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ABSTRACT

This thesis deals with two problems in percolation theory.

In the first part, we consider accessibility percolation on hypercubes, i.e., we place i.i.d.

uniform [0, 1] random variables on vertices of a hypercube, and study whether there is a

path connecting two vertices such that the values of these random variables increase along

the path. We establish a sharp phase transition depending on the difference of the values

at the two endpoints, and determine the critical window of the phase transition. Our result

completely resolves a conjecture of Berestycki, Brunet and Shi (2014).

Our work on accessibility percolation is motivated by the NK fitness model in biological

evolution. We also establish the asymptotics for the global maximum of the NK fitness

model, by proving that the maximum is asymptotically equivalent to the case when K = N

if and only if K →∞ as N →∞.

In the second part, we initiate the study on chemical distances of percolation clusters for

level sets of two-dimensional discrete Gaussian free fields as well as loop clusters generated by

two-dimensional critical random walk loop soups. We show that in both cases the chemical

distance between two macroscopic annuli away from the boundary is of dimension 1 with

positive probability. Our proof method is based on an interesting combination of a theorem

of Makarov, isomorphism theory and an entropic repulsion estimate for Gaussian free fields

in the presence of a hard wall.
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CHAPTER 1

PHASE TRANSITION FOR ACCESSIBILITY PERCOLATION

ON HYPERCUBES

1.1 Introduction

For N ∈ N, let HN = {0, 1}N be a hypercube where two vertices are connected by an

undirected edge if their Hamming distance, i.e. the number of coordinates at which they

differ, is precisely 1. Let {Xv : v ∈ HN} be i.i.d. random variables uniformly distributed

in [0, 1]. We say that a path in HN is accessible if the associated random variables Xv’s

are increasing along the path. For u,w ∈ HN , we say that w is accessible from u if there

exists at least one accessible path from u to w. In this paper, we show that the conditional

accessible probability (from u to w) given that Xu = a and Xw = b (0 ≤ a < b ≤ 1) admits

a sharp phase transition, in a sense made precise in Theorem 1.1 below. By symmetry, the

conditional accessible probability with fixed a and b depends only on the Hamming distance

between u and w. Therefore, we fix 0 < β ≤ 1 and without loss of generality consider the

case when u = (0, 0, · · · , 0) and w = (1, 1, · · · , 1, 0, 0, · · · , 0) (here the number of 1’s in w

is [βN ]). Furthermore, since subtracting a from all Xv’s does not change the accessibility

from u to w, we can also assume without loss of generality that a = 0 and b = x (where x

may depend on N). Our main result is summarized in the following theorem.

Theorem 1.1. Let f(x) = (sinh x)β(coshx)1−β, and let x0 be the unique number such that

f(x0) = 1. Define xc(N) = x0 − 1
f ′(x0)

lnN
N . For any sequence εN such that NεN →∞, we

have

lim
N→∞

P(w is accessible from u | Xu = 0, Xw = xc − εN ) = 0 , (1.1)

lim
N→∞

P(w is accessible from u | Xu = 0, Xw = xc + εN ) = 1 . (1.2)

In addition, for all ∆ > 0, there exist 0 < c1 < c2 < 1 (where c1 and c2 depend only on ∆)
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such that for all N ∈ N

c1 ≤ P(w is accessible from u | Xu = 0, Xw = xc + εN ) ≤ c2 , if |NεN | ≤ ∆ . (1.3)

Remark 1.1. A few days before the post of this article, we noted that a paper [16] was posted

in January 2015, which proved the version of (1.2) (without analyzing the critical window for

the phase transition) for the case of β ≥ 0.002. While we acknowledge the priority of [16],

we emphasize that our work was carried out independently; our method is rather different

and allows us to derive the result for all 0 < β ≤ 1.

Accessibility percolation on hypercubes with backsteps (i.e., when the hypercube graph

is undirected as we have assumed at the beginning) was studied in [1], where they proved

(1.1) and conjectured (1.2) (both in a slightly weaker form). Our Theorem 1.1 completes

the picture and describes a sharp phase transition for this problem.

An analogue of Theorem 1.1 on accessibility percolation on hypercubes without backsteps

(i.e., when the edges of the hypercube are directed toward the vertex with the greater number

of ones) was established by [10]. Under the same setting, [2] gives the asymptotic distribution

of the number of accessible paths when x is in a different regime. Accessibility percolation

has also been studied on N-ary trees [17, 19, 5] and on spherically symmetric trees [7]. In

addition, the Hamiltonian increasing path on the complete graph was studied in [14].

Our study on accessibility percolation is motivated by the NK fitness landscapes, which

were introduced in [12, 13] as a class of models for biological evolution. In the NK fitness

model, we consider HN corresponding to, e.g., nucleobases in a DNA sequence. Let F

be a distribution. Given K ≤ N , let Yi,τ be i.i.d. random variables with distribution F

for all 1 ≤ i ≤ N and τ ∈ HK . For σ ∈ HN , the fitness of σ is then defined to be

Xσ =
∑N
i=1Yi,(σi,...,σi+K−1) (where the addition in the subscript is understood as modulo of

N). Since the gene favors better fitness, it is natural to consider an adaptive walk on space

HN such that the corresponding fitness increases until the walk is frozen at a local maximum.

2



Theorem 1.1 is a preliminary step toward understanding the adaptive walk on the NK fitness

model. Indeed, our model (with i.i.d. fitness for each vertex in HN ) corresponds to the case

when K = N (the distribution F does not play a role when considering increasing paths as

long as F is continuous).

We note that despite intensive research in theoretical biology as well as physics, there

were few mathematical results [9, 8, 15, 4] on NK fitness models. In [9], some asymptotic

features of NK fitness landscapes are reduced to questions about eigenvalues and Lyapunov

exponents; in [8, 15], estimates on the cardinality of local maxima was provided; in [4],

certain structural properties of the maxima for NK fitness model was given. We establish

the asymptotics for the global maximum of NK fitness model, by proving that the maximum

is asymptotically equivalent to the case when K = N if and only if K →∞ as N →∞.

Theorem 1.2. Let Y be a random variable with distribution F . Assume that F possesses

super-exponential tails: E(eλY ) =: eΛ(λ) < ∞, λ ∈ R. Let I(x) = supλ∈R(λx − Λ(λ)). Set

x∗ to be the unique point so that x∗ > E(Y ) and I(x∗) = log 2. See e.g. [20] for the above

assumption. Let MN,K := maxσ∈HN Xσ be the global maximum of NK fitness model.

(a) If K →∞ as N →∞, then we have limN→∞
EMN,K
N = x∗.

(b) If K ≤ K0 <∞ for all N , then we have lim supN→∞
EMN,K
N < x∗.

1.2 Accessibility percolation: antipodal case

For clarity of presentation, in the current section we give a proof of Theorem 1.1 in the

antipodal case when β = 1, i.e., when u = ~0 = (0, 0, · · · , 0) and w = ~1 = (1, 1, · · · , 1). In

Section 1.3, we modify the arguments and give a proof of Theorem 1.1 in the general case

when 0 < β < 1. In both sections, the probability measure P stands for the conditional

probability given Xu = 0 and Xw = x, unless otherwise specified. Recall that a path from u

to w is accessible if the Xv’s (including Xu and Xw) along the path are increasing. Denote
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by ZN,x the number of such accessible paths. Throughout the paper, we sometimes write

with high probability for brevity to mean with probability tending to 1 as N →∞.

1.2.1 Proof of the upper bound

In this subsection we give a proof of (1.1) in the antipodal case (the general case is similar).

Note that Lemma 1.2 below (which implies (1.9) in Corollary 1.1 and therefore (1.1) in the

general case) has already been proved in [1]. Here we give a different proof of Lemma 1.2,

by relating the original model to a more tractable one (i.e. µk,n), and this connection will

also be useful in later proofs. We start with a number of definitions.

Definition 1.1. We say that a path (not necessarily self-avoiding) in HN has length ` if it

visits (` − 1) inner vertices (a vertex is counted each time it is visited, starting and ending

points are excluded). For n, ` ∈ N, let M(n, `) be the collection of paths (not necessarily

self-avoiding) of length ` from ~0N = (0, 0, · · · , 0) to (~1n,~0N−n) = (1, 1, · · · , 1, 0, 0, · · · , 0)

(where there are n 1’s in (~1n,~0N−n)). Write M(n, `) = |M(n, `)|.

Definition 1.2. For n, ` ∈ N, let S(n, `) be the collection of integer sequences (a1, . . . , a`) ∈

{1, . . . , N}` such that |{1 ≤ i ≤ ` : ai = k}| is odd for 1 ≤ k ≤ n and even for n+1 ≤ k ≤ N .

In addition, for 1 ≤ k ≤ N , let Sk(n, `) ⊆ S(n, `) contain all sequences in S(n, `) such that

the last number a` is k and let Sk(n) = ∪`∈NSk(n, `).

For each path (not necessarily self-avoiding) v0, v1, . . . , v` in HN of length `, we associate

a sequence of integers (a1, . . . , a`) where ai is the coordinate at which vi−1 and vi differ. We

observe that the association is a bijection between M(n, `) and S(n, `).

Remark 1.2. In the following we will sometimes call the sequence (a1, . . . , a`) an update

sequence, and each of the ai(1 ≤ i ≤ `) an update (so that there are ` updates in the update

sequence (a1, . . . , a`)).

Let F1 be a distribution supported on odd integers such that F1(2j + 1) = x2j+1

(2j+1)! sinhx

for all j ≥ 0, and let F2 be a distribution supported on even integers such that F2(2j) =

4



x2j

(2j)! coshx
for all j ≥ 0. For a fixed 1 ≤ k ≤ N , let Ui be i.i.d. random variables distributed

as F1 for i ∈ {1, . . . , n} \ {k} and independently let Ui be i.i.d. random variables distributed

as F2 for i ∈ {n+ 1, . . . , N} \ {k}, and let Uk be another independent random variable with

distribution F2 if 1 ≤ k ≤ n and with distribution F1 if n+ 1 ≤ k ≤ N . Given the values of

U1, . . . , UN , we let (A1, . . . , AL−1, k) ∈ {1, . . . , N}L (where L−1 =
∑N
i=1 Ui) be a sequence

uniformly at random subject to |{1 ≤ j ≤ L − 1 : Aj = i}| = Ui. We denote by µk,n the

probability measure of the random sequence (A1, . . . , AL−1, k).

Lemma 1.1. For 1 ≤ k ≤ n ≤ ` and any sequence (a1, . . . , a`−1, k) ∈ Sk(n, `), we have

µk,n((a1, . . . , a`−1, k)) = x`−1

(`−1)!
1

(sinhx)n−1
1

(coshx)N−n+1 . (1.4)

Similarly, for n + 1 ≤ k ≤ N and ` ≥ n + 2, and any sequence (a1, . . . , a`−1, k) ∈ Sk(n, `),

we have

µk,n((a1, . . . , a`−1, k)) = x`−1

(`−1)!
1

(sinhx)n+1
1

(coshx)N−n−1 . (1.5)

Proof. We only prove the first case. Let ni = |{1 ≤ j ≤ `− 1 : aj = i}|. Then we have

µk,n((a1, . . . , a`−1, k)) = µk,n(Ui = ni for all 1 ≤ i ≤ N) ·
∏N
i=1 ni!

(`−1)!
, (1.6)

where the second term on the right hand side counts the conditional probability of sampling

(a1, . . . , a`−1, k) given Ui = ni for all 1 ≤ i ≤ N . By independence of Ui’s, we see that

µk,n(Ui = ni for all 1 ≤ i ≤ N) =
N∏
i=1

µk,n(Ui = ni)

=
∏

1≤i 6=k≤n
F1(ni) ·

∏
n+1≤i≤N

F2(ni) · F2(nk)

=
∏

1≤i 6=k≤n

xni

ni! sinhx
·

∏
n+1≤i≤N

xni

ni! coshx
· xnk

nk! coshx

= x`−1 1∏N
i=1 ni!

1
(sinhx)n−1

1
(coshx)N−n+1 .

5



Combined with (1.6), this completes the proof of the first part of the lemma. The second

part is similar.

Lemma 1.2. We have

∞∑
`=1

M(n, `)
x`

`!
= (sinhx)n(coshx)N−n . (1.7)

In addition, we have

∞∑
`=1

M(n, `)
x`−1

(`− 1)!
= ((sinhx)n(coshx)N−n)′

= (sinhx)n−1(coshx)N−n−1(n(coshx)2 + (N − n)(sinhx)2) .

(1.8)

Proof. We give a proof of the second equality. The first equality can be obtained by inte-

grating the second equality with respect to x.

Since µk,n is a probability measure on Sk(n), we see that
∑
~a∈Sk(n) µk,n(~a) = 1. Com-

bined with Lemma 1.1, it yields that when 1 ≤ k ≤ n

1 =
∞∑
`=n

∑
~a∈Sk(n,`)

µk,n(~a) =
∞∑
`=n

|Sk(n, `)| x
`−1

(`−1)!
1

(sinhx)n−1
1

(coshx)N−n+1 ,

and when n+ 1 ≤ k ≤ N

1 =
∞∑

`=n+2

∑
~a∈Sk(n,`)

µk,n(~a) =
∞∑

`=n+2

|Sk(n, `)| x
`−1

(`−1)!
1

(sinhx)n+1
1

(coshx)N−n−1 .

This tells us that when 1 ≤ k ≤ n

∞∑
`=n

|Sk(n, `)| x
`−1

(`−1)!
= (sinhx)n−1(coshx)N−n+1 ,
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and when n+ 1 ≤ k ≤ N

∞∑
`=n+2

|Sk(n, `)| x
`−1

(`−1)!
= (sinhx)n+1(coshx)N−n−1 .

Summing these N equalities (combined with the fact that M(n, `) = |M(n, `)| = |S(n, `)| =∑
1≤k≤N |Sk(n, `)|) completes the proof of (1.8) and hence the lemma.

Corollary 1.1. EZN,x ≤ N(sinhx)N−1 coshx.

Proof. Here we will derive an upper bound for EZN,x in the general (not necessarily an-

tipodal) case. Suppose the Hamming distance between u and w is n. Let M′(n, `) be the

subset of self-avoiding paths inM(n, `) and write M ′(n, `) = |M′(n, `)|. Since for each path

P ∈M′(n, `), the probability that P is accessible is x`−1

(`−1)!
, we have

EZN,x = E
∞∑
`=1

∑
P∈M′(n,`)

1P is accessible =
∞∑
`=1

M ′(n, `)
x`−1

(`− 1)!
≤
∞∑
`=1

M(n, `)
x`−1

(`− 1)!

= (sinhx)n−1(coshx)N−n−1(n(coshx)2 + (N − n)(sinhx)2) , (1.9)

where the last equality follows from (1.8). In the antipodal case, substituting n = N in (1.9)

gives the desired bound.

Proof of (1.1): antipodal case In this case, β = 1 so we have f(x) = sinhx, x0 =

sinh−1(1) = ln(
√

2 + 1), sinhx0 = 1 and coshx0 =
√

2. We can without loss of generality

assume that εN ≤ N−2/3 since P(ZN,x > 0) is increasing in x. By Corollary 1.1, we have

(recall that xc = x0 − 1
f ′(x0)

lnN
N = x0 −

√
2

2
lnN
N )

P(ZN,xc−εN > 0) ≤ EZN,xc−εN ≤ N(sinh(xc − εN ))N−1 cosh(xc − εN )

= N(sinh(x0)− cosh(x0)(

√
2

2

lnN

N
+ εN ) + o(1/N))N−1 cosh(xc − εN )

≤ N(1− lnN

N
−
√

2εN + o(1/N))N−1
√

2→ 0 as N →∞ .
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Remark 1.3. Similarly we can show that for x = xc + εN and NεN → ∞, we have

N(sinhx)N−1 coshx = N(sinh(xc + εN ))N−1 cosh(xc + εN ) → ∞ as N → ∞, and that

for all x = xc + εN such that |NεN | ≤ ∆, we have m1(∆) ≤ N(sinhx)N−1 coshx ≤ m2(∆)

where m1(∆),m2(∆) > 0 depend only on ∆. Combined with Lemma 1.3 below, this suggests

(at least in expectation) that xc is the critical value.

1.2.2 Proof of the lower bound

In order to prove the lower bound, we restrict our attention to certain good paths, i.e., those

with desirable properties on the growth of Hamming distances (in particular, a good path

needs to be self-avoiding). We will define precisely what we mean by a good path in Definition

1.3 below. Denote by ZN,x,∗ the number of good accessible paths. Crucially, we demonstrate

that with our definition of good paths, we have EZN,x,∗ � EZN,x and EZ2
N,x,∗ � (EZN,x,∗)2

(where �means that the left and right hand sides are within a constant multiplicative factor)

as long as x = xc + εN (NεN → ∞) and x stays in a fixed neighborhood of x0. Thus, an

application of the second moment method already yields the existence of an accessible path

with probability bounded away from 0. Finally, we use the augmenting method as employed

in [10] to deduce the existence of an accessible path with probability tending to 1 as N →∞.

Recall that x0 = sinh−1(1) = ln(
√

2 + 1) ≈ 0.88137. Let α = x0 cothx0 ≈ 1.24645.

For any 0 < ε < 1, we set ι, ε1, ε2 and ε3 throughout the rest of the paper as

ι = ε2 , ε1 = ε1/2 , ε2 = ε1/4 and ε3 = ε1/8 . (1.10)

Let us say a few words about these “infinitesimals” ι, ε1, ε2, ε3 and ε. They are not really

infinitesimals because throughout the paper we only need to fix each of them to be a certain

sufficiently small number (and thanks to (1.10) we only need to fix ε). However, to guarantee

a viable choice of these numbers, we need ι, ε, ε1, ε2, ε3 to be decreasing in terms of the orders

8



of the infinitesimals, hence our definition (1.10). Our specific choices of the relations between

ι, ε1, ε2, ε3 and ε though are rather arbitrary.

For u, v ∈ HN , we denote by H(u, v) the Hamming distance between u and v.

Definition 1.3. Let ε > 0 be a sufficiently small fixed number to be selected. We say

a path (or the associated update sequence) v0 = ~0, v1, . . . , vL−1, vL = ~1 is good if L ∈

[α(1− ε)N,α(1 + ε)N ] and the following holds:

H(vi, vj) = |i− j|, if |i− j| = 1, 2, 3;

H(vi, vj) = |i− j| or |i− j| − 2, if 4 ≤ |i− j| ≤ N
1
5 ;

H(vi, vj) ≤ (1/2 + ε1)N, if N
1
5 ≤ |i− j| ≤ α(1/2 + ε)N ;

H(vi, vj) > (1/2 + ε1)N, if |i− j| > α(1/2 + ε2)N ;

H(vi, vj) ≥
|i−j|
α+ε3

, if N
1
5 ≤ |i− j| ≤ α(1/2 + ε2)N.

It is clear from the definition that a good path is self-avoiding.

Lemma 1.3. For any sufficiently small but fixed number ε > 0, there exist C1 > 0 and an

integer N ′ > 0 which both depend only on ε, such that for all |x − x0| ≤ ι and N > N ′ we

have

EZN,x,∗ ≥ C1N sinhN−1 x coshx . (1.11)

Proof. We keep all the definitions and notations in the previous subsection 1.2.1. Since we

are working in the antipodal case where β = 1, we have substituted n by N in the following

without further notice. Recall that as stated in Definition 1.3, an update sequence is good if

its corresponding path is good. For each 1 ≤ k ≤ N , we let Sk,∗(N) ⊆ Sk(N) contain all the

good sequences ending in k, and let Mk,∗(N) be the collection of the corresponding good

paths. We claim that in order to show (1.11), it suffices to show that for each 1 ≤ k ≤ N

µk,N (Sk,∗(N)) ≥ C1 . (1.12)
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Indeed, summing equation (1.4) over all (a1, . . . , a`−1, k) ∈ Sk,∗(N) gives that

µk,N (Sk,∗(N)) = 1
(sinhx)N−1 coshx

∑
P∈Mk,∗(N)

P is of length `

x`−1

(`−1)!

= 1
(sinhx)N−1 coshx

∑
P∈Mk,∗(N)

P(P is accessible) ,

where the last equality is because any good path is necessarily self-avoiding. If (1.12) holds

true, then summing the above equation over 1 ≤ k ≤ N yields (1.11).

For ease of elaboration we make a slight modification to (1.12), that is, we will show

instead that

µ̃N (S∗(N)) ≥ C̃1 , (1.13)

where µ̃N differs from µk,N in that we also let Uk be chosen according to F1 instead of F2

(in other words, for each 1 ≤ i ≤ N , the Ui’s are now i.i.d. random variables distributed

as F1), and consider the random sequence (A1, . . . , AL−1) instead of (A1, . . . , AL−1, k). See

also Case 1 below for the definition of µ̃N,β , the generalization of µ̃N to general β; we use

S∗(N) to denote the collection of all the good sequences (not necessarily ending in k).

There are a number of ways to justify our replacement of (1.12) by (1.13). For example,

one may argue that if µ̃N−1(S∗(N − 1)) ≥ C̃1 holds, then (possibly with a slight change

of N
1
5 , ε, ε1, ε2 and ε3 in the definition of good paths) µk,N (Sk,∗(N)) = µN,N (SN,∗(N)) ≥

1
coshxC̃1 holds, since

µN,N (SN,∗(N)) ≥ µN,N ({(A1, . . . , AL−1, N) : UN = 0, (A1, . . . , AL−1) ∈ S∗(N − 1)})

=
1

coshx
µ̃N−1(S∗(N − 1)) .

In the rest of the proof, P and E refer to µ̃N unless otherwise specified. Note that P

depends on both x and N . Under this probability space (or the more general µ̃N,β), we say

an event EN happens with probability tending to 1 as N →∞ (or with high probability for
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brevity) if 1 − P(EN ) ≤ p(ε,N) where p(ε,N) > 0 only depends on ε and N , and (when ε

is fixed) goes to 0 as N →∞. Similarly, we say a quantity (possibly random) QN is o(1) if

|QN | ≤ qN where qN > 0 is fixed, only depends on N and goes to 0 as N →∞.

By a simple calculation, for U ∼ F1, we have EU = x cothx, and VarU is bounded by

an absolute constant (since |x− x0| ≤ ι). Therefore it is immediate from, say, Chebyshev’s

inequality (as used in proving the weak law of large numbers) that with probability tending

to 1 as N →∞ we have L ∈ [α(1− ε)N,α(1 + ε)N ] (recall that α = x0 cothx0 and ι = ε2).

It now remains to consider the requirements on Hamming distances in the definition of good

paths, for which purpose we split into three cases as follows.

Case 1: H(vi, vj) = |i− j|, if |i− j| = 1, 2, 3.

We show that this requirement can be satisfied by a sequence generated from µ̃N with

probability bounded from below by a constant. We prove the following statement (1.15) for

general β.

Fix a β ∈ (0, 1]. For i ∈ {1, . . . , βN}, let Ui be i.i.d. random variables distributed as F1,

and independently for i ∈ {βN + 1, . . . , N}, let Ui be i.i.d. random variables distributed as

F2. Given the values of U1, . . . , UN , we let (A1, . . . , AL) (where L =
∑N
i=1 Ui) be a sequence

uniformly at random subject to |{1 ≤ j ≤ L : Aj = i}| = Ui. Let µ̃N,β be the probability

measure of the random sequence (A1, . . . , AL) thus obtained.

