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ABSTRACT

This thesis deals with two problems in percolation theory.

In the first part, we consider accessibility percolation on hypercubes, i.e., we place i.i.d.
uniform [0, 1] random variables on vertices of a hypercube, and study whether there is a
path connecting two vertices such that the values of these random variables increase along
the path. We establish a sharp phase transition depending on the difference of the values
at the two endpoints, and determine the critical window of the phase transition. Our result
completely resolves a conjecture of Berestycki, Brunet and Shi (2014).

Our work on accessibility percolation is motivated by the NK fitness model in biological
evolution. We also establish the asymptotics for the global maximum of the NK fitness
model, by proving that the maximum is asymptotically equivalent to the case when K = N
if and only if K — oo as N — oc.

In the second part, we initiate the study on chemical distances of percolation clusters for
level sets of two-dimensional discrete Gaussian free fields as well as loop clusters generated by
two-dimensional critical random walk loop soups. We show that in both cases the chemical
distance between two macroscopic annuli away from the boundary is of dimension 1 with
positive probability. Our proof method is based on an interesting combination of a theorem
of Makarov, isomorphism theory and an entropic repulsion estimate for Gaussian free fields

in the presence of a hard wall.



CHAPTER 1
PHASE TRANSITION FOR ACCESSIBILITY PERCOLATION
ON HYPERCUBES

1.1 Introduction

For N € N, let Hy = {0, 1}N be a hypercube where two vertices are connected by an
undirected edge if their Hamming distance, i.e. the number of coordinates at which they
differ, is precisely 1. Let {X, : v € Hy} be i.i.d. random variables uniformly distributed
in [0,1]. We say that a path in Hjy is accessible if the associated random variables X’s
are increasing along the path. For u,w € H), we say that w is accessible from w if there
exists at least one accessible path from u to w. In this paper, we show that the conditional
accessible probability (from u to w) given that X, = a and X, =b (0 < a < b < 1) admits
a sharp phase transition, in a sense made precise in Theorem 1.1 below. By symmetry, the
conditional accessible probability with fixed a and b depends only on the Hamming distance
between u and w. Therefore, we fix 0 < f < 1 and without loss of generality consider the
case when v = (0,0,---,0) and w = (1,1,---,1,0,0,--- ,0) (here the number of 1’s in w
is [BN]). Furthermore, since subtracting a from all X;’s does not change the accessibility
from u to w, we can also assume without loss of generality that « = 0 and b = x (where z

may depend on N). Our main result is summarized in the following theorem.

Theorem 1.1. Let f(z) = (sinhz)?(cosh )15, and let zo be the unique number such that
f(zg) = 1. Define z¢(N) = g — m% For any sequence ey such that Ney — oo, we

have

lim P(w is accessible from u | Xy =0, Xy =xc —€eny) =0, (1.1)
N—o00

lim P(w is accessible from u | Xy =0, Xy =xc+€ey) =1. (1.2)
N—o00

In addition, for all A > 0, there exist 0 < ¢; < cg < 1 (where ¢ and co depend only on A)
1



such that for all N € N
c1 < P(w is accessible from u | Xy, =0, Xy =z +€n) < co, if [Ney| < A. (1.3)

Remark 1.1. A few days before the post of this article, we noted that a paper [16] was posted
in January 2015, which proved the version of (1.2) (without analyzing the critical window for
the phase transition) for the case of § > 0.002. While we acknowledge the priority of [16],
we emphasize that our work was carried out independently; our method is rather different

and allows us to derive the result for all 0 < f < 1.

Accessibility percolation on hypercubes with backsteps (i.e., when the hypercube graph
is undirected as we have assumed at the beginning) was studied in [1], where they proved
(1.1) and conjectured (1.2) (both in a slightly weaker form). Our Theorem 1.1 completes
the picture and describes a sharp phase transition for this problem.

An analogue of Theorem 1.1 on accessibility percolation on hypercubes without backsteps
(i.e., when the edges of the hypercube are directed toward the vertex with the greater number
of ones) was established by [10]. Under the same setting, [2] gives the asymptotic distribution
of the number of accessible paths when z is in a different regime. Accessibility percolation
has also been studied on N-ary trees [17, 19, 5] and on spherically symmetric trees [7]. In
addition, the Hamiltonian increasing path on the complete graph was studied in [14].

Our study on accessibility percolation is motivated by the NK fitness landscapes, which
were introduced in [12, 13] as a class of models for biological evolution. In the NK fitness
model, we consider Hjp corresponding to, e.g., nucleobases in a DNA sequence. Let F
be a distribution. Given K < N, let Y; ;- be i.i.d. random variables with distribution F
forall 1 < ¢ < N and 7 € Hi. For o € Hpyy, the fitness of ¢ is then defined to be

Xo = Zf\ilYé, where the addition in the subscript is understood as modulo of

(TisensOip K1) (

N). Since the gene favors better fitness, it is natural to consider an adaptive walk on space

H p; such that the corresponding fitness increases until the walk is frozen at a local maximum.



Theorem 1.1 is a preliminary step toward understanding the adaptive walk on the NK fitness
model. Indeed, our model (with i.i.d. fitness for each vertex in Hp) corresponds to the case
when K = N (the distribution F' does not play a role when considering increasing paths as
long as F' is continuous).

We note that despite intensive research in theoretical biology as well as physics, there
were few mathematical results [9, 8, 15, 4] on NK fitness models. In [9], some asymptotic
features of NK fitness landscapes are reduced to questions about eigenvalues and Lyapunov
exponents; in [8, 15], estimates on the cardinality of local maxima was provided; in [4],
certain structural properties of the maxima for NK fitness model was given. We establish
the asymptotics for the global maximum of NK fitness model, by proving that the maximum

is asymptotically equivalent to the case when K = N if and only if K — co as N — oo.

Theorem 1.2. Let Y be a random variable with distribution F. Assume that F' possesses
super-ezponential tails: BE(eMY) = MY < 0o X € R. Let I(z) = supyer(Az — A(N)). Set
x* to be the unique point so that x* > E(Y) and I(z*) = log2. See e.g. [20] for the above

assumption. Let My = maXqep Xo be the global mazimum of NK fitness model.

. EM
(a) If K — 00 as N — 00, then we have limpy_, o ]\][VK = z*.

(b) If K < Ko < oo for all N, then we have limsup y_yo EA{{,V’K < z*.

1.2 Accessibility percolation: antipodal case

For clarity of presentation, in the current section we give a proof of Theorem 1.1 in the
antipodal case when 8 = 1, i.e., when u = 0 = (0,0,---,0) and w = 1= (1,1,---,1). In
Section 1.3, we modify the arguments and give a proof of Theorem 1.1 in the general case
when 0 < 8 < 1. In both sections, the probability measure P stands for the conditional
probability given X,, = 0 and X, = x, unless otherwise specified. Recall that a path from u

to w is accessible if the X,’s (including X, and X,) along the path are increasing. Denote



by Zy ; the number of such accessible paths. Throughout the paper, we sometimes write

with high probability for brevity to mean with probability tending to 1 as N — oo.

1.2.1 Proof of the upper bound

In this subsection we give a proof of (1.1) in the antipodal case (the general case is similar).
Note that Lemma 1.2 below (which implies (1.9) in Corollary 1.1 and therefore (1.1) in the
general case) has already been proved in [1]. Here we give a different proof of Lemma 1.2,
by relating the original model to a more tractable one (i.e. jy, ), and this connection will

also be useful in later proofs. We start with a number of definitions.

Definition 1.1. We say that a path (not necessarily self-avoiding) in Hpy has length € if it
visits (¢ — 1) inner vertices (a vertex is counted each time it is visited, starting and ending
points are excluded). For n,¢ € N, let M(n,{) be the collection of paths (not necessarily
self-avoiding) of length { from Oy = (0,0,---,0) to (Tn,ﬁN_n) =(1,1,---,1,0,0,---,0)
(where there are n 1’s in (1,0n_y,)). Write M(n, ) = |M(n, ).

Definition 1.2. Forn, ¢ € N, let S(n, ) be the collection of integer sequences (aq,...,ay) €
{1,...,N}£ such that [{1 <i < 0 :a; = k}| is odd for 1 <k <n and even forn+1 <k < N.
In addition, for 1 <k < N, let S;(n,{) C S(n,l) contain all sequences in S(n,¥) such that

the last number ayp is k and let Sp.(n) = UpenSk(n, 0).

For each path (not necessarily self-avoiding) vg, vy, ..., vy in Hpy of length ¢, we associate
a sequence of integers (a, ..., ap) where a; is the coordinate at which v; 1 and v; differ. We

observe that the association is a bijection between M(n,¢) and S(n,¥).

Remark 1.2. In the following we will sometimes call the sequence (ay,...,ay) an update
sequence, and each of the a;(1 <i < {) an update (so that there are { updates in the update

sequence (ay,...,ap)).
2j+1
Let F} be a distribution supported on odd integers such that F7(2j + 1) = Mﬁ
for all j > 0, and let Fy be a distribution supported on even integers such that F5(2j) =
4



(2.5,’:—% for all j > 0. For a fixed 1 < k < N, let U; be i.i.d. random variables distributed
j)! cosh x

as F fori € {1,...,n}\ {k} and independently let U; be i.i.d. random variables distributed
as Fp fori € {n+1,...,N}\ {k}, and let U, be another independent random variable with
distribution Fb if 1 < k& < n and with distribution F} if n+1 < k < N. Given the values of
Up,...,Un,welet (A1,...,Ar_1,k) € {1,... ,N}L (where L—1 = Zf\il U;) be a sequence
uniformly at random subject to {1 < j < L —1: A; = i}| = U;. We denote by py,,, the

probability measure of the random sequence (Aq,..., Ar_1,k).
Lemma 1.1. For 1 <k <n </ and any sequence (ay,...,ap_1,k) € Si(n,l), we have

/-1
'uk,n«al’ cosag, k) = (f—l)! (sinh}z:)”_1 (coshx%Nﬁﬂ+1 ' (1.4)

Similarly, forn+1 <k < N and { > n+ 2, and any sequence (ay,...,ap_1,k) € Sp(n,{),

we have

-1
Mk,n((alv cees @Y1, k)) = (?_1)[ (Sinh;)n+1 (coshz%N_”_l : (15)

Proof. We only prove the first case. Let n; = [{1 < j <{—1:a; =i}|. Then we have

. N ol
(@1, ap 1, k) = (U =g for all 1 <0 < N) - Lm0 1)

where the second term on the right hand side counts the conditional probability of sampling

(a1,...,ap_1,k) given U; = n; for all 1 <i < N. By independence of U;’s, we see that

N
e (Ui = ng for all 1 <i < N) = [ ppn (Ui = )
i=1

= JI RAc)- [ Fn)-Fang)

1<i#k<n n+1<i<N

I |
. n;!sinh x , nilcoshx ny!coshz
1<i#k<n n+1<i<N

_ 11 1

1
Hﬁ\;l ng! (sinh x)n—l (cosh x)N—n-H .

5



Combined with (1.6), this completes the proof of the first part of the lemma. The second

part is similar. O

Lemma 1.2. We have

o0
ZM n, E — (sinh )" (cosh )V =" . (1.7)
=1
In addition, we have
o0 21
> M(n,0) 7 = ((sinh )" (cosh ) ¥ "
=1 (£=1) (1.8)

= (sinh 2)" Ycosh )V """ (n(cosh z)? + (N — n)(sinh z)?) .

Proof. We give a proof of the second equality. The first equality can be obtained by inte-
grating the second equality with respect to x.
Since i, ,, is a probability measure on Si(n), we see that Zaesk( ) M, n(@) = 1. Com-

bined with Lemma 1.1, it yields that when 1 < k <n

— 1
1= Z Z ik n Z |8k (1, 0)] '(smhx)” I(coshz)N—n+1 7

l=n aeSy(n,l)

and when n+1 <k <N

o0 oo
N 2t 1 1
Z Z #k»n(a) - Z [Sk(n, 0)] (¢—1)! (sinhz)"*+! (cosh x)N-—n—-1"
l=n+2 GeSk(n,l) f=n+2
This tells us that when 1 <k <n
Z |S.(n, 0)] = (sinh z)" Ycosh )N+



and when n+1 <k <N

o0
S 18k Ol Ey = (sinh) ™ (cosh )V
f=n+2

Summing these N equalities (combined with the fact that M (n, ) = |[M(n,l)| = |S(n,l)| =

> 1<k<n |Sk(n,£)]) completes the proof of (1.8) and hence the lemma. O
Corollary 1.1. EZy , < N(sinh )N "1 cosh z.

