactive tool. 

Quasi-Maximum Likelihood Estimator (QMLE) and 
Moving-Average (MA) Model Selection 

[0070] As discussed with respect to FIG. 1, a QMLE is 
utilized to estimate volatility and noise. In that regard, 
embodiments can utilize a Quasi-Maximum Likelihood 
Estimator (QMLE) that relies upon a mis-specified paramet­
ric model, for which the likelihood function is available: 

dX,~adW,;U;~,e(B)E;,with 0(x)~l+Lj~!qej:,J, and E;~ 

Nco,1). 
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[0071] In other words, it is assumed that the efficient price 
(in logarithm) is a Brownian motion with constant volatility 
but no drift, and that the noise follows a Gaussian MA( q) 
model, where the order q is to be determined. Under this 
model, the observed log-return vector Yn=(Yn i, Yn 2 , ... , 

Yn n f, which is defined as: ' ' 
• T 

(4) 

follows a reduced-form Gaussian MA(q+l) model. The np< 
nr covariance matrix ~n is given by: 

(5) 

where ( Il n)ij=o,,1, ( (G; /)ij=oh,li-)1' and Yh is the h-th order 
auto-covariance: 

(6) 

where g(A;8)=18(e", )1 2 is the scaled spectral density ofU. 
[0072] The QMLE (o/(q),L/(q), 8n(q)) is thereby 
defined as the maximizer of the quasi log-likelihood: 

Ln( 02"2,8)~-½ log det(Ln( if ,,2 ,0))-½tr(Ln( if ,L2 ,8)-
1YnYn T) (7) 

where parameters take values in II( q): 

1 1 n (q) = {ccr2
, i2, 0): Ks cr2 s K; Ks/ s K; 0 E 0(qJ.}. 

and 

0(q) = {0 E 0(co): 01 = 0, VJ > q.). 

[0073] For convenience, 8EE>(q) is identified as a q-di­
mensional vector, ignoring all Os beyond the qth entry of 
[theta], when no ambiguity exists. Also, by convention 
8(q)=0 if qsO. 
[0074] To determine an appropriate order of q, either AIC 
or BIC can be used, which can be expressed as: 

AICn(q) = 2q-2 max Ln(cr2
, /, 0), 

(a-2.,2.e)cmq) 
(8) 

BICn(q) = q log ny - 2 max Ln(cr2
, i2, 0). 

(a-2.,2.e)cmq) 
(9) 

q is selected by minimizing AIC or BIC: 

'fn.I = arg 1/~n _
1 

AICn(q), 
qsn (logn) 

(10) 

'fn.2 = arg 1/~n _
1 

BICn(q) 
qsn (logn) 
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[0075] The corresponding likelihood estimators are 
denoted as AIC-QMLE and BIC-QMLE, respectively. The 
upper bound on q precludes MA models with too many 
parameters for estimation. In practice, it is not restrictive 
because for almost all evaluated stock-day pairs discussed 
herein, the selected orders are less than 10 using AIC or less 
than 6 using BIC. 

Theoretical Results 

[0076] In discussion results achieved by described 
embodiments, it is assumed the noise follows an exact 
MA( q) model with some unknown q, so that its data 
generating process (DGP) is characterized by a finite-di­
mensional parameter 8EE>(q). 
[0077] As discussed herein, embodiments allows for 
selection of different models. First, consider model selection 
using BIC according to the following discussion. 
Proposition 1: Suppose Assumptions 1 and 2 are true. 
Suppose, in addition, Assumption 3 holds with Ln=L *E[K-1

, 

K], en=8*EE>(q*)\8(q*-l), for some fixed q*eeO. Then it 
holds 

lim P(qn 2 = q') = 1 
n➔co ' 

[0078] Then the likelihood estimator effectively m1m­
mizes the Kullback-Leibler divergence, only when the 
selected order is no smaller than the truth. Moreover, BIC 
imposes just large enough penalty to rule out orders that are 
greater than the truth asymptotically. The combination of 
these two results leads to the desired consistency in model 
selection. 
[0079] Next, embodiments prove the (point-wise) central 
limit theorem for estimators of all parameters: 
Theorem 1: Suppose the same assumptions as those in 
Proposition 1 are true; then it holds that 

where cum4[ E] denotes the fourth cumulant of E, Cr:=C(2)r, 

1 LT 1 [ a!og g(J.;0)(a!og g(J.;0))T 
C(p)y = - crfds, W(0) = - --- --- d J., 

T o 4n -rr a0 a0 

Proposition 1 implies that 8n(q,, 2 ) is a q-dimensional vector, 
with probability approaching i, so is 8n(q,, 2)-8* in this 
regard. The volatility estimator is consistent ~ith respect to 
the quadratic variation in spite of model misspecification, 
and it achieves the same rate of convergence as that in the 
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white-noise setting. The noise parameters are also consis­
tent. Moreover, in case the true DGP of E is Gaussian, 
Ln 2 (q,, 2 ), it(q,, 2 )) are semiparametrically efficient because 
their ~symptoti~ covariance matrix coincides with that of the 
MLE of {UJ/=1 

[0080] Embodiments propose estimators of auto-covari­
ances and auto-correlations of the noise as by-products: 

The estimates are zero (0) beyond the 9nJ th lag. 

The next corollary presents the point-wise central limit 
results when using BIC: 

Corollary 1: Suppose the same assumption as those in 
Proposition 1 are true: Let y * be the ( y * + 1) vector of the 
up-to-qth-order auto-covariances of U. Let p*=y0*-

1
(y 1*, 

y2 *, ... , Yq *) be the q-vector of up-to-qth-order auto­
correlations of U. Then it holds: 

n112 (j\(qn_2)-y*) !; N(O, AVAR2), with, 

AVAR2 = 2W(y*r1 +y*y*T cumi[,:] 

n112 (pn('ln.2)- p*) !; N (0, AVAR3), 

with the ijth entry of the q* x q* matrix A VAR3 given by (A VAR3)u = 

PtPj l 
- 2-(AVAR2)11 + 2 (AVAR2);+1.J+1 -
Yo* Yo* 

Pt pj 
2 (AVAR2)1.J+1 - 2 (AVAR2)1.J+1 
Yo* Yo* 

where 

1 1 [ a!og f(1<.;y)(a!og f(1<.;y))T 
W(y)= - = - ---- ---- 8y 

2.Jr 2.Jr -rr ay ay 

and f is the spectral density of U, given explicitly by 

JCA;y)~L 2g(),,;0)~Llh lsq Y lh le•Ah (13) 

[0081] Embodiments can also construct similar estimators 
based on AIC, even though order selection by AIC is 
inconsistent. In fact, AIC tends to select a more complicated 
model that nests the true one, so that estimators of noise 
parameters using AIC are also consistent, despite not being 
efficient. By contrast, as embodiments show later, AIC- and 
BIC-QMLE of volatility share the same asymptotic distri­
bution. Neither estimator is, however, minimax efficient. 