For convenience we set Ai+L = Ai for i ≥ 1. Let

Ii = 1{Ai=Ai+1} and Ni = {i, i+ 1}, if i = 1, 2, · · · , L;

Ii = 1{Ai−L=Ai+2−L} and Ni = {i− L, i+ 2− L}, if i = L+ 1, L+ 2, · · · , 2L.
(1.14)

Let x0 be given as in Theorem 1.1, and let γ = βx0 cothx0 + (1− β)x0 tanhx0. For any

ι = ε2 > 0, there exists a constant c∗ > 0 and an integer N ′ > 0 which both depend only on

11



ι, such that for all |x− x0| ≤ ι and N > N ′ we have

µ̃N,β(
2L∑
i=1

Ii = 0) ≥ c∗ . (1.15)

Remark 1.4. In fact, as can be seen from our proof, x0 could be any fixed positive number

(not necessarily given by Theorem 1.1). Moreover, we have c∗ → e
−

2x2
0
γ as ι → 0, and if

x → x0 as N → ∞, then
∑2L
i=1 Ii converges to the Poisson distribution with mean

2x2
0
γ as

N →∞. However, we don’t need any of these facts.

Proof of (1.15) In this proof, P and E refer to µ̃N,β . Let

Dj := |{1 ≤ i ≤ N : Ui = j}|

for j ∈ N and

Λ := L−1
∞∑
j=2

Djj(j − 1).

By a simple calculation, for U ∼ F1, we have EU = x cothx and EU(U − 1) = x2, and

the variances of U and U(U − 1) are both bounded by an absolute constant, as long as x

stays in a fixed neighborhood of x0. Similarly, for U ∼ F2, we have EU = x tanhx and

EU(U − 1) = x2, and the variances of U and U(U − 1) are both bounded by an absolute

constant. By Chebyshev’s inequality, we have with probability tending to 1 as N →∞,

L =
N∑
i=1

Ui ∈ [γ(1− ε)N, γ(1 + ε)N ] (1.16)

and
∞∑
j=2

Djj(j − 1) =
N∑
i=1

Ui(Ui − 1) ∈ [x2
0(1− ε)N, x2

0(1 + ε)N ] . (1.17)
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(1.16) and (1.17) combined give

Λ ∈ [(1− 3ε)
x2

0
γ , (1 + 3ε)

x2
0
γ ] .

By the uniform convergence of
∑K
k=1(−1)k+1 (2Λ)k

k! to 1− e−2Λ on [(1− 3ε)
x2

0
γ , (1 + 3ε)

x2
0
γ ],

there exists a finite odd number K and 0 < c∗∗ < 1 (c∗∗ may depend on K and ε) such that

for all Λ ∈ [(1− 3ε)
x2

0
γ , (1 + 3ε)

x2
0
γ ], we have

K∑
k=1

(−1)k+1 (2Λ)k

k!
< c∗∗ . (1.18)

Again, by Chebyshev’s inequality, we have with probability tending to 1 as N →∞,

∞∑
j=0

Djj
2k =

N∑
i=1

U2k
i ≤ CKN , for all 1 ≤ k ≤ K (1.19)

where CK > 0 is a constant which only depends on K. Also, by a rather loose bound on

P(Ui ≥ 10 logN) (directly from the definition of Ui), we have with probability tending to 1

as N →∞,

max
1≤i≤N

Ui ≤ 10 logN . (1.20)

We will assume (1.16), (1.17), (1.19) and (1.20) without mention in what follows.

Write F = σ(U1, U2, . . . , UN ). By Bonferroni’s inequalities [3], we have

P
( 2L∑
i=1

Ii ≥ 1 | F
)
≤

K∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤2L

P(Ii1 = 1, Ii2 = 1, · · · , Iik = 1 | F) .

(1.21)

In order to prove (1.15), it suffices to show that each summand (of
∑K
k=1) on the right hand

side of (1.21) is asymptotic to the corresponding summand on the left hand side of (1.18).
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That is to say, we want to show that for each 1 ≤ k ≤ K,

∑
1≤i1<i2<···<ik≤2L

P(Ii1 = 1, Ii2 = 1, · · · , Iik = 1 | F)− (2Λ)k

k!
= o(1) . (1.22)

For this purpose, we will split
∑

1≤i1<i2<···<ik≤2L
P(Ii1 = 1, Ii2 = 1, · · · , Iik = 1 | F) into two

parts according to whether or not any Ai is involved in the definition of more than one Iij ’s

(1 ≤ j ≤ k). More precisely, for a pair of integers (ij , ij′) (or equivalently (Iij , Iij′ )) where

ij 6= ij′ we say it is intersecting if Nij ∩Ni′j 6= ∅ (see (1.14) for the definition of Ni). Let Ik,1

(Ik,2) denote the set of all sequences (i1, i2, · · · , ik) such that 1 ≤ i1 < i2 < · · · < ik ≤ 2L

and it contains no (at least 1) intersecting pair, respectively. We can write

∑
1≤i1<i2<···<ik≤2L

P(Ii1 = 1, Ii2 = 1, · · · , Iik = 1 | F) = J1 + J2

where

J1 =
∑
Ik,1

P(Ii1 = 1, Ii2 = 1, · · · , Iik = 1 | F)

and

J2 =
∑
Ik,2

P(Ii1 = 1, Ii2 = 1, · · · , Iik = 1 | F).

We first bound the term J1. For any (i1, i2, · · · , ik) ∈ Ik,1, the neighborhoods

Ni1 ,Ni2 , · · · ,Nik are disjoint by definition. Now given F , for each r = 1, . . . , k, there

are at most
∑∞
j=2Dj · j · (j − 1) ways of choosing two matching updates for the two slots

in Nir , and there are at most (L− 2k)! ways of arranging the remaining (L− 2k) updates,

therefore we have

P(Ii1 = 1, Ii2 = 1, · · · , Iik = 1 | F) ≤ (L− 2k)!

L!

( ∞∑
j=2

Dj · j · (j − 1)
)k

(1.23)

= (
1

L
)k(1 + o(1))Λk.
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Combined with the simple fact that |Ik,1| ≤ (2L)k/k!, this gives that J1 ≤ (2Λ)k(1 +

o(1))/k!. On the other hand, by a similar reasoning

P(Ii1 = 1, Ii2 = 1, · · · , Iik = 1 | F) ≥ (L− 2k)!

L!

∏
1≤r≤k

( 10 logN∑
j=2

(Dj − (r − 1)) · j · (j − 1)
)

≥ (
1

L
)k(1 + o(1))(Λ + o(1))k.

Moreover, we have |Ik,1| ≥ (1 + o(1))(2L)k/k! since |Ik,1| ≥
∏

1≤r≤k
(2L− 7(r − 1))/k! (each

Ni intersects 6 other Ni’s). Hence, we obtain that J1 ≥ (2Λ)k(1 + o(1))/k!. Altogether, we

get

J1 = (2Λ)k(1 + o(1))/k! . (1.24)

It remains to control J2. For any (i1, i2, · · · , ik) ∈ Ik,2, denote by Ei1,...,ik =

{(A1, A2, . . . , AL) : Ii1 = 1, Ii2 = 1, · · · , Iik = 1}. Observe that Ii1 = 1, Ii2 = 1, · · · , Iik = 1

(the criteria for Ei1,...,ik) can be rewritten (or simplified) uniquely as a set of equalities

Aj1 = Aj1+n1,1
= Aj1+n1,1+n1,2

= · · · = Aj1+n1,1+n1,2+···+n1,a1−1

Aj2 = Aj2+n2,1
= Aj2+n2,1+n2,2

= · · · = Aj2+n2,1+n2,2+···+n2,a2−1

· · ·

Aj` = Aj`+n`,1 = Aj`+n`,1+n`,2 = · · · = Aj`+n`,1+n`,2+···+n`,a`−1

where n1,1, . . . , n1,a1−1, n2,1, . . . , n2,a2−1, . . . , n`,1, . . . , n`,a`−1 are either 1 or 2, a1, a2, . . . , a`

are integers ≥ 2 and a1 + a2 + · · · + a` ≤ 2k (in particular each ai is ≤ 2k). Also, since

(i1, i2, · · · , ik) ∈ Ik,2, i.e. there is at least one intersecting pair in Ii1 , · · · , Iik , at least one

of the a1, a2, . . . , a` must be strictly larger than 2, so that a1 + a2 + · · · + a` > 2`. Denote

by A the preceding set of equalities (so A can also be viewed as an event). By a rather loose
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bound, |{(i1, . . . , ik) : Ei1,...,ik = A}| ≤ (a1 + a2 + · · ·+ a`)
2k ≤ (2k)2k. Therefore we have

∑
Ik,2

P(Ei1,...,ik | F) ≤ (2k)2k
∑
`

∑
D1

∑
D2

∑
D3

P(A | F), (1.25)

where D1,D2,D3 respectively denote the collections of all valid choices of (a1, a2, . . . , a`),

(n1,1, . . . , n1,a1−1, n2,1, . . . , n2,a2−1, . . . , n`,1, . . . , n`,a`−1) and (j1, j2, . . . , j`). Now similar

to (1.23), we have

P(A | F) ≤ (L− (a1 + a2 + · · ·+ a`))!

L!

∏̀
r=1

( ∞∑
i=ar

Di · i · (i− 1) · · · (i− ar + 1)
)
.

Therefore, by (1.19) we have

∑
D3

P(A | F) ≤ C ′KN
2`−(a1+a2+···+a`) ≤ C ′K/N , (1.26)

where C ′K is another constant depending on K, and the second inequality follows from the

fact that a1 + a2 + · · · + a` > 2`. Since |D1|, |D2| and ` are all bounded by a number that

depends only on K, we combine (1.25) and (1.26) and obtain

∑
Ik,2

P(Ei1,...,ik | F) ≤ C∗K/N ,

where C∗K > 0 depends only on K. Combined with (1.24), this yields (1.22) and therefore

(1.15).

Case 2 : H(vi, vj) = |i− j| or |i− j| − 2, if 4 ≤ |i− j| ≤ N
1
5 .

We show that this requirement is satisfied by a sequence generated from µ̃N with proba-

bility tending to 1 as N →∞. Denote by Wk the event that in some k consecutive updates

there are at least two coordinates such that all of them occur at least twice. It suffices to show

thatWN1/5 happens with probability tending to 0 asN →∞. Given F = σ(U1, U2, . . . , UN ),
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the conditional probability that the coordinates 1 and 2 both occur at least twice in the first

k updates is less than
(U1

2

)
( kL)2

(U2
2

)
( kL)2, by a union bound. Therefore,

P(Wk) = E(P(Wk | F)) ≤
∑

1≤i<j≤N
E
((Ui

2

)
(
k

L
)2
(
Uj
2

)
(
k

L
)2L
)
≤ C ′k4

N
= o(1) (1.27)

for k = N1/5 (here C ′ is an absolute constant).

Case 3:

H(vi, vj) ≤ (1/2 + ε1)N, if N
1
5 ≤ |i− j| ≤ α(1/2 + ε)N ;

H(vi, vj) > (1/2 + ε1)N, if |i− j| > α(1/2 + ε2)N ;

H(vi, vj) ≥
|i−j|
α+ε3

, if N
1
5 ≤ |i− j| ≤ α(1/2 + ε2)N.

We show that these three requirements are satisfied by a sequence generated from µ̃N

with probability tending to 1 as N →∞. Let R be the collection of all sequences satisfying

these three requirements.

Before we proceed, let us first give a hint on why this may be true (i.e. what these three

requirements are trying to say). For t ∈ [0, 1], we define

g(t) :=
sinh(x0t) cosh(x0(1− t))

sinhx0
= sinh(x0t) cosh(x0(1− t)) . (1.28)

Vaguely (and roughly) speaking, g(t)N is the “expected Hamming distance traveled by a

path in time t” (if the whole path uses a unit time). We will make this precise below. For a

derivation of the formula (1.28), see equation (1.32). By plotting g(t) (or an easy calculus),

one can easily see that

• g(t) ≤ 1
2 , if 0 ≤ t ≤ 1

2

• g(t) ≥ 1
2 , if 1

2 ≤ t ≤ 1

• g(t) ≥ t, if 0 ≤ t ≤ 1
2
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which correspond to the three requirements, respectively. We now carry out the idea above

fully and rigorously as follows.

We will consider the following continuous version of µ̃N , namely µ̂N : As in µ̃N , we first

let Ui, 1 ≤ i ≤ N be i.i.d. random variables distributed as F1. Now given the values of

U1, . . . , UN , we denote L = {(i, j) : 1 ≤ i ≤ N, 1 ≤ j ≤ Ui} and L = |L| =
∑N
i=1 Ui, and

let {ri,j : (i, j) ∈ L} be L i.i.d. uniform [0, 1] random variables. Let µ̂N be the underlying

probability measure FN1 × U [0, 1]∞.

For each 1 ≤ i ≤ N , we attach the label “i” to each real number ri,j , (i, j) ∈ L. Since

almost surely under µ̂N , L is finite and ri,j ’s are distinct, we can (without ambiguity) let

r1 < r2 < · · · < rL be the reordering of the reals ri,j , (i, j) ∈ L in increasing order, and for

1 ≤ ` ≤ L let Â` be the unique label of r`. We have thus formed a random integer sequence

(Â1, . . . , ÂL) under µ̂N .

It is clear that (Â1, . . . , ÂL) under µ̂N has the same distribution as (A1, . . . , AL) under

µ̃N , i.e., for any integer sequence (a1, . . . , aL), we have

µ̂N ((Â1, . . . , ÂL) = (a1, . . . , aL)) = µ̃N ((A1, . . . , AL) = (a1, . . . , aL)) .

Therefore

µ̂N ((Â1, . . . , ÂL) ∈ R) = µ̃N ((A1, . . . , AL) ∈ R) . (1.29)

For any interval I ⊆ [0, 1] and any 1 ≤ i ≤ N , we let NI,i be the number of labels “i” in

I, i.e., NI,i = |{1 ≤ j ≤ Ui : ri,j ∈ I}|. Let

TI =
N∑
i=1

NI,i = |{(i, j) ∈ L : ri,j ∈ I}|

be the total number of labels in I and

OI =
N∑
i=1

1{NI,i is an odd number}
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count all the i’s (1 ≤ i ≤ N) that appear an odd number of times as a label in I. Let R̂ be

the following event: for all intervals I ⊆ [0, 1], we have

OI ≤ (1/2 + ε1)N, if N
1
5 ≤ TI ≤ α(1/2 + ε)N ;

OI > (1/2 + ε1)N, if TI > α(1/2 + ε2)N ;

OI ≥
TI

α + ε3
, if N

1
5 ≤ TI ≤ α(1/2 + ε2)N.

We see that

µ̂N (R̂) = µ̂N ((Â1, . . . , ÂL) ∈ R) . (1.30)

In light of equalities (1.29) and (1.30), it suffices to show that under µ̂N , R̂ happens with

probability tending to 1 as N → ∞. In the following P and E refer to µ̂N . To this end,

our strategy is to first show that with high probability, for all intervals I ⊆ [0, 1] such that

|I| ≥ N−5/6, both TI and OI are concentrated around their means respectively.

For any interval I ⊆ [0, 1] of length t, conditioning on T[0,1] = L, TI is the sum of L i.i.d.

Bernoulli random variables with mean t, thus by Chernoff’s bound [6],

P(|TI − Lt| ≥ εLt|L) ≤ 2 exp(−ε2Lt/3). (1.31)

For OI , by definition OI =
N∑
i=1

1{NI,i is an odd number} where 1{NI,i is an odd number}

for 1 ≤ i ≤ N are N i.i.d. Bernoulli random variables with mean pI =
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P(NI,1 is an odd number). We can compute pI as follows:

pI = P(NI,1 is an odd number)

=
∞∑
i=0

x2i+1

(2i+ 1)! sinhx

i∑
j=0

(
2i+ 1

2j + 1

)
t2j+1(1− t)2i−2j

=
1

sinhx

( ∞∑
j=0

(xt)2j+1

(2j + 1)!

)( ∞∑
i−j=0

(x(1− t))2(i−j)

(2i− 2j)!

)
=

sinh(xt) cosh(x(1− t))
sinhx

. (1.32)

By Chernoff’s bound again, we have

P(|OI − EOI | ≥ 3εEOI) ≤ 2 exp
(
− 3ε2N

sinh(xt) cosh(x(1− t))
sinhx

)
. (1.33)

Now let us divide [0, 1] into N non-overlapping intervals of equal length 1/N . We say

an interval is integral if it is of the form [n1/N, n2/N ], where n1, n2 ∈ N, 0 ≤ n1 < n2 ≤ N

and n2 − n1 ≥ N1/6 (so that its length is at least N−5/6). Denote by EL the event

{ L
(x cothx)N

∈ [1− ε, 1 + ε]}. Since on EL, Lt ≥ cN1/6 when t ≥ N−5/6 for a constant c > 0,

we can apply (1.31) and a union bound over all integral intervals to obtain that

P
(

max
I is integral

| TI − LtI |≥ εLtI | L
)
≤ 2(N + 1)2 exp(−ε2cN1/6/3), on EL.

Since ETI = ELtI = (x cothx)NtI and therefore LtI ∈ [(1 − ε)ETI , (1 + ε)ETI ] on EL, we

have

P
(

max
I is integral

| TI − ETI |≥ 3εE(TI) | L
)
≤ 2(N + 1)2 exp(−ε2cN1/6/3), on EL.

Since EL happens with probability tending to 1 as N →∞, we thus have that ET happens
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with probability tending to 1 as N →∞, where

ET =
⋂

I is integral

{TI ∈ [(1− 3ε)ETI , (1 + 3ε)ETI ]} .

From (1.33), since sinhx ≥ x for x ≥ 0, we have NpI ≥ cN1/6 when t ≥ N−5/6 for

a constant c > 0, we can simply do a union bound over all integral I and deduce that EO

happens with probability tending to 1 as N →∞, where

EO =
⋂

I is integral

{OI ∈ [(1− 3ε)EOI , (1 + 3ε)EOI ]} .

So we may assume without loss that both ET and EO occur, i.e., both TI and OI are within

[1− 3ε, 1 + 3ε] times their respective means for any integral interval I.

We will now argue that with high probability, both TI and OI are within [1− 4ε, 1 + 4ε]

times their respective means for any interval I such that |I| ≥ N−5/6. For convenience

we call any interval [i/N, (i + 1)/N ] (where 0 ≤ i ≤ N − 1) a small interval. For any

small interval, the probability that there are at least 100 logN labels in it is bounded by

E
( L
100 logN

)
/N100 logN , which is at most 1/N2 for all large N . Therefore by applying a

union bound over all N small intervals, we have that the probability that some small interval

contains at least 100 logN labels is o(1). Without loss of generality we assume this event

does not occur (i.e., any small interval contains less than 100 logN labels) in what follows.

Now we can approximate any interval I of length t ≥ N−5/6 by an integral interval I ′ with

an error of at most two small intervals, so that |TI −TI ′ |, |OI −OI ′ | ≤ 200 logN . Also, from

ETI = (x cothx)Nt and EOI = NpI = N
sinh(xt) cosh(x(1−t))

sinhx we see that ETI ′ ,EOI ′ ≥ cN1/6

for a constant c > 0 and ETI
ETI′

, EOIEOI′
= 1 + o(1). Therefore, T ′I ∈ [(1 − 3ε)ET ′I , (1 + 3ε)ET ′I ]

and O′I ∈ [(1−3ε)EO′I , (1+3ε)EO′I ] will imply (respectively) TI ∈ [(1−4ε)ETI , (1+4ε)ETI ]

and OI ∈ [(1− 4ε)EOI , (1 + 4ε)EOI ], as desired.
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Now if |I| > (1/2 + 6ε), by the concentration of TI discussed above, we have

TI ≥ (1− 4ε)ETI = (1− 4ε)(x cothx)N |I| > α(1/2 + ε)N

for all sufficiently small but fixed ε. And if |I| < N−5/6, then

TI ≤ TI∗ ≤ (1 + 4ε)ETI∗ < N
1
5

where I∗ ⊇ I is an interval of length N−5/6. Therefore, we have N
1
5 ≤ TI ≤ α(1/2 +

ε)N implies |I| ∈ [N−5/6, (1/2 + 6ε)]. However, if |I| ∈ [N−5/6, (1/2 + 6ε)], then by the

concentration of OI , we have OI ≤ (1 + 4ε)EOI = (1 + 4ε)NpI ≤ (1/2 + ε1)N for ε1 = ε1/2.

Therefore, we see that

OI ≤ (1/2 + ε1)N, if N
1
5 ≤ TI ≤ α(1/2 + ε)N . (1.34)

A similar argument shows that for ε2 = ε1/4, TI > α(1/2 + ε2)N implies |I| > (1/2 + 6ε1),

which in turn implies OI > (1/2 + ε1)N . Therefore

OI > (1/2 + ε1)N, if TI > α(1/2 + ε2)N . (1.35)

Finally, N
1
5 ≤ TI ≤ α(1/2 + ε2)N implies |I| ∈ [N−5/6, (1/2 + 6ε2)]. But for |I| ∈

[N−5/6, (1/2+6ε2)] we have pI =
sinh(x|I|) cosh(x(1−|I|))

sinhx ≥ (x cothx)|I| 1
α+ε′3

for ε′3 = 0.1ε1/8,

i.e.,

EOI ≥
1

α + ε′3
ETI .

By our assumptions on the concentration of OI and TI again, we deduce that OI ≥ 1
α+ε3

TI

for ε3 = ε1/8. In other words

OI ≥
TI

α + ε3
, if N

1
5 ≤ TI ≤ α(1/2 + ε2)N . (1.36)
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By (1.34), (1.35) and (1.36) we have completed the task of Case 3.

Combining the above three cases, we have completed the proof of (1.13), and thus the

proof of the lemma.

Let P be the collection of good paths. For any path P ∈ P , let AP be the event that P

is accessible. So we have ZN,x,∗ =
∑
P∈P 1AP . Notice that

EZ2
N,x,∗ =

∑
P∈P

∑
P ′∈P

P(AP ∩ AP ′)

=
∑
P∈P

P(AP )
∑
P ′∈P

P(AP ′ | AP )

=
∑
P∈P

P(AP )E(ZN,x,∗ | AP ) . (1.37)

So in order to estimate EZ2
N,x,∗, a key step is to estimate E(ZN,x,∗ | AP ). For any good

path P of length L, let v0 = ~0, v1, v2, . . . , vL = ~1 be the (L + 1) vertices it passes

through. Let Xi be the (random) value at vi (recall that X0 = 0 and XL = x). We

denote the successive differences of Xi’s by δ1 = X1, δ2 = X2 − X1, · · · , δL = x − XL−1.

It is clear that conditioning on P to be accessible, the Xi’s are distributed as the order

statistics of (L−1) i.i.d. uniform [0, x] random variables, so that the conditional distribution

of (δ1/x, δ2/x, · · · , δL/x) given AP is the Dirichlet distribution Dir(1, 1, · · · , 1). Recall that a

Dirichlet distribution Dir(α1, α2, · · · , αK) is supported on (x1, x2, · · · , xK) where xi ∈ [0, 1]

for all i = 1, . . . , K and
∑K
i=1 xi = 1, and has a density

Γ(
∑K
i=1 αi)∏K

i=1 Γ(αi)

∏K
i=1 x

αi−1
i .

We first state some properties of (δ1, δ2, · · · , δL) conditioning on AP (they are also known

as the spacings of the order statistics).