Proof. Here we will derive an upper bound for EZp ;, in the general (not necessarily an-
tipodal) case. Suppose the Hamming distance between u and w is n. Let M’(n,£) be the
subset of self-avoiding paths in M(n, £) and write M'(n, £) = |M'(n, ()|. Since for each path

20
P € M'(n, (), the probability that P is accessible is ( y 11),, we have

o0 (-1 o0 /-1
T T
EZNa2 = ]EZ Z Lp is accessible = ZM,W’@ (¢ —1)! = ZM(n,E) (0 —1)!
(=1 PeM(n,0) =1 | '
= (sinh 2)" Ycosh )V """ (n(cosh z)? + (N — n)(sinh z)?) (1.9)

where the last equality follows from (1.8). In the antipodal case, substituting n = N in (1.9)

gives the desired bound. O

Proof of (1.1): antipodal case In this case, § = 1 so we have f(x) = sinhx, xg =

sinh (1) = In(v/2 4 1), sinhzg = 1 and coshzy = v/2. We can without loss of generality

—9/3

assume that ejy < N since P(Z , > 0) is increasing in z. By Corollary 1.1, we have

(recall that LTe =20 — f/(l'O) N~ xro — TN

]P)<ZN,xc_6N >0) < EZN go—eny < N(sinh(z. — EN))N_1 cosh(ze — €pn)

= N (sinh(zg) — COSh(:IZ'())(\/_hl N

2 N
In N N—1
SN(l—T—\/EeN—Fo(l/N)) V2= 0as N — oco.

+en) +o(1/N)N " cosh(ze — ex)

7



]

Remark 1.3. Similarly we can show that for x = x. + en and Ney — o0, we have
N(sinhz)N~lcoshz = N(sinh(z. + ey))V ! cosh(ze + ey) — o0 as N — oo, and that
for all x = xe + e such that [Nen| < A, we have mi(A) < N(sinh )V~ coshz < mo(A)
where m1(A), ma(A) > 0 depend only on A. Combined with Lemma 1.3 below, this suggests

(at least in expectation) that x. is the critical value.

1.2.2  Proof of the lower bound

In order to prove the lower bound, we restrict our attention to certain good paths, i.e., those
with desirable properties on the growth of Hamming distances (in particular, a good path
needs to be self-avoiding). We will define precisely what we mean by a good path in Definition
1.3 below. Denote by Zy , , the number of good accessible paths. Crucially, we demonstrate
that with our definition of good paths, we have EZy ;. , < EZ ;. and IEZZQ\,%* = (IEZN’J;’*)2
(where < means that the left and right hand sides are within a constant multiplicative factor)
as long as © = z. + ey (Ney — 00) and x stays in a fixed neighborhood of zy. Thus, an
application of the second moment method already yields the existence of an accessible path
with probability bounded away from 0. Finally, we use the augmenting method as employed
in [10] to deduce the existence of an accessible path with probability tending to 1 as N — oo.
Recall that zg = sinh (1) = In(v/2 + 1) ~ 0.88137. Let a = g coth z ~ 1.24645.

For any 0 < e < 1, we set ¢, €1, €2 and €3 throughout the rest of the paper as

2 1/2

L=€",€6] =€ ,62:61/4and63:€1/8. (1.10)

Let us say a few words about these “infinitesimals” ¢, €1, €9, €3 and €. They are not really
infinitesimals because throughout the paper we only need to fix each of them to be a certain
sufficiently small number (and thanks to (1.10) we only need to fix €). However, to guarantee
a viable choice of these numbers, we need ¢, €, €1, €9, €3 to be decreasing in terms of the orders

8



of the infinitesimals, hence our definition (1.10). Our specific choices of the relations between
L, €1, €9, €3 and € though are rather arbitrary.

For u,v € Hp, we denote by H(u,v) the Hamming distance between u and v.

Definition 1.3. Let € > 0 be a sufficiently small fixed number to be selected. We say
a path (or the associated update sequence) vy = 0, Vly...y, UL_1,V], = 1 s good if L €

[a(1 —€)N,a(l + €)N]| and the following holds:

=

v, vj) = li—=Jl, if li—jl = 1,2,3;

1
Vi, Vj li— g or|i—j]—2, if4 <|i—j| < N5;

/ +61) s i i =31 > a(1/2+ e)N;
CfNS <i—jl < a(l/2+ )N,

(vi, vj) =
(vis vj) =
H(vi,v5) < (1/2+ )N, if N5 < |i — j| < a(1/2 + e)N;
(v3,v5)
(vi, vj)

Vs, Vg
It is clear from the definition that a good path is self-avoiding.

Lemma 1.3. For any sufficiently small but fixed number ¢ > 0, there exist C7 > 0 and an
integer N’ > 0 which both depend only on €, such that for all |x — zg] < ¢ and N > N’ we

have

EZN 3« = C1N sinh™ ~! z cosh . (1.11)

Proof. We keep all the definitions and notations in the previous subsection 1.2.1. Since we
are working in the antipodal case where § = 1, we have substituted n by N in the following
without further notice. Recall that as stated in Definition 1.3, an update sequence is good if
its corresponding path is good. For each 1 <k < N, we let Sy, (V) C S(N) contain all the
good sequences ending in k, and let M ky*(N ) be the collection of the corresponding good

paths. We claim that in order to show (1.11), it suffices to show that for each 1 <k < N

1k, N (Sk(N)) = C1 . (1.12)



Indeed, summing equation (1.4) over all (ay,...,a;_1,k) € S . (N) gives that

. 1 /—1
e, NSk« (N)) = G T ooshz > =y
PeMk,*(N)
P is of length ¢

= 1 Z P(P is accessible) ,

(sinh2)V—1 cosh x
PeM;, (N)

where the last equality is because any good path is necessarily self-avoiding. If (1.12) holds
true, then summing the above equation over 1 < k < N yields (1.11).

For ease of elaboration we make a slight modification to (1.12), that is, we will show
instead that

fiN(S«(N)) = C1, (1.13)

where fiy differs from p, y in that we also let Uj, be chosen according to F instead of Fy
(in other words, for each 1 < i < N, the U;’s are now i.i.d. random variables distributed
as F), and consider the random sequence (Ay, ..., A;_q) instead of (Ay,..., Ar_1,k). See
also Case 1 below for the definition of fijy g, the generalization of iy to general §; we use
S«(N) to denote the collection of all the good sequences (not necessarily ending in k).
There are a number of ways to justify our replacement of (1.12) by (1.13). For example,
one may argue that if jiy_1(S«(N — 1)) > Cy holds, then (possibly with a slight change

of N%,e,q, ez and €3 in the definition of good paths) uy n(Sk «(N)) = un N (SN «(N)) >

1 v .
oz C'1 holds, since

uNN(SN«(N) = pnvN{(Ar,. A1, N) : Un =0,(Ay,..., A1) € S«(N = 1)})
1

- [l * N_ 1 .
iy (8N 1)

In the rest of the proof, P and E refer to fiy unless otherwise specified. Note that P
depends on both x and N. Under this probability space (or the more general fiy 5), we say

an event £y happens with probability tending to 1 as N — oo (or with high probability for
10



brevity) if 1 — P(En) < p(e, N) where p(e, N) > 0 only depends on € and N, and (when €
is fixed) goes to 0 as N — oco. Similarly, we say a quantity (possibly random) @ is o(1) if
Q| < gy where g > 0 is fixed, only depends on N and goes to 0 as N — oc.

By a simple calculation, for U ~ F, we have EU = x cothx, and Var U is bounded by
an absolute constant (since |x — zg| < ¢). Therefore it is immediate from, say, Chebyshev’s
inequality (as used in proving the weak law of large numbers) that with probability tending
to 1 as N — oo we have L € [a(1 — €)N, a(1 + ¢)N] (recall that a = 2( cothzg and ¢ = €?).
It now remains to consider the requirements on Hamming distances in the definition of good

paths, for which purpose we split into three cases as follows.

Case 1: H(v;,vj) = |i—jl|, if |i —j| =1,2,3.

We show that this requirement can be satisfied by a sequence generated from iy with
probability bounded from below by a constant. We prove the following statement (1.15) for
general 3.

Fix a 8 € (0,1]. Fori € {1,..., 8N}, let U; be i.i.d. random variables distributed as F7,
and independently for i € {BN +1,..., N}, let U; be i.i.d. random variables distributed as
F5. Given the values of Uy, ..., Uy, we let (Aq,..., Ar) (where L = Ziil U;) be a sequence
uniformly at random subject to [{1 < j < L: A; =i}| = U;. Let fiy g be the probability
measure of the random sequence (Aq, ..., Ar) thus obtained.

For convenience we set A; 7 = A; for i > 1. Let

i =144 . and N = {i,i+ 1}, ifi=1,2,--,L;
i = HAi=Ai ) ‘ (1.14)

Li=1a ,—ar, yandN;={i—Li+2-L}, ifi=L+1,L+2-- 2L

Let zy be given as in Theorem 1.1, and let v = fxgcothxg+ (1 — )z tanh zg. For any

. = €2 > 0, there exists a constant ¢* > 0 and an integer N’ > 0 which both depend only on

11



t, such that for all |z — zg| <t and N > N’ we have

2L
ing(d> 1 =0)>c". (1.15)
=1

Remark 1.4. In fact, as can be seen from our proof, xg could be any fixed positive number

202
_220
(not necessarily given by Theorem 1.1). Moreover, we have ¢* — e 7 ast — 0, and if

2

. L . . 2
xr — xg as N — oo, then Z?il I; converges to the Poisson distribution with mean % as

N — oco. However, we don’t need any of these facts.

Proof of (1.15) In this proof, P and E refer to fiyy 5. Let
D= [{1<i< N:U; =}

for j € N and

(0.9]

A:=L"1> " Djj(j - 1).
j=2

By a simple calculation, for U ~ Fy, we have EU = zcothx and EU(U — 1) = xz, and
the variances of U and U(U — 1) are both bounded by an absolute constant, as long as
stays in a fixed neighborhood of xy. Similarly, for U ~ F5, we have EU = ztanhx and
EU(U — 1) = 22, and the variances of U and U(U — 1) are both bounded by an absolute

constant. By Chebyshev’s inequality, we have with probability tending to 1 as N — oo,

N
L=> Ui€[y(l—eN,y(1+eN] (1.16)
1=1
and N
> Djj(j—1) =Y Ui(U; —1) € [x§(1 — )N, z5(1 + €)N]. (1.17)
j=2 i=1

12



(1.16) and (1.17) combined give
Ae [(1—36) (1+36) ]

22
By the uniform convergence of ZkK: (— 1)k+1 (2A) tol—e2Mon [(1— 36) ,(1+ 36) 0],
there exists a finite odd number K and 0 < ¢** < 1 (¢** may depend on K and €) such that

2 2
forall A € [(1 — 36)%, (14 36)%], we have

K
2A
Z ’f“ < (1.18)

Again, by Chebyshev’s inequality, we have with probability tending to 1 as N — oo,

o0 N
YD =N UH<CgN, foralll1 <k <K (1.19)
j =1
where C'r > 0 is a constant which only depends on K. Also, by a rather loose bound on
P(U; > 10log N) (directly from the definition of U;), we have with probability tending to 1

as N — oo,

max U; < 10log N . (1.20)
1<i<N

We will assume (1.16), (1.17), (1.19) and (1.20) without mention in what follows.

Write F = o(Uy,Us,...,Uy). By Bonferroni’s inequalities [3], we have

K
ZI > 1| F) gz 1)k+1 > P(I;, =11, =1,--- ,I;, = 1| F).