[0082] Embodiments also analyze the minimax efficiency 
bound of volatility estimation from noisy returns. One 
approach relies on Le Cam's concept of asymptotic equiva­
lence between experiments. Two sequences of statistical 
experiments (E}0l, E}1l) are asymptotically equivalent if 
their Le Cam distance li.Lc(En co), En (l)) vanishes asymptoti­
cally. Using this approach, the minimax efficiency bound of 
volatility estimation can be established, which is T- 312

'{0 r a,3 
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dt, in the case of i.i.d. Gaussian noise. Embodiments use this 
result to establish the minimax bound in the presence of an 
MA( q) noise. 
[0083] Considering the following definitions is instruc­
tive: 

Definition 1 : 

[0084] Let En (o)=En C0 l( a, L 2
, 8) be the statistical experiment 

generated by observing {YnJb~/r from the foregoing dis­
cussion under Assumption 2, with volatility a,3 being 
a-Holder continuous, independent of X,, and satisfying 
mintc[o, 71,/ /\0,-2 2:K- 1

. 

Let En (l)=En C1l(a,a2
) be another statistical experiment gen­

erated by observing '{YnJb~tr from the foregoing discus­
sion under Assumption 2, where U1 is i.i.d. centered Gauss­
ian with variance a 2

, and a,2 is a-H· older continuous, 
independent of X,, and satisfies mintE[O,TJa,2 /\0,-

22:K-1
. 

As seen, definition 1 imposes independence between X and 
02. 

[0085] Then, it can be observed from Theorem 1 that the 
asymptotic variance of QMLE with dependent noise coin­
cides with that in a white-noise case, except that L2 in the 
latter is replaced by the long-run variance of the dependent 
noise, i.e., 1/=L2 (1+~/=1 8j)2

. Therefore, 8 appears in the 
asymptotic variance only through s- This finding leads to 
conjecture that, in terms of volatility estimation, En co) pro­
vides the same information as En Cll, as long as their noise 
processes have the same long-run variance. Indeed, the 
following theorem can be proven: 
Theorem 2: For any ex>¼ and 8E8(q) for some fixed q, the 
experiments En (O) and En (l) with a2 =s2 are asymptotically 
equivalent. More precisely, their Le Cam distance satisfies 
that li.Lc (En (O)( cx,a2,i2,8), En (1)( cx,a2 ,a2 ))sn- 114 +n114-~(log 
n)2

~ Consequently, the minimax efficiency bound for vola­
tility estimation is given by 8T-312t{0 r a/ ds. 

Uniform Post-Selection Inference on Volatility 

[0086] It should be appreciated that the point-wise asymp­
totic theory relies on an unrealistic result of perfect model 
selection (Proposition 1 ), which provides a misleading pic­
ture of the actual finite sample performance of the estimator. 
In the classic time-series setting, conducting uniformly valid 
post-selection inference on parameters over a non-trivially 
large class of DGPs is generally impossible. However, for 
volatility estimation, its convergence rate is as slow as n 114

, 

so model selection mistakes are potentially negligible for a 
wide class of DGPs. As discussed, described embodiments 
can develop a uniformly valid inference for volatility. 
[0087] Embodiments first define a class of DGPs over 
which uniformity is to be established. The inference allows 
for an (MA)( oo) noise, for which model selection mistakes as 
a result of AIC and BIC are inevitable in any sample. 
Condition 1: { (UJ1 ==o are random variables defined on the 
probability space (Q, F, P). P is such that {UJ/r=o obeys 
Assumption 3 and 

Condition 1 imposes a uniform lower bound on noise 
because uniformity is not possible over a vanishing noise 
while allowing for model selection uncertainty, which is 



US 2020/0273103 Al 

established in Proposition 2 below. In addition, uniformity 
requires the existence of an appropriate order q that controls 
model overfitting and model misspecification error. The first 
term qn- 1 is related to the estimation error of q parameters, 
whereas the second term ~Jaeq+ 1 18}nl1 2 is related to the error 
of approximating the (MA)( oo) DGP with an MA( q) model. 
This bound ensures the selected MA model is not overly 
complicated yet is sufficiently rich to approximate the DGP. 
It is easy to show that Condition 1 holds, for example, for all 
stationary ARMA(p,q) models with fixed parameters. 
With respect to this class of models, embodiments establish 
the uniformity result: 
Theorem 3: Let {P(n)} be a sequence of DGPs under which 
Assumptions 1-2 hold. Suppose for each n Condition 1 holds 
for P=P(nl). Then for jE(l, 2) embodiments have 

where (sCnl)2 is the long-run variance of the (MA)( oo) pro­
cess, that is, (s(n))2=(L(n))2g(0;8(n)). 
[0088] The next corollary provides a uniformly valid 
confidence interval for volatility, which requires a consistent 
estimator of the asymptotic variance to be introduced herein. 
Corollary 2: Suppose Assumptions 1-2 hold. Let IP' (n) be the 
collection of all DGPs for which Condition 1 holds for a 
given n, and let IP' =nn"'no IP' (n) be the collection ofDGPs for 
which Condition 1 holds for all n2:11a. Let c(l-a)=F-1(1-cx/ 
2), where F(•) is the standard Gaussian cumulative distri­
bution function. The confidence interval based on oj(q) 
with g_E{CJ.n, 1, il.n, 2} is uniformly valid in PEIP': 

lim5UplP(Cr E Cln( cc))- (1 - cc)I = 0 where 
n➔=pEIP 

rir~(q) ± c(l - ccJ(?!@,q¼ Hsi\(4Jrir~(q)-½ + 38-~(q)~) with 

?!@= 7~@g(O; 0n(iJ))and i\(4Jr-

[0089] The uniformity result demonstrates the robustness 
of the volatility inference with respect to the choice of q. 
Barring the selection of q, the volatility estimator is tuning­
free, which makes it particularly attractive for empirical 
applications. 
[0090] In practice, the assumption that noise is absent for 
returns subsampled at a certain frequency is common. How­
ever, in many cases, the confidence interval based on the 
realized volatility is narrower than that of the efficient 
noise-robust estimator with full data, which indicates the 
noiseless assumption that realized volatility relies on is 
unreliable for inference. More specifically, this issue occurs 
if the long-run variance of the noise is not so small relative 
to the sample size: 

