
I 1111111111111111 11111 1111111111 lllll lllll 111111111111111 lll111111111111111 

c12) United States Patent 
Wegerich 

(54) SUBBAND DOMAIN SIGNAL VALIDATION 

(75) Inventor: Stephan W. Wegerich, Glendale 
Heights, IL (US) 

(73) Assignee: The University of Chicago, Chicago, 
IL (US) 

( *) Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by O days. 

(21) Appl. No.: 10/360,843 

(22) Filed: 

(65) 

Feb. 6, 2003 

Prior Publication Data 

US 2003/0220767 Al Nov. 27, 2003 

Related U.S. Application Data 

(60) Provisional application No. 60/354,626, filed on Feb. 
6, 2002. 

(51) Int. Cl. 
G06F 16100 (2006.01) 
G06F 17118 (2006.01) 

(52) U.S. Cl. ...................................................... 702/181 
(58) Field of Classification Search ................ 702/180, 

(56) 

702/181, 179,183 
See application file for complete search history. 

References Cited 

U.S. PATENT DOCUMENTS 

5,764,698 A * 6/1998 Sudharsanan et al. ...... 375/241 

112 

108 MEAN 
Ho(Z) 

Ho 
KURTOSIS 

H1 H
0

(Z) 

• 
ISKEWNESSI • 

• 

HM-1 
VARIANCE 

H
0

(Z) 

• 
• 
• 

US007085675B2 

(IO) Patent No.: US 7,085,675 B2 
Aug.1, 2006 (45) Date of Patent: 

6,299,346 Bl * 
6,332,961 Bl * 
6,678,421 Bl * 
6,701,274 Bl* 

2001/0049590 Al* 
2002/0029130 Al * 
2002/0055826 Al* 
2002/0083773 Al* 
2002/0087290 Al * 
2002/0091499 Al * 
2002/0152056 Al* 
2002/0183971 Al * 
2003/0033094 Al * 
2003/0086341 Al * 
2004/0066966 Al * 

* cited by examiner 

10/2001 !sh-Shalom et al. ........ 374/126 
12/2001 Johnson et al. ........ 204/192.13 

1/2004 Daniell et al. .............. 382/240 
3/2004 Eryurek et al. ............. 702/140 

12/2001 Wegerich .................... 702/189 
3/2002 Eryurek et al. ............. 702/183 
5/2002 Wegerich et al ............... 703/2 
7/2002 Ben-Romdhane ............ 73/660 
7/2002 Wegerich et al ............ 702/182 
7/2002 Wegerich et al ............ 702/182 

10/2002 Herzog et al. ... ... ... .. ... ... 703/2 
12/2002 Wegerich et al ............ 702/185 
2/2003 Huang .. ... ... ... ... .. ... ... ... 702/39 
5/2003 Wells et al. ............. 369/13.56 
4/2004 Schneiderman ............. 382/159 

Primary Examiner-Bryan Bui 
Assistant Examiner-Demetrius Pretlow 
(74) Attorney, Agent, or Firm-Foley & Lardner LLP 

(57) ABSTRACT 

A system, method and program product for predictive con­
dition monitoring of a monitored system by means of 
sub-band decomposition of a complex monitored signal. 
Features of the decomposed signal are extracted for mod­
eling estimation and detection of deviations in the features. 
Deviations are indicative of impending monitored system 
fault. 

20 Claims, 2 Drawing Sheets 
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SUBBAND DOMAIN SIGNAL VALIDATION 

CROSS-REFERENCE TO RELATED PATENT 
APPLICATIONS 

2 
!em diagnosis is also typically very specific to the kinds of 
indications presented with the appearance of the particular 
problem, and must be worked out specifically for each 
machine. It would be useful to have an empirical data-driven 

This application claims priority to U.S. provisional patent 
application No. 60/354,626 which was filed on Feb. 6, 2002. 

5 way of determining the health or the operational state of a 
machine or other process state based on one or more 
vibration or acoustic signals, data from a process or other 
figure of merit or state data. 

BACKGROUND OF THE INVENTION What is needed is a way to apply the advanced empirical 

1. Field of the Invention 
The present invention relates to process and machine 

modeling and system monitoring, especially for predictive 
condition monitoring. More particularly, the invention 
relates to condition monitoring of a system using an empiri­
cal model having inputs derived from complex signal 
decomposition using a sub-band technique. 

10 modeling techniques for condition monitoring of signals 
from any "monitored system" including without limitation: 
equipment or processes, such as those signals that are 
monitored in the field of vibration monitoring, and further in 
the medical arts, the biological field generally, the chemical 

15 technology area, business and financial fields, mechanical 
arts generally, meteorology and any process providing data 
susceptible of condition monitoring. 

2. Description of the Related Art 
SUMMARY OF THE INVENTION 

The present invention achieves the above needs by means 
of a sub-band decomposition technique coupled with signal 
feature extraction for generating multivariate input to an 
empirical modeling engine, based on at least one composite 
or complex signal obtained from instrumentation on a moni­
tored machine or process or data from any system being 
monitored (the "monitored system" hereinafter). The sub­
band component features are provided as individual inputs 
to the empirical modeling engine. The empirical modeling 
engine compares the sub-band component features against 
expected values to derive more information about the state 
of the monitored system generating the signal. 