1<i1 << <1, <2L
(1.21)
In order to prove (1.15), it suffices to show that each summand (of Zé{:l) on the right hand

side of (1.21) is asymptotic to the corresponding summand on the left hand side of (1.18).
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That is to say, we want to show that for each 1 < k < K,

20k

> P(liy =10y =1, [ = 1| F) = == =o(1). (1.22)
1<i1 << <1, <2L '
For this purpose, we will split > P(l;, =1,1;, =1,--- ,I; = 1] F) into two

1<i1 <9<+ <1 <2L
parts according to whether or not any A; is involved in the definition of more than one [Z'j’s

(1 <j < k). More precisely, for a pair of integers (i;,i;) (or equivalently (Iij, ]ij/)) where
ij # iy wesay it is intersecting if Mj ﬂ./\/;; # () (see (1.14) for the definition of AV;). Let Z%1
(Ik’z) denote the set of all sequences (i1,i9,-- ,i;) such that 1 < iy <ig < -+ <ip < 2L

and it contains no (at least 1) intersecting pair, respectively. We can write

Z ]P)(]le]-?IZQ:la7IZ]€:1|‘F):\71+\72
1<) <<+ < <2L
where
Ji=> Py =11,=1,- I =1|F)
Tk,1
and

Jp=> P =11, =1, I = 1] F).
Tk,2

We first bound the term [J;. For any (iy,io, - ,i) € Ik’l, the neighborhoods
M17M27' o 7-/\[

i, are disjoint by definition. Now given F, for each r = 1,...,k, there

are at most Z?:Q Dj-j-(j—1) ways of choosing two matching updates for the two slots
in NV; , and there are at most (L — 2k)! ways of arranging the remaining (L — 2k) updates,

therefore we have

L —2k)! /& o k
Bl = LIy, =1, Iy = 1| F) < (L_‘)(ZD]..].(]_”) (1.23)
T\

= (M o()AF
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Combined with the simple fact that [Z%1] < (2L)F/k!, this gives that 73 < (2A)F(1 +

o(1))/k!. On the other hand, by a similar reasoning

. 10log N
Plliy =1, Ly =1, Ly = 1] F) 2 % II (> 0j-t-1)i-G-1)

1<r<k  j=2

()41 + o(1)(A + o(1))F

v

Moreover, we have |ZF1| > (1 4 o(1))(2L)% /k! since [Z%1] > T[] (2L —7(r —1))/k! (each
1<r<k

N; intersects 6 other N;’s). Hence, we obtain that J; > (2A)%(1 + o(1))/k!. Altogether, we
get

Ti = 2M)F(1 + o(1))/k! . (1.24)
It remains to control Jp. For any (if,i9, --,ix) € Z%2, denote by Ei iy, =

{(Al,AQ,...,AL) : [il = 1>Ii2 =1,--- ’[ik = 1}. Observe that Iil = 1,[2'2 =1,--- >Iik =1

(the criteria for gil,---,ik) can be rewritten (or simplified) uniquely as a set of equalities

Ajl = Aj1+n1,1 = Aj1+n1,1+n1,2 == Aj1+n1,1+n1,2+'"+n1,a1—1
AJ2 = Aj2+n2,1 = Aj2+n2,1+n2,2 == Aj2+ﬂ2,1+ﬂ2,2+~-~+n2,a2—1
Aje = Ajﬁ”m = Ajﬁnz,ﬁw,z == Ajfrnm+W,2+"'+W,a€—1
where ny1,...,n1,6,—1,12,1,- -, M2ag—1,- - W15 -, Ny q,—1 ArEcither Lor 2, ay, ag, ..., ap

are integers > 2 and aj + a9 + -+ 4+ ay < 2k (in particular each a; is < 2k). Also, since

(i1,i0,+ - i) € Ik>2, i.e. there is at least one intersecting pair in I;,,---, [;; , at least one

ik?
of the ay,as,...,ap must be strictly larger than 2, so that a; + a9 + --- 4+ ay > 2¢. Denote

by A the preceding set of equalities (so A can also be viewed as an event). By a rather loose
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bound, [{(i1,...,i) : &y, = A < (a1 +ag+ -+ ag)?F < (2k)%k. Therefore we have

S PE i | F) < @RHEI DN P(AF), (1.25)

Tk,2 { Dy Dy Ds
where Dy, Do, D3 respectively denote the collections of all valid choices of (a1, a9, ..., ay),
(nl’l, c. ,7117@1_1, 71271, . ,ng’@_l, c. ,ng’l, . 7n€,a4—1> and (jl,jg, c. ,jg). Now similar

to (1.23), we have

4 00
P(.A|.F)§ (L_(a1+azl+."+a€))!H(ZDi'i‘(i_l)“'(i_aerl))'

r=1 i=a,

Therefore, by (1.19) we have

D B(A| F) < Cp N (ebetted < O N (1.26)
Ds
where C’% is another constant depending on K, and the second inequality follows from the
fact that ay + ag + - -+ + ap > 2¢. Since |Dy|, |D2| and ¢ are all bounded by a number that

depends only on K, we combine (1.25) and (1.26) and obtain

7k,2
where C'z- > 0 depends only on K. Combined with (1.24), this yields (1.22) and therefore
(1.15). B

Case 2 : H(v;,v;) = |i—j| or |i—j| -2, if 4 <|i—j| < N5.

We show that this requirement is satisfied by a sequence generated from iy with proba-
bility tending to 1 as N — oco. Denote by W}, the event that in some k consecutive updates
there are at least two coordinates such that all of them occur at least twice. It suffices to show

that W15 happens with probability tending to 0 as N — oo. Given F = o(Uy,Us,...,Un),

16



the conditional probability that the coordinates 1 and 2 both occur at least twice in the first

k updates is less than (%1) (%)2(%2) (%)2, by a union bound. Therefore,

rovy =5 7)< S B((T)@2(7)Grr) < G = )
1<i<j<N

for k = N1/ (here €’ is an absolute constant).

Case 3:
H(vi,v;) < (1/2+ )N, if N5 < |i — j| < a(1/2 + )N
H(vi,v;) > (1/2 4 e)N, if [i — j| > a(1/2 4 e2)N;

H(vi,v;) > L3¢ N5 < i j| < a(1/2 4 e)N.

We show that these three requirements are satisfied by a sequence generated from fip
with probability tending to 1 as N — oco. Let R be the collection of all sequences satisfying
these three requirements.

Before we proceed, let us first give a hint on why this may be true (i.e. what these three

requirements are trying to say). For t € [0, 1], we define

g(t) = Smh(‘”ot)s(;zihafo“ ~ D) _ ginh(zot) cosh(zo(1 — 1)) (1.28)

Vaguely (and roughly) speaking, g(t)N is the “expected Hamming distance traveled by a
path in time ¢” (if the whole path uses a unit time). We will make this precise below. For a
derivation of the formula (1.28), see equation (1.32). By plotting ¢(¢) (or an easy calculus),

one can easily see that

o g(t) <3, if0<t<3
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which correspond to the three requirements, respectively. We now carry out the idea above
fully and rigorously as follows.

We will consider the following continuous version of jipr, namely fin: As in fipy, we first
let U;,1 < i < N be ii.d. random variables distributed as F}. Now given the values of
Ui,...,Un, we denote £ = {(i,7) : 1 <i < N, 1 <j<U;} and L = |L]| = ZfilUi, and
let {r;; : (i,7) € L} be L ii.d. uniform [0, 1] random variables. Let fin be the underlying
probability measure F{¥ x U[0, 1]

For each 1 <14 < N, we attach the label “” to each real number 7 ;, (1,7) € L. Since
almost surely under fiy, L is finite and r; ;’s are distinct, we can (without ambiguity) let
71 <719 < --- <1, be the reordering of the reals r; ;, (4,7) € £ in increasing order, and for
1<l < Llet Ag be the unique label of ). We have thus formed a random integer sequence
(Al, . ,AL) under fip.

It is clear that (Ay,..., A;) under fi has the same distribution as (Aj,..., A7) under

[N, i.e., for any integer sequence (aq,...,ay), we have

~ ~

AN((Ar,...,Ap) = (a1,...,ar)) = an((A1,..., AL) = (a1,...,ar)).

Therefore

an((Ar, .. A e R) = an((A1,..., A1) €R). (1.29)

For any interval I C [0,1] and any 1 <i < N, we let Ny ; be the number of labels “i” in

I, ie., NI,i =H{1<j<U;: i € I}|. Let

TI_ZNIZ {(5,5) € £ ij€]}|

be the total number of labels in I and

N

Or = Z 1{NM is an odd number}
1=1

18



count all the i’s (1 < ¢ < N) that appear an odd number of times as a label in /. Let R be

the following event: for all intervals I C [0, 1], we have

O < (1/2+ )N, if N5 < Ty < a(1/2 + €)N;

07 > (1/2+ &N, if T; > a(1/2 + e)N;

Tr .. 1
> fN <Tr <all/2 N.
OI—a+eg’1 <Tr < a(l/2+ )
We see that
An(R) = in((Ar,..., AL) €R). (1.30)

In light of equalities (1.29) and (1.30), it suffices to show that under /iy, R happens with
probability tending to 1 as N — oco. In the following P and E refer to fipy. To this end,
our strategy is to first show that with high probability, for all intervals I C [0, 1] such that
|I| > N =5/ 6 both T7 and Oy are concentrated around their means respectively.

For any interval I C [0, 1] of length ¢, conditioning on T[O,l] = L, T is the sum of L i.i.d.

Bernoulli random variables with mean ¢, thus by Chernoft’s bound [6],

P(|T7 — Lt| > eLt|L) < 2exp(—e>Lt/3). (1.31)

N
For O, by definition Oy = ; LyNy; is an odd number} where LiNy; is an odd number}

1
for 1 < ¢ < N are N iid. Bernoulli random variables with mean p; =

19



P(Ny,1 is an odd number). We can compute p; as follows:

pr = IP(NI 1 is an odd number)

x 22—1—1 ) 1 ) .
- > z( ) g

z—O (20 + 1)!sinhx 27 +1
_ ! (ZOO (xt>2]“> ( ZOO (x(1 - t))w‘j))
- . . ‘ . o . '
sinh x = (27 +1)! 520 (20 — 2j)!
sinh(zt) cosh(z(1 —t))
= . 1.32
sinh x (1.32)
By Chernoft’s bound again, we have
inh(xt h(z(1 -t
P(|O; — EO;| > 3¢EO;) < 2exp ( _ g2y Sinh ff;hf( ))). (1.33)

Now let us divide [0, 1] into N non-overlapping intervals of equal length 1/N. We say
an interval is integral if it is of the form [n1/N,ng/N|, where ni,ng € N0 < nj; <ng < N
and ny — np > N6 (so that its length is at least N~°/6). Denote by F; the event
{m € [l—e 1+¢}. Since on By, Lt > ¢NY/0 when t > N=5/6 for a constant ¢ > 0,

we can apply (1.31) and a union bound over all integral intervals to obtain that

IP( max |17 — Lty |> eLty | L) < 2(N + 1) exp(—620N1/6/3), on Ey,.

I is integral

Since ET7 = ELt; = (zcothz)Nt; and therefore Lt; € [(1 — €)ETT, (1 + ¢)ET}] on Ef, we

have

IP’( max | Ty — ETy |> 3¢E(Ty) | L) < 2(N +1)%exp(—e2eN1/6/3), on By

I is integral

Since Ej happens with probability tending to 1 as N — oo, we thus have that £ happens
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with probability tending to 1 as N — oo, where

Er = (1 {77 € [(1—3)ETy, (1 + 3¢)ETy]} .
I is integral

From (1.33), since sinhz > = for x > 0, we have Np; > eN1/6 when t > N—3/6 for
a constant ¢ > 0, we can simply do a union bound over all integral I and deduce that £p

happens with probability tending to 1 as N — oo, where

Eo = (1 {01 €[(1-3eEOy, (1+36)EO;]}.
I is integral
So we may assume without loss that both &7 and £y occur, i.e., both 77 and O are within
[1 — 3¢, 1 + 3€] times their respective means for any integral interval I.

We will now argue that with high probability, both 77 and Oy are within [1 — 4e, 1 + 4¢]
times their respective means for any interval I such that |I| > N =5/6_ For convenience
we call any interval [i/N, (i + 1)/N] (where 0 < ¢ < N — 1) a small interval. For any
small interval, the probability that there are at least 100log N labels in it is bounded by
E(looﬁgN)/NloologN, which is at most 1/N? for all large N. Therefore by applying a
union bound over all N small intervals, we have that the probability that some small interval
contains at least 100log N labels is o(1). Without loss of generality we assume this event
does not occur (i.e., any small interval contains less than 100log N labels) in what follows.
Now we can approximate any interval I of length ¢t > N —5/6 by an integral interval I’ with

an error of at most two small intervals, so that |77 —Tp|,|O;f — Op| < 2001log N. Also, from

cosh(z(1—t))
sinh x

ET; = (x cothz)Nt and EO; = Npy = N sinh@t) we see that ET, EOp > cN1/6

for a constant ¢ > 0 and %, IIEEgII, = 1+ o(1). Therefore, T} € [(1 — 3¢)ET}, (1 4 3¢)ET}]
and O} € [(1—-3€)EO}, (14-3¢)EO}] will imply (respectively) Ty € [(1—4€)ETy, (1+4¢)ET]]
and Oy € [(1 — 4€)EOy, (1 4 4¢)EOy], as desired.