Proposition 1.1. For 0 = i0 < i1 < i2 < · · · < ik < ik+1 = L and nonnegative integers

β1, β2, · · · , βk+1,
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(i) Conditional on the event AP , the distribution of

1

x
(Xi1 −X0, Xi2 −Xi1 , · · · , XL −Xik) =

1

x

( i1∑
i=1

δi,

i2∑
i=i1+1

δi, · · · ,
L∑

i=ik+1

δi
)

is the Dirichlet distribution Dir(i1, i2 − i1, · · · , L− ik).

(ii) E(
∏k+1
j=1(Xij −Xij−1)βj | AP ) ≤

∏k+1
j=1 E((Xij −Xij−1)βj | AP ).

(iii) E((Xi1 −X0)β1 | AP ) ≤ C
√

1 + t(x i1−1
L−1

(1+t)1+1/t

e )β1 for β1 ≤ t(i1 − 1), where C > 0

is an absolute constant.

Proof. (i) This follows from the aggregation property of the Dirichlet distribution.

(ii) This follows from the moments of Dirichlet-distributed random variables. That is, for

Y ∼ Dir(α1, α2, · · · , αK), we have

E(
K∏
j=1

Y
βj
j ) =

Γ(
∑K
j=1 αj)

Γ(
∑K
j=1 αj + βj)

K∏
j=1

Γ(αj + βj)

Γ(αj)

≤
K∏
i=1

Γ(
∑K
j=1 αj)

Γ(βi +
∑K
j=1 αj)

K∏
j=1

Γ(αj + βj)

Γ(αj)

=
K∏
j=1

E(Y
βj
j )

where the inequality follows from the convexity of log Γ(x) for x > 0 and induction.

(iii) As a special case of the moments of Dirichlet-distributed random variables, we have

E((Xi1 −X0)β1 | AP ) = xβ1
Γ(L)

Γ(L+ β1)

Γ(i1 + β1)

Γ(i1)
= xβ1

(L− 1)!

(L+ β1 − 1)!

(i1 + β1 − 1)!

(i1 − 1)!
.(1.38)
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By Stirling’s formula, we have for an absolute constant C > 0

E((Xi1 −X0)β1 | AP )

≤ Cxβ1

√
(L− 1)(L−1

e )L−1√
(L+ β1 − 1)(L+β1−1

e )L+β1−1

√
(i1 + β1 − 1)( i1+β1−1

e )i1+β1−1√
(i1 − 1)( i1−1

e )i1−1

= C
(
x
i1 − 1

L− 1

)β1

√
(L− 1)(i1 + β1 − 1)√
(L+ β1 − 1)(i1 − 1)

(
(1 + β1

i1−1)
1+

i1−1
β1

(1 + β1
L−1)

1+L−1
β1

)β1

.

Now by our assumption, we have
(L−1)(i1+β1−1)
(L+β1−1)(i1−1)

≤ i1+β1−1
i1−1 ≤ 1 + t. In addition, since the

function (1 + z)1+1/z is increasing in z and tends to e as z → 0, we have
(1+

β1
i1−1 )

1+
i1−1
β1

(1+
β1
L−1 )

1+L−1
β1

≤

(1+t)1+1/t

e . Substituting these bounds into the preceding display completes the proof.

In order to compute E(ZN,x,∗ | AP ), we first calculate E(ZN,x,∗(~0, vi1 , vi2 , . . . , vik ,
~1) |

AP ), where ~0, vi1 , vi2 , . . . , vik , ~1 (0 = i0 < i1 < i2 < · · · < ik < ik+1 = L) are vertices

on path P and ZN,x,∗(~0, vi1 , vi2 , . . . , vik ,
~1) counts the number of good accessible paths P ′

that intersect P (vertex wise) at ~0, vi1 , vi2 , . . . , vik , ~1. For ease of notation we let vi0 = ~0

and vik+1
= ~1. Naturally these (k + 2) common vertices divide both P and P ′ into (k + 1)

segments. The lengths of these segments on P are i1, (i2 − i1), . . . , (L− ik). Suppose that

P ′ visits these (k + 2) common vertices at its j0 = 0-th, j1-th, . . . , jk+1-th steps. Then on

AP we have

P(AP ′ | X0, X1, · · · , XL) =
Xi1

j1−1

(j1 − 1)!

(Xi2 −Xi1)j2−j1−1

(j2 − j1 − 1)!
· · ·

(x−Xik)jk+1−jk−1

(jk+1 − jk − 1)!
.
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By Part (ii) of Proposition 1.1 we have

P(AP ′ | AP ) = E(P(AP ′ | X0, X1, · · · , XL) | AP )

= E
[
Yi1

j1−1

(j1 − 1)!
·

(Yi2 − Yi1)j2−j1−1

(j2 − j1 − 1)!
· · ·

(x− Yik)jk+1−jk−1

(jk+1 − jk − 1)!

]
≤ E

Yi1
j1−1

(j1 − 1)!
E

(Yi2 − Yi1)j2−j1−1

(j2 − j1 − 1)!
· · ·E

(x− Yik)jk+1−jk−1

(jk+1 − jk − 1)!

where Y0 = 0, Y1, · · · , YL−1, YL = x are distributed as the order statistics of (L − 1) i.i.d.

uniform [0, x] random variables. Therefore, we have

E(ZN,x,∗(~0, vi1 , vi2 , . . . , vik ,
~1) | AP )

=
∑
P ′∈P,

P ′ intersects P at ~0,vi1 ,vi2 ,...,vik ,
~1

P(AP ′ | AP )

≤
∑
P ′∈P,

P ′ intersects P at ~0,vi1 ,vi2 ,...,vik ,
~1

k+1∏
`=1

E
(Yi` − Yi`−1

)j`−j`−1−1

(j` − j`−1 − 1)!

≤
k+1∏
`=1

F (vi`−1
, vi`) (1.39)

where F (vi`−1
, vi`) is defined as follows.

Definition 1.4. For u, v ∈ HN , we say a path P ∗ connecting u to v is a good segment

from u to v, if there exists at least one good path whose subpath from u to v is P ∗. For any

good path P = v0, v1, . . . , vL and 0 ≤ i < j ≤ L, let F (vi, vj) = EG(vi, vj , Yi, Yj) where

G(vi, vj , yi, yj) is the conditional expectation of the number of good accessible segments from

vi to vj, given that Xi = yi and Xj = yj.

Now summing inequality (1.39) over i1, i2, . . . , ik and k, we have

E(ZN,x,∗ | AP ) ≤
∑

k,i1,i2,...,ik

k+1∏
`=1

F (vi`−1
, vi`) . (1.40)
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We can further split the sum on the right hand side into two parts, according to whether

max{i1, (i2− i1), . . . , (L− ik)} > L/2 (i.e. whether the longest segment on P is longer than

L/2). That is,

∑
k,i1,i2,...,ik

k+1∏
`=1

F (vi`−1
, vi`)

=

( ∑
k,i1,i2,...,ik,

max{i1,(i2−i1),...,(L−ik)}>L/2

+
∑

k,i1,i2,...,ik,
max{i1,(i2−i1),...,(L−ik)}≤L/2

)
k+1∏
`=1

F (vi`−1
, vi`)

≤
( L/2∑
d=0

∑
d1+d2=d

F (vd1
, vL−d2

)
)L−1∏
j=0

(

L
2∑
i=1

F (vj , vj+i)) +
L−1∏
j=0

(

L
2∑
i=1

F (vj , vj+i)) . (1.41)

To justify the last inequality, we first point out that F (vj , vj+1) is always 1 because the

Hamming distance between a pair of vertices on a good path is 1 if and only if these two

vertices are neighboring each other on the path. Given any k and 0 < i1 < i2 < · · · < ik < L,

we define uj(k, i1, i2, . . . , ik) for j = 0, 1, . . . , L− 1 as:

uj(k, i1, i2, . . . , ik) =


vi`+1

, if j = i` for some 1 ≤ ` ≤ k and i`+1 − i` > 1

vj+1 , otherwise

Thus for any k and 0 < i1 < i2 < · · · < ik < L

k+1∏
`=1

F (vi`−1
, vi`) =

L−1∏
j=0

F (vj , uj) .

Moreover, it is not hard to verify that ~u := (u0, u1, · · · , uL−1) is an injective function of

(k, i1, i2, . . . , ik), i.e., for any (k, i1, i2, . . . , ik) 6= (k′, i′1, i
′
2, . . . , i

′
k′) such that 0 < i1 < i2 <

· · · < ik < L and 0 < i′1 < i′2 < · · · < i′k′ < L, uj(k, i1, i2, . . . , ik) = uj(k
′, i′1, i

′
2, . . . , i

′
k′)
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cannot hold for all j = 0, 1, . . . , L− 1. Therefore

∑
k,i1,i2,...,ik,

max{i1,(i2−i1),...,(L−ik)}≤L/2

k+1∏
`=1

F (vi`−1
, vi`) =

∑
k,i1,i2,...,ik,

max{i1,(i2−i1),...,(L−ik)}≤L/2

L−1∏
j=0

F (vj , uj)

≤
L−1∏
j=0

(

L
2∑
i=1

F (vj , vj+i)) .

The other part of the inequality can be obtained similarly.

The following two lemmas are useful for bounding E(ZN,x,∗ | AP ).

Lemma 1.4. For any sufficiently small but fixed number ε > 0, there exist C2 > 0 and an

integer N ′ > 0 which both depend only on ε, such that for all |x− x0| ≤ ι, N > N ′ and any

good path P we have
∑L/2
d=0

∑
d1+d2=d F (vd1

, vL−d2
) ≤ C2N(sinhx)N−1 coshx.

Lemma 1.5. For any sufficiently small but fixed number ε > 0, there exist C3 > 0 and an

integer N ′ > 0 which both depend only on ε, such that for all |x−x0| ≤ ι, N > N ′, any good

path P and any j we have
∑L

2
i=1 F (vj , vj+i) ≤ 1 + C3

N .

Corollary 1.2. For any sufficiently small but fixed number ε > 0, there exist C4 > 0 and

an integer N ′ > 0 which both depend only on ε, such that for all |x− x0| ≤ ι and N > N ′

EZ2
N,x,∗ ≤ (C4N sinhN−1 x coshx+ C4)N sinhN−1 x coshx .

Proof. Substituting the bounds from Lemmas 1.4 and 1.5 into (1.41) and using (1.40), we

see that

E(ZN,x,∗ | AP ) ≤
∑

k,i1,i2,...,ik

k+1∏
`=1

F (vi`−1
, vi`)

≤ (C2N(sinhx)N−1 coshx+ 1)(1 +
C3

N
)(1+ε)αN

≤ (C2N(sinhx)N−1 coshx+ 1)eC3(1+ε)α .
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Substituting the above inequality into (1.37) and applying the inequality

∑
P∈P

P(AP ) = EZN,x,∗ ≤ EZN,x ≤ N(sinhx)N−1 coshx

(here the last inequality follows from Corollary 1.1), we complete the proof of the corollary.

In order to prove Lemmas 1.4 and 1.5, we need the following lemma.

Lemma 1.6. Suppose that N ≥ 7, s ≥ 1. Let g(y, s) = (sinh y)s(cosh y)N−s. Then ∂g
∂y (y, s)

is decreasing in s for all fixed y > 0.

Proof. By a direct calculation

∂g

∂y
(y, s) = (sinh y)s(cosh y)N−s(s coth y + (N − s) tanh y)

= (sinh y)−1(cosh y)N−1(tanh y)s(s+N(sinh y)2) .

Therefore it suffices to show that (tanh y)s(s + N(sinh y)2) is decreasing in s. Taking the

partial derivative with respect to s we get

∂

∂s
[(tanh y)s(s+N(sinh y)2)] = (tanh y)s + (ln tanh y)(tanh y)s(s+N(sinh y)2) ,

so we only need to show that (coth y)(s+N(sinh y)2) ≥ e. If coth y ≥ e, then plainly

we have (coth y)(s+N(sinh y)2) ≥ (coth y)s ≥ coth y ≥ e. On the other hand, if

coth y < e, then y > arccoth e := y0. Since (coth y)(sinh y)2
is increasing in y,

we have (coth y)(sinh y)2 ≥ (coth y0)(sinh y0)2
= e

1
e2−1 ≈ 1.17. Therefore we have

(coth y)(s+N(sinh y)2) ≥ (coth y)7(sinh y)2 ≥ (coth y0)7(sinh y0)2
> e in this case.

Proof of Lemma 1.4 For d1 and d2 such that d1 + d2 = d, it is clear that the Hamming

distance H(vd1
, vL−d2

) between vd1
and vL−d2

is greater than or equal to N − d. Therefore,
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by (1.9) and Lemma 1.6, we have

F (vd1
, vL−d2

) = EG(vd1
, vL−d2

, Yd1
, YL−d2

)

≤ E((sinh y)H(vd1
,vL−d2

)(cosh y)N−H(vd1
,vL−d2

))′|y=YL−d2
−Yd1

≤ E((sinh y)N−d(cosh y)d)′|y=YL−d2
−Yd1

= E((sinh y)N−d(cosh y)d)′|y=x−Yd

where the last equality is because the distribution of YL−d2
−Yd1

does not depend on (d1, d2)

provided the value of d = d1 + d2. Writing out the derivative in the last step, we have the

following estimate

F (vd1
, vL−d2

) ≤ E((sinh y)N−d−1(cosh y)d−1((N − d)(cosh y)2 + d(sinh y)2))|y=x−Yd

≤ E((sinh y)N−d−1(cosh y)d−1N(cosh y)2)|y=x−Yd

≤ N(coshx)2E(sinh(x− Yd))N−d−1(coshx)d−1 .

Since sinh(x− y) ≤ sinhx− sinhx
x y for 0 ≤ y ≤ x, we have further

F (vd1
, vL−d2

) ≤ N(coshx)2E(sinhx− sinhx

x
Yd)

N−d−1(coshx)d−1

= N(coshx)2(sinhx)N−d−1(coshx)d−1E(1− Yd
x

)N−d−1 . (1.42)

It remains to bound E(1− Yd
x )N−d−1. Since 1− Yd

x is the (L− d)th order statistic of (L− 1)

i.i.d. uniform [0, 1] random variables, it has a Beta(L − d, d) distribution. Thus by the

moments of Beta-distributed random variables (or applying (1.38)) we have

E(1− Yd
x

)N−d−1 =
N−d−2∏
r=0

L− d+ r

L+ r
(1.43)
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which can be further bounded by

N−d−2∏
r=0

L− d+ r

L+ r
≤ (1− d

L+N − d− 2
)N−d−1

≤ (e−
N−d−1

L+N−d−2 )d ≤ (
0.995

cothx
)d (1.44)

for d ≤ 0.32N , ε (and therefore ι) sufficiently small and N sufficiently large (recall that

L ∈ [α(1−ε)N,α(1+ε)N ] for a good path). Here we used the inequality e−
1−0.32

α+1−0.32 ≤ 0.994
cothx0

(by brute force calculation).

For 0.32N ≤ d ≤ α(1/2 + ε)N , set t = d/N and s = L/N . Then by Stirling’s formula

N−d−2∏
r=0

L− d+ r

L+ r
≤ C5

N−d∏
r=1

L− d+ r

L+ r
≤ C6

(L+N − 2d)L+N−2dLL

(L− d)L−d(L+N − d)L+N−d

= C6

(( (1 + s− 2t)1+s−2tss

(s− t)s−t(1 + s− t)1+s−t
)1
t

)d
.

Another brute force calculation gives

( (1 + α− 2t)1+α−2tαα

(α− t)α−t(1 + α− t)1+α−t

)1
t ≤ 0.999

cothx0

for t ≤ α(1/2 + ε) and ε sufficiently small. Since the function h(y, t) given by

h(y, t) =
( (1 + y − 2t)1+y−2tyy

(y − t)y−t(1 + y − t)1+y−t

)1
t

is uniformly continuous with respect to (y, t) on [1.0, 1.5]× [0.2, 0.8], we have for ε sufficiently

small (so that s is sufficiently close to α) and 0.32 ≤ t ≤ α(1/2 + ε)

( (1 + s− 2t)1+s−2tss

(s− t)s−t(1 + s− t)1+s−t

)1
t ≤ 0.9999

cothx0
.

In addition, for ε (and therefore ι) sufficiently small, the right hand side of the above in-
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equality is at most 0.99999/ cothx. So we get
∏N−d−2
r=0

L−d+r
L+r ≤ C6(0.99999

cothx )d in this case.

Combined with (1.42), (1.43) and (1.44), this completes the proof of the lemma.

Proof of Lemma 1.5 Recall that P = v0, v1, . . . , vL is a good path of length L. For an

arbitrary j, we will bound F (vj , vj+i) in a number of regimes depending on the value of i,

as follows.

Case (a): i = 1. Since for any good path (or good segment), the Hamming distance between

a pair of vertices on the path is 1 if and only if these two vertices are neighboring each other

on the path, we have F (vj , vj+1) = 1.

Case (b): i = 2. The Hamming distance between vj and vj+2 is precisely 2 (since P is

good), and thus the length of any good segment connecting vj to vj+2 is either 2 or 4. There

are at most 2 such segments of length 2, and the probability for each of them to be accessible

given Xj = yj and Xj+2 = yj+2 is (yj+2 − yj). Similarly, there are at most (N
(4
2

)
2!) such

segments of length 4, and the probability for each of them to be accessible given Xj = yj

and Xj+2 = yj+2 is
(yj+2−yj)3

3! . Therefore,

G(vj , vj+2, yj , yj+2) ≤ 2(yj+2 − yj) + (N

(
4

2

)
2!)

(yj+2 − yj)3

3!

= 2(yj+2 − yj) + 2N(yj+2 − yj)3.

Combined with (1.38), this yields that

F (vj , vj+2) ≤ 20/N for sufficiently large N .

Case (c): i = 3. The Hamming distance between vj and vj+3 is precisely 3 (since P

is good), and thus the length of any good segment connecting vj to vj+3 is either 3 or 5.
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Similar to the previous case, we have

G(vj , vj+3, yj , yj+3) ≤ 3(yj+3 − yj)2 + (N

(
5

2

)
3!)

(yj+3 − yj)4

4!

= 3(yj+3 − yj)2 + (
5

2
N)(yj+3 − yj)4.

Combined with (1.38), this yields that

F (vj , vj+3) ≤ 1000 ·N−2 for sufficiently large N .

Case (d): 4 ≤ i ≤ N
1
5 . By the definition of good path and good segment again, we see that

all the possible values of the pair (H(vj , vj+i), L(vj , vj+i)) (where L(vj , vj+i) is the length

of a good segment connecting vj to vj+i) are (i, i), (i, i + 2), (i − 2, i − 2) and (i − 2, i).

Therefore G(vj , vj+i, yj , yj+i) is at most

i(yj+i−yj)i−1 +
N
(i+2

2

)
i!

(i+ 1)!
(yj+i−yj)i+1 +(i−2)(yj+i−yj)i−3 +

N
(i
2

)
(i− 2)!

(i− 1)!
(yj+i−yj)i−1 .

Combined with (1.38), this yields that

F (vj , vj+4) ≤ 104 ·N−1 for sufficiently large N ,

F (vj , vj+5) ≤ 104 ·N−1 for sufficiently large N ,

F (vj , vj+6) ≤ 104 ·N−1 for sufficiently large N

and

F (vj , vj+i) ≤ 104 · (i( i
N

)4 +Ni(
i

N
)6) ≤ 104 ·N−2 for sufficiently large N

when 7 ≤ i ≤ N
1
5 .

Case (e): N
1
5 ≤ i ≤ L/2. Recall the definitions of ε1, ε2, ε3 in (1.10). By the definition
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of good path, we have i
α+ε3

≤ H(vj , vj+i) ≤ (1/2 + ε1)N . Therefore (by the definition of

good path again) any good segment that connects vj to vj+i must have length L(vj , vj+i) ≤

α(1/2 + ε2)N , so that L(vj , vj+i) also satisfies L(vj , vj+i) ≤ (α+ ε3)H(vj , vj+i) ≤ (α+ ε3)i.

By Part (iii) of Proposition 1.1, we have

E(Yj+i − Yj)`−1 ≤ C
√

1 + α + ε3(x
i− 1

L− 1

(1 + (α + ε3))1+1/(α+ε3)

e
)`−1

for ` ≤ (α + ε3)(i− 1) + 1. Therefore by (1.8) and Lemma 1.6, we have

F (vj , vj+i)

=
∑

P ∗ is a good segment of length `
connecting vj to vj+i

E(Yj+i − Yj)`−1

(`− 1)!

≤ C
√

1 + α + ε3((sinh y)H(vj ,vj+i)(cosh y)N−H(vj ,vj+i))′|
y=x i−1

L−1
(1+(α+ε3))1+1/(α+ε3)

e

≤ C
√

1 + α + ε3((sinh y)
i

α+ε3 (cosh y)
N− i

α+ε3 )′|
y=x i−1

L−1
(1+(α+ε3))1+1/(α+ε3)

e

≤ C7N
2(sinh y)

i
α+ε3 (cosh y)

N− i
α+ε3 |

y=x i
L−1

(1+(α+ε3))1+1/(α+ε3)

e

.

Set a =
N(α+ε3)
L−1 , c = x

(1+(α+ε3))1+1/(α+ε3)

e , and c0 = x0
(1+α)1+1/α

e ≈ 1.39. Clearly c will

be sufficiently close to c0 if ε (and therefore ι) is sufficiently small. Let t = i
L−1 (so that N

1
5

L ≤

t ≤ 1/2) and h(t) := (sinh(ct))
t

α+ε3 (cosh(ct))
N
L−1−

t
α+ε3 . Then the preceding inequality can

be rewritten as F (vj , vj+i) ≤ C7N
2(h(t))L−1. In order to estimate F (vj , vj+i), we analyze

the behavior of the function h(t) as follows. By straightforward computation, we have

(α + ε3) lnh(t) = t ln sinh(ct) + (a− t) ln cosh(ct) ,

((α + ε3) lnh(t))′ = ln sinh(ct)− ln cosh(ct) + ct coth(ct) + c(a− t) tanh(ct)
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and

((α + ε3) lnh(t))′′ = c coth(ct)− c tanh(ct) + c coth(ct)− c tanh(ct)

− c2t

(sinh(ct))2
+

c2(a− t)
(cosh(ct))2

≥ 2c(coth(ct)− tanh(ct))− c2t( 1

(sinh(ct))2
+

1

(cosh(ct))2
)

=
c

(sinh(ct))2(cosh(ct))2
(sinh(2ct)− ct cosh(2ct)) > 0

for t ≤ 1/2 (since ct ≤ c/2 < 0.8).

Therefore (α + ε3) lnh(t), and consequently h(t) is convex up to t = 1/2. Thus we have

h(t) ≤ max(h(N
1
5

L ), h(1/2)), and so F (vj , vj+i) ≤ C7N
2 max((h(N

1
5

L ))L−1, (h(1/2))L−1).

However, since (h(1/2))2(α+ε3) = sinh( c2)(cosh( c2))2(α+ε3) N
L−1−1 which is sufficiently close

to sinh(c02 ) cosh(c02 ) = 1
2 sinh(c0) < 1 if ε is sufficiently small and N is sufficiently large, we

have h(1/2) ≤ p where p is a constant strictly less than 1. Thus, (h(1/2))L−1 ≤ pL−1. On

the other hand, (h(N
1
5

L ))L−1 ≤ (N−
3
5 )N

1
5 (1+N−

8
5 )N for sufficiently large N . Thus we have

for N sufficiently large,

F (vj , vj+i) ≤ C7N
2 max(pL−1, (N−

3
5 )N

1
5
(1 +N−

8
5 )N ) .