The invention further provides an apparatus and a method 
for monitoring the operational state of a living or an inani­
mate subject. The invention permits the monitoring of the 
condition and location of the subject, with interaction by the 
subject in some cases. The nature of the monitoring may be 
varied as necessitated by circumstances. One or more sen­
sors or source of data are selected appropriate to the subject 

A number of advanced techniques have been developed to 
provide improved monitoring and control of equipment and 20 

processes, for example in an industrial setting. Such tech­
niques have the potential of providing earlier detection of 
equipment failure and process upset, as well as finer control, 
and offer an alternative to simpler, threshold-based alarm 
condition monitoring systems, which merely examine the 25 

raw value of a single sensor signal in isolation against an 
absolute threshold. One such advanced technique is 
described in U.S. Pat. No. 4,937,763 to Mott, improved in 
U.S. Pat. No. 5,764,509 to Gross et al. Therein, an empirical 
model of proper equipment or process operational states is 30 

created from exemplary data, which model can be used in 
real-time monitoring to generate estimates of expected sen­
sor readings in response to receiving actual sensor readings 
from equipment or process instrumentation. The expected 
readings are compared to the actual readings to provide 35 

indications of abnormality indicating impending equipment 
failure or process upset. These techniques are able to provide 
such indications long before conventional thresholding tech­
niques would detect any problem, and thereby provide 
valuable lead-time in responding to developing faults. 

These techniques take advantage of the information inher­
ent in the ( often unknown) relationships between the param­
eters measured by the sensors, to provide such advanced 
condition monitoring. As a consequence, these techniques 
work only in the context of sensor readings for multiple, 45 

related (correlated) parameters. Theoretically, at least three 
sensors are required to build the requisite model, and in 
practice even more sensors are necessary. This limits the 
applicability of these advanced techniques to equipment and 
processes instrumented with multiple sensors for correlated 50 

parameters. It would be beneficial to be able to apply these 
techniques to circumstances where uninstrumented equip­
ment or processes could be retrofitted with just one sensor, 
such as an acoustic pickup, or to monitoring which generates 
just one complex signal as a composite picture of system 55 

operation, such as an EKG signal for a heart. 

40 monitored system and the reasons for monitoring the sys­
tem. For example, the sensors could include an audio/visual 
sensor, a biological condition sensor, a chemical sensor, a 
meteorological sensor, a motion sensor, an electromagnetic 

In a related field prior art, vibration analysis, methods are 
kuown for examining the power spectral density function 
from an accelerometer or acoustic pickup to provide means 
for monitoring rotating or cyclic equipment. Typically, fre- 60 

quencies of interest are examined, and thresholds (lower or 
upper limit) are placed on the power level expected for these 
frequencies. If a threshold is pierced, this is indicative of an 
unsatisfactory operating condition or a developing problem. 
A great deal of work is involved in identifying the frequen- 65 

cies of interest and expected power levels for each particular 
piece of equipment that is monitored in this fashion. Prob-

sensor, a seismic sensor, an apparatus sensor and a stream of 
business data from a computer system. 

The sub-band decomposition method can be applied to 
any signal obtained from any monitored system as described 
hereinbefore, such as an acoustic signal, an electrical current 
signal, a vibration signal or the like or any detectable signal 
or data from the medical arts, the biological field generally, 
the chemical technology area, business and financial fields, 
mechanical arts generally, meteorology and any process 
providing data susceptible of condition monitoring. The 
present invention can for example, in particular, be applied 
to monitoring automobile production or operation. More 
specifically, the present invention can be applied to engine 
vibration analysis, body vibration transfer analysis, noise in 
an automotive body, muffler vibration analysis, and the like. 
The vibration measurement monitoring system can also 
according to the present invention be a non-contact device 
capable of accurately monitoring a small region. The method 
and system can also be applied for detecting a tool breakage, 
such as a drill or applied to a failure in a production or 
method. Furthermore, the present invention can be applied 
to a plant or process occurrence, such as monitoring a motor, 
and maintenance of a water pipe and/or gas pipe for detect-
ing leakages. Further specific examples of applications are 
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to agriculture fields. A large fruit such as a watermelon can 
be "knocked", so that resultant sound can be analyzed to 
determine sweetness of the watermelon without cutting the 
watermelon. The signal is decomposed into a plurality of 
component signals by multi-channel sub-band filtering, each 5 

sub-band having a center frequency and filtering for a range 
of frequencies around it. An M-channel sub-band filter bank 
may be used to break a signal into M different frequency 
bands using multi-rate digital filtering techniques in the time 
domain. 

Features are then extracted from the sub-band compo­
nents to provide one or more feature values for each sub­
band component. Features are characteristics of a signal over 

10 

a shifting window of observations, such as mean or average 
value, variance, skewness and kurtosis. Features can be 15 

computed at periodic intervals or continuously with the 
shifting window, to provide sequences of feature values that 
are then monitored with the system of the current invention. 