21



Now if |I| > (1/2 + 6¢), by the concentration of T} discussed above, we have
Tr > (1 —4€)ETy = (1 — 4e)(x cothx)N|I| > a(1/2 4+ €)N
for all sufficiently small but fixed e. And if [I| < N~5/6, then
1
TI < T]* < (1 + 46)ET]* < N5

where I* D [ is an interval of length N—5/6, Therefore, we have N% < Tr < «a(1/2 4+
€)N implies |I| € [N=%/6 (1/2 + 6¢)]. However, if |I| € [N~5/6 (1/2 + 6¢)], then by the
concentration of Oy, we have O; < (1+4€)EO; = (14 4€)Np; < (1/2+ €1)N for e = €!/2.

Therefore, we see that
1
Or <(1/24€)N, if N5 <Tr < a(l/2+¢)N. (1.34)

A similar argument shows that for es = e//4, T; > a(1/2 + e2)N implies |I| > (1/2 + 6¢1),

which in turn implies O > (1/2 4 €1)N. Therefore
Or > (1/24 €)N, if Ty > a(1/2 + €2)N . (1.35)

Finally, N5 < T7 < a(1/2 + eg)N implies |I] € [N=5/6,(1/2 + 6¢5)]. But for |I| €
sinh(x|I|)c_osh(m(1—\I\)) >

[N_5/6, (1/2+6¢€3)] we have p; = (x cothx)|I| L for eg = 0.161/8,

sinh z = oz—i—eg
ie.,
EO; > 7 ETy.
€3
By our assumptions on the concentration of Oy and 77 again, we deduce that Oy > #@)TI
for e3 = el/8. In other words
S |
Or > i NS <Tp < a(l/2+4€)N. (1.36)
o+ €3
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By (1.34), (1.35) and (1.36) we have completed the task of Case 3.

Combining the above three cases, we have completed the proof of (1.13), and thus the

proof of the lemma. O

Let P be the collection of good paths. For any path P € P, let Ap be the event that P

is accessible. So we have Zy ;. » = > pep 14, Notice that

EZY.n = Y. Y. P(ApNAp)
PeP pPep

= Y P(Ap) > P(Ap | Ap)

PepP Plep

= 3 P(Ap)E(Zy,. | Ap). (1.37)
PeP

So in order to estimate EZ%V a key step is to estimate E(Zy ;. | Ap). For any good

ST, %)
path P of length L, let vy = 0, vy, v9, ..., vy, = I be the (L 4 1) vertices it passes
through. Let X; be the (random) value at v; (recall that Xg = 0 and X; = x). We
denote the successive differences of X;’s by 01 = X1, 09 = Xo — Xy, .-+, 0y =2 — X7 _1.
It is clear that conditioning on P to be accessible, the X;’s are distributed as the order

statistics of (L —1) i.i.d. uniform [0, z] random variables, so that the conditional distribution

of (61/x,09/x, -+ ,dr/x) given Ap is the Dirichlet distribution Dir(1,1,--- ,1). Recall that a

Dirichlet distribution Dir(aq, a9, -+ , ) is supported on (1,2, -,z ) where z; € [0,1]
K . .
foralli=1,..., K and Zfil x; = 1, and has a density %Fl(%; Hfil x? L
i=1+\%
We first state some properties of (81,09, -+ ,d,) conditioning on Ap (they are also known

as the spacings of the order statistics).

Proposition 1.1. For 0 = ig < i1 < ig < -+ < i} < ipy1 = L and nonnegative integers

BlvﬂQa e 7/Bk—|—17
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(i) Conditional on the event Ap, the distribution of

1 1 i1 2 L
E(X’L'1_X07Xi2_X’i1a"'7XL_Xik):E(25ia Z 5i7"'> Z 52)
1=1 1=11+1 1=ip+1
is the Dirichlet distribution Dir(iq,io — i1, -+, L —i}).

(i1) B(15E1 (X3, — Xi,-1)% | Ap) < [T E((XG; — X3,-1)% | Ap).

: 141
(ii1) E((X;, — X% | Ap) < CVa +t(w%w)ﬂl for p1 < t(iy — 1), where C >0

1s an absolute constant.

Proof. (i) This follows from the aggregation property of the Dirichlet distribution.

(ii) This follows from the moments of Dirichlet-distributed random variables. That is, for

Y ~ Dir(aq, a9, - ,af), we have
]E(ﬁ vl = D(ZjS1ey) 1y Dlag +6))
=1 ! F(Zf{:l aj+B5) i [(ay)

. ﬁ PCiey) {5 Ty +5)
MG sK 0 12 Ty
K

= [1E0)
j=1

where the inequality follows from the convexity of logI'(x) for z > 0 and induction.

(iii) As a special case of the moments of Dirichlet-distributed random variables, we have

(L) T@i+p) 5 (L=1) (’i1+ﬁl_1)!(1.38)

x5 e} x
E((Xiy = Xo)™ | Ap) P(L+p1)  T(in) (L+p1—1) (i1 — 1)
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By Stirling’s formula, we have for an absolute constant C' > 0

E((X;, — X0)™' | Ap)

< cz (L-nhHH! (i1 + f1 — 1)(@%)2“51‘1
) (L5~ (=Lt (- (D1
i1—1

= C’(ajil_1)ﬂ1\/(L_1)<i1+ﬁ1—1) (1+i{5’__11)1+1ﬁ*1 b1
L-1" JL+B - - 1) -

Now by our assumption, we have gé;;ﬁ@;&jg < 21;5_11_ l<i4t In addition, since the

(gt 7

function (1 4 z) /% is increasing in z and tends to e as z — 0, we have

()

(1+t)1+1/t
e

. Substituting these bounds into the preceding display completes the proof. O

In order to compute E(Zy . . | Ap), we first calculate E(ZN,L*((T, Viys Vigs -+ Vi 1) |
Ap), where 0, Viys Vigy -+ 5 Vi, s T (0=1dg <iy <ig < -+ < <ipyq = L) are vertices
on path P and ZN,%*((T, Viys Vigy + 5 Uiy s T) counts the number of good accessible paths P’
that intersect P (vertex wise) at 0, Viys Vigy -+ 5 Vi s 1. For ease of notation we let Viy = 0

and v;, . = 1. Naturally these (k + 2) common vertices divide both P and P’ into (k + 1)
k1

segments. The lengths of these segments on P are iy, (io —i1), ..., (L —iz). Suppose that
P’ visits these (k + 2) common vertices at its jo = 0-th, ji-th, ..., jx41-th steps. Then on
Ap we have

X; (X — X )2l (x — X;, )Ike1—k1
P(A Xn. Xq.--- X;)= 4 2 1 Uk
(Ap [ Xo. X1, X ) G1—1!  (2—sj1— D! (Jr+1 —Jk — 1)!
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By Part (ii) of Proposition 1.1 we have

P(Apr | Ap) = E(P(Apr| Xo, X1+, Xp) | Ap) -
y;.lh—l (Y; _y;.l)jQ—h—l (I_Y'Z.k)Jk:—&-l_Jk_l

(1i—=1!  (Jo—g1—1)! (Jr+1—Jk — 1)!
. y&ljrl (Y, — Yil)jzfjrl N (z — Y;.k)ﬂkﬂ—Jk—l
- - Ge—g = ! (Je+1 —Jk — 1)!

where Yy = 0,Y7,--- , Y _1,Yr = x are distributed as the order statistics of (L — 1) i.i.d.

uniform [0, z] random variables. Therefore, we have

E(ZN,Z',*(67 Uiluvigv e 7Uik7 T) ’ AP)

= > P(Apr | Ap)
P'ep,
P’ intersects P at 0,v; Wi yeesVip 51

k+1 ; - )Je—Je—1—1
< Z H E(YW —Y;, )i
- , - (Je = Je—1 — D!
P'ep, =1
P/ intersects P at 0,0; 0ig- iy 1
k+1
<

H F(,Uigflavig) (139)
(=1

where F'(v;, |, v;,) is defined as follows.

Definition 1.4. For u,v € Hp, we say a path P* connecting u to v is a good segment
from u to v, if there exists at least one good path whose subpath from u to v is P*. For any
good path P = vg,vy,...,vf, and 0 < i < j < L, let F(v;,vj) = EG(v;,v;,Y;,Y;) where

G (vi,vj,%i,yj) s the conditional expectation of the number of good accessible segments from

v; to vj, given that X; = y; and X; = y;.

Now summing inequality (1.39) over iy, is,...,7; and k, we have
k+1
EZngs |l Ap) < Y ] Flvi,yovi,)- (1.40)

kyi1,i9,...,0 {=1
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We can further split the sum on the right hand side into two parts, according to whether

max{iy, (ig —i1),...,(L—1i)} > L/2 (i.e. whether the longest segment on P is longer than
L/2). That is,

k+1

Z H F(viy_y;vig)

kyit,i9,.. g (=1

k1
S D N DI | CTe
kit izt ki iz, i =1
max{ii,(ia—i1),...,(L—ig)}>L/2 max{i1,(io—%1),...,(L—ip) }<L/2
L/2 L1 % L1 %
< (Z > F(”dp”L—dg))H(ZF<Uj7Uj+z‘))+ 1O Fj,vj4a)) . (141)
d=0 dy +dy=d j=0 i=1 j=0 i=1

To justify the last inequality, we first point out that F (vj, vj+1) is always 1 because the
Hamming distance between a pair of vertices on a good path is 1 if and only if these two
vertices are neighboring each other on the path. Given any £ and 0 < i1 <19 < --- <1 < L,

we define u;(k,i1,19,...,i;) for j =0,1,..., L — 1 as:

o ‘ Vigoy, it j=igforsomel <l <kandigpq—ipg>1
wj(k, iy, ig, ... ig) =
vjy1, otherwise

Thus for any £k and 0 < 11 <19 < --- <1 < L

k+1 L-1
1T Fwi, o) = 1] Flvjouy)-
(=1 =0
Moreover, it is not hard to verify that @ := (ug,uy, - ,ur_1) is an injective function of

(k,i1,2,. .., 1), i.e., for any (k,iq,i2,... 1) # (K, i},45,...,i},) such that 0 < i < iy <

- <idp < Land 0 < #) < iy < --- <y, < L, uj(k,in,ig, .o 0g) = wj(K, i), .., 00,)
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cannot hold for all j =0,1,...,L — 1. Therefore

k+1 L—-1
> | J RACAAE > 1 £(vj,up)
Bt izt =1 Bt iz j=0
max{z'l7(i2—i1),...,(L—ik)}§L/2 max{il,(ig—i1)7...,(L—ik)}§L/2

L
2

-1
< [1O . Fvj.vj4)-
j=0 =1

The other part of the inequality can be obtained similarly.

The following two lemmas are useful for bounding E(Zy , . | Ap).

Lemma 1.4. For any sufficiently small but fixed number ¢ > 0, there exist Co > 0 and an
integer N' > 0 which both depend only on €, such that for all |x — x¢| <, N > N’ and any

good path P we have ZdLﬁ) >dy+doy=d F(Vaysvp—g,) < CyN (sinh )V ~1 cosh .

Lemma 1.5. For any sufficiently small but fixed number ¢ > 0, there exist C'3 > 0 and an
integer N' > 0 which both depend only on €, such that for all |x —x¢| <, N > N’, any good

L
path P and any j we have Y 2 | F(vj,vj4;) <1+ %3

Corollary 1.2. For any sufficiently small but fixred number ¢ > 0, there exist C4 > 0 and

an integer N' > 0 which both depend only on €, such that for all |x — x| <t and N > N’
EZJQV,I,* < (C4N sinhV =1 2 cosh z + Cy)N sinh 1 7 cosh z.

Proof. Substituting the bounds from Lemmas 1.4 and 1.5 into (1.41) and using (1.40), we

see that

k+1

EZngs |l Ap) < Y. ] Flvi, yvi,)

kyi1,02,...,0% =1

< (C9N(sinh a:)Nfl coshz + 1)(1 + %)(He)aN

< (CyN(sinhz)N ! coshz + 1)603(1+e)a ‘
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Substituting the above inequality into (1.37) and applying the inequality

Z P(Ap) =EZN .« <EZy, < N(sinhz)¥ ! cosh z
pep

(here the last inequality follows from Corollary 1.1), we complete the proof of the corollary.

O
In order to prove Lemmas 1.4 and 1.5, we need the following lemma.

Lemma 1.6. Suppose that N > 7, s > 1. Let g(y,s) = (sinhy)®(cosh y)N_S. Then g—g(y, s)

1s decreasing in s for all fixed y > 0.

Proof. By a direct calculation

g—g(y, s) = (sinhy)*(coshy)V ~*(scothy + (N — s) tanh y)

— (sinhy) ! (cosh )N~ (tanh y)* (s + N(sinhy)?) .