2 2 ( C(4Jr )
2 

I; > m Ll.n 4C(3)r , 
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where mis the ratio of the number of observations in the full 
sample to that in the subsample. 
[0091] Using noise-robust estimators, such as pre-averag­
ing and realized kernel estimators, might be safer for infer­
ence in all scenarios, but these estimators converge at an n 14 

rate and hence are not efficient, in particular when noise is 
too small to be detected relative to the sample size. By 
contrast, the convergence rate of the QMLE improves from 
n14 to n12 as the magnitude of the noise decreases, and 
reaches the optimal n12 rate when noise vanishes. When 
noise disappears, an efficiency loss in QMLE occurs up to a 
constant factor compared to the realized volatility estimator, 
due to ignorance of this knowledge. Although the magnitude 
of the noise matters for different asymptotic behaviors, 
embodiments develop a uniformly valid inference without 
requiring the knowledge of the magnitude. 
[0092] If noise is small, 8 is weakly identified. If it 
diminishes, 8 is unidentified. Because 8 is a nuisance for 
volatility estimation, embodiments reparametrize the QMLE 
in terms of strongly identified parameters (_2;), where is a 
vector of the auto-covariances of the noise. That is, embodi­
ments rewrite the quasi log-likelihood in terms of ( a2,y), 
where y is a vector of the auto-covariances of the noise. The 
quasi log-likelihood in terms of (o2

, y) is: 

Ln(if,y)~-½ log det(Ln(a2,y))-½tr(Ln(if,J- 1YJnT) (14) 

and define o/(q), Yn(q) as its maximizer. The parameter 
space of (er, y) can be derived from that of (o2 ,L2 ,8). 
[0093] Nonetheless, it has been shown for a white-noise 
case that as true noise variance vanishes, its estimator will 
hit the boundary of the parameter space, so that the asymp­
totic distribution of the volatility estimator becomes non­
standard. A similar issue occurs here when noise is minimal. 
In other words, for certain values of bn( q), the spectral 
density ofU given by equation (13) can hit zero for certain 
values of A, and hence a solution may not exist such that 
L/( q) is positive and ft( q) is a real vector. 
[0094] Embodiments adopt a larger parameter space Iln a2, 
y(q), which is of the form: rr}if,y)(q)={(o2 ,y): lln-l~n(o2 ,y) 
2:K-1 Il n; IIYllsK; y1=0, 'v'>q} where ~n( a2, y) is defined in 
equation (5), which essentially only requires ~n(o2 ,y) (after 
some scaling) to be asymptotically non-negative. By enlarg­
ing the parameter space embodiments avoid the potential 
boundary constraints due to its relationship with L2

, 8, so 
embodiments achieve the desired asymptotic normality for 
volatility estimation. 
[0095] More notation is needed to characterize the asymp­
totic variance in this case, which will work regardless of the 
magnitude of the noise. For any positive reals o 2 and o,yE 
JR q+I with some fixed integer q, and Q, c ElR embodiments 
define 

AVAR(if,y,o,Q,c)~l/T((if,y,W 1 W(a2,y,o,Q,c)W(a2, 
y,0)-1)u, 

where the subscript 11 denotes the (1,1)-entry of the matrix, 
and W(a2,y,o), W(a2,y,o,Q,c) are (q+2)x(q+2) dimensional 
matrices, defined respectively as 

2 1 [a!ogf(J.; <T
2

, y, 6)(a!ogf(J.; cr2, y, 6))T 
W(<T , y, 6) = ~ -H 8(CT2, y) 8(CT2, y) dJ. 

(15) 

IV(<T2
, y, 6, Q, c) = 2W(<T2

, y, 6) + 
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(
_'.__[ 8(f(::t; a2, y, 6)fl (f(k CT2 6)- CT26)d::t)r 
Dr -H 8(CT2, )') , , )', 

q 

f(::t; CT2, y, 6) = CT26 + 11 = e'"l2 ~ yljle'1" 
j=-q 

where 

[0096] Embodiments first provide asymptotic distribu­
tions of an 2 ( q) under different drifting sequences of ( L (nl)2. 
Theorem 4: Let Assumptions 1-3 hold. For 8 (n)--;,8

1 
* and 

any fixed positive integer q that satisfies !",,}12 ~J~q =1 e}n) 
1--;.0, then 

Under Ll.~1(/nlJ2 ➔ co((s(nlJ2Ll.nr1
1
\ir~(q)-Cr) ~'-, 

(i) 

MN(o, }(sc;Y2 q4Jr+3c3/2J) 

Under Ll.~1(/nlJ2 ➔ (ii) 

0 Ll.~112 (CT~(q)- Cr)~'-, MN( 0, }(4q + 6)C(4)r) 

Under Ll.~1 (/nlJ2 ➔ a2c(O, co), writing y*c JR q+l where for (iii) 

* 2 'vq-je*e* f O . 
YJ = a L..Jt=O l l+j or s J sq 

Ll.~l/2(~(q) - Cr)~ 

MN(O, AVAR(Cr, y*, 1, C(4Jr - Cf, cum4 [c])) 

[0097] In scenario (i), the convergence rate varies within 
(n114,n112

), depending on the long-run variance of the noise. 
Scenario (ii) is a special case of (iii) with a2=0. This case is 
highlighted because its asymptotic variance is explicitly 
comparable to that of the realized volatility estimator. 
Indeed, the relative asymptotic efficiency ratio between the 
two estimators is ( 4q+6)/2=2q+3> 1, which may result in a 
substantial efficiency loss if an overly complicated likeli­
hood (large q) is adopted. 

[0098] To give some intuition behind the asymptotic vari­
ance in scenario (iii), note that all entries of~n(a2 ,y) are of 
the same order O(lln), so that the entries of lln -l~n(a2 ,y) no 
longer depend on n, and the in-fill asymptotic setting 
becomes very similar to the classic case, from where the new 
asymptotic variance formula is motivated. 

[0099] Concretely, the matrix W(a2 ,y,o) corresponds to 
the probability limit of the Hessian matrix of the log­
likelihood, whereas the matrix W(a2,y,o, Q, c) originates 
from the asymptotic covariance matrix of the score vector. 
W depends only on the second moments of the data, whereas 
W also involves the fourth moments (the quarticity C(4)r 
and the fourth cumulant cum4 [El). The following models 
establish uniformly valid inference. 