Conclusion. Summing F (vj , vj+i) over 1 ≤ i ≤ L/2 and applying the bounds we obtained

in Cases (a), (b), (c), (d) and (e), we see that
∑L

2
i=1 F (vj , vj+i) ≤ 1 + C3

N for some C3 > 0,

completing the proof of the lemma.

Proposition 1.2. There exists 0 ≤ K < 1 such that, if lim inf
N→∞

P(ZN,xc+εN > 0) ≥ C for

some constant C ≥ 0 whenever NεN →∞, then whenever NεN →∞ we have

lim inf
N→∞

P(ZN,xc+εN > 0) ≥ 1− (1− C)K .

Proof. Our strategy basically follows that of [10]. First we pick four vertices a1, a2, b1, b2
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satisfying: a1 and a2 are neighbors of ~0 and have a value in [0, εN/3], b1 and b2 are neighbors

of ~1 and have a value in [x− εN/3, x], and none of the four pairs (ai, bj) are antipodal. Since

NεN →∞, this can be achieved with probability 1− oN (1).

Without loss of generality assume that the only coordinates of a1, a2, b1 and b2 that are

different from ~0 or ~1 are 1, 2, 3 and 4, respectively. Let H̃1 and H̃2 be the (N−2) dimensional

sub-hypercubes of {0, 1}N formed by a1, b1 and a2, b2, respectively. That is, H̃1 is the sub-

hypercube with the first coordinate being 1 and the third coordinate being 0, and H̃2 is the

sub-hypercube with the second coordinate being 1 and the fourth coordinate being 0. Let

H ′2 be H̃2 \ H̃1. Denote by p
H̃1

and pH ′2
the probabilities that there is an accessible path in

H̃1 (from a1 to b1) and H ′2 (from a2 to b2) respectively. From the disjointness (and hence

independence) of H̃1 and H ′2 we have P(ZN,xc+εN > 0) ≥ 1− (1− p
H̃1

)(1− pH ′2)− oN (1).

Clearly p
H̃1
≥ P(ZN−2,xc+εN/3

> 0) ≥ C − oN (1).

It remains to show that pH ′2
is bounded from below by a positive constant 1 − K. To

this end, we note that if we only consider the good path in H̃2 (from a2 to b2) which only

updates Coordinate 1 and Coordinate 3 once and Coordinate 3 is updated before Coordinate

1 (that is, in the associated sequence the numbers 1 and 3 occur precisely once each and

3 occurs ahead of 1), such path must be contained in H ′2. Clearly, the number of such

accessible paths has second moment less than EZ2
N−2,xc+εN/3,∗

and first moment within an

absolute multiplicative constant of EZN−2,xc+εN/3,∗ (indeed, the first moment is at least

C1(N −2) sinhN−3(x) coshx · ( x
sinhx)2 · 12 where x = xc+ εN/3). Combined with Lemma 1.3

and Corollary 1.2, this yields that pH ′2
≥ 1 − K − oN (1) for some constant K < 1. This

completes the proof of the proposition.

Proof of (1.2): antipodal case Applying Proposition 1.2 recursively (starting from C =

0) completes the proof of (1.2).

At the end of this section, we provide
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Proof of (1.3): antipodal case For the lower bound, it suffices to consider x = xc−∆/N .

By Remark 1.3, we have in this case N(sinhx)N−1 coshx ≥ m1(∆) where m1(∆) > 0

depends only on ∆. Applying the second moment method and using Lemma 1.3 and

Corollary 1.2, we obtain that (for sufficiently large N)

P(ZN,x > 0) ≥ P(ZN,x,∗ > 0) ≥
(EZN,x,∗)2

EZ2
N,x,∗

≥ c1(∆) ,

where c1(∆) > 0 depends only on ∆.

For the upper bound, it suffices to consider x = xc + ∆/N . Let K > 0 be a large

number depending on ∆ that we specify later. The idea is to condition on the values

of the neighbors of ~0. Let u1, u2, . . . , uN be these neighbors. For 1 ≤ i ≤ N and

K
N ≤ yi ≤ x, we upper bound the conditional probability that ~1 is accessible from ui

given Xui = yi by the corresponding first moment, which by (1.9) can be further bounded

by ((sinh t)N−1 cosh t)′|t=x−yi ≤ 2N(sinh(x− yi))N−2. Therefore

P(ZN,x = 0) ≥
∫ 1

K
N

∫ 1

K
N

· · ·
∫ 1

K
N

[1− 2N(sinh(x− y1))N−21y1≤x − · · ·

−2N(sinh(x− yN ))N−21yN≤x] dy1 dy2 · · · dyN

= (1− K

N
)N − (1− K

N
)N−1

∫ 1

K
N

2N2(sinh(x− y1))N−21y1≤x dy1 ,

where

∫ 1

K
N

2N2(sinh(x− y1))N−21y1≤x dy1 =

∫ x

K
N

2N2(sinh(x− y1))N−2 dy1

=

∫ x0−
√

2
2

lnN
N + ∆

N−
K
N

0
2N2(sinh y)N−2 dy

→
√

2e
√

2(∆−K)

Here the last step follows from [18, problem 213 (in Part Two Chapter 5 section 2)] by setting
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ϕ(x) = 1, h(x) = ln sinhx, a = 0, ξ = x0, α = −
√

2
2 , β = ∆−K. Therefore lim inf

N→∞
P(ZN,x =

0) ≥ e−K(1−
√

2e
√

2(∆−K)), and we are done by choosing K to be a large number depending

on ∆.

1.3 Accessibility percolation: general case

Since most of our proof in the antipodal case carries over to the general case, in the following

proof for the general case we will emphasize the parts that require nontrivial modification.

Fix 0 < β < 1 throughout this section. Recall from the statement of Theorem 1.1

that f(x) = (sinhx)β(coshx)1−β , that x0 is the unique root of f(x) = 1 and that xc =

x0 − 1
f ′(x0)

lnN
N . We have

f ′(x) = (β cothx+ (1− β) tanhx)(sinhx)β(coshx)1−β ,

so that f ′(x0) = β cothx0 + (1− β) tanhx0. In addition, it is straightforward to check that

0 < f ′′(x0) <∞. The proof of (1.1) resembles that in the antipodal case.

Proof of (1.1): general case In light of (1.8) we denote by

MN,β,x :=
(
(sinhx)βN (coshx)(1−β)N)′ = ((f(x))N )′ = N(f(x))N−1f ′(x) .

We have MN,β,x � N(f(x))N for, say |x−x0| ≤ 1/10. Since P(ZN,x > 0) is monotone in x,

we can assume without loss of generality that εN ≤ N−2/3. With this assumption, we have

for x = xc ± εN = x0 − 1
f ′(x0)

lnN
N ± εN ,

(x− x0)2 = (
1

f ′(x0)

lnN

N
± εN )2 = o(1/N)
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and thus

f(x) = f(x0) + f ′(x0)(x− x0) + o(1/N)

= 1− lnN

N
± f ′(x0)εN + o(1/N) .

Therefore, MN,β,xc−εN → 0 and MN,β,xc+εN → ∞ as N → ∞. Combined with (1.9), it

gives that EZN,xc−εN → 0 as N →∞, yielding (1.1).

We next turn to prove (1.2). To this end, we first need to revise the definition of good

path. Let

γ = βx0 cothx0 + (1− β)x0 tanhx0 = x0f
′(x0)

as in statement (1.15) (it will play the role of α). Also in the general case, by a similar

calculation as equation (1.32), we see that the definition of g(t) in (1.28) should be modified

as

g(t) := β
sinh(x0t) cosh(x0(1− t))

sinhx0
+ (1− β)

sinh(x0(1− t)) sinh(x0t)

coshx0

so that g(t)N still means the “expected Hamming distance traveled by a path in time t”. In

addition, for a pair of vertices u and v, we let H ′(u, v) be their Hamming distance restricted

to the first βN coordinates (i.e., the number of the first βN coordinates at which u differs

from v).

Definition 1.5 (general case). Let ε > 0 be a sufficiently small fixed number to be se-

lected and set ε4 = ε1/8. We say a path (or the associated update sequence) v0 = ~0N =

(0, 0, · · · , 0), v1, . . . , vL−1, vL = (~1βN ,~0N−βN ) = (1, · · · , 1, 0, · · · , 0) is good if the following

holds:

(a) The total number of updates of the first βN coordinates lies within

[βx0 cothx0(1− ε)N, βx0 cothx0(1 + ε)N ]
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and the total number of updates of the last (1− β)N coordinates lies within

[(1− β)x0 tanhx0(1− ε)N, (1− β)x0 tanhx0(1 + ε)N ] .

(b) H(vi, vj) = |i− j|, if |i− j| = 1, 2, 3.

(c) For |i− j| > 3 we have

H(vi, vj) = |i− j| or |i− j| − 2, if 4 ≤ |i− j| ≤ N
1
5 ;

H ′(vi, vj) ≤ (1/2 + ε1)βN, if |i− j| ≤ γ(1/2 + ε)N ;

H ′(vi, vj) > (1/2 + ε1)βN, if |i− j| > γ(1/2 + ε2)N ;

H(vi, vj) ≥
2g(1/2)|i−j|

γ+ε3
, if N

1
5 ≤ |i− j| ≤ γ(1/2 + ε2)N.

(d) Let D(v0, vi) be the number of updates of the first βN coordinates among the first i

updates, and D(vL−i, vL) be the number of updates of the first βN coordinates among

the last i updates. Then both D(v0, vi) and D(vL−i, vL) are less than or equal to δi for

any i ≤ L/2, where δ := β cothx0
β cothx0+(1−β) tanhx0

+ ε4.

As in the antipodal case, it is clear that a good path is self-avoiding. In addition, we

have L ∈ [γ(1− ε)N, γ(1 + ε)N ] by Property (a).

Lemma 1.7. For any sufficiently small but fixed number ε > 0, there exist C ′1 > 0 and an

integer N ′ > 0 which both depend only on ε, such that for all |x − x0| ≤ ι and N > N ′ we

have

EZN,x,∗ ≥ C ′1MN,β,x = C ′1N(f(x))N−1f ′(x) . (1.45)

Proof. Recall the definition of µ̃N,β introduced in the statement (1.15): For i ∈ {1, . . . , βN},

let Ui be i.i.d. random variables distributed as F1, and independently for i ∈ {βN+1, . . . , N},

let Ui be i.i.d. random variables distributed as F2. Given the values of U1, . . . , UN , we let

(A1, . . . , AL) (where L =
∑N
i=1 Ui) be a sequence uniformly at random subject to |{1 ≤

j ≤ L : Aj = i}| = Ui. Let µ̃N,β be the probability measure of the random sequence

(A1, . . . , AL) thus obtained.
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Following a similar argument given at the beginning of the proof of Lemma 1.3, we see

that it suffices to show that under µ̃N,β the set of good sequences has probability bounded

from below by a constant.

We first observe that Properties (a) and (c) in Definition 1.5 can be satisfied by a random

sequence under µ̃N,β with probability tending to 1 as N → ∞. This can be derived quite

similarly as Case 2 and Case 3 in the proof of Lemma 1.3, with the last requirement in

Property (c) hinted by the following inequality

g(t)

t
≥ g(1/2)

1/2
, if 0 ≤ t ≤ 1

2
.

In addition, we claim that Properties (b) and (d) in Definition 1.5 can be satisfied simulta-

neously by a random sequence under µ̃N,β with probability bounded from below. Altogether,

this would imply the desired bound in the lemma.

To verify this claim, we show that the update sequence (A1, . . . , AL) can be obtained

by the following two-step procedure, where in each step one property can be satisfied with

probability bounded from below. Let us recall the notation that F = σ(U1, U2, . . . , UN ).

For convenience, we write L1 =
∑βN
i=1 Ui and L2 =

∑N
i=βN+1 Ui.

As the first step, conditioning on F , we choose L1 indices i1 < i2 < · · · < iL1
uniformly

from {1, 2, . . . , L} and call them type 1 (they represent updates of the first βN coordinates).

Denote by I = {i1, i2, · · · , iL1
} the collection of these type 1 indices. Let j1 < j2 < · · · < jL2

be the rest of the indices and call them type 2 (they represent updates of the last (1− β)N

coordinates). In the following P refers to this (conditional) probability space (so that L1

and L2 should be seen as constants).

Denote by E the following event:

|{1, · · · , i}∩I|, |{L−i+1, · · · , L}∩I| ≤
( β cothx0

β cothx0 + (1− β) tanhx0
+ε4

)
i for all 1 ≤ i ≤ L/2
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and by E ′ the following event:

|{1, · · · , i} ∩ I|, |{L− i+ 1, · · · , L} ∩ I| ≤ (
L1

L1 + L2
+ ε)i for all 1 ≤ i ≤ L/2 .

We want to show that Property (d) can be satisfied with probability bounded from below in

this step, that is P(E) ≥ c for a constant c > 0. Without loss we can assume that Property

(a) holds (since it is F -measurable and can be satisfied with high probability), so that we

have

L1
L1+L2

+ ε ≤ βx0 cothx0(1+ε)N
βx0 cothx0(1−ε)N+(1−β)x0 tanhx0(1−ε)N + ε ≤ β cothx0

β cothx0+(1−β) tanhx0
+ ε4

for sufficiently small ε and therefore E ′ ⊆ E . It thus remains to lower bound P(E ′).

To this end, for each 1 ≤ i ≤ L, we let Ti = 1{i is of type 1}. Then T1, T2, . . . , TL can be

viewed as a sample without replacement from L1 1’s and L2 0’s. By Hoeffding’s inequality

in the case of sampling without replacement [11, Theorem 4], we have for any n,

P(

∑n
i=1 Ti
n

≥ L1

L1 + L2
+ ε) ≤ exp(−2nε2)

and

P(

∑L
i=L−n+1 Ti

n
≥ L1

L1 + L2
+ ε) ≤ exp(−2nε2) .

By a union bound over M ≤ n ≤ L
2 (where M depending only on ε is chosen later), we have

P(E1) ≥ 1− 2 exp(−2ε2M)
1−exp(−2ε2)

, where

E1 =
{∑n

i=1 Ti
n

≤ L1

L1 + L2
+ ε and

∑L
i=L−n+1 Ti

n
≤ L1

L1 + L2
+ ε for all M ≤ n ≤ L

2

}
.

Let K be the set of all positive integer pairs (k1, k2) such that M−k1
M ≤ L1

L1+L2
+ ε and
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M−k2
M ≤ L1

L1+L2
+ ε. It is clear that

E1 =
⊔

(k1,k2)∈K
E1 ∩ {

M∑
i=1

Ti = M − k1} ∩ {
L∑

i=L−M+1

Ti = M − k2} . (1.46)

For (k1, k2) ∈ K, define

E2(k1) = {Ti = 0 for 1 ≤ i ≤ k1} ∩ {Ti = 1 for k1 + 1 ≤ i ≤M} ,

E3(k2) = {Ti = 0 for L− k2 + 1 ≤ i ≤ L} ∩ {Ti = 1 for L−M + 1 ≤ i ≤ L− k2} .

Then for all (k1, k2) ∈ K, on the event E2(k1) ∩ E3(k2) we have
∑n
i=1 Ti
n ≤ L1

L1+L2
+ ε and∑L

i=L−n+1 Ti
n ≤ L1

L1+L2
+ ε for all 1 ≤ n ≤M . Therefore, we have

E ′ ⊇
⊔

(k1,k2)∈K
E1 ∩ E2(k1) ∩ E3(k2) . (1.47)

However,

P(E1 ∩ E2(k1) ∩ E3(k2)) =

(
M

k1

)−1(M
k2

)−1

P(E1,
M∑
i=1

Ti = M − k1,
L∑

i=L−M+1

Ti = M − k2)

≥ 2−2MP(E1,
M∑
i=1

Ti = M − k1,
L∑

i=L−M+1

Ti = M − k2) . (1.48)

Summing (1.48) over all (k1, k2) ∈ K and using (1.46) and (1.47), we deduce that

P(E ′) ≥ 2−2MP(E1) ≥ 2−2M (1− 2 exp(−2ε2M)

1− exp(−2ε2)
) . (1.49)

By (1.49) and choosing M depending on ε (e.g. M = −10
ε2

ln ε), we have proved that in the

first step, Property (d) can be satisfied with probability bounded from below by a number

depending only on ε.

Now, conditioning on the previous step, let (B1, B2, . . . , BL1
) be a sequence uniformly at
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random subject to |{1 ≤ j ≤ L1 : Bj = i}| = Ui for i = 1, 2, . . . , βN , and independently let

(C1, C2, . . . , CL2
) be a sequence uniformly at random subject to |{1 ≤ j ≤ L2 : Cj = i}| = Ui

for i = βN + 1, βN + 2, . . . , N . Let Aik = Bk for 1 ≤ k ≤ L1 and Ajk = Ck for 1 ≤ k ≤ L2

(recall that ik’s and jk’s are sampled in the previous step). Thanks to the general proof

of Case 1 in Lemma 1.3, we have that with high probability (with respect to the Ui’s), we

have Bi 6= Bi+1 and Bi 6= Bi+2 hold for all 1 ≤ i ≤ L1 with at least constant probability;

and with high probability (with respect to the Ui’s), we have Ci 6= Ci+1 and Ci 6= Ci+2

hold for all 1 ≤ i ≤ L2 with at least constant probability. However, note that Bi 6= Bi+1,

Bi 6= Bi+2 for all 1 ≤ i ≤ L1 and Ci 6= Ci+1, Ci 6= Ci+2 for all 1 ≤ i ≤ L2 together would

imply Ai 6= Ai+1 and Ai 6= Ai+2 for all 1 ≤ i ≤ L, which corresponds to Property (b).

By the (conditional) independence of (B1, B2, . . . , BL1
) and (C1, C2, . . . , CL2

), we see that

in the second step, Property (b) can be satisfied with probability bounded from below by a

constant.

Finally, it is clear that the sequence (A1, . . . , AL) obtained by this two-step procedure

has the same distribution as under µ̃N,β originally. This completes the verification of our

claim and therefore the lemma.

Lemma 1.8. For any sufficiently small but fixed number ε > 0, there exist C ′2 > 0 and an

integer N ′ > 0 which both depend only on ε, such that for all |x− x0| ≤ ι, N > N ′ and any

good path P = v0, v1, . . . , vL we have

L/2∑
d=0

∑
d1+d2=d

F (vd1
, vL−d2

) ≤ C ′2Nf(x)N � C ′2N(f(x))N−1f ′(x) .

Proof. We continue to let Y0 = 0, Y1, . . . , YL−1, YL = x be distributed as the order statistics

of (L − 1) i.i.d. uniform [0, x] random variables. For d1 and d2 such that d1 + d2 = d, by

Property (d) of Definition 1.5 we have that the Hamming distance H(vd1
, vL−d2

) between vd1

and vL−d2
is at least βN −D(v0, vd1

)−D(vL−d2
, vL), which is at least βN − δd. Therefore,
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by (1.9) and Lemma 1.6, we have

F (vd1
, vL−d2

) = EG(vd1
, vL−d2

, Yd1
, YL−d2

)

≤ E((sinh y)H(vd1
,vL−d2

)(cosh y)N−H(vd1
,vL−d2

))′|y=YL−d2
−Yd1

≤ E((sinh y)βN−δd(cosh y)(1−β)N+δd)′|y=YL−d2
−Yd1

= E((sinh y)βN−δd(cosh y)(1−β)N+δd)′|y=x−Yd (1.50)

where the last equality is because the distribution of YL−d2
−Yd1

does not depend on (d1, d2)

provided the value of d = d1 +d2. Since x−Yd is the (L−d)th order statistic of (L−1) i.i.d.

uniform [0, x] random variables, x−Ydx has a Beta(L − d, d) distribution. Thus, the density

of x− Yd is 1
x(yx)L−d−1(1− y

x)d−1 (L−1)!
(L−d−1)!(d−1)!

for y ∈ [0, x]. Therefore

E((sinh y)βN−δd(cosh y)(1−β)N+δd)′|y=x−Yd

=

∫ x

0
((sinh y)βN−δd(cosh y)(1−β)N+δd)′

1

x
(
y

x
)L−d−1(1− y

x
)d−1 (L− 1)!

(L− d− 1)!(d− 1)!
dy .

(1.51)

We will split the above integral into two parts according to whether y is smaller or greater

than x
2 , and denote by J1(d) the integral over [0, x2 ] and by J2(d) the integral over [x2 , x].

On one hand, for y ∈ [0, x2 ], by Lemma 1.6 we have

((sinh y)βN−δd(cosh y)(1−β)N+δd)′ ≤ ((sinh y)βN−δ
L
2 (cosh y)(1−β)N+δL2 )′

= (sinh y)βN−δ
L
2−1(cosh y)(1−β)N+δL2−1((βN − δL

2
) cosh y + ((1− β)N + δ

L

2
) sinh y) .

Since cosh y ≤ cosh(x2 ) and sinh y ≤ sinh(x2 ) for y ∈ [0, x2 ], we have

((sinh y)βN−δd(cosh y)(1−β)N+δd)′ ≤ C8N(sinh(
x

2
))βN−δ

L
2−1(cosh(

x

2
))(1−β)N+δL2−1

≤ C8N(sinh(
x

2
))βN−δ

γ(1+2ε)N
2 (cosh(

x

2
))(1−β)N+δ

γ(1+ε)N
2
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where the last inequality follows from Property (a) of Definition 1.5. Therefore

L
2∑

d=1

(d+ 1)J1(d) ≤ C9N
3(sinh(

x

2
))βN−δ

γ(1+2ε)N
2 (cosh(

x

2
))(1−β)N+δ

γ(1+ε)N
2

≤ C9N
3rN (sinhx)βN (coshx)(1−β)N , (1.52)

where 0 < r < 1 is a constant that depends only on β. Here we used the fact (by brute force

computation) that

(sinh(x2 ))β−δ
γ(1+2ε)

2 (cosh(x2 ))(1−β)+δ
γ(1+ε)

2

(sinhx)β(coshx)1−β ≤ r < 1 .

On the other hand, for y ∈ [x2 , x], we have coth y ≤ coth(x2 ) and tanh y ≤ tanh(x). Thus

((sinh y)βN−δd(cosh y)(1−β)N+δd)′
1

x

= (sinh y)βN−δd(cosh y)(1−β)N+δd((βN − δd) coth y + ((1− β)N + δd) tanh y) 1
x

≤ C10N(sinh y)βN−δd(cosh y)(1−β)N+δd

≤ C11N((sinh y)βN (cosh y)(1−β)N )(coth y)δ(d−2) .

Therefore, the integrand of (1.51) is smaller than

C11N((sinh y)βN (cosh y)(1−β)N )ϕ(x, y, d, β,N, L) for y ∈ [x2 , x], where

ϕ(x, y, d, β,N, L) = (coth y)δ(d−2)(
y

x
)L−d−1(1− y

x
)d−1 (L− 1)!