Therefore it suffices to show that (tanhy)(s + N(sinhy)?) is decreasing in s. Taking the

partial derivative with respect to s we get

%[(tanh y)*(s 4+ N(sinhy)?)] = (tanhy)® + (Intanhy)(tanhy)*(s + N(sinhy)?),
so we only need to show that (cothy)(SJrN(Smhy)Q) > e. If cothy > e, then plainly
we have (cothy)(S+N(Sinhy)2) > (cothy)® > cothy > e. On the other hand, if

. 2, . . .
cothy < e, then y > arccothe := yg. Since (cothy)(bmhy) is increasing in 1y,
. . 1
we have (cothy)(smhy)2 > (COthyO)(SmhyO)2 = ee?~1 =~ 1.17. Therefore we have

(coth y)(5+N<Sinhy)2) > (coth y)7(smhy)2 > (coth y0)7(smh90)2 > e in this case. O

Proof of Lemma 1.4 For dy and dy such that di 4+ do = d, it is clear that the Hamming
distance H (vq,,v_q,) between vy, and vr_ g, is greater than or equal to N —d. Therefore,
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by (1.9) and Lemma 1.6, we have

F(va,,vr—a,) = EG(va,vr—dy Ya,s Yi—dy)
< E((sinh y)H(vdl VL—dy) (cosh y)NﬁH(Udl ’UL_dQ))/lyZYLf@—Ydl
S E((Sinhy)N_d(COShy)d)l|y=YL_d2—Yd1

E((sinhy)¥ "4 (coshy)?)|,—. v,

where the last equality is because the distribution of Y7,_ 4, —Yy, does not depend on (dy,ds)
provided the value of d = dy 4+ do. Writing out the derivative in the last step, we have the

following estimate

F(vg,,vp—a,) < E((sinhy)¥ =7 (coshy)? (N = d)(coshy)? + d(sinh)*))]y—s—y,
< E((sinh y)N*d*1 (cosh y)dilN(cosh y)z) [—

< N(coshz)?E(sinh(z — Y;))N % (coshz)4 1.

sinh x
T

Since sinh(z — y) < sinhxz — y for 0 < y < x, we have further

sinh z

Fvg,vp—a,) < N (cosh z)?E(sinh z — V)N~ (cosh 2)4 1

Y,
= N(coshz)?(sinhz)N =% (cosh z)4"E(1 — ?d)N_d_l . (1.42)

It remains to bound E(1 — %)N_d_l. Since 1 — % is the (L — d)th order statistic of (L — 1)
i.i.d. uniform [0, 1] random variables, it has a Beta(L — d,d) distribution. Thus by the

moments of Beta-distributed random variables (or applying (1.38)) we have

N—-d—-2

Yd . L — d —I— T
r=0
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which can be further bounded by

Nﬁd72L—d+?” ( d )N—d—l

I i ca-
L+r L+N—-d-2
r=0
— N—d-1_ 0.995 4
< L+N-d-2)% < 1.44
< (e e (1.44)

for d < 0.32N, € (and therefore ¢) sufficiently small and N sufficiently large (recall that

—0.32
0.994
a+1-0.32
€ a+ 03 Scoth:zg

L € [a(1—€)N,a(l+€)N] for a good path). Here we used the inequality

(by brute force calculation).
For 0.32N < d < «a(1/2+¢)N, set t =d/N and s = L/N. Then by Stirling’s formula

Nﬁ% dtr_ HL dtr _ (L4 N—2d)btN-2dpL
Ty s L+r = Sw=al-dL+N—dltN-d
— 1452t
(1+S Qt) §T2lgS )%>d

06(((5 — )51 + s — )1 st

Another brute force calculation gives

ot) a2t )% 0.999
~ cothzg

( (1+a—
(=)t (14 o — t)lFa-t

for t < a(1/2+ €) and € sufficiently small. Since the function h(y,t) given by

1
t

((y (1 +y— 2t)1+y72tyy >

h<y’ t) - _ t)y_t(l +y— t)l—Fy—t

is uniformly continuous with respect to (y,¢) on [1.0, 1.5] x [0.2, 0.8], we have for € sufficiently
small (so that s is sufficiently close to ) and 0.32 <t < «(1/2 + ¢)

ot)1H+s—2t s )% 0.9999
~ cothzg

<( (1+s—

s —1)57H 1+ s —¢)l st

In addition, for e (and therefore ¢) sufficiently small, the right hand side of the above in-
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equality is at most 0.99999/ cothz. So we get H;],V;Od72 Lz—j_jfr < C@(Oéggg?cg)d in this case.

Combined with (1.42), (1.43) and (1.44), this completes the proof of the lemma. O

Proof of Lemma 1.5 Recall that P = vg,vq,...,vy, is a good path of length L. For an
arbitrary j, we will bound F'(vj,v;j4;) in a number of regimes depending on the value of i,

as follows.

Case (a): i = 1. Since for any good path (or good segment), the Hamming distance between
a pair of vertices on the path is 1 if and only if these two vertices are neighboring each other

on the path, we have F(vj,vj11) = 1.

Case (b): i = 2. The Hamming distance between v; and v, 19 is precisely 2 (since P is
good), and thus the length of any good segment connecting v; to vj; o is either 2 or 4. There
are at most 2 such segments of length 2, and the probability for each of them to be accessible
given X; = y; and X o = y;y9 is (yj42 — y;j). Similarly, there are at most (N(%)Z!) such
segments of length 4, and the probability for each of them to be accessible given X,; = y;

o —as)3
and X 19 = yjyo is (%_+2:))|L) Therefore,

4\, (W2 —y))°
G(vj,vj42,Yj,¥j+2) < 2(yj+2 —y;) + (N (2) 2!)‘73—,j

= 2(yj12 — ¥j) + 2N (yj42 — ;).
Combined with (1.38), this yields that

F(vj,vjy2) < 20/N for sufficiently large N .

Case (c): i = 3. The Hamming distance between v; and v, 3 is precisely 3 (since P

is good), and thus the length of any good segment connecting v; to vj;3 is either 3 or 5.
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Similar to the previous case, we have

5) 3) (yj+3 — yj)*

G<Uj7 Vi+35 Y5> yj—|—3> < 3(yj—|—3 - yj)Q + (N (2 A

5%
=3(yj43 — y;)° + (gN)(ijr?, —y)h

Combined with (1.38), this yields that

F(vj,vj43) <1000 - N2 for sufficiently large N .

Case (d): 4<i < N%. By the definition of good path and good segment again, we see that
all the possible values of the pair (H(vj,vj44), L(vj,vj4)) (where L(vj,vj4;) is the length
of a good segment connecting v; to v;y;) are (i,7), (4,4 +2), (i — 2,4 —2) and (i — 2,1).
Therefore G(vj,vjyi,yj, yj+i) is at most

(i s N6 -2)

i(yjpi—y) "+ ] Wji—y) T (= 2) (Y41 —y)) +W(yj+i—yj)i_l

1+ 1

Combined with (1.38), this yields that
F(vj,vj4q) < 10* - N1 for sufficiently large N,

F(vj,vjy5) < 10* - N~ for sufficiently large N,
F(vj,vj6) < 10* - N~ ! for sufficiently large N
and

i

N

i

N)6) <10* N2 for sufficiently large N

F(vj,vj45) < 10%- (i()* + Ni(

When7§z’§N%.

Case (e): N < i < L/2. Recall the definitions of €1, €2,€3 in (1.10). By the definition
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of good path, we have #.53 < H(vj,vjyi) < (1/2 +€1)N. Therefore (by the definition of
good path again) any good segment that connects v; to v;; must have length L(vj, vj4;) <
a(1/2+e9)N, so that L(v;,vjy;) also satisfies L(vj,vjy;) < (a+e3)H(vj,vj1;) < (a+e€3)i.

By Part (iii) of Proposition 1.1, we have

—1 (1 14+1/(a+te3)
E(Vji - V) < OVITa+epler— (1+(a+ 632) i1

for ¢ < (o +€3)(i — 1) + 1. Therefore by (1.8) and Lemma 1.6, we have

F(vj,vj44)
E(Y- P y‘)é—l
- 2 j(+£ - 1){

P* is a good segment of length ¢
connecting v; to vy

< OV1+a+ eg((sinhy) T+ (coshy) N —H i ))'lyx i—1 (L (ateg)) 1/ (oes)
< L-1 e
) _i N——t_
< Cy/1+a+eg((sinhy)**s (coshy) “*53)'|yx i1 (Lt(atey)) I+ (0es)
< L-1 e
< CyN2(sinhy)™ (coshy) YT |
> U7 Y Y i (+(ateg) T/ (ates) -
Y= e
141/ (a+e3) 1+1/a
Set a = N(La_Jrf?’), c= x(1+(a+63)2 2 and ¢y = x()% ~ 1.39. Clearly c will

. 1
be sufficiently close to cg if € (and therefore ¢) is sufficiently small. Let ¢ = -5 (so that % <
_t N ot
t < 1/2) and h(t) := (sinh(ct))2*3 (cosh(ct)) L=t ate3. Then the preceding inequality can
be rewritten as F'(vj,v1;) < C7N2(h(t))~1. In order to estimate F(vj,vj4;), we analyze

the behavior of the function h(t) as follows. By straightforward computation, we have

(4 €3)Inh(t) = tInsinh(ct) + (a — t) In cosh(ct) ,

((a + €3) Inh(t))" = Insinh(ct) — Incosh(ct) + ct coth(ct) 4 c¢(a — t) tanh(ct)
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and

((a + €3) Inh(t))"” = ccoth(ct) — ctanh(ct) + ccoth(ct) — ctanh(ct)

At Ala—1)
(sinh(ct))?  (cosh(ct))?

1 1

> 2c(coth(ct) — tanh(ct)) — CQLL((smh(ct))2 * o))

= (Sinh(ct))2c(cosh(ct))2 (sinh(2ct) — ct cosh(2ct)) > 0

for t < 1/2 (since ¢t < ¢/2 < 0.8).

Therefore (« + €3) In h(t), and consequently h(t) is convex up to t = 1/2. Thus we have
h(t) < max(h(NT%),h(l/Q)), and so F(vj,vj44) < C7N? max((h(NT%))L_l,(h(1/2))L_1).
However, since (h(1/2))2(at€s) = sinh(%)(cosh(%))2<o‘+€3)%_1 which is sufficiently close
to sinh(9) cosh(§) = %sinh(co) < 1 if € is sufficiently small and N is sufficiently large, we
have h(1/2) < p where p is a constant strictly less than 1. Thus, (k(1/2))X~1 < pL=1. On
the other hand, (h(NT%))L_1 < (N*%)N% (1—|—N*%)N for sufficiently large N. Thus we have

for N sufficiently large,

Y=

3 8

F(vj,vj4) < CoN?max(ph ™1 (N75)VP (14 N75)N).

Conclusion. Summing F(vj,v;4;) over 1 <4 < L/2 and applying the bounds we obtained
L

in Cases (a), (b), (c), (d) and (e), we see that Y2 | F(v;,vj4;) <1+ % for some C3 > 0,

completing the proof of the lemma. n

Proposition 1.2. There ezists 0 < K < 1 such that, if lzivmianP’(ZN,chreN > 0) > C for
—00

some constant C' > 0 whenever Nepn — 00, then whenever Nen — oo we have

Iminf P(Zn g,4ep >0) > 1-(1-C)K.

N—o0

Proof. Our strategy basically follows that of [10]. First we pick four vertices aq, a9, b1, bo
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satisfying: a1 and a9 are neighbors of 0 and have a value in [0,€en/3], b1 and bo are neighbors
of 1 and have a value in [z —exn/3, 7], and none of the four pairs (a;, b;) are antipodal. Since
Nepn — o0, this can be achieved with probability 1 — op(1).

Without loss of generality assume that the only coordinates of a1, a9, b; and by that are
different from 0 or 1 are 1,2,3 and 4, respectively. Let Hy and Hs be the (N —2) dimensional
sub-hypercubes of {0, 1}N formed by aq,b; and as, by, respectively. That is, Hj is the sub-
hypercube with the first coordinate being 1 and the third coordinate being 0, and Hy is the
sub-hypercube with the second coordinate being 1 and the fourth coordinate being 0. Let
Hé be Hoy \ Hj. Denote by p i and p H, the probabilities that there is an accessible path in
Hy (from aj to by) and H (from ag to by) respectively. From the disjointness (and hence
independence) of H; and Hy we have P(Zy 3, 4¢p > 0) > 1— (1 —pgl)(l _pHé) —opn(1).
Clearly Pi, 2 P(ZN_22,4en/3>0) 2 C —on(1).