Condition 2: {UJ1~o = are random variables defined on the 
probability space (Q, :F, P). Pis such that {VJ1~0 nr obeys 
Assumption 3. In addition, a fixed positive integer q exists 
such that ll/ 12 ~J~0=10}nl1--;,0. 
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[0100] Condition 2 differs from Condition 1 in that the 
class of models allowed here must be well approximated by 
an MA( q) and q is known and fixed, so that model selection 
is not needed. As mentioned, building a uniformly valid 
interval allowing for both small noises and model selection 
is impossible. An "impossibility" is presented below: 

[0101] Consider a small-noise setting with (iCnl)2=0(lln). 
As Theorem 4 shows, in this case, the volatility estimator 
has an n 112 convergence rate. Moreover, it is assumed the 
noise process has no auto-correlation beyond the first lag so 
that selecting q from { 0, 1}. It is sufficient to study the 
cumulative distribution function: 

Gn)x)~P(nl/2
( On 2 (/[njl\l )-Cr),;x) 

[0102] The next proposition demonstrates that even with 
constant volatility, no uniformly consistent estimator of 
Gn)x) exists in this scenario: 

Proposition 2: For each n, let IP' (n) be the collection of all 
DGPs under which Assumptions 1 and 2 hold with a,2 Cror 
some Cr fixed and all tE[O, Tl{VJ1~0nr, and {UJ1~0nr obeys 
Assumption 3 with lln -I,(n)sK. Then it holds that, for each 
xElR and jE{l,2}, 

liminf lim 
n➔= cn,j(x) 

where the infimum extends over all estimators <'t)x) of 
Gn)x). 

[0103] This result, nonetheless, may have little effect on 
the empirical application of disclosed estimators except for 
some efficiency loss, because for returns of the S&P 1500 
index constituents studied, the selected orders rarely exceed 
10. Most estimates are smaller than 6. So embodiments 
allow a user to choose a q greater than 10, say, 12. 

Implementation 

[0104] To further explain the inventive concepts, imple­
mentation of the QMLE is discussed in detail. Directly 
calculating the inverse of En would be computationally 
expensive, when evaluating the likelihood function at each 
stage of an optimization routine. To avoid this problem, the 
classic time-series literature adopts an approximation 
approach, which as discussed below, is improved upon by 
described embodiments. 

[0105] A former ayproxi~ation approach, known as the 
Whittle estimator (aw/(q),yw/(q)) is constructed as the 
maximizer of an appr~ximate likelihood: 

Lw,_(a2,y)~-½ log det vw,n-½tr(Qw,n-!ynynT), 
where Qw,n~ow,nvw,now}, 

[0106] where Ow,n is an nxn unitary matrix with 

(17) 
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and V w,n is an nxn diagonal matrix: 

- ~ 
OJ,k ~ (c?ti.n6h,o + (2yh -yh + 1 -yh - l))exp(-i----;;-h · j), 

h=-= 

[0107] with y defined by (3,6), Because Qwn-1=0wntyw 
n -lown and V wn is diagonal, evaluating LwnC02, y) i; quit~ 
efficieiit ' ' 
[0108] Unfortunately, the next propos1t10n shows the 
Whittle estimator of volatility is inconsistent in the in-fill 
asymptotic setting, even if the noise is i.i.d, Gaussian and the 
efficient price is a Brownian motion with constant volatility 
(hence, QMLE is in fact the MLE), An asymptotically 
non-negligible bias exists depending on the realizations of 
the noise process on the borders of the sampling window [O, 
T], 
[0109] Proposition 3: Suppose some constant Cr exists 
such that the true DGP has a,2=Cr for all tE[O,T], V1_,.,_d 
N (O,t2*), and q=O, then as n----;,oo, 

aw,n2 =Cr+11(U/+Un 2) 

[0110] To visualize the difference between the exact 
QMLE described herein and the Whittle estimator, embodi­
ments utilized their quadratic forms: 
[0111] Proposition 4: Suppose the same assumptions as 
those in Proposition 1 hold. Let y * be the ( q * + 1) vector of 
up-to-q*th-order autocovariances of U. The QMLE o/ 
( q *) and the Whittle estimator aw,/ ( q *) satisfy 

where the np< nr weighting matrices W n and W w,n are 
defined by 

with ~n given by (3.5), Qwn given by (5.17), and the 
(q+2)x(q+2) matrix W given by (4.15). Both W n and W wn 

are homogeneous functions of degree zero in ( a2, y). ' 
[0112] FIG. 1 is informative regarding the differences 
between W n and W wm in the i.i.d. noise case (q=O). 
Apparently, W w n deviates substantially from O as it 
approaches the bo'rders, whereas W n diminishes. The fail­
ure of the Whittle approximation highlights the impact of 
different asymptotic designs (long-span vs. in-fill) on the 
large sample behavior of the same estimator. 
[0113] FIG. 1 also illustrates Wn in the case of MA(5) 
noise. Notable "flatness" is present on the top, which helps 
cancel out the impact of dependent noise. This pattern 
motivates us to investigate the connection between the 
QMLE and the flat-top realized kernel. 
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[0114] Proposition 5: Suppose the same assumptions as 
those in Proposition 1 hold. The QMLE o/ (q*) is asymp­
totically equivalent to an exponential-type flat-top realized 
kernel. More generally, for any fixed q2:0 and (a2,y)E JR. q+

2
, 

such that (3.6) holds for some (a2,t2,8)EII(q), for all n112
+ 

~si,jsn-112
+~ with O<a<½, the weighting matrix W nCa2,y) 

satisfies: 

{ 

1 + op(n-114 ), lj - ii sq+ l; 

TxWn(CT
2
,Y)u= (li-jl-q-1) 

k ---- (1 +op(l)J, lj-il 2:q+2, 
Hn 

(ii) 

where the implicit equivalent kernel is k(x)=(l+x)e-x, and 
the corresponding bandwidth is Hn =sa-l !:in 112 with 
s2=~!flsqyljl. 
[0115] Proposition 5 suggests the QMLE can be regarded 
as an iterative kernel estimator, with its bandwidth auto­
matically selected. Compared to using this equivalent kernel 
representation, implementing the QMLE using an auxiliary 
model is more convenient, which embodiments discuss next. 
[0116] Inventive concepts utilize an auxiliary reduced­
form MA(q) model of observed noisy returns: 

Yn,; = (B)E;, with (19) 

q+! 