(L− d− 1)!(d− 1)!
,

and thus

L
2∑

d=1

(d+ 1)J2(d) ≤ C11N

∫ x

x
2

((sinh y)βN (cosh y)(1−β)N )

L
2∑

d=1

(d+ 1)ϕ(x, y, d, β,N, L) dy .(1.53)
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Now for d = 1, we have

(d+ 1)ϕ(x, y, d, β,N, L) = 2(tanh y)δ(yx)L−2(L− 1) ≤ C12(yx)L−2(L− 1) . (1.54)

In addition, for d ≥ 2, we have

(d+ 1)ϕ(x, y, d, β,N, L)

= (1− y

x
)(coth y)δ(d−2)(1− y

x
)d−2(

y

x
)L−d−1 (L− 3)!

(L− d− 1)!(d− 2)!
(L− 1)(L− 2)

(d+ 1)

(d− 1)

≤ 3(1− y

x
)L2 · [((coth y)δ)(1− y

x
)]d−2(

y

x
)L−d−1 (L− 3)!

(L− d− 1)!(d− 2)!
.

Observing that the second factor of the product in the previous line is a binomial term, we

have

L
2∑

d=2

(d+ 1)ϕ(x, y, d, β,N, L) ≤ 3(1− y
x)L2 · ((coth y)δ(1− y

x) + y
x)L−3 . (1.55)

Combining (1.54) and (1.55) and using Property (a) of Definition 1.5, we have

L
2∑

d=1

(d+1)ϕ(x, y, d, β,N, L) ≤ C12(
y

x
)γ(1−2ε)N (L−1)+3L2(1−y

x
)((coth y)δ(1−y

x
)+
y

x
)γ(1+ε)N .

Therefore (1.53) translates to

L
2∑

d=1

(d+ 1)J2(d) ≤C11N

∫ x

x
2

((sinh y)βN (cosh y)(1−β)N )·

(C12(yx)γ(1−2ε)N (L− 1) + 3L2(1− y
x)((coth y)δ(1− y

x) + y
x)γ(1+ε)N ) dy .

47



For convenience, let

ψ1(y) =
((sinh y)β(cosh y)1−β) · (yx)γ(1−2ε)

(sinhx)β(coshx)1−β ,

ψ2(y) =
((sinh y)β(cosh y)1−β) · ((coth y)δ(1− y

x) + y
x)γ(1+ε)

(sinhx)β(coshx)1−β ,

ψ3(y) = β ln sinh y + (1− β) ln cosh y .

We will show that for i ∈ {1, 2}, we have ψi(x) = 1 (which is trivial) and lnψi(y) ≤ −K(x−y)

for y ∈ [x2 , x], where K > 0 is a constant that only depends on β. These conditions on

ψ1(y) and ψ2(y) will guarantee that both
∫ x
x
2
N(ψ1(y))N dy and

∫ x
x
2
N2(x − y)(ψ2(y))N dy

are bounded as N →∞, so that (??) is bounded by C13N(sinhx)βN (coshx)(1−β)N .

It is relatively easy to check that ψ1(y) satisfies the second condition (i.e. lnψ1(y) ≤

−K(x− y)), so we focus on verifying it for ψ2(y). To start with, we have

lnψ2(y) = (ψ3(y)− ψ3(x)) + γ(1 + ε) ln((coth y)δ(1− y

x
) +

y

x
) .

For the first part of the sum on the right hand side, i.e. (ψ3(y)−ψ3(x)), we can first compute

the derivatives of ψ3(y) as follows:

ψ′3(y) = β coth y + (1− β) tanh y ,

ψ′′3 (y) = β(1− (coth y)2) + (1− β)(1− (tanh y)2) .

Since coth y ≥ cothx ≥ (1−β
β )

1
4 for y ≤ x, we have ψ′′3 (y) is increasing in y. Therefore, by

Taylor’s theorem (Lagrange form of the remainder) we find that for some ξ ∈ [y, x],

ψ3(y) = ψ3(x) + ψ′3(x)(y − x) +
ψ′′3 (ξ)

2
(y − x)2

≤ ψ3(x) + ψ′3(x)(y − x) +
ψ′′3 (x)

2
(y − x)2 . (1.56)
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For the second part of the sum, i.e. γ(1 + ε) ln((coth y)δ(1 − y
x) + y

x), we set C(y) :=

(coth y)δ − 1 and θ(y) := 1− y
x . Then

(coth y)δ(1− y

x
) +

y

x
= 1 + (1− y

x
)C(y) = 1 + θ(y)C(y) .

Clearly 0 ≤ θ(y)C(y) ≤ θ(x2 )C(x2 ) = 1
2((coth x

2 )δ − 1) ≤ 0.75. Since ln(1 + t) ≤ t − t2

3 for

0 ≤ t ≤ 0.75, we have

ln((coth y)δ(1− y

x
) +

y

x
) ≤ θ(y)C(y)− (θ(y))2(C(y))2

3
. (1.57)

Combining (1.56) and (1.57), we have

lnψ2(y) ≤ −ψ′3(x)x(1− y

x
) +

ψ′′3 (x)x2

2
(1− y

x
)2

+ γ(1 + ε)θ(y)C(y)− γ(1 + ε)
(θ(y))2(C(y))2

3

= θ(y)γ(1 + ε)[−θ(y)

3
(C(y))2 + C(y)− 1

γ(1 + ε)
(ψ′3(x)x−

ψ′′3 (x)x2

2
θ(y))] .

We wish to show that the factor in the square bracket above is less than some constant −η,

where η > 0 only depends on β, i.e. for any y ∈ [x2 , x]

−θ(y)

3
(C(y))2 + C(y)− 1

γ(1 + ε)
(ψ′3(x)x−

ψ′′3 (x)x2

2
θ(y)) ≤ −η .

Set c :=
ψ′′3 (x0)x2

0
2γ . Since |x−x0| < ι = ε2, and ε can be made arbitrarily small, we only need

to show that for some constant η1 > 0 which only depends on β, for any y ∈ [x2 , x]

−θ(y)

3
(C(y))2 + C(y)− 1 + cθ(y) ≤ −η1 .

To do this, we let q(s) := −θ(y)
3 s2 +s−1+cθ(y). Solving the quadratic equation q(s) = 0

with respect to s, we get the smaller root (since θ(y) ∈ [0, 1/2] for y ∈ [x2 , x] and c > −1/3,
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q(s) always has two roots)

r(y) :=
−1 +

√
1− 4θ(y)

3 (1− cθ(y))

−2θ(y)
3

, for y ∈ [
x

2
, x] .

We claim that we only need to show that for any x
2 ≤ y ≤ x, C(y) ≤ r(y) − η2 for some

constant η2 > 0 which only depends on β. Indeed, if this holds true, then from q′(s) =

−2θ(y)
3 s + 1, we see that q′(C(y)) = −2

3θ(y)C(y) + 1 ≥ 0.5 and q′(C(y) + η2) = q′(C(y))−
2θ(y)

3 η2 ≥ 0.5 − 2
3η2. Consequently 0 = q(r(y)) ≥ q(C(y) + η2) ≥ q(C(y)) + η2(0.5 − 2

3η2)

and we can take η1 = η2(0.5− 2
3η2).

To this end, we first point out that r(y) is convex in y if c < 1
3 , r(y) is concave in y if

c > 1
3 and r(y) ≡ 1 if c = 1

3 . This can be seen by observing that r =
−1+

√
1−4θ

3 (1−cθ)
−2θ

3

is the

inverse function of θ = r−1
r2
3 −c

, whose properties such as monotonicity and convexity are not

hard to justify. Now if c < 1
3 , then by convexity of r(y), we have

r(y) ≥ r′(
3x

4
)(y − 3x

4
) + r(

3x

4
) := t(y)

where t(y) can be computed as

t(y) = −1

x
(

120√
3c+ 24

− 24)(y − 3x

4
) + 6−

√
3c+ 24 .

Since C(y) is convex in y, we only need to have t(x) ≥ C(x) + η2 and t(x2 ) ≥ C(x2 ) + η2, i.e.,

− 30√
3c+ 24

+ 12−
√

3c+ 24 ≥ (cothx)δ − 1 + η2 (1.58)

and

30√
3c+ 24

−
√

3c+ 24 ≥ (coth
x

2
)δ − 1 + η2 . (1.59)

If c = 1
3 , then r(y) ≡ 1, which is a degenerate case. If c > 1

3 , then since r(y) is concave in y,
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we only need to have r(x) ≥ C(x) + η2 and r(x2 ) ≥ C(x2 ) + η2, i.e.,

1 ≥ (cothx)δ − 1 + η2 (1.60)

and

3−
√

3(c+ 1) ≥ (coth
x

2
)δ − 1 + η2 . (1.61)

All of the inequalities (1.58), (1.59), (1.60) and (1.61) boil down to comparisons of constants

which only involve x0 (since |x − x0| < ι = ε2 and ε can be made arbitrarily small), so we

have finally shown that (??) is bounded by C13N(sinhx)βN (coshx)(1−β)N .

Combining (1.50), (1.51), (1.52), (??) and the fact that F (v0, vL) ≤

N(f(x))N−1f ′(x) when d = 0, we conclude that
∑L

2
d=0

∑
d1+d2=d F (vd1

, vL−d2
) ≤

C ′2N(sinhx)βN (coshx)(1−β)N for some C ′2 > 0.

Lemma 1.9. For any sufficiently small but fixed number ε > 0, there exist C ′3 > 0 and an

integer N ′ > 0 which both depend only on ε, such that for all |x−x0| ≤ ι, N > N ′, any good

path P and any j we have
∑L

2
i=1 F (vj , vj+i) ≤ 1 +

C ′3
N .

Proof. The proof can be carried out in the same manner as that of Lemma 1.5, except that

the role of α + ε3 in Case (e) there is now played by γ+ε3
2g(1/2)

. We thus omit the details.

Corollary 1.3. For any sufficiently small but fixed number ε > 0, there exist C ′4 > 0 and

an integer N ′ > 0 which both depend only on ε, such that for all |x− x0| ≤ ι and N > N ′

EZ2
N,x,∗ ≤ (C ′4N(sinhx)βN (coshx)(1−β)N + C ′4)N(sinhx)βN (coshx)(1−β)N .

Proof. This follows from Lemmas 1.8 and 1.9 in the same manner as Corollary 1.2 follows

from Lemmas 1.4 and 1.5.

Proposition 1.3. There exists 0 ≤ K ′ < 1 such that, if lim inf
N→∞

P(ZN,xc+εN > 0) ≥ C for
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some constant C ≥ 0 whenever NεN →∞, then whenever NεN →∞ we have

lim inf
N→∞

P(ZN,xc+εN > 0) ≥ 1− (1− C)K ′ .

Proof. The basic idea is the same as Proposition 1.2. Fix a large integer M . We first choose

vertices A1, . . . AM , B1, . . . , BM and C1, . . . , CM , D1, . . . , DM such that for 1 ≤ i ≤M :

• The only coordinate at which Ai−1 and Ai differ is ai. The only coordinate at which

Bi−1 and Bi differ is bi. The only coordinate at which Ci−1 and Ci differ is ci.

The only coordinate at which Di−1 and Di differ is di (set A0 = C0 = ~0N and

B0 = D0 = (~1βN ,~0N−βN ) for convenience).

• All of the 4M coordinates ai, bi, ci and di are different and are among the first βN

coordinates.

• X(Ai), X(Ci) ∈ [
(i−1)εN

4M , iεN4M ] and X(Bi), X(Di) ∈ [x− iεN
4M , x− (i−1)εN

4M ].

Since NεN →∞, this can be achieved with probability 1− oN (1).

Now let M2 =
(1−β)
β 2M , and select distinct coordinates e1, e2, · · · , eM2

and

f1, f2, · · · , fM2
arbitrarily among the last (1−β)N coordinates. Let H̃1 be the (N−2M−M2)

dimensional sub-hypercube formed by AM and BM with the coordinates e1, e2, · · · , eM2
be-

ing 0, i.e.,

H̃1 = {σ ∈ HN :σei = 0 for all 1 ≤ i ≤M2, σai = 1 for all 1 ≤ i ≤M,

σbi = 0 for all 1 ≤ i ≤M} .

Similarly, let H̃2 be the (N −2M −M2) dimensional sub-hypercube formed by CM and DM
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with the coordinates f1, f2, · · · , fM2
being 0, i.e.,

H̃2 = {σ ∈ HN :σfi = 0 for all 1 ≤ i ≤M2, σci = 1 for all 1 ≤ i ≤M,

σdi = 0 for all 1 ≤ i ≤M} .

Let H ′2 = H̃2 \ H̃1. Denote by p
H̃1

and pH ′2
the probabilities that there is an accessible

path in H̃1 (from AM to BM ) and H ′2 (from CM to DM ) respectively. Since H̃1 and H ′2

are disjoint, by independence we have P(ZN,xc+εN > 0) ≥ 1− (1− pH1
)(1− pH ′2)− oN (1).

From the construction above it is clear that we are reduced to accessibility percolation of

dimension (N − 2M −M2) (with the same β) with x ≥ xc + εN/2, in either H̃1 (from AM

to BM ) or H̃2 (from CM to DM ). Thus,

p
H̃1
≥ P(ZN−2M−M2,xc+εN/2

> 0) ≥ C − oN (1) .

To show that pH ′2
is bounded from below by a positive constant 1 − K ′, we only con-

sider the good path in H̃2 (from CM to DM ) which updates each of coordinates a1 and b1

precisely once and b1 is updated before a1. Such paths must be contained in H ′2. Clearly,

the number of such accessible paths has second moment less than EZ2
N−2M−M2,xc+εN/2,∗

and first moment within an absolute multiplicative constant of EZN−2M−M2,xc+εN/2,∗ (or

MN−2M−M2,β,xc+εN/2
). Combined with Lemma 1.7 and Corollary 1.3, this yields that

pH ′2
≥ 1 −K ′ − oN (1) for some constant K ′ < 1. This completes the proof of the proposi-

tion.

Proof of (1.2): general case Applying Proposition 1.3 recursively (starting from C = 0)

completes the proof of (1.2).

Proof of (1.3): general case The proof is basically the same as in the antipodal

case except that for the upper bound, the role of sinh(x) is now played by f(x) =
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(sinhx)β(coshx)1−β .

1.4 Asymptotics for the global maximum of the NK fitness

model

In this section we give a proof of Theorem 1.2. Our proof relies on the following observation,

which can be proved in the same way as part of the proof of Proposition 3 in [9].

Proposition 1.4. For fixed N , the global maximum of the NK fitness model MN,K is stochas-

tically nondecreasing in K.

Proof of Theorem 1.2

(a) Clearly we have limN→∞
EMN,N
N = x∗. Thanks to Proposition 1.4, we only need to

show that if K →∞ and K
N → 0 as N →∞, we have lim infN→∞

EMN,K
N ≥ x∗.

We divide the N coordinates into [NK ] blocks of length K. We use the following algorithm

to find a σ̂ ∈ {0, 1}N such that Xσ̂ is large. First we set the coordinates of σ̂ in the

first block to be 0: σ̂1 = σ̂2 = · · · = σ̂K = 0. For each stage j = 1, . . . , [NK ] − 1, we set

(σ̂jK+1, σ̂jK+2, · · · , σ̂(j+1)K) to be the maximizer of

max
(σjK+1,σjK+2,··· ,σ(j+1)K)∈{0,1}K

K+1∑
i=2

Yi+(j−1)K,(σi+(j−1)K ,··· ,σi+jK−1).

Finally we set σ̂i = 0 for [NK ]K+1 ≤ i ≤ N . Note that for each j = 1, . . . , [NK ]−1, we have

{
∑K+1
i=2 Yi+(j−1)K,(σi+(j−1)K ,··· ,σi+jK−1) : (σjK+1, σjK+2, · · · , σ(j+1)K) ∈ {0, 1}K} be-

haves exactly as a binary branching random walk (BRW) of depth K. Furthermore, this

BRW is independent of all BRWs in the previous stages. By Theorem 4 of [20] we have

E
K+1∑
i=2

Yi+(j−1)K,(σ̂i+(j−1)K ,··· ,σ̂i+jK−1) = Kx∗ − 3

2I ′(x∗)
logK +OK(1).
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Summing this over j = 1, . . . , [NK ]− 1, we have

EMN,K ≥ EXσ̂ = ([
N

K
]− 1)(Kx∗ − 3

2I ′(x∗)
logK +OK(1)) + (N − ([

N

K
]− 1)K)E(Y ),

which gives us lim infN→∞
EMN,K
N ≥ x∗.

(b) By Proposition 1.4 again, we have lim supN→∞
EMN,K
N ≤ lim supN→∞

EMN,K0
N < x∗.
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CHAPTER 2

CHEMICAL DISTANCES FOR PERCOLATION OF PLANAR

GAUSSIAN FREE FIELDS AND CRITICAL RANDOM WALK

LOOP SOUPS

2.1 Introduction

For an N × N box VN ⊆ Z2 centered at the origin, we let the discrete Gaussian free field

(GFF) {ηN,v : v ∈ VN} with Dirichlet boundary condition be a mean zero Gaussian process

which takes value 0 on ∂VN and has covariances given by

EηN,vηN,u =
1

4
GVN (u, v) ,

where GVN (u, v) is the Green’s function for simple random walk, i.e., the expected number

of visits to v before exiting VN for a simple random walk started at u. The first goal of

the present paper is to study chemical distances (i.e., graph distances) on the percolation

cluster for level sets of GFF. Precisely, for any λ ∈ R, we let HN,λ = {v ∈ VN : ηN,v ≤ λ}

be the λ-level sets, i.e., the collection of all vertices with values no more than λ. In the

context of no confusion, we also denote by HN,λ the induced subgraph on HN,λ. For

u, v ∈ VN , we let DN,λ(u, v) be the graph distance between u and v if u, v are in the same

connected component of HN,λ, and let DN,λ(u, v) = ∞ otherwise. For A,B ⊆ VN , we

denote DN,λ(A,B) = minu∈A,v∈B DN,λ(u, v).

Theorem 2.1. For any 0 < α < β < 1, there exist constants c > 0, λ0 > 0 such that for all

N

P(DN,λ(∂VαN , ∂VβN ) ≥ Ne(logN)9/10
) ≤ c−1(e−cλ

2
+N−20), for all λ ≥ λ0 .

Remark 2.1. Note that even for any fixed λ < 0, the event DN,λ(∂VαN , ∂VβN ) ≤

Ne(logN)9/10
in Theorem 2.1 occurs with non-vanishing probability; see Corollary 2.1. In
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addition, we expect that for any fixed λ, the probability for DN,λ(∂VαN , ∂VβN ) < ∞ is

strictly less than 1; we do not study this in the present paper so as not to dilute the focus.

We next consider the random walk loop soup introduced in [51], which is a discrete ana-

logue of the Brownian loop soup [52]. For convenience, we follow [53] where the loops are

endowed with a continuous-time parametrization. Formally, let (Xt) be a continuous-time

sub-Markovian jump process on VN which is killed at the boundary. Given two neighboring

vertices x and y, let the transition rate from x to y be 1. Let (Ptx,y(·))x,y∈VN ,t>0 be the bridge

probability measures of X conditioned on not killed until time t, and let (pt(x, y))x,y∈VN ,t≥0

be the transition probabilities of X. Then the measure µ on time-parametrized loops asso-

ciated to X is, as defined in [53],

µ(·) =
∑
x∈VN

∫ ∞
0

Ptx,x(·)pt(x, x)

t
dt . (2.1)

For α > 0, the random walk loop soup with intensity α on VN , denoted as Lα,N , is defined

to be the Poisson point process on the space of loops with intensity αµ. Naturally Lα,N

induces a subgraph (which we also denote as Lα,N ) of GN where an edge is open if it is

contained in a loop in Lα,N . Our next theorem is on chemical distances (which we denote

by DL1/2,N
(·, ·)) of such loop clusters at its critical intensity αc = 1/2.

Theorem 2.2. For any 0 < α < β < 1, there exists a constant c > 0 such that for all N

P(DL1/2,N
(∂VαN , ∂VβN ) ≤ Ne(logN)9/10

) ≥ c .

Remark 2.2. We expect that the probability for DL1/2,N
(∂VαN , ∂VβN ) <∞ is strictly less

than 1; see Remark 2.1.
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2.1.1 Backgrounds and related works

Chemical distances for percolation models is a substantially more challenging problem than

the question on connectivities. For instance, it is a major challenge to compute the exponent

on the chemical distance between (say) the left and right boundaries for the critical planar

percolation, conditioning on the existence of an open crossing. It was proved in [21] that

the dimension is strictly larger than 1, and it was shown in recent works [33, 34] that the

chemical distance is substantially smaller than the length of the lowest open crossing. Let us

remark that the current result does not imply that the exponent for the chemical distance is

strictly less than that of the lowest open crossing, despite that it was strongly believed so.

Due to the strong correlation and hierarchical nature of the two-dimensional GFF as well

as the random walk loop soup, our model is perhaps in spirit more closely related to the

fractal percolation process (see [31] for a survey). For fractal percolation process, it was

proved [32, 61] that the dimension of the chemical distance is strictly larger than 1 (which

suggests an interesting dichotomy in view of our dimension 1 results for the GFF and the

random walk loop soup).

As for loop soups, in two-dimensions the connectivity of the loop clusters has been studied

recently. In [65], it was shown that there is a phase transition around the critical intensity

αc = 1
2 for percolation of the Brownian loop soup, below which there are only bounded

clusters and above which the loops forms a single cluster. In recent works of [54, 55],

analogous results were proved for the random walk loop soup.

In three-dimensions or higher, there has been an intensive study on percolation of level

sets for GFF, random walks, random interlacements as well as random walk loop soups; see,

e.g., [66, 67, 63, 30]. In fact, much on the chemical distances for these percolation models

has been studied; see [28, 40, 29]. We remark that there is a drastic difference between

two-dimensions and higher dimensions.

Besides chemical distances, other metric aspects of two-dimensional GFF has been

studied recently: see [56] on the random pseudo-metric defined via the zero-set, and see
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[39, 37, 36, 38] for some progress on the first passage percolation on the exponential of these

underlying fields.

Finally, the random walk loop soup percolation is naturally related to the following

percolation dimension question for planar random walks (Brownian motion) proposed in [42,

26]. Run the random walk until it exits the boundary of a box and declare a vertex to be open

if it is visited and closed otherwise. Then what is the dimension of the minimal open crossing

from the origin to the boundary? We are currently not able to prove something for this

question, for the crucial reason that we are not able to construct a coupling between GFFs

and random walks under which an event on GFFs will certify “small” chemical distances for

random walk percolation models.

2.1.2 Discussions on main proof ingredients

Our proofs of Theorems 2.1 and 2.2 are based on an interesting combination of a theorem of

Makarov, isomorphism theory and an entropic repulsion estimate for GFF in the presence

of hard wall. In this subsection, we will provide a brief review on these three ingredients.

A theorem of Makarov. A fundamental ingredient for our proofs, is a classical theorem

of Makarov [58] which states that the dimension of the support for the harmonic measure

on simply connected domain in R2 is 1. In this article, we will use a discrete analogue

of Makarov’s theorem which was proved in [48] by approximating Brownian motions with

random walks (and then using [58]). Previous to [58], the Beurling’s projection theorem

(see, e.g., [23, Theorem V.4.1.], and see [45, 49] for its discrete analogue) was established,

which gives an (achievable) upper bound on the maximal local expansion of the harmonic

measure compared with 1-dimensional Hausdorff measure (in the language of simple random

walk, it states that the harmonic measure at a lattice point on a simply connected curve of

diameter n is bounded by O(1/
√
n)). In a sense, Makarov’s theorem states that the upper

bound in Berling’s estimate cannot be achieved globally, and thus providing a much better

control (than that guaranteed by Beurling’s projecting theorem) on the global expansion
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and compression of harmonic measure. Finally, we remark that examples have been given in

[60, 27], in which the harmonic measure is singular to the 1-dimensional Hausdorff measure.