An empirical model for use in generating expected feature 
values for the monitored machine, process or source of data 20 

(the monitored system) is created from historic data repre­
senting normal operation. Data is accumulated from instru­
mentation on the monitored system during normal operation, 
and is passed through the filter bank to provide multiple 
sub-band signals. Features are then extracted from the 25 

sub-band signals. The feature sequences are processed with 

4 
FIG. 1 is a diagram of the general embodiment of a 

preferred form of the present invention for signal decom­
position, feature extraction and empirical modeling; and 

FIG. 2 illustrates a method for creating a reference library 
from collected sensor data for use in a similarity model of 
the invention. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

Turning now to the drawings, FIG. 1 generally shows the 
preferred embodiment of system 100. A signal x(t) repre­
sents some complex measured value from the monitored 
system being monitored, for example vibration from an 
accelerometer or sound level from an acoustic pick-up. 
M-channel filter bank 108 comprises m filters and is dis-
posed to receive the input signal x(t) and decompose it into 
sub-band components. Feature extraction module 112 
receives the sub-band components and generates features 
such as mean, variance, skewness and kurtosis for at least 
some of the sub-band components, over a shifting window 
of time samples. Estimation engine 120 receives the feature 
value sequences from the feature extraction module 112, and 
with reference to a learned state matrix 124, generates 
estimates for the features. These estimates are compared to 
the feature values determined by the module 112 in a 
difference detector module 130, which may employ statis­
tical differencing tests over sequences of values. Estimates 
and detected differences can be supplied to a fault diagnosis 

a training technique to produce an empirical model based 
thereon that embodies the relationships between the sub­
band signals during normal or other particular state of 
operation. 30 module 134, which can map specific combinations of these 

to indicators of known and recognized faults. Once the empirical model is available, the monitored 
system can be monitored in real-time by obtaining real-time 
data of the same complex signal, producing sub-band signals 
using the same filter bank, extracting features and compar­
ing generated feature estimates to the "live" sub-band signal 35 

features. Differences between the estimated features and the 
raw features indicate incipient machine fault, process upset 
or other departure to a different state. 

Briefly summarized, the invention is implemented in a 
computer or other processor, having a memory for storing 
the reference set of related signal values, and the empirical 
model of normal or particular operation of interest. An input 
means can be a data bus, messaging network or direct data 
acquisition device. A sub-band filtering technique can be 
embodied in an analog hardware filter bank, or in digital 
techniques executed on the processor or an auxiliary pro­
cessor, and operates to decompose a complex signal present 
at the input into multiple sub-band signals. The processor is 
disposed to extract features, compute estimates and compare 
them with the actual inputs to determine differences. 
Detected differences can be output to a screen or data file; 
used to send a paging message, email or fax; or made 
available to downstream data processing applications in the 
same computer or another computing system sharing a 
network or bus connection. Alternatively, the pattern of the 
sub-band signals or their deviations can be classified to a 
fault diagnosis or other informative classification. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The novel features believed characteristic of the invention 
are set forth in the appended claims. The invention itself, 
however, as well as the preferred mode of use, further 
objectives and advantages thereof, is best understood by 
reference to the following detailed description of the 
embodiments in conjunction with the accompanying draw­
ings, wherein: 

Signal x(t) can be any complex parameter that reasonably 
contains information on the performance of the system to be 
monitored, especially information that reveals failure modes 
of the system. The system can be virtually any measurable 
system, such as, for example without limitation, a piece of 
industrial equipment; a refining process; a food/pharmaceu­
tical preparation process; a transportation vehicle; a com­
puter fan; a biological process or system; a weather condi-

40 tion; and a financial or business process. Complex signals of 
many types are amenable to the analysis of the present 
invention, including electrical voltage and current signals as, 
for example, might be obtained from an electro-cardiogram; 
an electrical signal indicative of acceleration from an accel-

45 erometer mounted to detect vibration; and an electrical 
signal from a microphone emplaced to detect ambient acous­
tics from rotating equipment. Such signals contain compos­
ite information from many subsystems, which makes moni­
toring and fault detection more difficult, since the 

50 information is buried amidst other irrelevant information. 
Generally in the present invention, filters H0 through 

HM-I in the filter bank 108 have substantially non-overlap­
ping frequency response curves, and can comprise a uniform 
bank with equally spaced response curves or a non-uniform 

55 bank. Further, the filters can be analog device or digital 
device filters and any conventional filter means can be used. 
Analog filters are advantageously implemented where com­
putational power is limited in the application, as for example 
on board a transportation system with limited microproces-

60 sor capability. 
The feature extraction module 112 can comprise a plu­

rality of sub-modules each dedicated to computing a par­
ticular feature for the sub-band components, or can be 
implemented as a unified computing module that performs 

65 all feature extraction. In feature extraction for purposes of 
the present invention, a sub-band signal is digitized (made 
into discrete values at a uniformly sampled rate) and a 
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shifting window of samples is used to compute a feature of 
the stream of samples. For example, the "mean" feature is 
the average value of the samples in the window. The 
variance is the measure of variability around the mean seen 
across the samples in the window. A proxy for variance is 5 

standard deviation. 

estimate from the estimation engine 120. A sensitive test 
such as SPRT can often determine a difference of this kind 
while the residual is still within the range of its normal noise. 
The SPRT methodology is described below. 