It remains to show that p ), is bounded from below by a positive constant 1 — K. To
this end, we note that if we only consider the good path in Hy (from ag to by) which only
updates Coordinate 1 and Coordinate 3 once and Coordinate 3 is updated before Coordinate
1 (that is, in the associated sequence the numbers 1 and 3 occur precisely once each and
3 occurs ahead of 1), such path must be contained in Hé. Clearly, the number of such
accessible paths has second moment less than EZ2 and first moment within an

N—2zc.+en/3,%

absolute multiplicative constant of EZy_o . o /3% (indeed, the first moment is at least

C1(N —2) sinhN=3(z) cosh - (ﬁ)2 : % where = .+ ¢y/3). Combined with Lemma 1.3

and Corollary 1.2, this yields that p ) > 1— K —op(1) for some constant K < 1. This

completes the proof of the proposition. O

Proof of (1.2): antipodal case Applying Proposition 1.2 recursively (starting from C' =
0) completes the proof of (1.2). O

At the end of this section, we provide
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Proof of (1.3): antipodal case For the lower bound, it suffices to consider x = z.—A/N.
By Remark 1.3, we have in this case N(sinhz)N~!coshz > mq(A) where mq(A) > 0
depends only on A. Applying the second moment method and using Lemma 1.3 and

Corollary 1.2, we obtain that (for sufficiently large N)

(EZN,m,*)2
P(Zngz>0)>P(ZNgy >0) > W > c1(A),
7'%‘7*

where ¢1(A) > 0 depends only on A.

For the upper bound, it suffices to consider z = z. + A/N. Let K > 0 be a large
number depending on A that we specify later. The idea is to condition on the values
of the neighbors of 0. Let ul,u9,...,un be these neighbors. For 1 < ¢ < N and
% < y; < z, we upper bound the conditional probability that 1 is accessible from u;
given Xy, = y; by the corresponding first moment, which by (1.9) can be further bounded

by ((sinht)V~1 cosh t) |t=g—y; < 2N (sinh(z — ;)N 2. Therefore

1 rl 1
; N-2
P(Zy,=0) > /K /K.../K[l—QN(Smh(:U—yl)) lyy<g—
NYN N

—2N (sinh(z — yn )N 21y <ol dyr dy2 -+ - dyn

K K

1
= Y = N [ N sinh(e - )Y L
N

where

N N

1 T
/K 2N2(sinh(x — yl))N_Qlylgx dy; = /K 2N2(Sinh(x — yl))N_Q dyq

Here the last step follows from [18, problem 213 (in Part Two Chapter 5 section 2)] by setting
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o(x) = 1,h(x) = Insinhz,a = 0,§ = g, = —%/Ti,ﬁ = A — K. Therefore l}vmian(ZN,x =
—00
0) > e_K(l — \/ﬁe\/ﬁ(A_K)), and we are done by choosing K to be a large number depending

on A. ]

1.3 Accessibility percolation: general case

Since most of our proof in the antipodal case carries over to the general case, in the following
proof for the general case we will emphasize the parts that require nontrivial modification.

Fix 0 < 8 < 1 throughout this section. Recall from the statement of Theorem 1.1
that f(z) = (sinh2)?(coshz)* =P, that z( is the unique root of f(z) = 1 and that z. =

1 InN
T — mnT' We have

f'(x) = (Beothz + (1 — ) tanh z)(sinh x)ﬂ(cosh x)l_ﬁ,

so that f/(zg) = Bcothzg+ (1 — ) tanh zg. In addition, it is straightforward to check that

0 < f"(z0) < oo. The proof of (1.1) resembles that in the antipodal case.

Proof of (1.1): general case In light of (1.8) we denote by
My = ((sinha) N (cosha) 1IN) = ((£(@) V) = N(F@) V(@)

We have My 5, < N(f(x)N for, say |# — 0| < 1/10. Since P(Zy ;> 0) is monotone in z,

we can assume without loss of generality that ejy < N ~2/3_ With this assumption, we have
= — 1 N
forx =2t ey =29 — Flag) N + ep,
1 InN
(¢ = 20)> = (g7 — 5 T en)” = o(1/N)
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and thus

f(a) = f(zo) + f'(z0)(z — z0) + o(1/N)

=1- % + f'(20)en + o(1/N) .

Therefore, My g 4. —ey — 0 and My g4 1 ¢\ — 00 as N — oo. Combined with (1.9), it
gives that EZp ;.. — 0 as N — oo, yielding (1.1). O

We next turn to prove (1.2). To this end, we first need to revise the definition of good
path. Let

v = Bxgcoth g + (1 — B)zgtanh zg = xq f(x)

as in statement (1.15) (it will play the role of «). Also in the general case, by a similar
calculation as equation (1.32), we see that the definition of g(¢) in (1.28) should be modified

as

oft) = ﬁsinh(xot) cosh(zg(1 —1t)) P

sinh

sinh(zq(1 — t)) sinh(zqt)
cosh xq

so that g(t)N still means the “expected Hamming distance traveled by a path in time ¢”. In
addition, for a pair of vertices u and v, we let H'(u,v) be their Hamming distance restricted
to the first SN coordinates (i.e., the number of the first SN coordinates at which wu differs

from v).

Definition 1.5 (general case). Let € > 0 be a sufficiently small fired number to be se-

1/8

lected and set ¢4 = € We say a path (or the associated update sequence) vy = GN =

(0,0,---,0),v1,...,v9_1,v[, = (TﬁNﬁN—ﬂN) =(1,---,1,0,---,0) is good if the following
holds:

(a) The total number of updates of the first BN coordinates lies within

[Bxg cothxg(l — €)N, By coth zg(1 4 €)N]
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and the total number of updates of the last (1 — B)N coordinates lies within

[(1 = B)zgtanhzg(l —€)N, (1 — B)zgtanh zg(1 + €)N].

(c¢) Forl|i— j| > 3 we have
H(vg,07) = |i — | or |i = j] — 2, if 4 < |i — j| < N3;
H'(v;,05) < (1/2 + €1)BN, if li — j| <~v(1/2 + €)N;
H'(vj,v5) > (1/2+ €1)BN, if li — j| > v(1/2 + e2)N;

20(1/2)[i—j| sl .
H(vi,vp) > 2U2UI gp N < i - ) < 4(1/2 + e2) V.

(d) Let D(vg,v;) be the number of updates of the first SN coordinates among the first i
updates, and D(vy_;,vr) be the number of updates of the first BN coordinates among

the last i updates. Then both D(vgy,v;) and D(vy_;,vr) are less than or equal to di for

' L B coth zg
any i < L/2, where § := B coth xg+(1—7) tanh x

+€4q.
As in the antipodal case, it is clear that a good path is self-avoiding. In addition, we

have L € [y(1 — €)N,~(1 + €)N] by Property (a).

Lemma 1.7. For any sufficiently small but fized number ¢ > 0, there exist C’{ > 0 and an
integer N' > 0 which both depend only on €, such that for all |x — zg] < ¢ and N > N’ we

have

EZN zx > CiMy g0 = CIN(f(2)V 1 (2). (1.45)

Proof. Recall the definition of jiy g introduced in the statement (1.15): Fori € {1,..., 3N},
let U; be i.i.d. random variables distributed as F, and independently fori € {fN+1,..., N},
let U; be i.i.d. random variables distributed as F5. Given the values of Uy, ..., Uy, we let
(A1,...,Ar) (where L = sz\il U;) be a sequence uniformly at random subject to |[{1 <
Jg<L:Aj =i} =U. Let iy g be the probability measure of the random sequence

(Aq,...,Ar) thus obtained.
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Following a similar argument given at the beginning of the proof of Lemma 1.3, we see
that it suffices to show that under fijy g the set of good sequences has probability bounded
from below by a constant.

We first observe that Properties (a) and (c) in Definition 1.5 can be satisfied by a random
sequence under fijy g with probability tending to 1 as N — oo. This can be derived quite
similarly as Case 2 and Case 3 in the proof of Lemma 1.3, with the last requirement in

Property (c) hinted by the following inequality

In addition, we claim that Properties (b) and (d) in Definition 1.5 can be satisfied simulta-
neously by a random sequence under fiy 3 with probability bounded from below. Altogether,
this would imply the desired bound in the lemma.

To verify this claim, we show that the update sequence (Aq,..., Ar) can be obtained
by the following two-step procedure, where in each step one property can be satisfied with
probability bounded from below. Let us recall the notation that F = o(Uy,Us,...,Un).
For convenience, we write L1 = Zfﬁ U; and Lo = EﬁﬂNH U;.

As the first step, conditioning on F, we choose L1 indices i1 < iy < --- < iy, uniformly
from {1,2,..., L} and call them type 1 (they represent updates of the first SN coordinates).
Denote by 7 = {iy,ig,- - ,ir, } the collection of these type 1 indices. Let j1 < jo <--- < jp,
be the rest of the indices and call them type 2 (they represent updates of the last (1 — )N
coordinates). In the following PP refers to this (conditional) probability space (so that L;
and Lo should be seen as constants).

Denote by £ the following event:

B coth xg

1,--- inZ|, [{L—i+1,--- ,LINZ| <
{0 T i INT] < (e o

+eq)i forall 1 <i < L/2
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and by &’ the following event:

Ly

L dNT,HL—i+1,--  L}NT| < (—21—
{1, 0, I T < (o

+e)iforall 1 <i<L/2.

We want to show that Property (d) can be satisfied with probability bounded from below in
this step, that is P(£) > ¢ for a constant ¢ > 0. Without loss we can assume that Property
(a) holds (since it is F-measurable and can be satisfied with high probability), so that we
have

Ly Te Bxg cothzg(14+€)N Le< 3 coth zg +e
Li+Lo = Bwocothxo(l e)N+(1—3)zo tanh xg(1—e) N — Beothzp+(1—04) tanh z 4

for sufficiently small € and therefore &' C £. Tt thus remains to lower bound P(E').
To this end, for each 1 <7 < L, we let T; = 1{i is of type 1}- Then 14,75, ..., can be
viewed as a sample without replacement from L 1’s and L9 0’s. By Hoeffding’s inequality

in the case of sampling without replacement [11, Theorem 4|, we have for any n,

n
i1 1 S Lq

P +e) < —2ne?
( - it Lo €) < exp(—2ne”)
and
( ntl > i 1[ ) < (-2 2)
p Ln . ; + € exp ne’) .

By a union bound over M < n < % (where M depending only on € is chosen later), we have

_ 2exp(—262M)
P(&1) 21— 7 s exp(—3¢7) where

~

L
Zz L— n+1 < 1

for all M < <_}
n _L1+L2+6 or a <n<

[\

nT Ly
& = {== < d
1 n _L1+L2—|—ean

Let K be the set of all positive integer pairs (kq, ko) such that M]\}kl < Lljjrng + ¢ and
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M-ky o Ly

M STt T It is clear that

M L
& = |_| glﬂ{ZTZ‘:M—kl}ﬂ{ Z T, =M —ko}. (1.46)

(k1,k2)EK i=1 i=L—M+1

For (ki,ko) € K, define

E(k)={T;=0for 1 <i<k}n{T;=1for k1 +1<i< M},

E(ky) ={T;=0for L—ko+1<i<L}N{Tj=1for L-M+1<i<L—ky}.

Then for all (k1,kg) € K, on the event & (k1) N E3(ke) we have ifllTi < L1L+1L2 + € and
L

L T
ZZ_L;L”H L < Lllji-le + e for all 1 <n < M. Therefore, we have

&2 || &nék)nésky). (1.47)
(k1,k2)e

However,
M\t ! M L
IP’(51ﬁ&(/ﬂ)ﬁ&a(/@))—(k) (k ) PELY Ti=M—ky, Y  T;=M-k)
1 2 i=1 i=L—M+1

M L
> 2_2MIP’(51,ZTz‘ = M — Ky, Z Ty =M — ko). (1.48)
i=1 i=L—M+1

Summing (1.48) over all (kq, ko) € K and using (1.46) and (1.47), we deduce that

2 exp(—2€2 M)
1 — exp(—2¢2)

P& > 272Mpg) > 272 M1 ). (1.49)

By (1.49) and choosing M depending on € (e.g. M = — io Ine), we have proved that in the
first step, Property (d) can be satisfied with probability bounded from below by a number
depending only on e.