In our opinion, this suggests that Question 2.4 below could be of serious challenge.

Isomorphism theory. The distribution of the occupation times for random walks can be

fully characterized by Gaussian free fields; results of this flavor go by the name of isomorphism

theorems (see [59, 53, 68, 64] for an excellent account on this topic). Of significance to the

present article is the following version of isomorphism theorem between occupation times for

random walk loop soups and Gaussian free fields shown in [53].

Recall the definition of random walk loop soups Lα,N . We define the associated occupa-

tion time field (L̂xα)x∈VN by

L̂xα =
∑

γ∈Lα,N

∫ T (γ)

0
1γ(t)=xdt

where T (γ) is the duration of the loop γ. The isomorphism theorem in [53] states that

{L̂x1/2 : x ∈ VN}
law
= {1

2
η2
N,x : x ∈ VN} (2.2)

(Note that this holds for random walks in general graphs). Recently, couplings between

random walks/random walk loop soups and Gaussian free fields have been developed in [54],

where the signs of GFFs are incorporated in the coupling in order to provide certificate for

vertices/edges not visited by random walks/random walks loop soups. The paper [54] was

motivated by connectivity of the loop soup clusters as well as random interlacement. Inde-

pendent of [54], such coupling was established for random walks in [71] with the application

of deriving an exponential concentration for cover times. The work [71] was motivated by

[35], where such coupling was proved for general trees and questioned for general graphs; the

advance in [54] was independent of [35].

In fact, using the coupling derived in [54] only allows us to prove a version of Theorem 2.2
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for Lupu’s loop soup on the metric graph introduced in [54]; see Section 2.3 and in particular

Theorem 2.3. In order to deal with the random walk loop soup, we will use a recent advancing

on the random current model for random walk loop soups. A random current model on a

graph, say GN = (VN , EN ) in our case, is the probability measure P with

P((ne)e∈EN ) ∝
∏
e∈EN

(βe)
ne

ne!
, (2.3)

where (ne)e∈EN are nonnegative integers such that
∑
v∈e ne is even for any v ∈ VN , and

(βe)e∈EN are positive parameters on EN . Conditioning on {L̂v
1/2

= `v}v∈VN , let (ne)e∈EN

be a random current model with parameters βe = 2
√
`x`y on edge e = (x, y).

It was shown in [70, 57, 46] (see [46, Theorem 1] for a formal statement) that conditioning

on the local times the distribution of (ne)e∈EN is the same as that of the number of jumps

of the random walk loop soup L1/2,N along each e ∈ EN , and therefore (1ne>0)e∈EN has

the same distribution as the graph induced by L1/2,N on VN .

We remark that the random current representation played a crucial role in a recent work

[22] which proved the continuity of spontaneous magnetization for the three-dimensional

Ising model at the critical temperature. Finally, we remark that the random Eulerian graph

model considered in [35] (which was used to reconstruct the number of visits to vertices from

the continuous occupation times) was of high resemblance of the random current model.

Entropic repulsions. Unlike the Lupu’s loop soup, the clusters for the critical random

walk loop soup is strictly dominated by the sign clusters of the GFF on the metric graph.

In order to address this, we apply the aforementioned random current model and see that

the loop clusters dominates a generalized sign cluster on the metric graph, where we replace

each original edge (which can be viewed as a unit resistor) by two edges and assign the

conductances so that it sums to 1. This is summarized in Lemma 2.3. When employing

the proof idea of Theorem 2.3, we encounter a problem which amounts to bound the typical

value of a GFF under the conditioning of staying positive in a subset. Results of this type, on
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such entropic repulsions for two-dimensional GFFs under the presence of hard wall, has been

obtained in [41, 24]. Our set up is slightly more complicated (and somewhat non-standard),

and dealing with it forms the main technical ingredient in Section 2.4. As standard in

this type of problems, our proof crucially relies on the FKG inequality [43, 62] and the

Brascamp-Lieb inequality [25].

2.1.3 Open problems

Our results motivate a number of interesting questions, as we list below.

Question 2.1. For the random walk loop soup in the supercritical regime (i.e., with intensity

strictly larger than 1
2), is the dimension of the chemical distance 1 with high probability?

Question 2.2. Can one prove an analogous result for Brownian loop soups?

Next, we will ask a number of questions in the context of level set percolation for GFF,

but one can ask natural analogous questions for loop soups as well as random walks. We

feel that, perhaps the questions regarding to GFF may be answered before that on random

walks.

Question 2.3. Under assumptions of Theorem 2.1, is the dimension of chemical distance 1

with high probability conditioned on the existence of an open crossing?

Question 2.4. Under assumptions of Theorem 2.1, is the length of minimal open crossing

O(n) with positive probability?

Question 2.5. Under assumptions of Theorem 2.1, is the number of disjoint open crossings

tight?

Finally, we pose a question regarding to universality of Theorem 2.1, whose difficulty is

due to the crucial role of Makarov’s theorem (which seems to only apply for GFF) in the

proof of Theorem 2.1. In fact, we choose to keep an open mind on whether such universality

holds, in light of a non-universality result in [39].
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Question 2.6. Does an analogous result to Theorem 2.1 hold for all log-correlated Gaussian

fields?

2.2 Percolation for Gaussian free fields

This section is devoted to the proof of Theorem 2.1. For notation convenience, we say a

vertex v is λ-open (or open if no risk of confusion) if v ∈ HN,λ, and λ-closed (or closed)

otherwise. For any A,B ⊆ VN , we denote by A
≤λ←→ B the event that there exists a λ-open

path P connecting A and B, i.e., DN,λ(A,B) <∞.

2.2.1 One-arm estimate: a warm up argument

In this subsection, we give a warm up argument on level set percolation for GFF. Despite

being rather simple, the argument is a clear demonstration of the fundamental idea of the

paper, which allows to take advantage of the Markov field property in studying percolations.

We remark that a similar argument was employed in [69, Section 3].

Proposition 2.1. For any 0 < α < β < 1, there exists a constant c > 0 such that for all

λ > 0

P(∂VαN
≤λ←→ ∂VβN ) ≥ 1− 2e−cλ

2
.

Proof. By duality, the complement of the event {∂VαN
≤λ←→ ∂VβN} is the same as the event

that there exists a λ-closed contour C ⊆ VβN surrounding VαN . We let C be the collection

of all such contours. It suffices to estimate P(C 6= ∅).

To this end, we consider a natural partial order on all contours. For any contour C,

we let C̄ be the collection of vertices that are surrounded by C. For two contours C1 and

C2, we say C1 ≤ C2 if C̄1 ⊆ C̄2. A key observation is that this partial order generates a

well-defined (unique) global minimum on C, which we denote by C∗. Furthermore, for any
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contour C ⊆ VβN surrounding VαN , we have

{C∗ = C} ∈ FC̄
4
= σ({ηN,v : v ∈ C̄}) . (2.4)

Define

X =
1

|∂V(1+β)N/2|
∑

v∈∂V(1+β)N/2

ηN,v . (2.5)

We will need the following standard estimates on simple random walks; we include a proof

merely for completeness.

Lemma 2.1. For any fixed 0 < r < 1, there exist constants c1, c2 > 0 which depend on r

such that ∑
v∈∂VrN

GVN (u, v) ≤ c1N, ∀u ∈ ∂VrN (2.6)

and

GVN (u, v) ≥ c2, ∀u, v ∈ VrN . (2.7)

Furthermore, for any 0 < α < β < 1, there exists a constant c3 > 0 such that for all

u ∈ ∂VβN , the simple random walk started at u will hit ∂VαN before ∂VN with probability at

least c3.

Proof. For convenience we assume that VN is centered at the origin. Let Sn = (S1,n, S2,n)

be a simple random walk on Z2. It is clear that if S is on ∂VrN at some point, in the

next step it will move to some vertex on ∂VrN+1 with probability at least 1/4, and after

that, it will hit ∂VN before ∂VrN with probability at least 1
(1−r)N (since max{|S1,n|, |S2,n|}

is a submartingale). Therefore, a simple random walk started at any u ∈ ∂VrN will in

expectation visit ∂VrN at most 4(1 − r)N times before hitting ∂VN . This proves our first

bound (2.6).

For the second bound (2.7), let ε = 1−r
100 . Denote by u = (u1, u2) and v = (v1, v2). By

independence of the simple random walks in x and y-coordinates, there exists c′ = c′(r) such
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that with probability at least c′ the simple random walk started at u will hit some point v∗

in the vertical line x = v1 before exiting VN or before the y-coordinate deviates by more

than εN ; started from v∗, there is again probability at least c′ for the simple random walk

to hit the horizontal line y = v2 before the horizontal coordinate deviates by more than

εN . Altogether, there is probability at least (c′)2 for the random walk to hit the `∞-ball

of radius εN around v before exiting VN . At this point, an application of [50, Proposition

4.6.2, Theorem 4.4.4.] completes the verification of (2.7).

The last statement of lemma was implicitly proved in the above derivation of (2.7).

As a simple corollary of (2.6), there exists a constant c4 > 0 which depends on β such

that

VarX =
1

4

1

|∂V(1+β)N/2|2
∑

u,v∈∂V(1+β)N/2

GVN (u, v) ≤ c4 (2.8)

and thus we also have Var(X | FC̄) ≤ c4.

By the Markov property of the GFF, we have for each v ∈ ∂V(1+β)N/2

E(ηN,v | FC̄) =
∑
u∈C

Hm(v, u; C ∪ ∂VN ) · ηN,u . (2.9)

Here for a set A, we use Hm(v, u;A) to denote the harmonic measure at u with respect to

starting point v and the target set A ( i.e., Hm(v, u;A) = Pv(SτA = u), where (Sn) is a

simple random walk on Z2 and τA is the first time it hits set A). We further denote by

Hm(v,B;A) =
∑
u∈B Hm(v, u;A). Now on the event {C∗ = C} , we have ηN,u ≥ λ for all

u ∈ C. Combined with Lemma 2.1, it gives that

E(ηN,v | FC̄) ≥ λHm(v, C; C ∪ ∂VN ) ≥ λHm(v, ∂VαN ; ∂VαN ∪ ∂VN ) ≥ c3λ . (2.10)

Therefore, we have E(X | FC̄) ≥ c3λ on the event {C∗ = C}. Thus,

P(X ≥ c3λ/2 | FC̄) ≥ 1− P(Z(c4) ≥ c3λ/2) on the event {C∗ = C} ,
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where we denote by Z(c4) a mean zero Gaussian variable with variance c4. Since {C∗ =

C} ∈ FC̄ , we have

P(X ≥ c3λ/2 | C∗ = C) ≥ 1− P(Z(c4) ≥ c3λ/2) .

Summing this over all possible contours C ⊆ VβN surrounding VαN , we obtain that

P(X ≥ c3λ/2 | C 6= ∅) ≥ 1− P(Z(c4) ≥ c3λ/2) .

Combined with the simple fact that

P(X ≥ c3λ/2) ≤ P(Z(c4) ≥ c3λ/2) (2.11)

it follows that

P(C 6= ∅) ≤ P(X ≥ c3λ/2)

P(X ≥ c3λ/2 | C 6= ∅)
≤ P(Z(c4) ≥ c3λ/2)

1− P(Z(c4) ≥ c3λ/2)
.

This completes the proof of the proposition.

2.2.2 Proof of Theorem 2.1

Consider λ > 0. Our goal is to provide a lower bound on the probability that there exists a

λ-open path with length less than Ne(logN)9/10
connecting ∂VαN and ∂VβN . Therefore we

may restrict our attention to λ-open paths connecting ∂VαN and ∂VβN that do not touch

the interior of VαN or VN \ VβN . This motivates the following exploration procedure. We

set A0 = ∂VαN ∩ HN,λ, B0 = ∂VαN \ HN,λ, C0 = ∂VαN , and for i = 0, 1, 2, . . ., we define
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inductively

Ai+1 = {v ∈ ((VN \ VαN ) \ Ci) ∩HN,λ : v ∼ u for some u ∈ Ai} ,

Bi+1 = {v ∈ ((VN \ VαN ) \ Ci) \HN,λ : v ∼ u for some u ∈ Ai} ∪ Bi ,

Ci+1 = ∪i+1
j=0Aj ∪ Bi+1 .

In other words, Ci records all the vertices that have been explored before (or at) stage i. At

stage i+ 1, we check all the neighbors of Ai that is in VN \ VαN and has not been explored:

if the vertex is in HN,λ then we put it to Ai+1, otherwise we put it to Bi+1. It is clear

that Ai records all the vertices in VN \VαN that are of chemical distance i to ∂VαN , and Bi

records all the closed vertices we have encountered. Furthermore, we observe that

• Ai’s are disjoint from each other.

• Ci is a connected set in VN \ VαN .

• ∂Ci (the boundary points of Ci) is a subset of Ai ∪ Bi ∪ A0.

• Let C′i
4
= {u : Hm(∞, u; Ci) > 0}. Then C′i ⊆ ∂Ci and C′i∩A0 = ∅, so that C′i ⊆ Ai∪Bi.

Now suppose that the event E 4= {DN,λ(∂VαN , ∂VβN ) ≥ Ne(logN)9/10} occurs, then we

must have that Ci is disjoint from VN \VβN for all 0 ≤ i < Ne(logN)9/10
. Further, since Ai’s

are disjoint from each other, we see (from a simple volume consideration) that there exists

at least an i0 < Ne(logN)9/10
such that

|Ai0| ≤ Ne−(logN)9/10
. (2.12)

We let τ be the minimal number i0 which satisfies (2.12). In summary, we have

E ⊆ E ′ 4=
⊔

0≤k<Ne(logN)9/10

(A0,...Ak,B0,...Bk)∈Pk

{τ = k} ∩ {Ai = Ai,Bi = Bi for 0 ≤ i ≤ k} (2.13)
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where Pk indicates all (A0, . . . Ak, B0, . . . Bk) that are compatible with E and {τ = k}∩{Ai =

Ai,Bi = Bi for 0 ≤ i ≤ k}. In particular, they should satisfy:

• Denote Ck
4
= ∪ki=0Ai ∪Bk. Then Ck is a connected set in VβN \ VαN .

• Denote C ′k
4
= {u : Hm(∞, u;Ck) > 0}. Then C ′k ⊆ Ak ∪Bk.

• |Ak| ≤ Ne−(logN)9/10
.

Now we fix any 0 ≤ k < Ne(logN)9/10
and any (A0, . . . Ak, B0, . . . Bk) ∈ Pk. It is not

hard to verify that

{τ = k} ∩ {Ai = Ai,Bi = Bi for 0 ≤ i ≤ k} ∈ FCk . (2.14)

Conditioning on FCk , the field {ηN,v : v ∈ VN \ Ck} is again distributed as a GFF. In

particular, for each v ∈ ∂V(1+β)N/2, we have

E(ηN,v | FCk) =
∑
u∈Ck

Hm(v, u;Ck ∪ ∂VN ) · ηN,u . (2.15)

Since Ck ⊆ VβN \ VαN , we have from Lemma 2.1

Hm(v, Ck;Ck ∪ ∂VN ) ≥ Hm(v, ∂VαN ; ∂VαN ∪ ∂VN ) ≥ c3 . (2.16)

In addition, we have that

{u ∈ Ck : Hm(v, u;Ck ∪ ∂VN ) > 0} = {u : Hm(∞, u;Ck) > 0} = C ′k ⊆ Ak ∪Bk . (2.17)

We want to show that Hm(v,Ak;Ck ∪ ∂VN ) is small. First, we note that

Hm(v,Ak;Ck ∪ ∂VN ) ≤ Hm(v, Ak;Ck) . (2.18)
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By a combination of Theorem 1.7.6 (Harnack principle), Theorem 2.1.3 and Exercise 2.1.4

in [47], we have for constants c6, c7, c8 > 0 which depend on β, any u ∈ Ck and arbitrary

w ∈ ∂V20N

Hm(v, u;Ck) ≤ c6Hm(w, u;Ck) ≤ c7Hm(8N, u;Ck) ≤ c8Hm(∞, u;Ck) ,

where Hm(8N, u;Ck) corresponds to theHm
A (y) in [47, Theorem 2.1.3] with A = Ck, m = 8N

and y = u. Therefore,

Hm(v,Ak;Ck) ≤ c8Hm(∞, Ak;Ck) . (2.19)

Since Ck is a connected set of radius between (α/2)N and 2N , by [48, Proposition 4.1] we

deduce that for constants c9, c10 > 0 depending only on α

Hm(∞, {u ∈ Ck : Hm(∞, u;Ck) > c9N
−1e(logN)4/5

};Ck) ≤ c10(logN)−20 .

Therefore,

Hm(∞, Ak;Ck) = Hm(∞, Ak ∩ {u ∈ Ck : Hm(∞, u;Ck) ≤ c9N
−1e(logN)4/5

};Ck)

+Hm(∞, Ak ∩ {u ∈ Ck : Hm(∞, u;Ck) > c9N
−1e(logN)4/5

};Ck)

≤ (c9N
−1e(logN)4/5

) ·Ne−(logN)9/10
+ c10(logN)−20

= o(logN)−10 . (2.20)

Combining (2.18), (2.19) and (2.20), we finally have

Hm(v, Ak;Ck ∪ ∂VN ) = o(logN)−10 . (2.21)

Combined with (2.16) and (2.17), it yields that

Hm(v,Bk;Ck ∪ ∂VN ) ≥ c3 − o(logN)−10 .
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Now on the event {τ = k} ∩ {Ai = Ai,Bi = Bi for 0 ≤ i ≤ k}, we have by definition that

ηN,u ≥ λ for all u ∈ Bk, so we can derive from (2.15) that

E(ηN,v | FCk) =
∑
u∈Ck

Hm(v, u;Ck ∪ ∂VN ) · ηN,u

=
∑
u∈Ak

Hm(v, u;Ck ∪ ∂VN ) · ηN,u +
∑
u∈Bk

Hm(v, u;Ck ∪ ∂VN ) · ηN,u

≥ (c3 − o((logN)−10))λ− o((logN)−10) sup
u∈VN

|ηN,u| .

Define Λbad = {supu∈VN |ηN,u| ≥ 100 logN}. By a straightforward computation, we

have

P(Λbad) ≤ N−20 . (2.22)

We can assume without loss that Λbad does not occur. To be precise, for sufficiently large

N , on the event {τ = k} ∩ {Ai = Ai,Bi = Bi for 0 ≤ i ≤ k} \ Λbad, we have

E(ηN,v | FCk) ≥ 9c3λ/10 .

Recall the definition of X in (2.5). Then on the same event, we have E(X | FCk) ≥ 9c3λ/10

and Var(X | FCk) ≤ VarX ≤ c4. Thus (still on the same event),

P(X ≥ c3λ/2 | FCk) ≥ 1− P(Z(c4) ≥ 2c3λ/5) ,

where Z(c4) is a mean zero Gaussian variable with variance c4. By (2.14), this gives

P(X ≥ c3λ/2, τ = k,Ai = Ai,Bi = Bi for 0 ≤ i ≤ k)

= E(P(X ≥ c3λ/2 | FCk)1{τ=k}∩{Ai=Ai,Bi=Bi for 0≤i≤k})

≥ (1− P(Z(c4) ≥ 2c3λ/5))P({τ = k} ∩ {Ai = Ai,Bi = Bi for 0 ≤ i ≤ k} \ Λbad) .

70



Summing this over all 0 ≤ k < Ne(logN)9/10
and all (A0, . . . Ak, B0, . . . Bk) ∈ Pk and using

(2.13), we have

P(X ≥ c3λ/2) ≥ (1− P(Z(c4) ≥ 2c3λ/5))P(E ′ \ Λbad) .

Therefore,

P(E) ≤ P(E ′) ≤ P(E ′ \ Λbad) + P(Λbad)

≤ P(X ≥ c3λ/2)

1− P(Z(c4) ≥ 2c3λ/5)
+ P(Λbad)

≤ P(Z(c4) ≥ c3λ/2)

1− P(Z(c4) ≥ 2c3λ/5)
+ P(Λbad) .

Combined with (2.22), this completes the proof of Theorem 2.1.

2.3 Percolation of the continuous loop soup

In this section we prove an analogous result to Theorem 2.2 for the continuous loop soups

defined on the metric graph of GN = (VN , EN ) at critical intensity 1/2. The result in this

section will not be used in the derivation of Theorem 2.2. However, our proof method of

Theorem 2.2 is hugely inspired by the consideration of the continuous loop soup. Therefore,

we include the present section, with the hope of conveying the source of insight.

The continuous loop soup as well as the Gaussian free field on the metric graph were

considered in [54]. We follow the setup and definitions there. We let G̃N be the metric

graph (or the cable system) of GN where each edge in G̃N has length 1
2 . On G̃N we can

define a standard Brownian motion BG̃N , so that BG̃N when restricted to VN is the same

as the aforementioned continuous-time sub-Markovian jump process (Xt). Let GG̃N
(u, v) be

the Green’s function of BG̃N , so that for u, v ∈ VN , GG̃N
(u, v) = 1

4GVN (u, v), the Green’s

function of (Xt). Let {η̃N,v : v ∈ G̃N} be the Gaussian free field on G̃N with covariance

function GG̃N
(u, v). Then the restriction of {η̃N,v : v ∈ G̃N} to VN is the same as the
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Gaussian free field {ηN,v : v ∈ VN}. Moreover, {η̃N,v : v ∈ G̃N} can be obtained from

{ηN,v : v ∈ VN} by (for each edge e = (u, v)) independently sampling a variance 2 Brownian

bridge of length 1
2 with values ηN,u and ηN,v at the endpoints. In particular, as shown in

[54] {η̃N,v : v ∈ G̃N} has a continuous realization.

Now we can associate to BG̃N a measure µ̃N on continuous loops in G̃N , and for each

α > 0 consider the continuous loop soup L̃α,N which is a Poisson point process with intensity

αµ̃N . The loops of L̃α,N may be partitioned into clusters. For u, v ∈ G̃N , we define the

chemical distance of L̃α,N between u and v by

DL̃α,N
(u, v) = min

γ
|γ| ,

where the minimum is over all path γ ⊆ G̃N joining u and v that stays within a cluster of

L̃α,N .

Theorem 2.3. For any 0 < α < β < 1, there exists a constant c > 0 such that for all N

P(DL̃1/2,N
(∂VαN , ∂VβN ) ≤ Ne(logN)9/10

) ≥ c .

Remark 2.3. We expect that the probability for DL̃1/2,N
(∂VαN , ∂VβN ) <∞ is strictly less

than 1; see Remark 2.1.

By [54, Proposition 2.1], there is a coupling between L̃1/2,N and a continuous version of

{η̃N,v : v ∈ G̃N} such that the clusters of loops of L̃1/2,N are exactly the sign clusters of

{η̃N,v : v ∈ G̃N}. In light of this, define

Dη̃N (u, v) = min
γ
|γ| ,

where the minimum is over all path γ ⊆ G̃N joining u and v such that η̃N,γ are of the

same sign (plus or minus). In order to prove Theorem 2.3, it suffices to prove the following

proposition.
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Proposition 2.2. For any 0 < α < β < 1, there exists a constant c > 0 such that for all N

P(Dη̃N (∂VαN , ∂VβN ) ≤ Ne(logN)9/10
) ≥ c .