Residuals and SPRT alerts generated by the detector 130 
may, in another embodiment of the present invention, be 
provided to the fault diagnosis module 134, disposed to 
determine a failure diagnosis from the pattern of residual 
and/or alert data. System 100 thus may provide several kinds 

Skewness is a measure of the asymmetry of a set of data 
around the sample mean, the data in this case being the set 
of digitized values of the sub-band component in the shifting 
window. If skewness is negative, the data are spread out 
more to the left of the mean than to the right. If skewness is 
positive, the data are spread out more to the right. The 
skewness of the normal distribution ( or any perfectly sym­
metric distribution) is zero. The skewness of a distribution is 
defined as: 

E(x-µ) 3 

y=--­cr' 
(1) 

where µ is the mean of x, a is the standard deviation of 
x, and E(t) represents the expected value of the quantity t. 

Kurtosis is a measure of how outlier-prone a distribution 
of data values is. The kurtosis of the classic "normal" 
distribution is 3. Distributions that are more outlier-prone 
than the normal distribution have kurtosis greater than 3; 
distributions that are less outlier-prone have kurtosis less 
than 3. The kurtosis of a distribution is defined as: 

E(x-µ)4 

k = ~ 
(2) 

10 of monitoring output, including residual data, alert data, and 
diagnostic data. 

The system 100 has application to any complex signal, 
whether naturally occurring, derived from a machine, 
machine operation or a process being carried out in a system 

15 or otherwise generated, naturally or artificially. In particular, 
the complex signal may be representative of a physical 
parameter of any one of a variety of systems or processes as 
described hereinbefore. For instance the complex signal can 
be an electrocardiogram signal for monitoring a heart; the 

20 current signature on the power draw of an electric motor; the 
pressure transducer signal from a metal stamping machine; 
an accelerometer on an transport chassis; and any other 
physical, chemical, biological or business process. 

A similarity-based empirical model for use as the estima-
25 tion engine 120 in the present invention references a learned 

state matrix of prior "kuown" states of a multivariate system, 
and generates an estimate of the expected current values of 
each of the multiple parameters, in response to receiving the 
actual current values of at least one or some of the multiple 

30 parameters. The estimates are produced as a combination of 
the "kuown" states in the learned state matrix. The estima­
tion engine 120 determines expected values Yexpected of a 
modeled system (such as an expected value for a feature of 

where µ is the mean of x, a is the standard deviation of 35 

x, and E(t) represents the expected value of the quantity t. 

a sub-band component) according to the following equation: 

- -Y Expected=lJ• W (3) 
Other features that can be extracted include root mean 

square, the median, percentiles, auto-regression (AR) coef­
ficients, ARMA coefficients, auto-correlation coefficients, 
and other such conventional statistical characteristics. 

The estimation engine 120 is a model that generates 
estimates in response to receiving the extracted features, at 
a periodic rate or with every digitized sample of the sub­
band components. In the preferred embodiment of the 
present invention, the estimation engine is an empirical type 
model, which advantageously utilizes historic data of nor­
mal operation of the monitored system, for example a neural 
network, or even more preferably, a similarity-based model, 
as described below. The estimation engine 120 provides 
estimates of what the sub-band feature values should be in 
response to receiving the actual sub-band feature values. In 
an alternative embodiment, the estimation engine 120 can 
generate inferred estimates of a superset of features given an 
input of only a subset of features available from the sub-

where matrix D is the learned state matrix of exemplar 
vectors and W is a weight vector having as many elements 

40 N as there are exemplar vectors ( or snapshots) in the learned 
state matrix D. Thus Yexpected is a linear combination of the 
exemplar vectors in D according to W. Each exemplar vector 
in D represents a kuown "acceptable" state of the monitored 
system, and is a vector of elements, each element corre-

45 sponding to a scalar value of a parameter of the monitored 
system, such as a feature of a sub-band component. The 
learned state matrix D thus comprises snapshots of states 
taken on by the monitored system in normal operation, as 
represented by the contemporaneous feature values of each 

50 state. Weight vector W is generated by: 

(4) 

band components. 55 

The difference detector 130 receives both the feature 
estimates from the estimation engine 120 as well as the 
actual features from the extraction module 112. The detector 
130 generates residuals for each feature compared, being the 
difference between the actual feature and the estimate. The 60 

(5) 

where the similarity operation is represented by the circle 
with the cross-hatch inside it, and Y,nput is the set of actual 
parameters or features measured from the monitored system 
in real-time. The superscript "T" here represents the trans-

detector 130 also applies a statistical test to a series of 
residuals for a feature. In the preferred embodiment, the 
detector 130 generates residuals for at least one feature of 
one sub-band, and applies a conventional sequential prob­
ability ratio test (SPRT) to the series of resulting residual 
values to determine over a time series if there is a statisti­
cally significant difference between the actual value and the 

65 pose of the matrix, and the inverse of the matrix or resulting 
array is represented by the superscript "-1". Importantly, 
there must be row correspondence to like parameters or 
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being a vector Y,nput and having only one colunm). The 
resulting element (i,j) is a measure of the sameness of these 
two vectors. In the present invention, the ith row of the first 
operand generally has elements corresponding to temporally 

features for the rows in D, Y,nput and yexpected· That is, if the 
first row of the learned state matrix D corresponds to values 
for a particular feature of a first sub-band component of the 
decomposed complex signal, the first element ofY,nput must 
also be the current value (if operating in real-time) of that 
same feature of that first sub-band component. 