¢(x)=l+~ lsisn,c~N(O,x2
). 

j=l 

[0117] According to an embodiment, a method starts as 
follows: 
1. Obtain exact quasi-likelihood estimates of X.2 (q) and 
0(q)1, for lsjsq+l, using the state-space representation of 
equation (19), where q is either determined by minimizing 
theAIC or BIC as defined in equation (10) or is pre-specified 
as described herein. 
2. Estimate volatility and the noise autocovariances using 
the above estimates: 

0 s j sq, 

which are obtained by comparing different parameteriza­
tions for the return autocovariances. 
3. Solve q+l nonlinear equations for q+l model parameters 
(L2(q), Eln(q)) from Yn(q) obtained in Step 2: 

q-j 

Yn(q)j = l~(q) ~ 0n(q),0n(q)l+j• 0 S j Sq. 
l=O 

(20) 
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[0118] Effectively, step 3 is to find q+l model parameters 
of the ~(q) noise process from up-to-qth order autocovari­
ances Yn(q)1, 0sjsq. This practice is common in the classic 
time-series analysis. 
[0119] Note that Step 2 is sufficient for volatility and 
autocovariance estimation, which is rather simple. If one of 
skill in the art is interested in (L2,8), a unique solution (L2(q), 
Eln(q)) exists from Step 3, with probability approaching 1. 
However, when noise is small, these parameters are weakly 
iden!ified, and equation (20) might have no solution such 
that L

2 (q) is positive and 8n(q) is a real vector. Studying the 
inference of (L2,8) in this case might be interesting, but a 
primary interest here is estimating volatility, whose infer­
ence in step 3 does not affect. 
[0120] FIG. 2 shows quadratic representations of different 
estimators. Generally, FIGS. 2A-2C illustrate the weighting 
matrices Ws in the quadratic representations of the QMLE 
and the Whittle approximation in the case of i.i.d. noise, as 
well as the weighting matrix of the QMLE with MA(5) 
noise. FIGS. 2A and 2B illustrate the differences between 
Wn (i.e., an exact weighing matrix) and W (i.e., a Whittle 
weighting matrix), respectively, in the i.i.d.w~~ise case ( q=0). 
As seen, W w,n deviates substantially from 0 as it approaches 
the borders, whereas Wn diminishes. FIG. 2C illustrates Wn 
(i.e., an exact weighing matrix) in the case of MA(5) noise. 
[0121] FIG. 3 illustrates histograms of standardized esti­
mates using different estimated asymptotic variances. That 
is, FIG. 3 shows histograms of the standardized estimates 
along with the density of the standard normal distribution. 
The noise is simulated from an MA(5) model. FIG. 3A 
shows a histogram for a first standardized estimate of 
volatility under a first estimated asymptotic condition. FIG. 
3B shows a histogram for a second standardized estimate of 
the variance of noise under the first estimated asymptotic 
condition. FIG. 3C shows a histogram for a third standard­
ized estimate of variance of noise under the first estimated 
asymptotic condition. FIG. 3D shows a histogram for a 
second standardized estimate of the first order auto-covari­
ance of noise under a second estimated asymptotic condi­
tion. FIG. 3E shows a histogram for a second standardized 
estimate of the second order auto-covariance of noise under 
a third estimated asymptotic condition. FIG. 3F shows a 
histogram for a second standardized estimate of the third 
order auto-covariance of noise under a fourth estimated 
asymptotic condition. FIG. 3G shows a histogram for a 
second standardized estimate of the fourth order auto­
covariance of noise under a fifth estimated asymptotic 
condition. FIG. 3H shows a histogram for a second stan­
dardized estimate of the fifth order auto-covariance of noise 
under a sixth estimated asymptotic condition. 
[0122] FIG. 4 generally illustrates histograms of the 
selected orders and the standardized volatility estimates. 
Specifically, FIG. 4A illustrates a histogram for a selected 
order using AIC. FIG. 4B illustrates a histogram for a 
selected order using BIC. FIG. 4C illustrates a histogram for 
the standardized volatility estimates using AIC. FIG. 4D 
illustrates a histogram for the standardized volatility esti­
mates using BIC. The noise is simulated from an MA(5) 
model. 
[0123] FIG. 5 generally compares histograms of the stan­
dardized estimates using estimated asymptotic variances 
across different scenarios. That is, FIG. 5 generally plots the 
histograms of the standardized estimates using the central 
limit results given by Theorem 4 (i) (FIGS. SA-SC), Theo-
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rem 4 (ii) (FIGS. SD-SF), and Theorem 4 (iii) (FIGS. 
SH-SJ). The solid lines plot the density of the standard 
normal distribution. The noise is simulated from an MA(5) 
model. Specifically, FIG. SA shows a histogram for the 
central limit given by Theorem 4(i) in a low noise environ­
ment. FIG. 5B shows a histogram for the central limit given 
by Theorem 4(i) in a medium noise environment. FIG. SC 
shows a histogram for the central limit given by Theorem 
4(i) in a high noise environment. FIG. SD shows a histogram 
for the central limit given by Theorem 4(ii) in a low noise 
environment. FIG. SE shows a histogram for the central 
limit given by Theorem 4(ii) in a medium noise environ­
ment. FIG. SF shows a histogram for the central limit given 
by Theorem 4(ii) in a high noise environment. FIG. SG 
shows a histogram for the central limit given by Theorem 
4(iii) in a low noise environment. FIG. SH shows a histo­
gram for the central limit given by Theorem 4(iii) in a 
medium noise environment. FIG. SI shows a histogram for 
the central limit given by Theorem 4(iii) in a high noise 
environment. 
[0124] FIG. 6 illustrates a time series of estimated vola­
tility and noise-innovation variance according to concepts 
described herein. FIG. 6A compares the cross-sectional 
median (lines), lower, and upper quartiles (shaded areas) of 
the annualized volatility estimates for S&P Composite 1500 
Index constituents calculated according to embodiments 
herein. That is, FIG. 6A shows the time series of volatility 
estimates for constituents of each of the three indices, 
respectively. Lines are used to represent the median, and 
shaded areas are used to represent the lower and upper 
quartiles in the cross section. Embodiments also smooth 
these time series using equal weights over a monthly moving 
window. Although considerable cross-sectional variation is 
present, the median volatility estimates among constituents 
of all three indices share a similar pattern to volatility of the 
S&P 500 index. That said, the small caps are on average 
higher volatile than the large caps, with the mid-caps in 
between. 
[0125] FIG. 6B illustrates the variance estimates of noise 
innovation calculated according to embodiments herein, i.e., 
for those constituents that have sufficiently high noises. The 
time series are smoothed with equal weights over a moving 
window of21 days. The y-axis of FIG. 6B is transformed to 
the logarithm scale for the sake of presentation. 
[0126] FIG. 7 generally shows relative biases and standard 
errors of the realized volatility against QMLE. FIG. 7A 
shows a plot of percentage bias in the cross-sectional 
medians of 5-minute volatility estimates, relative to the 
corresponding QMLEs using the entire sample. FIG. 7B 
shows a plot of percentage bias in the cross-sectional 
medians of 15-minute volatility estimates, relative to the 
corresponding QMLEs using the entire sample. The time 
series are smoothed with equal weights over a moving 
window of 21 days. 
[0127] FIG. 7C shows a histograms of the ratios of stan­
dard errors between the 5-minute realized volatility estima­
tor and the QMLE, for each stock-day pair in 2016. FIG. 7D 
shows a histograms of the ratios of standard errors between 
the 15-minute realized volatility estimator and the QMLE, 
for each stock-day pair in 2016. The x-axes in FIGS. 7C and 
7D are transformed to the logarithm scale for the sake of 
presentation. 
[0128] Referring to FIGS. 7 A and 7C, on average, a large 
upward bias is present that is associated with the former 