Proof. For a compact connected set K ⊆ G̃N and any v ∈ G̃N \K, let TK∪∂VN ,v be the first

time the Brownian motion BG̃N started at v hits K ∪ ∂VN . It is clear that B
G̃N
TK∪∂VN ,v

can

only take on finitely many values u in K ∪ ∂VN . Therefore for such u ∈ K ∪ ∂VN we can

define

H̃m(v, u;K ∪ ∂VN )
4
= Pv(BG̃NTK∪∂VN ,v

= u)

(and set H̃m(v, u;K ∪ ∂VN ) = 0 otherwise) to be the harmonic measure of BG̃N at u with

respect to starting point v and target set K ∪ ∂VN .

Our proof strategy is similar to that of Theorem 2.1. Consider the following exploration

procedure on G̃N . Let A0 = ∂VαN , B0 = ∅ and Ĩ0 = ∂G̃αN . For i = 0, 1, 2, . . ., at stage

(i+ 1)

• We set initially Ai+1 = ∅, Bi+1 = Bi and Ĩi+1 = Ĩi.

• If Ai = ∅, stop. Otherwise, for each v ∈ Ai and every edge e = (v, u) incident to v, if

u ∈ VN \VαN and the neighborhood of v along e does not belong to Ĩi, we go (explore)

from v along e to u until we reach a zero for {η̃N}. In the case no zero is reached, we

add all the points in e into Ĩi+1 and add u, if it is not already in ∪ij=0Aj , into Ai+1;

in the case that the first zero is reached at w ∈ e, we add all the points between v and

w into Ĩi+1 and add w into Bi+1.

In summary, Ai records all the lattice points in VN \ VαN that are of chemical distance

(under Dη̃N ) i to ∂VαN ; Bi records all the zeros reached in the exploration procedure up to

stage i; Ĩi records all the points that have been explored (including the internal points of

edges) up to stage i.

It is clear from the construction that
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• Ĩi is a compact connected set in G̃N \ G̃αN .

• Ai’s are disjoint from each other. ∪ij=0Aj is exactly the set of all the lattice points in

Ĩi.

• ∂Ĩi (the boundary points of Ĩi) is a subset of Ai ∪ Bi ∪ Ĩ0.

• Let Ci
4
= {u : H̃m(∞, u; Ĩi) > 0}. Then Ci ⊆ ∂Ĩi and Ci∩ Ĩ0 = ∅, so that Ci ⊆ Ai∪Bi.

Suppose that the event E 4= {Dη̃N (∂VαN , ∂VβN ) > Ne(logN)9/10} occurs, then Ĩi must

be a subset of G̃βN \G̃αN for all 0 ≤ i < Ne(logN)9/10
. Further, let τ be the minimal number

i0 which satisfies

|Ai0| ≤ Ne−(logN)9/10
.

Then since Ai’s are disjoint from each other, we have τ < Ne(logN)9/10
on the event E .

Conditioning on Fτ
4
= σ({η̃N,v : v ∈ Ĩτ}), by the strong Markov property in [54, Section

3], {η̃N,v : v ∈ G̃N \ Ĩτ} is distributed as a mean zero GFF in G̃N \ Ĩτ plus the harmonic

extension of η̃N,v from Ĩτ to G̃N \ Ĩτ . In particular, on the event E where Ĩτ is contained in

G̃βN \ G̃αN , we have for each v ∈ ∂V(1+β)N/2

E(η̃N,v | Fτ ) =
∑
u∈Ĩτ

H̃m(v, u; Ĩτ ∪ ∂VN ) · η̃N,u =
∑
u∈Cτ

H̃m(v, u; Ĩτ ∪ ∂VN ) · η̃N,u . (2.23)

By definition we know that η̃N,u = 0 for all u ∈ Bτ . Thus

∑
u∈Bτ

H̃m(v, u; Ĩτ ∪ ∂VN ) · η̃N,u = 0 . (2.24)

We want to show that H̃m(v,Aτ ; Ĩτ ∪ ∂VN ) is small. Let Dτ = ∪τj=0Aj be the set of all

the lattice points in Ĩτ . Then Dτ contains Aτ and A0(= ∂VαN ) by definition, and it is a

connected subgraph of GN . Since Dτ is a subset of Ĩτ , and the print of BG̃N on VN is the
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same as the simple random walk on VN , we have

H̃m(v,Aτ ; Ĩτ ∪ ∂VN ) ≤ Hm(v,Aτ ;Dτ ∪ ∂VN ) . (2.25)

On the event E , Ĩτ is contained in G̃βN \G̃αN . Therefore Dτ is a connected set in VβN \VαN

of radius between (α/2)N and 2N . Moreover |Aτ | ≤ Ne−(logN)9/10
. Therefore by (2.21),

we have

Hm(v,Aτ ;Dτ ∪ ∂VN ) = o(logN)−10 . (2.26)

Let Λbad = {supu∈VN |η̃N,u| ≥ 100 logN} be as before. Then on the event E \ Λbad,

combining (2.23), (2.24), (2.25) and (2.26) gives

E(η̃N,v | Fτ ) = o(logN)−8

and therefore

|E(X | Fτ )| = o(logN)−8 < ε

for some ε > 0 and sufficiently large N . Now

VarX =
1

4

1

|∂V(1+β)N/2|2
∑

u,v∈∂V(1+β)N/2

GVN (u, v)

and on the event E ,

Var(X | Fτ ) =
1

|∂V(1+β)N/2|2
∑

u,v∈∂V(1+β)N/2

GG̃N\Ĩτ
(u, v)

≤ 1

4

1

|∂V(1+β)N/2|2
∑

u,v∈∂V(1+β)N/2

GVN\VαN (u, v) .

75



Lemma 2.2. There exists a constant c11 > 0 which depends on α and β such that

1

4

1

|∂V(1+β)N/2|2
(

∑
u,v∈∂V(1+β)N/2

GVN (u, v)−
∑

u,v∈∂V(1+β)N/2

GVN\VαN (u, v)) ≥ c11 . (2.27)

Proof. We consider two scenarios where in scenario (1) we kill the random walk upon hitting

∂VN and in scenario (2) we kill the random walk upon hitting ∂VαN ∪ ∂VN . For any

u ∈ ∂V(1+β)N/2, we will compare the expected number of visits to ∂V(1+β)N/2 of a simple

random walk started at u in these two scenarios. On the event E that it hits ∂VN before

∂VαN , it will visit ∂V(1+β)N/2 the same number of times in both scenarios (1) and (2).

On the complement of E (i.e. it hits ∂VαN before ∂VN ), however, it will come back to

some w ∈ ∂V(1+β)N/2, and will then (conditionally in expectation) visit ∂V(1+β)N/2 exactly∑
v∈∂V(1+β)N/2

GVN (w, v) more times in scenario (1) than in scenario (2). Since we have

a uniform lower bound of
∑
v∈∂V(1+β)N/2

GVN (w, v) (by (2.7)) and that P(Ec) ≥ c3 by

Lemma 2.1, we see that

∑
v∈∂V(1+β)N/2

GVN (u, v)−
∑

v∈∂V(1+β)N/2

GVN\VαN (u, v) ≥ c3c2|∂V(1+β)N/2| ,

and (2.27) follows by summing this over all u ∈ ∂V(1+β)N/2.

Therefore we have VarX − Var(X | Fτ ) ≥ c11 on the event E by (2.27) and also recall

that VarX ≤ c4 by (2.8). Now let t = ε + s
√

VarX − c11 where s > 0 is a constant to be

chosen later. Since given Fτ , X is Gaussian, we have on the event E \ Λbad

P(X ≤ t | Fτ ) ≥ P(Z(ε,VarX − c11) ≤ t) = P(Z ≤ s) ,

where Z(ε,VarX − c11) is a Gaussian variable with mean ε and variance VarX − c11, and
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Z is a standard Gaussian variable. In addition, we have

P(X ≤ t) = P(Z ≤ ε+ s
√

VarX − c11√
VarX

) .

Since c11 ≤ VarX ≤ c4, we have 0 ≤
√

VarX−c11√
VarX

≤
√
c4−c11√
c4

< 1, so

ε+ s
√

VarX − c11√
VarX

≤ ε
√
c11

+ s

√
c4 − c11√
c4

≤ s(

√
c4−c11√
c4

+ 1

2
)

for a sufficiently large constant s > 0. Therefore (recalling
√
c4−c11√
c4

< 1)

P(E \ Λbad) ≤
P(Z ≤ ε+s

√
VarX−c11√
VarX

)

P(Z ≤ s)
≤

P(Z ≤ s(

√
c4−c11√
c4

+1

2 ))

P(Z ≤ s)
< 1 .

Combined with (2.22), this completes the proof of the proposition.

Finally, we remark that, using an almost identical proof of Proposition 2.2, we can prove

the following result.

Corollary 2.1. For all 0 < α < β < 1 and λ > 0, there exists a constant c > 0 such that

for all N

P(DN,−λ(∂VαN , ∂VβN ) ≤ Ne(logN)9/10
) ≥ c .

2.4 Percolation of the random walk loop soup

This section is devoted to the proof of Theorem 2.2, into which the three main proof ingredi-

ents merge. Recall that as stated in (2.2), the occupation time field {L̂v
1/2
}v∈VN of L1/2,N has

the same law as {1
2η

2
N,v}v∈VN ; and as stated around (2.3), conditioning on {L̂v

1/2
= `v}v∈VN ,

the graph of L1/2,N has the same law as (1ne>0)e∈EN , where (ne)e∈EN follows the random

current model (see (2.3)) with parameters βe = 2
√
`x`y on edge e = (x, y).
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Each edge of GN = (VN , EN ) has conductance 1. In this section we will consider a graph

G′N = (VN , EN (1) ∪ EN (2)), where we replace each edge e ∈ EN in the graph GN by two

multiple edges e(1) and e(2) and assign conductance 1/8 to e(1) and conductance 7/8 to

e(2), and we denote EN (1) = {e(1) : e ∈ EN} and EN (2) = {e(2) : e ∈ EN}. The graph

G′N is equivalent to GN in the sense that the Gaussian free fields on GN and G′N have the

same law.

As in [54], we will consider the Gaussian free field on the metric graph G̃′N of G′N . The

metric graph G̃′N can be obtained from G′N by assigning each edge e(1) ∈ EN (1) length 4

and each edge e(2) ∈ EN (2) length 7/4. Let BG̃
′
N be a standard Brownian motion on G̃′N ,

let GG̃′N
(u, v) be the Green’s function of BG̃

′
N , and let {η̃′N,v : v ∈ G̃′N} be a continuous

realization of the Gaussian free field on G̃′N with covariances given by GG̃′N
(u, v). The

restriction of {η̃′N,v : v ∈ G̃′N} to VN is the same as the Gaussian free field {ηN,v : v ∈ VN}.

Moreover, {η̃′N,v : v ∈ G̃′N} can be obtained from {ηN,v : v ∈ VN} by, for each edge

e′ = (x, y) ∈ EN (1) ∪ EN (2), independently sampling a variance 2 Brownian bridge of the

same length as e′ with values ηN,x and ηN,y at the endpoints.

We now describe a coupling between the random walk loop soup cluster L1/2,N and a

graph O obtained from {η̃′N,v : v ∈ G̃′N}. Fix some λ > 0. We say an edge e ∈ EN is open

if η̃′N,v > λ for all v ∈ e(1) (which we denote as η̃′
N,e(1)

> λ for notation convenience, and

the similar applies to the case of < −λ) or η̃′N,v < −λ for all v ∈ e(1). Let O be the graph

(seen as a subgraph of GN = (VN , EN )) induced by these open edges.

Lemma 2.3. For any λ ≥ 2, the graph O is stochastically dominated by L1/2,N . That is to

say, we have (1η̃′
N,e(1)

>λ or η̃′
N,e(1)

<−λ)e∈EN is stochastically dominated by (1ne>0)e∈EN .

Proof. Since {1
2(η̃′N,v)2}v∈VN and {L̂v

1/2
}v∈VN both have the same law as {1

2η
2
N,v}v∈VN , we

only need to show the stochastic dominance of O when conditioned on the former, by L1/2,N

when conditioned on the latter (with the same realization).

On one hand, conditioning on {η̃′N,v}v∈VN we see that 1η̃′
N,e(1)

>λ or η̃′
N,e(1)

<−λ’s are inde-

pendent Bernoulli variables with mean pe’s, where (we let (Bt) be a Brownian motion with
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variance 2 at time 1)

pe =


P(Bt > λ,∀t ∈ [0, 4] | B0 = η̃′N,x, B4 = η̃′N,y), if η̃′N,x, η̃

′
N,y > λ ,

P(Bt < −λ,∀t ∈ [0, 4] | B0 = η̃′N,x, B4 = η̃′N,y), if η̃′N,x, η̃
′
N,y < −λ ,

0, otherwise.

In the case when η̃′N,x, η̃
′
N,y > λ (the other case is essentially the same), by the reflection

principle we get that

1− pe = e−
(η̃′
N,x

+η̃′
N,y
−2λ)2

16 /e−
(η̃′
N,x
−η̃′
N,y

)2

16 = e
−1

4 (η̃′N,x−λ)(η̃′N,y−λ)
.

Therefore, conditioning on {1
2(η̃′N,v)2 = `v}v∈VN , we have (1η̃′

N,e(1)
>λ or η̃′

N,e(1)
<−λ)e∈EN is

stochastically dominated by independent Bernoulli’s with mean p′e’s, where

p′e =


1− e−

1
4 (
√

2`x−λ)(
√

2`y−λ), if `x, `y >
λ2

2 ,

0, otherwise.

On the other hand, conditioning on {L̂v
1/2

= `v}v∈VN , the graph of L1/2,N has the same

law as (1ne>0)e∈EN , where (ne)e∈EN follows the random current model (as in (2.3)) with

parameters βe = 2
√
`x`y on edge e = (x, y). Note that if we further condition on the

parities of (ne)e∈EN , then n(e)’s are independent with distribution F1,βe if n(e) is odd and

distribution F2,βe if n(e) is even. Here F1,βe and F2,βe are both probability distributions on

nonnegative integers such that

F1,βe(n) =
(βe)

n

n! sinh βe
for n = 1, 3, 5, . . . and F2,βe(n) =

(βe)
n

n! cosh βe
for n = 0, 2, 4, . . .

This implies that, conditioning on {L̂v
1/2

= `v}v∈VN and the parities of (ne)e∈EN , 1ne>0’s

are independent Bernoulli variables with mean p′′e ’s, where p′′e = 1 if n(e) is odd and p′′e =
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1− 1/ cosh βe if n(e) is even. However, for `x, `y >
λ2

2 and λ ≥ 2, we have

1/ cosh βe ≤ 2/eβe = 2/e2
√
`x`y

≤ e−
√
`x`y

≤ e−
1
4 (
√

2`x−λ)(
√

2`y−λ) = 1− p′e .

Therefore, conditioning on {L̂v
1/2

= `v}v∈VN , we have (1ne>0)e∈EN stochastically dominates

independent Bernoulli’s with mean p′e’s.

Combining the above two parts completes the proof of the lemma.

Remark 2.4. It is worth pointing out that for our proof strategy to go through, it suffices

as long as the law of the edge visits conditioned on vertex local times dominates the random

current model as in (2.3) for βe ≥ c
√
`x`y for some fixed positive constant c (since we can

tune the resistance on e(1) and e(2)). The fact that c = 2 is of no importance to us. This

flexibility may be useful when attempting to extend our proof strategy to some other contexts.

In light of Lemma 2.3, define (for > λ, the definition for < −λ is similar)

Dη̃′N ,EN (1),>λ(u, v) = min
γ
|γ| ,

where the minimum is over all path γ ⊆ VN ∪ EN (1) ⊆ G̃′N joining u and v such that

η̃′N,x > λ for all x ∈ γ. In order to prove Theorem 2.2, it suffices to prove the following

proposition.

Proposition 2.3. For any 0 < α < β < 1, there exists a constant c > 0 such that for all N

P(min{Dη̃′N ,EN (1),>λ(∂VαN , ∂VβN ), Dη̃′N ,EN (1),<−λ(∂VαN , ∂VβN )} ≤ Ne(logN)9/10
) ≥ c .

Proof. For the rigor of proof (when applying e.g., FKG inequality later), we will consider the

following discrete approximation of the exploration procedure. We let ΠN = (VN ∪EN (1))∩
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1
N3Z2 be an N3-discretization of VN ∪EN (1). In particular, we will only examine the values

of η̃′N,v for v ∈ ΠN in the following exploration procedure. Initially we set

A>λ0 = {v ∈ ∂VαN : η̃′N,v > λ+
1

N
}, A<−λ0 = {v ∈ ∂VαN : η̃′N,v < −λ−

1

N
} ,

B0 = {v ∈ ∂VαN : |η̃′N,v| ≤ λ+
1

N
}, C>λ0 = A>λ0 , C<−λ0 = A<−λ0 .

For i = 0, 1, 2, . . ., at stage (i+ 1), we run the exploration procedure as follows:

• We set initiallyA>λi+1 = A<−λi+1 = ∅, B=λ
i+1 = B=−λ

i+1 = ∅ and C>λi+1 = C>λi , C<−λi+1 = C<−λi .

• If A>λi = ∅, stop. Otherwise, for each v ∈ A>λi and every edge e(1) = (v, u) ∈ EN (1)

incident to v, if u ∈ VN \ VαN and the neighborhood of v along e(1) does not belong

to C>λi , we go (explore) from v along e(1) to u until we reach a point w ∈ ΠN with

η̃′N,w ≤ λ + 1
N . In the case no such w is reached, we add all the points in e(1) ∩ ΠN

(including v and u) into C>λi+1 and add u, if it is not already in ∪ij=0A
>λ
j , into A>λi+1; in

the case that the first such w ∈ ΠN is reached on e(1), we add w into B=λ
i+1, and add

all the points in e(1) ∩ ΠN between v and w (but not w) into C>λi+1.

• We employ a similar procedure for the version of < −λ.

Let Λbad = {supv∈VN |η̃
′
N,v| ≥ 100 logN} be as before. Define

Λc = {|η̃′N,u − η̃
′
N,v| ≤

1

N
,∀e(1) ∈ EN (1) and u, v ∈ e(1) such that |u− v| ≤ 1

N3
} . (2.28)

Since conditioning on {η̃′N,v : v ∈ VN}, we have {η̃′
N,e(1)

: e(1) = (x, y) ∈ EN (1)} are

independent variance 2 Brownian bridges (which are Hölder continuous of any order less

than 1/2) of length 4 with values η̃′N,x and η̃′N,y at the endpoints, we see that

P(Λc) ≥ P(Λcbad)(1− oN (1)) = 1− oN (1) . (2.29)
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Denote

E 4= {min{Dη̃′N ,EN (1),>λ(∂VαN , ∂VβN ), Dη̃′N ,EN (1),<−λ(∂VαN , ∂VβN )} > Ne(logN)9/10
} .

Suppose that both events E and Λc occur, then by (2.28) we must have that C>λi and C<−λi

are both disjoint from VN \ VβN for all 0 ≤ i < Ne(logN)9/10
. Further, since all of the A>λi

and A<−λi where 0 ≤ i < Ne(logN)9/10
are disjoint from each other, we see that there exists

at least an i0 < Ne(logN)9/10
such that

|A>λi0 ∪ A
<−λ
i0
| ≤ Ne−(logN)9/10

. (2.30)

Moreover (still on the event E ∩ Λc), for all 1 ≤ i < Ne(logN)9/10
, we have by (2.28) again

λ < η̃′N,v ≤ λ+
1

N
for all v ∈ B=λ

i and − λ− 1

N
≤ η̃′N,v < −λ for all v ∈ B=−λ

i .

It is clear that for any k ≥ 0, from C>λk = C>λk and C<−λk = C<−λk we can determine

(uniquely) the sets A>λi ,A<−λi ,B=λ
i ,B=−λ

i for all 1 ≤ i ≤ k as well as B0. We denote them

as A>λi , A<−λi , B=λ
i , B=−λ

i for all 1 ≤ i ≤ k and B0, respectively. They are all functions

of C>λk and C<−λk . We let Pk denote all (C>λk , C<−λk ) such that C>λk and C<−λk are both

disjoint from VN \ VβN , and such that

min{i0 : |A>λi0 ∪ A
<−λ
i0
| ≤ Ne−(logN)9/10

} = k . (2.31)

In summary of the discussions above, we have

E ∩ Λc ⊆
⊔

0≤k<Ne(logN)9/10

(C>λk ,C<−λk )∈Pk

E
C>λk ,C<−λk

(2.32)
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where

E
C>λk ,C<−λk

=

{η̃′N,v > λ+
1

N
for all v ∈ C>λk , η̃′N,v < −λ−

1

N
for all v ∈ C<−λk ,

λ < η̃′N,v ≤ λ+
1

N
for all v ∈ ∪ki=1B

=λ
i , −λ− 1

N
≤ η̃′N,v < −λ for all v ∈ ∪ki=1B

=−λ
i ,

|η̃′N,v| ≤ λ+
1

N
for all v ∈ B0} . (2.33)

Denote Ik
4
= B0 ∪ (∪ki=1B

=λ
i ) ∪ (∪ki=1B

=−λ
i ) ∪ C>λk ∪ C<−λk . Then (2.33) above is

FIk measurable. Conditioning on FIk , the field {η̃′N,u : u ∈ G̃′N \ Ik} is distributed as a

GFF with boundary condition {η̃′N,v : v ∈ Ik} and zero on ∂VN . In particular, for each

u ∈ ∂V(1+β)N/2, we have

E(η̃′N,u | FIk) =
∑
v∈Ik

H̃m
′
(u, v; Ik ∪ ∂VN ) · η̃′N,v . (2.34)

Here H̃m
′
(u, v;K) denotes the harmonic measure of BG̃

′
N at v with respect to starting point

u and target set K.

From the definition of our exploration procedure, we know that for any u ∈ ∂V(1+β)N/2,

we have {v ∈ Ik : H̃m
′
(u, v; Ik ∪ ∂VN ) 6= 0} ⊆ J1 ∪ J2 ∪ J3 ∪ J4, which can be described as

follows.

• J1 = B0.

• J2 = (∪ki=1B
=λ
i ) ∪ (∪ki=1B

=−λ
i ).

• For each v ∈ J3, we have v ∈ A>λi (or v ∈ A<−λi respectively) for some 0 ≤ i ≤ k − 1,

and on an edge e(1) = (v, v′) ∈ EN (1) there is a w ∈ B=λ
i+1 (or w ∈ B=−λ

i+1 respectively).

In particular, each v ∈ J3 must satisfy that v ∈ VN and that v has Euclidean distance

less than 1 to a point w ∈ J2.

• J4 = A>λk ∪ A<−λk .
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Define

X =
1

|∂V(1+β)N/2|
∑

u∈∂V(1+β)N/2

η̃′N,u .

Further define

X1 =
1

|∂V(1+β)N/2|
∑

u∈∂V(1+β)N/2

∑
v∈J1

H̃m
′
(u, v; Ik ∪ ∂VN ) · η̃′N,v ,

X2 =
1

|∂V(1+β)N/2|
∑

u∈∂V(1+β)N/2

∑
v∈J2

H̃m
′
(u, v; Ik ∪ ∂VN ) · η̃′N,v ,

X3 =
1

|∂V(1+β)N/2|
∑

u∈∂V(1+β)N/2

∑
v∈J3

H̃m
′
(u, v; Ik ∪ ∂VN ) · η̃′N,v ,

X4 =
1

|∂V(1+β)N/2|
∑

u∈∂V(1+β)N/2

∑
v∈J4

H̃m
′
(u, v; Ik ∪ ∂VN ) · η̃′N,v .