In an alternative form, the similarity-based empirical 
model can be used to generate expected values that are not 
part of the observed state vector Y,npur In this case, learned 
state matrix D comprises two portions, D= and Dour· 
Correspondingly, expected values Y expected are computed 
by: 

5 related component values for a given decomposition of the 
complex signal from the process or machine, and the same 
is true for the jth colunm of the second operand. Effectively, 
the resulting array of similarity measurements represents the 
similarity of a reference vector in one operand to a current 

10 input vector in the other operand. 

- -Y Expected=J5oui9 W (6) 

w (7) 

w=--➔--

(t wUJ) 

' (-T - r1 (-T ~ = Din ®Din · Din® 
(8) 

Within learned state matrix D, the D= portion contains 
snapshots values for those parameters that are in the input 
vector Y,npuo while Dour contains the corresponding param­
eter values for inferred parameters. 

15 

20 

25 

By way of example, one similarity operator that can be 
used compares the two vectors (the ith row and jth colunm) 
on an element-by-element basis. Only corresponding ele­
ments are compared, e.g., element (i,m) with element (m,j) 
but not element (i,m) with element (n,j). For each such 
comparison, the similarity is equal to the absolute value of 
the smaller of the two values divided by the larger of the two 
values. Hence, if the values are identical, the similarity is 
equal to one, and if the values are grossly unequal, the 
similarity approaches zero. When all the elemental similari­
ties are computed, the overall similarity of the two vectors 
is equal to the average of the elemental similarities. A 
different statistical combination of the elemental similarities 
can also be used in place of averaging, e.g., median. 

Another similarity operator that can be used in the present 
invention is the bounded area ratio test (BART) described in 
U.S. Pat. No. 5,987,399, which is incorporated by reference. 
BART is a prior art similarity operator, wherein an internal 
angle is used to gauge the similarity of two values. A right 

30 triangle is formed for each sub-band feature with the base 
(hypotenuse) of each right triangle bounded by an expected 
magnitude range over all snapshots in the learned state 
matrix for the particular sub-band feature. The right angle 
vertex is preferably located at a point above the median or 

The similarity-based model periodically receives the 
decomposed signal features Y,nput as signal snapshots or data 
frames. Each snapshot Y,nput is compared to the data snap­
shots in the learned state matrix D. The similarity-based 
model compares the current snapshot Y,nput received from 
the decomposition stage 112 with learned state matrix snap­
shots for "similarity". This measure of "similarity" is com­
puted using a similarity operator. According to the invention, 
the similarity operation for a pair of snapshots or vectors 
being compared returns a value, typically between zero and 
one, where zero represents dissimilarity and one represents 
completely identical snapshots. More broadly, a similarity 
operation yields a number on a range quantitatively mea­
suring the similarity of two compared values or vectors, said 
range at one extreme indicating the compared values are 
identical, and approaching the other extreme indicates 
increasing dissimilarity. For example, the similarity operator 
can be such that on comparison of two numbers, it yields a 
value of ten if the numbers are the same, and yields a value 
approaching zero as the two numbers diverge. Alternatively, 
the similarity operator can range from 10 (for identity) 50 
toward 5 (dissimilarity), indicating a bias of at least some 
similarity between any two numbers, or any other such 
range. As described below, the similarity operator can work 

35 mean of the range, and at a height h that forms the right 
angle, the right angle vertex being the apex of the right 
triangle. At each comparison during system monitoring, 
BART maps two points X 1 and X0 to the base; one point 
representative of an expected sub-band feature value and the 

40 second point is a current sub-band feature value. These two 
points are located on the base according to their magnitude 
within the range of values in the learned state matrix. An 
internal comparison angle 8 is formed at the apex above the 
base by drawing a line to the apex from each of the mapped 

45 points: 

on an element-by-element basis, comparing values for like 
sensors, and combining the resultant elemental similarities 55 
into a vector-to-vector similarity; or it can work wholly at 
the vector level. All such similarity operators would work in 
connection with a similarity-based model for purposes of the 
present invention. 

The similarity operation can be selected from a variety of 60 

known operators that produce a measure of the similarity or 
numerical closeness of rows of the first operand to colunms 
of the second operand. The result of the operation as 
generally applied to two matrix operands is a similarity 
matrix wherein the similarity value of the ith row and jth 65 

colunm is determined from the ith row of the first operand 
and the jth colunm of the second operand (the operand above 

-l(h) _1(h) 0=tan Xi -tan Xo (9) 

The internal angle is the basis by which two values are 
compared for similarity, i.e., identical points result in a 0° 
angle and completely dissimilar points result in a right angle. 
Then, the elemental similarity for the i th element is: 

0; 
S; =1- rr/2 

(10) 

As indicated above, the elemental similarities can be 
statistically averaged or otherwise statistically treated to 
generate an overall similarity of a snapshot to another 
snapshot, as is called for according to the invention. 