Now, conditioning on the previous step, let (By, B, ..., B Ll) be a sequence uniformly at
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random subject to [{1 < j < Ly : Bj = i}| = U; fori =1,2,..., 8N, and independently let
(C1,C9, ..., CL,) be asequence uniformly at random subject to [{1 < j < Ly : Cj = i}| = Uj;
fori=pBN+1,BN+2,...,N. Let A;, = By for 1 <k <Ljand A; =Cp for 1 <k <Ly
(recall that i;.’s and ji’s are sampled in the previous step). Thanks to the general proof
of Case 1 in Lemma 1.3, we have that with high probability (with respect to the U;’s), we
have B; # B;11 and B; # B;.9 hold for all 1 < ¢ < L with at least constant probability;
and with high probability (with respect to the U;’s), we have C; # Cjyq and C; # Cjyo
hold for all 1 < ¢ < Lo with at least constant probability. However, note that B; # B, 1,
B; # Bjyo for all 1 <i < Ly and C; # Cjyq, C; # Ciyo for all 1 < i < Lo together would
imply A; # A;11 and A; # A;49 for all 1 < ¢ < L, which corresponds to Property (b).
By the (conditional) independence of (By, Bo, ..., By, ) and (C,Cy,...,Cf,), we see that
in the second step, Property (b) can be satisfied with probability bounded from below by a
constant.

Finally, it is clear that the sequence (Aj,..., Ar) obtained by this two-step procedure
has the same distribution as under fiy g originally. This completes the verification of our

claim and therefore the lemma. O

Lemma 1.8. For any sufficiently small but fixed number ¢ > 0, there exist C’é > 0 and an
integer N' > 0 which both depend only on €, such that for all |x — x¢| <, N > N’ and any

good path P = vg,v1,...,v1, we have

L)2
S Y Fluayvn-ay) < NN < GN(F@)Y T (@),
d=0d1+do=d

Proof. We continue to let Yy = 0,Y7,...,Yr_1,Yr, = x be distributed as the order statistics
of (L — 1) i.i.d. uniform [0, z] random variables. For d; and dy such that d; + do = d, by
Property (d) of Definition 1.5 we have that the Hamming distance H (vq,, vr,—q,) between vg,

and vy,_g, is at least BN — D(vg,vq,) — D(vr,_g4,,vr,), which is at least N — dd. Therefore,
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by (1.9) and Lemma 1.6, we have

F(va,,vr—a,) = EG(vg,,v1—dys Yay» Y—dy)

S E((Slnh y)H(vdl 7UL—d2) (COSh y)N*H(’Udl "UL—dy ) )/ |y:YLid2 —Ydl

< E((smh y)ﬁN_(Sd(COSh y) (1_5)N+5d)/‘y:YL_d2 _Ydl

= E((sinh y) "N (coshy) ' INF| Ly (1.50)

where the last equality is because the distribution of Y7_ 4, —Yy, does not depend on (dy, d2)

provided the value of d = dj +dg. Since x — Y} is the (L — d)th order statistic of (L —1) i.i.d.
.%'—Yd

uniform [0, 2] random variables, =—

has a Beta(L — d,d) distribution. Thus, the density

. —d— — L-1)!
of v — Yy is L(L)L=d=1(1 — ¥)d 1% for y € [0, z]. Therefore

E((sinh )"V =0 (cosh y) L AN Ty -y
Y BN—&d (1-B)N+sdv 1 Y\L—d-1,,  ¥Y\d-1 (L—1)!
/0 ((sinhy) (coshy) ) a:(x) (1 x) (L—d—l)!(d—l)!dy'
(1.51)

We will split the above integral into two parts according to whether y is smaller or greater
than 5, and denote by Ji(d) the integral over [0, 5] and by J2(d) the integral over [, x].

On one hand, for y € [0, 5], by Lemma 1.6 we have

(sinh )N =0(cosh ) 1I=INFAL)Y < ((sinh ) V0% (coshy) 1IN Ty

L L
= (sinh y)BN_‘S%_l(cosh y)(l_B)Nﬂ%_l((ﬁN - (55) coshy + ((1 — B)N + (55) sinhy) .
Since coshy < cosh(5) and sinhy < sinh(§) for y € [0, 5], we have

((sinh ) N = (cosh ) 1= ANFIY < CoN (sinh(5)) "N 037 (cosh(5)) 1IN HIF

(1 2€)N (1 E)N
< CyN(sinh(5)) V777 (cosh () AN+
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where the last inequality follows from Property (a) of Definition 1.5. Therefore

L
2
S @+ D) < CoN(sinh(5))*N I TE (cosh () (- AN
d=1

< CoN3r (sinh ZE)BN(COSh x)(l_ﬁ)N, (1.52)

where 0 < r < 1 is a constant that depends only on 5. Here we used the fact (by brute force

computation) that

~7(14-2¢)

(Sinh(%))ﬁ_é 2 (Cosh(%))(l_ﬁ)
(sinh 2)?(cosh x)1 -5

On the other hand, for y € [F, z], we have cothy < coth(%) and tanhy < tanh(x). Thus

((sinh )N ~9(cosh y)<1—ﬁ>N+6d)/é
= (sinh y)ﬂN—ad(Cosh y)(l—ﬁ)N—&—éd((ﬂN —dd) cothy + ((1 — B)N + 6d) tanh y)%
< C1gN(sinh y)ﬁN—M(cosh y)(l—ﬁ)N‘HSd

< C11N((sinh y)ﬂN(cosh y)(lfﬂ)N)(coth y)5(d*2) _

Therefore, the integrand of (1.51) is smaller than
C11N((sinh y)*N (coshy) L -AIN)o(a,y.d, 8, N, L) for y € [, 2], where

—1\!
pla.y,d,6,N, L) = (cothy)’ (=) () Fm=1 (1 — 2y~ = CEL_ 1;@ T

and thus

L L
2 T 2
S @+ 1)J(d) < O N / ((sinh )N (cosh y) T=IN) N (d + 1)p(2, y. d, B, N, L) dg1.53)
d=1 2 d=1
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Now for d = 1, we have
(d+ Dp(x,y,d, B, N, L) = 2(tanh )’ (D) L"2(L - 1) < Cra(DHL 2L - 1), (1.54)
In addition, for d > 2, we have

(d+1)e(z,y,d, 6,N, L)

= (1= Dfeorhy 00 = Dyt - (-2
< 30— DI [((cothy)”)(1 = DIFAOE ;L_};’(}; 5

Observing that the second factor of the product in the previous line is a binomial term, we

have

|~

2
> (d+V)g(z,y,d, B, N, L) < 3(1 — L)L* - ((cothy)’(1 — &) + £)E~3 (1.55)
d=
Combining (1.54) and (1.55) and using Property (a) of Definition 1.5, we have
B
3 (1ol 6,8 1) < Cra(2) 2N (L-1)43L2(1= ) (cothy)’ (1= 2)4-2 ) (AN

Therefore (1.53) translates to

L
2
Z (d+1)TJa(d <011N/ smhy)ﬂN(COShy)( ﬂ)N).

S
—_

4y (AN gy

T

(Cra(2)I=29N (L 1) 4+ 3L2(1 — ¥)((cothy)’ (1 — ¥) +
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For convenience, let

((sinhy)B(coshy)1=B) . (2)v(1-2¢)

(sinh 2)?(cosh ) 138 ’
((sinhy)? (coshy)1=#) - ((cothy)? (1 — 9y + %)’Y(lJrﬁ)

(sinh )8 (cosh x)1-8 7

Y3(y) = flnsinhy + (1 — B) Incoshy.

V1(y) =

Pa(y) =

We will show that for i € {1,2}, we have 1;(z) = 1 (which is trivial) and In ¢;(y) < —K(z—y)
for y € [5,z], where K > 0 is a constant that only depends on . These conditions on
Y1(y) and o(y) will guarantee that both f%x N1 (y)N dy and fg N2(z — y) (o (y)N dy
are bounded as N — oo, so that (??) is bounded by 3N (sinh z)? (cosh z)(1=A)N

It is relatively easy to check that 1(y) satisfies the second condition (i.e. Inq(y) <

—K(z —vy)), so we focus on verifying it for 9(y). To start with, we have
mwa(y) = (¥3(y) — ¥3(x)) + (1 + € In((cothy)’ (1 — %) + %) .

For the first part of the sum on the right hand side, i.e. (¢¥3(y)—13(x)), we can first compute

the derivatives of 13(y) as follows:

Vs(y) = Beothy + (1 — B) tanhy,

V3(y) = B(1 = (cothy)®) + (1 = B)(1 — (tanhy)?).

4.1
Since cothy > cothx > (%)Z for y < x, we have @Zzg(y) is increasing in y. Therefore, by

Taylor’s theorem (Lagrange form of the remainder) we find that for some & € [y, x|,

3 (8)

Us(y) = vs() + ()Y - 2) + =5 (y — 2)?
< uala) + () - ) + L (2. (1560
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For the second part of the sum, i.e. (1 + ¢)In((cothy)?(1 — Iy + 4, we set C(y) :=
(cothy)? —1 and O(y) :== 1 — 4. Then

(cothy)’(1— D+ L =111 - Dew) =1+0w)cw).

T

8|

Clearly 0 < 6(y)C(y) < 6(3)C(%) = ((coth %)5 — 1) < 0.75. Since In(1 +¢) < t — % for

0 <t <0.75, we have

In(feoth)*(1 - )+ £) < o0ty - COCWE (157)

Combining (1.56) and (1.57), we have

Invs(y) < —vh(@)z(l—2)+ v <2> (1- Yy
2 2
11+ 90T () — (1 + ) L8 §C<y>>

9()

z) a2
=0(y)y(1+¢)][— ——— (P3(x)z — 4 7 0(y))] -

’y(l +€)

We wish to show that the factor in the square bracket above is less than some constant —n,

where 77 > 0 only depends on f3, i.e. for any y € [5, 7]

————(¢3(z)z —

Rl +6)

Set ¢ := %3)0 Since |z —xg| < ¢ = €2, and € can be made arbitrarily small, we only need

to show that for some constant 1y > 0 which only depends on 3, for any y € [3, z]

—@(C(y))2 +Cy) —1+cb(y) < —m .

To do this, we let ¢(s) := —@32 +s—14cH(y). Solving the quadratic equation g(s) =0

with respect to s, we get the smaller root (since 6(y) € [0,1/2] for y € [5, 2] and ¢ > —1/3,
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q(s) always has two roots)

—1+ /1= 20— o) .

’I"(y) = _29(y) ) for y e [§a "L‘] :
3
We claim that we only need to show that for any § <y < z, C(y) < r(y) — n2 for some
constant 79 > 0 which only depends on 3. Indeed, if this holds true, then from ¢/(s) =
—Ms—i—l,weseethatq’Cy :—29yC’y +1>0.5and ¢ (C(y) +m2) =¢(Cly)) —
3 3

20
2) py > 0.5 — Zny. Consequently 0 = (r(y) > q(C(y) + m2) > a(Cy)) + n2(0.5 — 2mp)
and we can take n; = 12(0.5 — %772).

To this end, we first point out that r(y) is convex in y if ¢ < %, r(y) is concave in y if

—144/1-48(1—co
c> % and r(y) = 1if ¢ = % This can be seen by observing that r = 5 ) is the

_20

3
inverse function of 6 = :2_1 , whose properties such as monotonicity and convexity are not
e

hard to justify. Now if ¢ < %, then by convexity of r(y), we have

3z 3x 3

r(y) > 7' =) () =)

where t(y) can be computed as

1 120 3z
Hy) = —=(———— — M) (y — 22) +6 — 3+ 24.
(y) x( T )y 4)+ c+

Since C'(y) is convex in y, we only need to have t(x) > C(z) +12 and t(5) > C(5) +n2, i.e.,

30

4+ 12—/3c+ 24> (cothz)’ — 1+ 1.58
=3 c > (cothz) N9 (1.58)
and
30 ]35
———— —V3c+24 > (coth=)° —1+mn9. 1.59
3c+24 = 2) " (1.59)

If c = %, then r(y) = 1, which is a degenerate case. If ¢ > 31;, then since r(y) is concave in y,
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we only need to have r(z) > C(x) +n9 and r(5) > C(5) +mo, ie.,

1 > (coth ZL‘)(S — 149 (1.60)
and
3—/3(c+ 1) > (coth 3)5 14, (1.61)

All of the inequalities (1.58), (1.59), (1.60) and (1.61) boil down to comparisons of constants
which only involve zq (since |z — zg| < ¢ = € and € can be made arbitrarily small), so we

have finally shown that (??) is bounded by Cj3N (sinh ) (cosh )1 =AW

Combining (1.50), (1.51), (1.52), (??) and the fact that F(vg,vp) <

L
N(f(z)N=1f(x) when d = 0, we conclude that D0 2dytdog—d F (Va0 —dy) <
C’éN(sinhx)ﬂN(cosha:)(lfﬂ)N for some C% > 0. O

Lemma 1.9. For any sufficiently small but fixed number ¢ > 0, there exist C’é > 0 and an
integer N' > 0 which both depend only on €, such that for all |z —x¢| <, N > N’, any good

L /
path P and any j we have Y 2 | F(vj,vj4) <1+ %l

Proof. The proof can be carried out in the same manner as that of Lemma 1.5, except that

the role of o + €3 in Case (e) there is now played by 23{57{32). We thus omit the details. [J

Corollary 1.3. For any sufficiently small but fized number ¢ > 0, there exist Cfl > 0 and

an integer N’ > 0 which both depend only on €, such that for all |x — xg| <t and N > N/
EZ3 4 < (C4N (sinh )™ (cosh ) =PV 4 )N (sinhi ) N (cosh )TN

Proof. This follows from Lemmas 1.8 and 1.9 in the same manner as Corollary 1.2 follows

from Lemmas 1.4 and 1.5. O]

Proposition 1.3. There exists 0 < K' < 1 such that, if l]ivm inf P(ZN 4o 4ey > 0) > C for
—00
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some constant C > 0 whenever Nepy — 00, then whenever Nen — oo we have

o /
ljlvrri:élof’IP(ZN’mc+€N >0)>1-(1-0O)K".