US 2020/0273103 Al 

estimates, potentially due to presence of the noises at the 
5-minute frequency. The biases are substantial, up to over 
160% for small caps, compared to the noise-robust QMLEs 
in earlier years. The biases have been decreasing over the 
past two decades, with a slight increase post 2008. The 
biases of the small caps are higher evident than those of the 
large caps. On average, the large caps are traded higher 
frequently than every 5 minutes, so embodiments are not 
surprised to see their biases in the cross-sectional medians 
are almost indistinguishable from O post 2002. This finding 
does not imply that every 5 minute is a safe frequency for 
each individual constituent of the S&P 500 index. At a 
15-minute frequency, the biases are clearly smaller, though 
have not completely vanished even in 2016 for these median 
estimates. 
[0129] FIGS. 7B and 7D demonstrate issues with infer­
ence based on the realized volatility estimator. That is, when 
the daily number of observations is larger than 78 (resp. 26), 
the confidence interval based on the 5-minute (resp. 15-min­
ute) realized volatility estimator should be wider than that 
based on the efficiency bound discussed herein. 
[0130] The ratios of standard errors between the 5-minute 
(resp. 15-minute) realized volatility estimator and the 
QMLE using the entire sample are compared, because the 
latter estimator is fairly close to achieving the efficiency 
bound. Because any estimator using subsamples is less 
efficient than the full-sample efficiency bound, this ratio 
should be greater than 1. Also, the larger the ratio is, the 
greater the efficiency loss for the realized volatility. Only 
results of 2016 are reported because the quality of 5-minute 
realized volatility estimator is best. Only when the sampling 
frequency is 15 minutes and only for S&P 500 constituents 
are almost all ratios larger than 1. Nonetheless, these ratios 
could be as large as higher than 10, indicating substantial 
efficiency losses. For other cases, considerable stock-day 
pairs exist for which inference using realized volatility 
estimators is overcondent. 
[0131] FIG. 8 generally illustrates certain aspects of sta­
tistical properties of the micro structure noise. According to 
FIGS. SA, SC, and SE, 30%-60% of stocks have noises that 
are too small to be estimated. This percentage is slightly 
higher for large caps than for small caps. FIG. 6 suggests the 
noise magnitude has been shrinking perhaps due to the 
decimalization of the US security markets and the advent of 
electronic trading. In addition, not surprisingly, small-cap 
stocks exhibit larger noises than the mid- and large caps. 
[0132] FIGS. SA, SC, and SE also provide selected orders 
using BIC for constituents of each index, respectively. For a 
large percentage of stock-day pairs, the selected orders are 
0, so that i.i.d. noise assumption is reasonable for them. That 
said, about 10%-30% of stock-day pairs remain for which 
BIC prefers a few higher lags. For BIC to select higher than 
6 lags is rare. Embodiments identify higher stock-days in 
2016 with selected orders greater than or equal to 1, com­
pared to earlier years, in particular for large caps. This 
finding is due to the availability of data sampled at a 
frequency even higher than every second, for which it is 
expected to see higher auto-correlated lags. 
[0133] To further shed light on this point, FIGS. 8B, SD, 
and SF provides histograms of the durations of auto-corre­
lations for those tickers with selected lags greater than or 
equal to 1. The duration is defined in terms of seconds as the 
product of the selected order and the average trading fre­
quency for each stock-day pair. Embodiments find the 
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estimated durations are much smaller for large-cap stocks 
than for smaller caps. Moreover, the average duration of 
auto-correlations has been decreasing in the past two 
decades. For instance, the average duration oflarge caps has 
decreased from about 103 to merely 10 seconds. 
[0134] FIG. 9 illustrates computer-implemented system 
900 for estimating volatility of a security according to an 
embodiment. System 900 comprises data port 901 for 
receiving time interval data from data service 902. System 
900 may be a computer or may also have other embodiments 
such as hand-held devices. Methods for receiving time 
interval data include but are not limited to receiving data 
over the Internet or analogous communications network, 
receiving time interval data directly from a data provider, 
inputting the data by way of a storage medium, or disk or 
manually entering the time interval data. 
[0135] System 900 comprises processor 903 programmed 
with instructions to perform data screening. The filtering 
may be performed with a stand-alone program written in 
languages or be implemented using a scripting language. 
[0136] System 900 comprises software code or program 
module 904 programmed to execute the estimation strategy 
selected by the user. Running a simulation using a estimation 
strategy involves hypothetically executing a series of trades 
and examining the profit or loss associated with each. This 
simple simulation technique can be programmed using any 
of the programming languages or script-supplemented soft­
ware packages described herein 
[0137] Price values can be recorded to storage device 905 
for use in estimating volatility. System 900 can also com­
prise a portable storage reader 906 s or removal hard drive 
containing historical time interval data. Portable storage 
reader 906 communicates with processor 903 to perform a 
number of calculations to estimate volatility. 
[0138] System 900 can further comprise program 907 or 
program module 904. The term "module" referenced in this 
disclosure is meant to broadly cover various types of soft­
ware code including but not limited to routines, functions, 
objects, libraries, classes, members, packages, procedures, 
or lines of code together performing similar functionality to 
these types of coding. Storage device 905 is also included 
for recording variables, positions, and other purposes to 
retrieve and calculate needed information. Time interval 
data required for this calculation may be received via 
portable storage media from a data service such as Reuters 
or New York Stock Exchange TAQ Database or over a 
communications network such as the Internet by data port 
901, such as, for example, a network card, a serial port, 
parallel port, firewire port, or network card configured to 
communicate with a network wirelessly. Certain other val­
ues needed to calculate the intra-period volatility 908 may 
also be received by system 900 from data services such as 
Bloomberg. 
[0139] System 900 also includes output device 909, such 
as, for example, a graphical user interface (GUI) or network 
interface which prompts or instructs the user or system to 
perform calculations, i.e., estimation intervals, corrective 
steps, etc., and to output the intra-period volatility after 
being estimated. 
[0140] According to an embodiment, output device 909 is 
a GUI dynamically and/or statically displays several loca­
tions of fields of information and receives commands or 
entries from a user or user device based on the displayed 
information. Doing so allows a user to leverage the esti-
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mated volatility and noise components associated with a 
security or future on one or more exchanges. 
[0141] Output device 909 can graphically display an esti­
mated volatility of a security of future based on intraday 
trading data related to that security or future in one or more 
electronic exchanges. In doing so, output device 909 can 
dynamically display a first indicator in one of a plurality of 
locations in a price display region, where the first indicator 
represents security transaction price data sampled during a 
time interval. Output device 909 can also dynamically 
display a second indicator in one of a plurality of locations 
in a filter display region, where the second indicator repre­
sents security transaction price data that has been filtered to 
remove unreliable data relating to the security transaction 
price data sampled during the time interval. Output device 
909 can further dynamically display a volatility estimator 
region comprising a first location corresponding to an esti­
mated volatility of the security transaction price data 
sampled during the time interval, a second location corre­
sponding to a latent efficiency security price, and a third 
location corresponding to a noise component. 
[0142] Displaying the volatility estimator region can 
include displaying the estimated volatility, and/or the latent 
efficiency security price and noise component. The volatility 
estimator region can also include other fields of information, 
such a data sampling interval, a trade volume level, and the 
like. 
[0143] Output device 909 can further dynamically display 
an interactive tool region comprising a plurality oflocations 
for receiving commands, where the plurality oflocations for 
receiving commands correspond to at least one of: the 
displayed estimated volatility, the displayed latent efficiency 
security price, and the displayed noise component. 
[0144] Further, in response to a selection of a particular 
location from a user or user input device, output device 909 
can configure plurality of parameters for a buy or sell order 
relating to a security or future. The parameter can corre­
spond to, e.g., a buy or sell order on one or more of the 
electronic exchange. 
[0145] The configuration of output device 909 itself 
informs the user in a more convenient and efficient manner 
than existing systems. Users gain a significant advantage by 
seeing the market volatility because they can see trends in 
the market with noise or micro-noise removed. This allows 
the user to better calculate risk associated with a given trade 
or the like. A volatility estimator display can also show the 
user latent efficiency prices and/or estimated noise in the 
market for a given security or future at different price levels. 
Volume levels can also be displayed in conjunction with 
estimated noise. If a large amount of orders are in the market 
near the user's position, he may feel he should sell or buy. 
Without seeing (filtered) volatility and/or volatility in con­
junction with estimated noise, no such strategies could be 
utilized. Dynamically displaying such data (over any num­
ber of selected time intervals) conveys the information to the 
user in a more intuitive and easily understandable manner. T 
rends in the trading the security or future and other relevant 
characteristics are more easily identifiable by the user 
through the use of the present invention. 
[0146] System 900 also includes one or higher input 
devices 910, such as, for example, a keyboard and mouse, to 
allow a user to communicate with system 900, and a 
translating device, such as for example, a compression chip 
on a network card, for translating intra-period volatility 908 
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and other data involved with determining the intra-period 
volatility into a digital data signal 911, intra-period volatility 
908 contained therein may be used for one or higher of the 
purpose described herein. 
[0147] For example, data signal 911 may be received by a 
remote computer which is programmed to buy or sell 
securities. The remote computer might receive the intra­
period volatility 908 in data signal 911, calculate the price of 
a security using the intra-period volatility, and execute a buy 
or sell when there is a favorable discrepancy, such as buying 
a security being sold below its calculated value. 
[0148] Data signal 911 may be configured to operate over 
commonly used network or communications protocols. With 
such protocols, system 900 processes data signal 911 into a 
compressed signal, encrypts the compressed signal, and 
transmits the compressed and encrypted signal to the remote 
computer. The remote computer is programmed to decom­
press and decrypt the data signal so that the intra-period 
volatility can be utilized. 
[0149] FIG. 10 illustrates certain aspects of an interactive 
tool that can be utilized to estimate volatility and/or take 
certain actions based on the estimated volatility. FIG. 11 
illustrates other aspects of an interactive tool that can be 
utilized to estimate volatility and/or take certain actions 
based on the estimated volatility. 
[0150] In view of their foregoing description, embodi­
ments provide a simple volatility estimator based on the 
likelihood of an MA model, which is robust to dependent 
noise. Although this estimator relies on either AIC or BIC 
for model selection, embodiments utilize a uniformly valid 
post-selection inference on volatility, allowing for imperfect 
model selection. 
[0151] In addition, the estimator is rate efficient and adap­
tive to the presence of the noise. As noise vanishes, its 
convergence rates increases from n114 to n 112