Then by (2.34), we have

E(X | FIk) = X1 +X2 +X3 +X4 .

It is clear that |X1| ≤ λ + 1
N and |X2| ≤ λ + 1

N always hold. Let Dk = (∪ki=0A
>λ
i ) ∪

(∪ki=0A
<−λ
i ) ∪B0 be the set of all the lattice points in Ik. Then J4 ⊆ Dk ⊆ Ik, so that

H̃m
′
(u, J4; Ik ∪ ∂VN ) ≤ H̃m

′
(u, J4;Dk ∪ ∂VN ) . (2.35)

Since |J4| ≤ Ne−(logN)9/10
by (2.31), we have by (2.21)

H̃m
′
(u, J4;Dk ∪ ∂VN ) = Hm(u, J4;Dk ∪ ∂VN ) = o(logN)−10 ,

and therefore H̃m
′
(u, J4; Ik ∪ ∂VN ) = o(logN)−10. Recall that Λbad = {supv∈VN |η̃

′
N,v| ≥

100 logN}. Then if the event Λbad does not occur, we have |X4| = o(logN)−8.
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It now remains to control X3 on the event E
C>λk ,C<−λk

. To be more precise, we consider

any fixed {xN,v}v∈B0∪(∪ki=1B
=λ
i )∪(∪ki=1B

=−λ
i )

such that

|xN,v| ≤ λ+
1

N
for all v ∈ B0, λ < xN,v ≤ λ+

1

N
for all v ∈

k⋃
i=1

B=λ
i ,

−λ− 1

N
≤ xN,v < −λ for all v ∈

k⋃
i=1

B=−λ
i .

We define three events H=, H+, H− as follows:

• H= = {η̃′N,v = xN,v for all v ∈ B0 ∪ (∪ki=1B
=λ
i ) ∪ (∪ki=1B

=−λ
i )};

• H+ = {η̃′N,v > λ+ 1
N for all v ∈ C>λk };

• H− = {η̃′N,v < −λ−
1
N for all v ∈ C<−λk }.

We will show that conditioning on H= ∩H− ∩H+, we have

(a) E(X3 | H=, H+, H−) ≤ λ+ 1
N + C0 where C0 is a constant;

(b) Var(X3 | H=, H+, H−) = oN (1) (where we use oN (1) to denote a quantity that only

depends on N and tends to 0 as N →∞).

As a corollary of (a) and (b), conditioning on {H=, H+, H−}, we have X3 itself is

bounded from above by λ + C0 + 1 with probability (1 − oN (1)). By integrating over

all {xN,v}v∈B0∪(∪ki=1B
=λ
i )∪(∪ki=1B

=−λ
i )

, we see that there exists a FIk measurable event

E ′
C>λk ,C<−λk

⊆ E
C>λk ,C<−λk

such that on the event E ′
C>λk ,C<−λk

\ Λbad, we have E(X | FIk)

is bounded from above by a constant ∆, and moreover

P(E ′
C>λk ,C<−λk

) ≥ (1− oN (1))P(E
C>λk ,C<−λk

) . (2.36)

Now on the event E ′
C>λk ,C<−λk

\ Λbad, we have E(X | FIk) ≤ ∆ and VarX − Var(X |

FIk) ≥ c11 > 0 by (2.27) (also recall that VarX ≤ c4 by (2.8)). Let t = ∆ + s
√

VarX − c11.
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Then on the event E ′
C>λk ,C<−λk

\ Λbad, we have

P(X ≤ t | FIk) ≥ P(Z(∆,VarX − c11) ≤ t) = P(Z ≤ s) ,

where Z(∆,VarX − c11) is a Gaussian variable with mean ∆ and variance VarX − c11, and

Z is a standard Gaussian variable. Therefore (since E ′
C>λk ,C<−λk

is FIk measurable)

P(X ≤ t, E ′
C>λk ,C<−λk

) = E(P(X ≤ t | FIk)1E ′
C>λ
k

,C<−λ
k

) ≥ P(Z ≤ s)P(E ′
C>λk ,C<−λk

\ Λbad) .

Summing this over all 0 ≤ k < Ne(logN)9/10
and all (C>λk , C<−λk ) ∈ Pk, we have

P(X ≤ t) ≥ P(Z ≤ s)P((
⊔

0≤k<Ne(logN)9/10

(C>λk ,C<−λk )∈Pk

E ′
C>λk ,C<−λk

) \ Λbad) .

Therefore, for a sufficiently large constant s > 0 and a constant c′ > 0, we have

P(
⊔

0≤k<Ne(logN)9/10

(C>λk ,C<−λk )∈Pk

E ′
C>λk ,C<−λk

) ≤ P(X ≤ t)

P(Z ≤ s)
+ P(Λbad) ≤ 1− c′ .

Combined with (2.36), (2.32) and (2.29), this gives us the result of the proposition.

It remains to prove (a) and (b), which are incorporated in Lemmas 2.4 and 2.5 below.

Lemma 2.4. There exists a constant C0 > 0 such that for any v ∈ J3, we have

E(η̃′N,v | H=, H+, H−) ≤ λ+
1

N
+ C0 .

Proof. If for some 0 ≤ i ≤ k − 1, v ∈ A<−λi , then clearly we have E(η̃′N,v | H=, H+, H−) ≤

−λ− 1
N ≤ λ+ 1

N +C0. So in what follows we assume that for some 0 ≤ i ≤ k− 1, v ∈ A>λi
and on an edge e(1) = (v, v′) ∈ EN (1) there is a w ∈ B=λ

i+1. This type of argument is known
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as the entropic repulsion estimates in the presence of a hard wall [41, 24]. Our context is

close to [41] with some slight complication, and our proof essentially follows from the same

line of arguments.

First of all, we claim that there exist a function f(u) defined on G̃′N and absolute constants

C,C1 > 0 that can be taken to be arbitrarily large, such that f(u) is harmonic on G̃′N \{w},

i.e., f(u)|u∈VN∪{w} is harmonic on the discrete graph (VN ∪ {w}, E′N,w) except at w, and

f(u) is linear on each segment e′ ∈ E′N,w, where E′N,w = {e′ : e′ ∈ EN (1) ∪EN (2) and w /∈

e′} ∪ {(v, w), (w, v′)}. In addition, we have that

|f(u)− C log(|u− w|+ 2)− C1| ≤ L(C) for all u ∈ G̃′N , (2.37)

where L(C) is a function that only depends on C. In particular, we take C1 > L(C) so that

f(u) > 0 for all u ∈ G̃′N .

Indeed, by [41, (B17)] or [50, Theorem 4.4.4], there exist a function g(u) defined on Z2

and absolute constants C,C ′1 > 0 that can be taken to be arbitrarily large, such that g(u)

is harmonic on Z2 \ {(0, 0)} and |g(u)− C log(|u|+ 2)− C ′1| ≤ L′(C) for all u ∈ Z2 (where

L′(C) is a function that only depends on C). Now let us define for u ∈ G̃′N

f(u) =


|v′ − w|g(u− v) + |v − w|g(u− v′), if u ∈ VN ,

f(w), if u = w ,

linear interpolation between f(x) and f(y), if u ∈ e′ = (x, y) ∈ E′N,w ,

where

f(w) = (|v−w|2+|v′−w|2)g((0, 0))−8|v−w||v′−w|Dg((0, 0))+|v−w||v′−w|(g(v′−v)+g(v−v′))

and

Dg((0, 0)) = g((0, 1)) + g((0,−1)) + g((1, 0)) + g((−1, 0))− 4g((0, 0)) .
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Then by definition, f(u) is clearly harmonic on G̃′N \ {v, v
′, w}. To show that it is also

harmonic at v and v′, we have to verify that

(3 +
7

8
+

1

8|v − w|
)f(v) =

3∑
i=1

f(vi) +
7

8
f(v′) +

1

8|v − w|
f(w)

and

(3 +
7

8
+

1

8|v′ − w|
)f(v′) =

3∑
i=1

f(v′i) +
7

8
f(v) +

1

8|v′ − w|
f(w)

where v1, v2, v3 ∈ VN are the three neighbors of v other than v′, and v′1, v
′
2, v
′
3 ∈ VN are the

three neighbors of v′ other than v. We give the details for verification of the first identity

(the second one is similar) as follows:

3∑
i=1

f(vi) +
7

8
f(v′) +

1

8|v − w|
f(w)

=
3∑
i=1

(|v′ − w|g(vi − v) + |v − w|g(vi − v′)) +
7

8
(|v′ − w|g(v′ − v) + |v − w|g((0, 0)))

+
1

8|v − w|
f(w)

= |v′ − w|(Dg((0, 0)) + 4g((0, 0))− g(v′ − v)) + |v − w|(4g(v − v′)− g((0, 0)))

+
7

8
(|v′ − w|g(v′ − v) + |v − w|g((0, 0))) +

1

8|v − w|
f(w)

= (3 +
7

8
+

1

8|v − w|
)(|v′ − w|g((0, 0)) + |v − w|g(v − v′))

= (3 +
7

8
+

1

8|v − w|
)f(v) ,

where the penultimate equality follows by comparing the coefficients of g((0, 0)), Dg((0, 0)),

g(v′ − v) and g(v − v′). For completeness, we record the detailed computations on these
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coefficients here:

g((0, 0)) : 4|v′ − w|+ 1

8|v − w|
|v′ − w|2 − (3 +

7

8
+

1

8|v − w|
)|v′ − w|

= |v′ − w|(4 +
1− |v − w|

8|v − w|
− (3 +

7

8
+

1

8|v − w|
)) = 0

and − |v − w|+ 7

8
|v − w|+ 1

8|v − w|
|v − w|2 = 0 ;

Dg((0, 0)) : |v′ − w|+ 1

8|v − w|
(−8|v − w||v′ − w|) = 0 ;

g(v′ − v) : −|v′ − w|+ 7

8
|v′ − w|+ 1

8|v − w|
|v − w||v′ − w| = 0 ;

g(v − v′) : 4|v − w|+ 1

8|v − w|
|v − w||v′ − w| − (3 +

7

8
+

1

8|v − w|
)|v − w|

= |v − w|(4 +
1− |v − w|

8|v − w|
− (3 +

7

8
+

1

8|v − w|
))

= 0 .

Therefore we completed the verification that f(u) is harmonic on G̃′N \{w}, and (2.37) follows

easily from our definition of f(u).

We now claim that

E(η̃′N,v | H=, H+, H−) ≤ E(η̃′N,v | η̃
′
N,w = f(w)+λ+

1

N
, η̃′N,u = f(u)+λ+

1

N
∀u ∈ ∂VN ,

η̃′N,u > λ+
1

N
∀u ∈ ΠN \ {w}) . (2.38)

To show this, we follow [44, Appendix B.1]. We observe that {η̃′N,u : u ∈ ΠN ∪ ∂VN}

is a Gaussian free field indexed on a finite set (here we have actually added an artificial

site o, connected it to ∂VN , and conditioned on η̃′N,o = 0). In particular, its law µ has

density µ( dr) = exp(−H(r)) dr (here r = (ru)u∈ΠN∪∂VN denotes a general |ΠN | + |∂VN |

dimensional vector) such that for every r, r′ ∈ R|ΠN |+|∂VN |

H(r ∨ r′) +H(r ∧ r′) ≤ H(r) +H(r′) .
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For k > 0, we define

U (k)(t) =


kt4, if t < 0

0, if t ≥ 0

, V (k)(t) =


0, if t < 0

kt4, if t ≥ 0

, W (k)(t) = kt4 (2.39)

and

µ
(k)
1 ( dr) ∝ exp(−

∑
u∈B0∪(∪ki=1B

=λ
i )∪(∪ki=1B

=−λ
i )

W (k)(ru − xN,u)−
∑

u∈C>λk

U (k)(ru − λ−
1

N
)

−
∑

u∈C<−λk

V (k)(ru + λ+
1

N
)−

∑
u∈∂VN

W (k)(ru))µ( dr) ,

µ
(k)
2 ( dr) ∝ exp(−

∑
u∈{w}∪∂VN

W (k)(ru − f(u)− λ− 1

N
)

−
∑

u∈ΠN\{w}
U (k)(ru − λ−

1

N
))µ( dr) .

It is not hard to verify that for any real numbers t0 < t1 and any pair of functions

(h1(t), h2(t)) ∈ {(W (k)(t− t0),W (k)(t− t1)), (W (k)(t− t0), U (k)(t− t0)),

(V (k)(t− t0), U (k)(t− t0)), (0, U (k)(t− t0)), (U (k)(t− t0), U (k)(t− t1))} ,

we have for every t, t′ ∈ R,

h2(t ∨ t′) + h1(t ∧ t′) ≤ h2(t) + h1(t′) ,

and therefore for any k > 0, µ
(k)
2 dominates µ

(k)
1 in the strong FKG sense (µ

(k)
1

S
≺ µ

(k)
2 ), i.e.,

we have µ
(k)
1 ( dr) = exp(−H(k)

1 (r)) dr, µ
(k)
2 ( dr) = exp(−H(k)

2 (r)) dr and for every r, r′

H
(k)
2 (r ∨ r′) +H

(k)
1 (r ∧ r′) ≤ H

(k)
2 (r) +H

(k)
1 (r′) .
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It follows that µ
(k)
2 dominates µ

(k)
1 in the FKG sense (µ

(k)
1 ≺ µ

(k)
2 ), i.e., µ

(k)
1 is stochastically

smaller than µ
(k)
2 . As k →∞, µ

(k)
1 and µ

(k)
2 will converge weakly to the conditional laws on

the left and right hand sides of (2.38), respectively. Therefore (2.38) is verified.

Clearly, the right hand side of (2.38) equals

λ+
1

N
+ Eη̃′N,w=f(w), η̃′N,u=f(u) ∀u∈∂VN (η̃′N,v | η̃

′
N,u > 0 for all u ∈ ΠN \ {w}) .

Denote by M the boundary condition η̃′N,w = f(w), η̃′N,u = f(u) ∀u ∈ ∂VN . Now under

M , for any u ∈ G̃′N , we have η̃′N,u is Gaussian with mean EM (η̃′N,u) = f(u) and variance

VarM (η̃′N,u) = GG̃′N\{w}
(u, u). It is well known that there exists a constant C2 > 0 such

that GVN\{v}(u, u) ≤ C2 log(|u− v|+ 2) for all u ∈ VN . Therefore we have for all u ∈ VN ,

VarM (η̃′N,u) = GG̃′N\{w}
(u, u) ≤ 32(1+GVN\{v}(u, u)) ≤ 32(1+C2 log(|u−v|+2)) . (2.40)

In particular, for u = v we have the following bound (using (2.37) and (2.40))

EM (η̃′N,v1η̃′N,u>0 for all u∈ΠN\{w}) ≤ EM (|η̃′N,v|) ≤ C3 , (2.41)

where C3 is a positive constant which only depends on C and C1.

It now remains to lower bound PM (η̃′N,u > 0 for all u ∈ ΠN \ {w}). We will do this by

giving a lower bound of PM (η̃′N,u > 0 for all u ∈ G̃′N \ {w}). First, by a union bound over

all u ∈ VN and using the bounds in (2.37) and (2.40), we have (first take C, then C1 to be

sufficiently large)

PM (η̃′N,u ≥ f(u)/2 for all u ∈ VN ) ≥ 1/2 . (2.42)

Conditioning on the values η̃′N,u for all u ∈ VN , for each segment e′ = (x, y) ∈ E′N,w, we

have (here d(x, y) denotes the distance between x and y in the metric graph G̃′N )

P(η̃′N,u = 0 for some u ∈ e′ |M,FVN ) = e
−η̃′N,xη̃

′
N,y·

1
d(x,y) ≤ e−

1
16f(x)f(y)
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on the event {η̃′N,u ≥ f(u)/2 for all u ∈ VN}. By another union bound over all segments

e′ ∈ E′N,w and using (2.37), we have on the same event,

P(η̃′N,u > 0 for all u ∈ e′ and all e′ ∈ E′N,w |M,FVN ) ≥ 1/2 . (2.43)

Combining (2.42) and (2.43) we have PM (η̃′N,u > 0 for all u ∈ G̃′N \ {w}) ≥ 1/4, and

therefore

PM (η̃′N,u > 0 for all u ∈ ΠN \ {w}) ≥ 1/4 . (2.44)

Combining (2.38), (2.41) and (2.44), we see that we can take C0 = 4C3 and we completed

the proof of the lemma.

Lemma 2.5. There exists a constant C4 > 0 such that

Var(X3 | H=, H+, H−) ≤ C4

logN
.

Proof. We first claim that

Var(X3 | H=, H+, H−) ≤ Var(X3 | H=) = Var(X3 | FJ1∪J2
) . (2.45)

To show this, we use the Brascamp-Lieb inequalities (see, e.g., [44, Appendix B.2]). Denote

by µ the law of Z where Z is distributed as {η̃′N,u : u ∈ ΠN \ (J1 ∪ J2)} conditioned on

H=. Then Z is a finite dimensional Gaussian vector. Let m and A be its mean vector and

covariance matrix, respectively. The density of µ is of the form µ( dr) ∝ exp(−1
2(r −m) ·

A−1(r −m)) dr. For any k > 0, consider the measure

µ(k)( dr) ∝ exp(−
∑

u∈C>λk

U (k)(ru − λ−
1

N
)−

∑
u∈C<−λk

V (k)(ru + λ+
1

N
))µ( dr) ,

where U (k) and V (k) are as defined in (2.39). Since the second order derivatives of U (k)
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and V (k) are both nonnegative, we see that the density of µ(k) is of the form µ(k)( dr) =

exp(−H(r)) dr where infr Hess(H)(r) ≥ 1
2A
−1. Therefore, by the Brascamp-Lieb inequality,

for the random vector Y (k) ∼ µ(k) and for every l ∈ R|ΠN\(J1∪J2)|, we have

Var(l · Y (k)) ≤ Var(l · Z) .

Since as k →∞, the law of Y (k) (i.e. µ(k)) converges weakly to the law of Z conditioned on

H+ and H−, we see that

Var(l · Z | H+, H−) ≤ Var(l · Z) .

Note that

Var(X3 | H=, H+, H−)

= Var(
1

|∂V(1+β)N/2|
∑

v∈∂V(1+β)N/2

∑
u∈J3

H̃m
′
(v, u; Ik ∪ ∂VN ) · η̃′N,u | H=, H+, H−) .

Thus, by setting lu = 1
|∂V(1+β)N/2|

∑
v∈∂V(1+β)N/2

H̃m
′
(v, u; Ik∪∂VN ) for u ∈ J3 and 0 otherwise,

this gives the inequality (2.45).

Now let us define

U1 = {u1 ∈ J3 : |u1 − u| ≥ (logN)10 for all u ∈ J4}

and for u1 ∈ U1, define

U2(u1) = {u2 ∈ J3 : |u1 − u2| ≥ (logN)10} .

For u1, u2 ∈ J3, we say a pair (u1, u2) is good if u1 ∈ U1 and u2 ∈ U2(u1). We can expand
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the right hand side of (2.45) as follows (where we write Ik,N = Ik ∪ ∂VN ):

Var(
∑

v∈∂V(1+β)N/2

∑
u∈J3

H̃m
′
(v, u; Ik,N ) · η̃′N,u | FJ1∪J2

) =

∑
v1,v2∈∂V(1+β)N/2

∑
u1∈J3\U1

∑
u2∈J3

H̃m
′
(v1, u1; Ik,N )H̃m

′
(v2, u2; Ik,N )GG̃′N\(J1∪J2)

(u1, u2)+

∑
v1,v2∈∂V(1+β)N/2

∑
u1∈U1

∑
u2∈J3\U2(u1)

H̃m
′
(v1, u1; Ik,N )H̃m

′
(v2, u2; Ik,N )GG̃′N\(J1∪J2)

(u1, u2)

+
∑

v1,v2∈∂V(1+β)N/2

∑
(u1,u2) is good

H̃m
′
(v1, u1; Ik,N )H̃m

′
(v2, u2; Ik,N )GG̃′N\(J1∪J2)

(u1, u2) .

(2.46)

Recall that we have |J4| ≤ Ne−(logN)9/10
. By a simple volume consideration, we have

|J3 \U1| ≤ Ne−(logN)9/10
(logN)21 and for u1 ∈ U1, |J3 \U2(u1)| ≤ Ne−(logN)9/10

(logN)21.

Therefore, for any v1, v2 ∈ ∂V(1+β)N/2, we have

H̃m
′
(v1, J3 \ U1; Ik ∪ ∂VN ) = o(logN)−10 (2.47)

and

H̃m
′
(v2, J3 \ U2(u1); Ik ∪ ∂VN ) = o(logN)−10 . (2.48)

It is well known that for a constant C5 > 0, we have for any u1, u2 ∈ G̃′N

GG̃′N\(J1∪J2)
(u1, u2) ≤ GG̃′N

(u1, u2) ≤ C5 logN . (2.49)

We claim that there exists a constant C6 > 0, such that if (u1, u2) is good, then

GG̃′N\(J1∪J2)
(u1, u2) ≤ C6

logN
. (2.50)

We will show that if BG̃
′
N is started at u1, then the probability that it goes (logN)10 away
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from u1 before hitting J1 ∪ J2 is, say, less than C7
(logN)2 for a constant C7 > 0. Since

|u1 − u2| ≥ (logN)10, and the expected number of visits of u2 by BG̃
′
N is by (2.49) at most

C5 logN , we see that (2.50) is valid with C6 = C7C5.

To do this, we use the Beurling’s estimate (see, e.g., [50, Theorem 6.8.1]). We observe

that J1 ∪ J2 ∪ J4 (as the “outer boundary” of Ik) is a ∗-connected set (where we regard two

vertices as neighboring each other if their `1-distance is at most 1) with diameter of order

N , in the sense that

V
4
= {v ∈ VN : |v − u| ≤ 1 for some u ∈ J1 ∪ J2 ∪ J4}

is a connected set with diameter of order N . In particular, by the definition of J3 we have

J3 ⊆ V . By Beurling’s estimate, once BG̃
′
N is at v ∈ V , it will hit V again before going

(logN)6 away from v, with probability at least 1 − C8
(logN)3 (where C8 > 0 is an absolute

constant). Thus, if BG̃
′
N is started at u1 ∈ J3, then with probability at least 1− C8

(logN)2 , it

will hit V at least logN times, before going (logN)7 away from u1. However, it is clear that

if BG̃
′
N is at v ∈ V , then it has at least constant probability (≥ 1/32) to hit J1∪J2∪J4 before

(or at) hitting a neighbor of v. Therefore, at these logN times that BG̃
′
N hits V (before

going (logN)7 away from u1), it has at least 1 − 1

N log 32
31

probability to hit J1 ∪ J2 ∪ J4 at

least once in the following step, and since J4 is (logN)10 away from u1, it must hit J1 ∪ J2.

That is to say, the probability that BG̃
′
N hits J1 ∪ J2 before going (logN)10 away from u1 is

at least (1− C8
(logN)2 )(1− 1

N log 32
31

), which is greater than 1− C7
(logN)2 for any C7 > C8.

Now substituting the bounds in (2.47), (2.48), (2.49) and (2.50) into (2.46) completes

the proof of the lemma.
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