Yet another class of similarity operator that can be used in 
the present invention involves describing the proximity of 
one signature vector to another vector inn-space, where n is 
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the count of sub-band features in the input vector. If the 
proximity is comparatively close, the similarity of the two 
vectors is high, whereas if the proximity is distant or large, 
the similarity diminishes, ultimately vanishing. By way of 
example, Euclidean distance between two vectors can be 
used to determine similarity. In a complex signal decom­
posed into 20 sub-band component features for example, the 
Euclidean distance in 20-dimensional space between the 
currently monitored snapshot, comprising a 20-element vec­
tor, and each vector in the learned state matrix provides a 
measure of similarity, as shown: 

(11) 

10 
included in the learned state matrix that contain either a 
global minimum or a global maximum value for any given 
feature. Therefore, for feature series 202, the global maxi­
mum 225 justifies the inclusion of the five different feature 

5 values at the intersections of line 230 with each feature 
series, including global maximum 225, in the learned state 
matrix, as a single vector of five elements. Similarly, for 
feature series 202, the global minimum 235 justifies the 
inclusion of the five feature values at the intersections ofline 

10 240 with each feature series. 

Other methods are known in the art to provide the learned 
state matrix for a similarity-based model, and can be 
employed in the current invention. Among the additional 

15 techniques for generating the learned state matrix are by way 
of example: (a) augmenting the min-max learned state 
matrix with vectors selected according to evenly distributed 
intervals in the range of a variable; (b) selecting vectors at 

wherein X is the current snapshot, and d is a vector from 20 

the learned state matrix, and A and c are user-selectable 

evenly distributed intervals in the range of all vector lengths 
of all collected snapshots; and (c) augmenting either any 
mentioned technique with randomly selected snapshots. 

constants. Turning now to the difference detector 130, residuals are 
created for at least one and preferably many or all the 
sub-band features being modeled by differencing the esti-

It should be understood that, although specific similarity 
operators are described herein, any conventional, general 
similarity operator may be used in the estimation engine 120 
of the present invention. 

Any number of methods can be used to populate the 
learned state matrix 124 with exemplar vectors of parameter 
data, including randomly selecting historic feature snap­
shots. In a typical multivariate system multiply instrumented 
with sensors, data is collected from a set of sensors on the 
system, under normal or desirable conditions, as exemplary 

25 mates from the estimation engine 120 and the actual sub­
band feature values from the feature extraction module 112. 
When the monitored monitored system is behaving "nor­
mally", it is expected that the sub-band feature values 
estimated by the estimation engine 120 and the actual 

of proper operation of the system. This collected data is 
distilled into the learned state matrix from which a similarity 
model can generate estimates of sensors under current 
system operation in real-time monitoring mode. For pur­
poses of monitoring a system using complex signal decom­
position into sub-band components according to the present 
invention, the features extracted from the various sub-band 
components are equivalent to multiple sensors in a typical 
multivariate application of similarity-based modeling. To 
create the learned state matrix 124 of the present invention, 
the complex signal of the monitored system must be 
recorded during normal or other desired or particular states 

30 sub-band feature values will yield residuals that are effec­
tively zero. Generally, the problem faced in each successive 
snapshot is that there will be a certain amount of insignifi­
cant variation between the estimates and actual values, 
which can be treated as noise. One way to distinguish the 

35 noise from genuine divergence of the estimates and actual 
values is to apply a threshold to each sub-band feature 
residual that accommodates the noisiness of each such 
residual. A residual will then be marked as deviating only if 
the residual exceeds that threshold. Each residual can have 

40 its own threshold, and in fact the threshold can be updated 
on the fly by using a multiple of the standard deviation for 
that residual over a moving window of snapshots. 

of operation of the system, decomposed into sub-band 45 

components, and processed for feature extraction, which 
features become sets of time-related or contemporaneous 
exemplar vectors, some of which can be included in the 
learned state matrix. 

Turning to FIG. 2, one method is graphically depicted for 50 

populating the learned state matrix 124. Five series of 
feature values 202, 204, 206, 208 and 210 are shown that 
may be derived from one or more sub-band components of 
a complex signal characterizing the operation of a process or 
machine to be monitored. It should be understood with this 55 

kind of empirical model that any number of parameters or 
features can be treated. The abscissa axis 215 is the sample 
number or time stamp of the computed feature (which 
typically is computed based on a moving window of m 
sub-band component signal values, where m can be tens to 60 

hundreds of samples). The feature values are digitally 
sampled and temporally correlated. The ordinate axis 220 
represents the relative magnitude of each feature value over 
the samples or "snapshots". Each snapshot represents a 
vector of five elements, one value for each feature in that 65 

snapshot. Of all the feature data collected according to this 
training method, only those five-element snapshots are 