. In light of this 
fact, embodiments provide a uniformly valid confidence 
interval for volatility, allowing for both small and large 
magnitudes of the noise. This estimator does not rely on a 
bandwidth choice, and it always guarantees the positivity of 
volatility estimates. For these reasons, the AIC-QMLE 
delivers more desirable finite-sample performance than 
alternative nonparametric estimators. 
[0152] The described empirical study of S&P 1500 stocks 
highlights the limitations of applying the realized volatility 
estimator to a large cross section of stocks, where no safe 
frequency exists that one can use without accounting for the 
microstructure noise. Important by-products of this 
approach are the estimates of noise auto-covariances and 
auto-correlations. They are potentially informative about 
structural parameters of certain microstructure models, 
which embodiments leave for future work. This approach 
resembles a threshold estimator, which gives zero auto­
covariance estimates beyond the lag selected by the infor­
mation criterions. This feature delivers superior perfor­
mance in the finite sample, particularly when noise is 
relatively small. Empirically, embodiments find that auto­
covariances of observed returns in recent years last for a 
much shorter period of time compared to earlier years, 
indicating the market efficiency has improved substantially, 
potentially due to the popularity of electronic and algorith­
mic trading. In a cross-sectional comparison, auto-covari­
ances of small-cap stocks tend to persist for a longer period 
than the large caps, potentially due to limits to arbitrage or 
for some liquidity reasons. 
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[0153] Although the present invention and its advantages 
have been described in detail, it should be understood that 
various changes, substitutions and alterations can be made 
herein without departing from the spirit and scope of the 
invention as defined by the appended claims. Moreover, the 
scope of the present application is not intended to be limited 
to the particular embodiments of the process, machine, 
manufacture, composition of matter, means, methods and 
steps described in the specification. As one of ordinary skill 
in the art will readily appreciate from the disclosure of the 
present invention, processes, machines, manufacture, com­
positions of matter, means, methods, or steps, presently 
existing or later to be developed that perform substantially 
the same function or achieve substantially the same result as 
the corresponding embodiments described herein may be 
utilized according to the present invention. Accordingly, the 
appended claims are intended to include within their scope 
such processes, machines, manufacture, compositions of 
matter, means, methods, or steps. Moreover, the scope of the 
present application is not intended to be limited to the 
particular embodiments of the process, machine, manufac­
ture, composition of matter, means, methods and steps 
described in the specification. 

1. A method for estimating the volatility of a security 
based on intraday trading data relating to that security, the 
method comprising: 

receiving security transaction price data that is sampled 
during a time interval; 

filtering the received security transaction price data to 
remove unreliable data; 

calculating, from the filtered sample of transaction price 
data of a security, a volatility estimator based on an 
assumption that a transaction price of a security com­
prises: the sum of (1) a latent efficient security price 
that follows a general Ito semimartingale, and (2) a 
market microstructure noise component that follows a 
discrete-time moving-average (MA)( oo) associated 
with the random execution of trades; 

where the estimator is further calculated by maximizing 
the likelihood of a mis-specified moving-average (MA) 
model of returns with homoscedastic innovations; 

utilizing Quasi-Maximum Likelihood Estimator (QMLE) 
to determine volatility and noise for the security; and 

based on the determined volatility and noise, instructing, 
via an interactive tool, a user to take one or more 
actions, where the interactive tool: 
dynamically displays first indicator representing secu­

rity transaction price data sampled during a time 
interval; 

dynamically displays a second indicator representing 
filtered security transaction price data; 

dynamically displaying a volatility estimator region; 
and 

dynamically displays a region comprising a plurality of 
locations for receiving commands, the plurality of 
locations for receiving commands corresponding to 
at least one of: the displayed estimated volatility, the 
displayed latent efficiency security price, and the 
displayed noise component, 

where the commands comprise at least one of a buy or 
sell command based on the displayed volatility. 

2. The method of claim 1 where the logarithm of the 
efficient equilibrium security price is treated as a Brownian 
motion with constant volatility. 
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3. The method of claim 1 where a mis-specified Moving 
Average (MA) model of returns is expressed as: 

dX, = crdW,; 

q 

U; = r0(B)s;, with 0(x) = 1 + ~ 01xi, and E; ~ N(O,l). 
j=l 

4. The method of claim 3 where the order of q is 
determined by minimizing one of Akaike Information Cri­
teria (AIC) or Bayesian Information Criteria (BIC). 

5. The method of claim 1 where the security transaction 
price data is randomly sampled during the time interval. 

6. The method of claim 1 where the security transaction 
price data is sampled at uniform increments during the time 
interval. 

7. A system for estimating the volatility of a security 
based on intraday trading data relating to that security, the 
system comprising: 

a memory; 
one or more processors coupled to the memory, the one or 

more processors: 
receiving security transaction price data that is sampled 

during a time interval; 
filtering the received security transaction price data to 

remove unreliable data; 
calculating, from the filtered sample of transaction 

price data of a security, a volatility estimator based 
on an assumption that a transaction price of a secu­
rity comprises: the sum of (1) a latent efficient 
security price that follows a general Ito semimartin­
gale, and (2) a market microstructure noise compo­
nent that follows a discrete-time moving-average 
(MA)(oo) associated with the random execution of 
trades; 

where the estimator is further calculated by maximizing 
the likelihood of a mis-specified moving-average 
(MA) model of returns with homoscedastic innova­
tions; 

utilizing Quasi-Maximum Likelihood Estimator 
(QMLE) to determine volatility and noise for the 
security; and 

based on the determined volatility and noise, instruct­
ing, via an interactive tool, a user to take one or more 
actions, where the interactive tool: 

dynamically displays first indicator representing secu­
rity transaction price data sampled during a time 
interval; 

dynamically displays a second indicator representing 
filtered security transaction price data; 

dynamically displaying a volatility estimator region; 
and 

dynamically displays a region comprising a plurality of 
locations for receiving commands, the plurality of 
locations for receiving commands corresponding to 
at least one of: the displayed estimated volatility, the 
displayed latent efficiency security price, and the 
displayed noise component, 

where the commands comprise at least one of a buy or 
sell command based on the displayed volatility. 
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8. The system of claim 7 where the logarithm of the 
efficient equilibrium security price is treated as a Brownian 
motion with constant volatility. 

9. The system of claim 7 where a mis-specified Moving 
Average (MA) model of returns is expressed as: 

dX, = crdW,; 

q 

U; = r0(B)s;, with 0(x) = 1 + ~ 01xi, and E; ~ N(O,l). 
j=l 

10. The system of claim 9 where the order of q is 
determined by minimizing one of Akaike Information Cri­
teria (AIC) or Bayesian Information Criteria (BIC). 

11. The system of claim 7 where the security transaction 
price data is randomly sampled during the time interval. 

12. The system of claim 7 where the security transaction 
price data is sampled at uniform increments during the time 
interval. 

13. A method for displaying an estimated volatility of a 
security based on intraday trading data related to that 
security in an electronic exchange on a graphical user 
interface, the method comprising: 

dynamically displaying a first indicator in one of a plu­
rality of locations in a price display region, the first 
indicator representing security transaction price data 
sampled during a time interval; 

dynamically displaying a second indicator in one of a 
plurality of locations in a filter display region, the 
second indicator representing security transaction price 
data that has been filtered to remove unreliable data 
relating to the security transaction price data sampled 
during the time interval; 

dynamically displaying a volatility estimator region com­
prising a first location corresponding to an estimated 
volatility of the security transaction price data sampled 
during the time interval, a second location correspond­
ing to a latent efficiency security price, and a third 
location corresponding to a noise component, where 
displaying the volatility estimator region comprises 
displaying at least one of: 
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the estimated volatility, and 
the latent efficiency security price and noise compo­

nent; and 
dynamically displaying an interactive tool region com­

prising a plurality oflocations for receiving commands, 
plurality of locations for receiving commands corre­
spond to at least one of: the displayed estimated vola­
tility, the displayed latent efficiency security price, and 
the displayed noise component. 

14. A computer readable medium having program code 
recorded thereon for execution on a computer for displaying 
an estimated volatility of a security based on intraday 
trading data related to that security in an electronic exchange 
on a graphical user interface, the program code causing a 
machine to perform the following method steps: 

dynamically displaying a first indicator in one of a plu­
rality of locations in a price display region, the first 
indicator representing security transaction price data 
sampled during a time interval; 

dynamically displaying a second indicator in one of a 
plurality of locations in a filter display region, the 
second indicator representing security transaction price 
data that has been filtered to remove unreliable data 
relating to the security transaction price data sampled 
during the time interval; 

dynamically displaying a volatility estimator region com­
prising a first location corresponding to an estimated 
volatility of the security transaction price data sampled 
during the time interval, a second location correspond­
ing to a latent efficiency security price, and a third 
location corresponding to a noise component, where 
displaying the volatility estimator region comprises 
displaying at least one of: 
the estimated volatility, and 
the latent efficiency security price and noise compo­

nent; and 
dynamically displaying an interactive tool region com­

prising a plurality oflocations for receiving commands, 
plurality of locations for receiving commands corre­
spond to at least one of: the displayed estimated vola­
tility, the displayed latent efficiency security price, and 
the displayed noise component. 

* * * * * 