According to another way of coping with the noise in the 
residual, a cumulative statistical test can be applied, such as 
the sequential probability ratio test (SPRT), to determine 
when a deviation has occurred. The basic approach of the 
SPRT technique is to analyze successive observations of a 
sampled parameter. A sequence of sampled differences 
between the generated expected value and the actual value 
for a monitored component signal should be distributed 
according to some kind of distribution function around a 
mean ofzero. Typically, this will be a Gaussian distribution, 
but it may be a different distribution, as for example a 
binomial distribution for a parameter that takes on only two 
discrete values (this can be common in telecommunications 
and networking machines and processes). Then, with each 
observation, a test statistic is calculated and compared to one 
or more decision limits or thresholds. The SPRT test statistic 
generally is the likelihood ratio lm which is the ratio of the 
probability that a hypothesis H1 is true to the probability that 
a hypothesis H0 is true: 

(Yi, Y2, ···, Yn I Hi) 
In=-'-----~~ 

(Yi, Y2, ···, Yn I Ho) 

(12) 



US 7,085,675 B2 
11 

where Yn are the individual observations and Hn are the 
probability distributions for those hypotheses. This general 
SPRT test ratio can be compared to a decision threshold to 
reach a decision with any observation. For example, if the 
outcome is greater than 0.80, then decide H1 is the case, if 5 

less than 0.20 then decide H0 is the case, and if in between 
then make no decision. 

12 
2. If SPRT mean~ln((l-~)/a), then accept hypothesis H1 as 

true; and 
3. If ln(~/(1-a))<SPRTmean<ln((l-~)/a), then make no 

decision and continue sampling. 
For the variance SPRT test, the problem is to decide 

between two hypotheses: H2 where the residual forms a 
Gaussian probability density function with a mean of zero 
and a variance of Vo2

; and H 0 where the residual forms a 
Gaussian probability density function with a mean of zero 

The SPRT test can be applied to various statistical mea­
sures of the respective distributions. Thus, for a Gaussian 
distribution, a first SPRT test can be applied to the mean and 10 and a variance of o 2

. The likelihood that H2 is true is given 
by: a second SPRT test can be applied to the variance. For 

example, there can be a positive mean test and a negative 
mean test for data such as residuals that should distribute 
around zero. The positive mean test involves the ratio of the 
likelihood that a sequence of values belongs to a distribution 15 

H0 around zero, versus belonging to a distribution H1 around 
a positive value, typically the one standard deviation above 
zero. The negative mean test is similar, except H1 is around 
zero minus one standard deviation. Furthermore, the vari­
ance SPRT test can be to test whether the sequence of values 20 

belongs to a first distribution H0 having a known variance, 

The ratio In is then provided for the variance SPRT test as 
the ratio of equation 13 over equation 9, to provide: 

(18) 
or a second distribution H2 having a variance equal to a 
multiple of the known variance. 

For feature residuals derived for sub-band component 
signals from a complex signal behaving as expected, the 25 

mean is zero, and the variance can be determined empiri­
cally. Then in run-time monitoring mode, for the mean SPRT 
test, the likelihood that H0 is true (mean is zero and variance 

and the SPRT statistic for the variance test is then: 

1 (V-l)f, 2 lnV 
SPRTvariance = 

2
0-2 -V- LJ Yk - 2 

(19) 

is a2) is given by: 

( I ) 
1 [--_!_ -vn y2] 

Ly1 Y2 ... y Ho = ---e 2a-2 L.k~I k 
, , , n (2.mT)"/2 

(13) 

and similarly, for Hi, where the mean is M (typically one 
standard deviation below or above zero, using the variance 
determined for the residuals from normal operation) and the 
variance is again o 2 (variance is assumed the same): 

(14) 

The ratio In from equations 9 and 10 then becomes: 

30 

35 

40 

k=l 

Thereafter, the above tests (1) through (3) can be applied 
as above: 

1. If SPRT variance~ ln(~/(1-a) ), then accept hypothesis H0 

as true; 
2. If SPRT variance~ In( (1-~)/a ), then accept hypothesis H2 

as true; and 
3. If ln(~/(1-a))<SPRT variance<ln((l-~)/a), then make no 

decision and continue sampling. 
Each snapshot of residuals ( one residual "signal" per 

sub-band feature from the complex signal) that is passed to 
the difference detector 130, can have SPRT test decisions for 
positive mean, negative mean, and variance for each param­
eter in the snapshot. In an empirical model-based monitoring 

45 system according to the present invention, any such SPRT 
test on any such parameter that results in a hypothesis other 
than H0 being accepted as true is effectively an alert on that 
parameter. 

(15) 50 

According to the invention, failures in the monitored 
system can be detected in the fault diagnosis module 134, 
which can employ numerous pattern recognition techniques 
known in the art to match a known failure mode with the 
pattern of SPRT alerts generated. For example, fault diag­
nosis module 134 can comprise a database of known fault A SPRT statistic can be defined for the mean test to be the 

exponent in equation 11: 

1 n 

SPRTmmn = -------,- °\' M(M -2.y,) 
2.CT L, 

k=l 

(16) 

The SPRT test is advantageous because a user-selectable 
false alarm probability a and a missed alarm probability ~ 
can provide thresholds against which SPRT mean can be 
tested to produce a decision: 

1. IfSPRT mean~ln(~/(l-a)), then accept hypothesis H0 as 
true; 

55 conditions, with the SPRT alerts that should be present 
before the failure mode is diagnosed. Alternatively, the 
module 134 can output a list of likely candidates based on 
highest percentage of overlap between current SPRT alerts 
and SPRT alert membership in a known failure mode. Yet 

60 another alternative is to employ a rules-based system in 
module 134, wherein expert rules examine SPRT alerts and 
trigger chained rules to progressively identify the likely 
failure mode evidenced by the alert pattern. Expert rules 
systems appropriate for diagnostics are known in the art. 

65 It should be appreciated that a wide range of changes and 
modifications may be made to the embodiments of the 
invention as described herein. Thus, it is intended that the 
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statistical function of a window of samples of the at least one 
of the plurality of sub-band components. 

foregoing detailed description be regarded as illustrative 
rather than limiting and that the following claims, including 
all equivalents, are intended to define the scope of the 
invention. 

What is claimed is: 

10. An apparatus according to claim 8, wherein said 
estimation means comprises a learned state matrix of exem-

5 plar states. 
1. A method for early detection of a deviation from a 

selected condition in a monitored system comprising the 
steps of: 

measuring a signal from the system containing informa­
tion about operation of the system; 

applying a plurality of filters to the signal for decompos­
ing said signal into a plurality of sub-band components; 

determining at least one feature value for at least one of 
said sub-band components; 

10 

generating an empirically-based estimate of said at least 15 

one feature value; and 
comparing said estimate and said determined at least one 

feature value to detect a deviation from the selected 
condition. 

2. A method according to claim 1, wherein said feature 20 

value is a scalar statistical function of a window of samples 
of the at least one sub-band component. 

3. A method according to claim 1, wherein said feature 
value is selected from the set of mean, variance, skewness, 
kurtosis, root mean square, median, percentiles, auto-regres- 25 

sion (AR) coefficients, ARMA coefficients, and auto-corre­
lation coefficients. 

4. A method according to claim 1, wherein said generating 
step includes referencing a learned state matrix of exemplar 
states. 

5. A method according to claim 4, wherein the estimate is 
a linear combination of at least some exemplar states in said 
learned state matrix. 

30 

6. A method according to claim 5, wherein the linear 
combination is determined according to a similarity opera- 35 

tion between a set of actual feature values and the at least 
some exemplar states. 

7. A method according to claim 1 wherein said comparing 
step comprises: 

11. An apparatus according to claim 10, wherein said 
estimation means generates an estimate from a linear com­
bination of at least some of the exemplar states in said 
learned state matrix. 

12. An apparatus according to claim 11, wherein said 
estimation means employs a similarity operation to deter­
mine the linear combination. 

13. An apparatus according to claim 8 wherein said 
alerting means generates a residual from a difference 
between said estimate and said determined feature value, 
and performs a sequential probability ratio test on said 
residual to determine a statistically significant change. 

14. A method for detection of a deviation from a selected 
operating condition of a monitored system, comprising the 
steps of: 

measuring a signal from the monitored system with said 
signal containing information about operation of the 
monitored system; 

creating a greater number of signal values from the signal 
in the form of a plurality of sub-band components; 

determining at least one feature value for at least one of 
said sub-band components which are characteristic of 
the greater number of signal values; 

generating an empirically-based estimate of said at least 
one feature value; and 

comparing said empirically-based estimate and said at 
least one feature value to detect a deviation from the 
selected operating condition of the monitored system. 

15. The method as defined in claim 14 wherein said 
feature value is a scalar statistical function of a window of 
samples of at least one sub-band component, the sub-band 
component being a function of the signal. 

16. The method according to claim 14 wherein the signal 
comprises at least one sensed real data value. 

17. The method as defined in claim 14 further including 
the step of applying a filter to the signal to create the 
plurality of sub-band components. 

generating a residual from a difference between said 40 

estimate and said determined feature value; and 
performing a sequential probability ratio test on said 

residual to determine a statistically significant change. 
18. The method according to claim 14, wherein said 

45 generating step includes referencing a learned state matrix of 
exemplar states. 

8. An apparatus for monitoring a system for early detec­
tion of faults, comprising: 

signal filter decomposition means disposed to decompose 
into a plurality of sub-band components a received 
signal indicative of operation of the system; 

feature extraction means for determining at least one 
feature value for at least one of said plurality of 50 

sub-band components; 
estimation means for generating an empirically-based 

estimate of said at least one feature value; and 
alerting means disposed to compare said estimate and said 

determined feature value and generate an alert in 55 

response to a deviation between said estimate and said 
determined feature. 

9. An apparatus according to claim 8, wherein said feature 
extraction means computes said feature value as a scalar 

19. The method according to claim 18, wherein the 
estimate includes a combination of at least one of the 
exemplar states and the linear combination is determined 
according to a similarity operation between a set of actual 
feature values and the at least one of the exemplar states. 

20. The method according to claim 14 wherein said 
comparing step comprises: 

generating a residual from a difference between said 
estimate and said determined feature value; and 

performing a sequential probability ratio test on said 
residual to determine a statistically significant change. 

* * * * * 
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