Proof. The basic idea is the same as Proposition 1.2. Fix a large integer M. We first choose

vertices Ay, ... Ay, B1,..., By and Cq, ..., Cyp, Dy, ..., Dyy such that for 1 <i < M:

e The only coordinate at which A;_j and A; differ is a;. The only coordinate at which
B;_1 and B; differ is b;. The only coordinate at which C;_; and C; differ is ¢;.
The only coordinate at which D;_1 and D; differ is d; (set Ag = Cy = On and

By =Dy = (TﬁNa 6N—BN) for convenience).

e All of the 4M coordinates a;, b;, ¢; and d; are different and are among the first SN

coordinates.

o X(A), X(Cy) € (RN TNy and X (By), X(D;) € [& — 1 o — UZleyy

Since Ney — 0o, this can be achieved with probability 1 — op(1).

Now let My = ﬂ;ﬁﬂ)QM , and select distinct coordinates ey, eg,- -, ep, and

f1, fa, -+, far, arbitrarily among the last (1—3) N coordinates. Let Hj be the (N—2M — M)
dimensional sub-hypercube formed by Aj; and By with the coordinates e, e, - -+, epz, be-

ing 0, i.e.,

f[lz{aGHN:Uei:Oforall1§2’§M2,aai:1foralllgi§M,

abizoforalllgigM}.

Similarly, let Ho be the (N —2M — My) dimensional sub-hypercube formed by Cp; and D)y
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with the coordinates fi, fo, -+, far, being 0, i.e.,

ﬁgz{JEHN:crfi:0f0ralllgiSMg,acizlforalllgiSM,

oq, =0 forall 1 <i< M}.

Let Hé = H, \ Hjy. Denote by Ph, and PHy, the probabilities that there is an accessible
path in H; (from Ay to Byy) and Hb (from Cyy to D) respectively. Since Hy and H)
are disjoint, by independence we have P(Zy ;. 1e,y > 0) > 1 — (1 —ppy)(1 _pHé) —opn(1).
From the construction above it is clear that we are reduced to accessibility percolation of
dimension (N — 2M — My) (with the same () with = > x. + ey /2, in either Hy (from Ay,

to Byy) or Hy (from Cyy to Dyy). Thus,

Pi, 2 PZN oMy zetens2 > 0) 2 C —on(1).

To show that p ) is bounded from below by a positive constant 1 — K’, we only con-
sider the good path in Hy (from C; to Djs) which updates each of coordinates aq and by
precisely once and by is updated before a1. Such paths must be contained in Hé. Clearly,
the number of such accessible paths has second moment less than I[:EZJQV_2 MMy zoten /2.5
and first moment within an absolute multiplicative constant of EZn_ons_ar, zotey /2,% (or
MN—ZM—MQ,B,chrGN/Q)' Combined with Lemma 1.7 and Corollary 1.3, this yields that
Pu > 1— K’ — op(1) for some constant K’ < 1. This completes the proof of the proposi-

tion. O

Proof of (1.2): general case Applying Proposition 1.3 recursively (starting from C' = 0)

completes the proof of (1.2). O

Proof of (1.3): general case The proof is basically the same as in the antipodal

case except that for the upper bound, the role of sinh(x) is now played by f(z) =

23



(sinh z)? (cosh z)1 =72, O

1.4 Asymptotics for the global maximum of the NK fitness

model

In this section we give a proof of Theorem 1.2. Our proof relies on the following observation,

which can be proved in the same way as part of the proof of Proposition 3 in [9].

Proposition 1.4. For fized N, the global mazimum of the NK fitness model M g 1is stochas-

tically nondecreasing in K.

Proof of Theorem 1.2

(a) Clearly we have limpy_, .o EM% = z*. Thanks to Proposition 1.4, we only need to

show that if K — oo and % — 0 as N — oo, we have liminfy_, % >z

We divide the N coordinates into [%] blocks of length K. We use the following algorithm

to find a & € {0,1}"V such that X is large. First we set the coordinates of & in the

first block to be 0: 61 = 69 = --- = 6 = 0. For each stage j = 1,...,[%] — 1, we set
(OjK4+1:0jK+2:" 7‘}(j+1)K) to be the maximizer of
K+1
max Y G K (0 1 ke Tin i)
(O-jK+1’UjK+27"'7U(j+1)K)€{0 1}]{ Z:ZQ (] ) ( i+(j—-1)K +jK 1)
Finally we set 6; = 0 for [%]K}Ll <4 < N. Note that foreach j =1,..., [%]—1, we have
{Z =2 }/7/“!‘ j 1)K7(0i+(j—1)K7... 7Ji+jK71) : (U]K+17 O-‘]K+27 T j+1 ) {O ]‘} } be_

haves exactly as a binary branching random walk (BRW) of depth K. Furthermore, this

BRW is independent of all BRWs in the previous stages. By Theorem 4 of [20] we have

K+1 3
o *
K Z Yir(j-nK (i (1)K Oitjk—1) Kz Tl (a%) log K + Ok (1).
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Summing this over j =1,..., [%] — 1, we have

EMy x> BX; = ([ = 1(Ks" = g0 log K+ Oxe(1) + (¥ = (130] = DEJB(Y),

==

which gives us liminf n_, o % > x*.

(b) By Proposition 1.4 again, we have limsup y_ ]\][V’K < limsupy_yo0 ]]\\,Z’KO < z*.

]

95



CHAPTER 2
CHEMICAL DISTANCES FOR PERCOLATION OF PLANAR
GAUSSIAN FREE FIELDS AND CRITICAL RANDOM WALK
LOOP SOUPS

2.1 Introduction

For an N x N box Viy C Z? centered at the origin, we let the discrete Gaussian free field
(GFF) {nn : v € Vx} with Dirichlet boundary condition be a mean zero Gaussian process

which takes value 0 on 0V and has covariances given by

1
ET]N,UUN,U = ZGVN (uv U) )

where Gy, (u,v) is the Green’s function for simple random walk, i.e., the expected number
of visits to v before exiting Vjy for a simple random walk started at u. The first goal of
the present paper is to study chemical distances (i.e., graph distances) on the percolation
cluster for level sets of GFF. Precisely, for any A € R, we let Hy \ = {v € Vy 1y, < A}
be the A-level sets, i.e., the collection of all vertices with values no more than \. In the
context of no confusion, we also denote by Hy ) the induced subgraph on Hy ). For
u,v € Vi, we let DN’)\(u, v) be the graph distance between u and v if w,v are in the same
connected component of Hy ), and let Dy \(u,v) = oo otherwise. For A,B C Vi, we

denote Dy (A, B) = minye 4 yep Dy a(u,v).

Theorem 2.1. For any 0 < a < 8 < 1, there exist constants ¢ > 0, \g > 0 such that for all
N

P(Dy A (OVan, Vi) > Nelos N1 < mLiemeh L N=20) - o g1\ > 2.

Remark 2.1. Note that even for any fived A\ < 0, the event Dy \(0Von,0VaN) <

oo i Theorem 2.1 occurs with non-vanishing probability; see Corollary 2.1. In

o6

Nellog V)



addition, we expect that for any fized X, the probability for Dy \(0Van,0Vay) < oo is

strictly less than 1; we do not study this in the present paper so as not to dilute the focus.

We next consider the random walk loop soup introduced in [51], which is a discrete ana-
logue of the Brownian loop soup [52]. For convenience, we follow [53] where the loops are
endowed with a continuous-time parametrization. Formally, let (X;) be a continuous-time

sub-Markovian jump process on Vjy which is killed at the boundary. Given two neighboring

14

vertices x and y, let the transition rate from z to y be 1. Let (P, ,(+))z yevyy t>0 be the bridge

probability measures of X conditioned on not killed until time ¢, and let (p¢(z,9))z yeVy >0
be the transition probabilities of X. Then the measure y on time-parametrized loops asso-

ciated to X is, as defined in [53],
pt(xw%')
TORD S A PO (1)

For a > 0, the random walk loop soup with intensity o on Vjy, denoted as L, y, is defined
to be the Poisson point process on the space of loops with intensity au. Naturally £, n
induces a subgraph (which we also denote as L, y) of Gy where an edge is open if it is
contained in a loop in £, n. Our next theorem is on chemical distances (which we denote

by D£1/27N(-, -)) of such loop clusters at its critical intensity a, = 1/2.
Theorem 2.2. For any 0 < a < § < 1, there exists a constant ¢ > 0 such that for all N

9/10

P(D£1/2N(8VQN76VBN) < NellogN) ) >c.

Remark 2.2. We expect that the probability for DEI/ZN(ﬁvaN, 8V5N) < 00 18 strictly less

than 1; see Remark 2.1.
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2.1.1 Backgrounds and related works

Chemical distances for percolation models is a substantially more challenging problem than
the question on connectivities. For instance, it is a major challenge to compute the exponent
on the chemical distance between (say) the left and right boundaries for the critical planar
percolation, conditioning on the existence of an open crossing. It was proved in [21] that
the dimension is strictly larger than 1, and it was shown in recent works [33, 34] that the
chemical distance is substantially smaller than the length of the lowest open crossing. Let us
remark that the current result does not imply that the exponent for the chemical distance is
strictly less than that of the lowest open crossing, despite that it was strongly believed so.

Due to the strong correlation and hierarchical nature of the two-dimensional GFF as well
as the random walk loop soup, our model is perhaps in spirit more closely related to the
fractal percolation process (see [31] for a survey). For fractal percolation process, it was
proved [32, 61] that the dimension of the chemical distance is strictly larger than 1 (which
suggests an interesting dichotomy in view of our dimension 1 results for the GFF and the
random walk loop soup).

As for loop soups, in two-dimensions the connectivity of the loop clusters has been studied
recently. In [65], it was shown that there is a phase transition around the critical intensity
Qe = % for percolation of the Brownian loop soup, below which there are only bounded
clusters and above which the loops forms a single cluster. In recent works of [54, 55],
analogous results were proved for the random walk loop soup.

In three-dimensions or higher, there has been an intensive study on percolation of level
sets for GFF, random walks, random interlacements as well as random walk loop soups; see,
e.g., [66, 67, 63, 30]. In fact, much on the chemical distances for these percolation models
has been studied; see [28, 40, 29]. We remark that there is a drastic difference between
two-dimensions and higher dimensions.

Besides chemical distances, other metric aspects of two-dimensional GFF has been
studied recently: see [56] on the random pseudo-metric defined via the zero-set, and see
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(39, 37, 36, 38] for some progress on the first passage percolation on the exponential of these
underlying fields.

Finally, the random walk loop soup percolation is naturally related to the following
percolation dimension question for planar random walks (Brownian motion) proposed in [42,
26]. Run the random walk until it exits the boundary of a box and declare a vertex to be open
if it is visited and closed otherwise. Then what is the dimension of the minimal open crossing
from the origin to the boundary? We are currently not able to prove something for this
question, for the crucial reason that we are not able to construct a coupling between GFF's
and random walks under which an event on GFFs will certify “small” chemical distances for

random walk percolation models.

2.1.2  Discussions on main proof ingredients

Our proofs of Theorems 2.1 and 2.2 are based on an interesting combination of a theorem of
Makarov, isomorphism theory and an entropic repulsion estimate for GFF in the presence

of hard wall. In this subsection, we will provide a brief review on these three ingredients.

A theorem of Makarov. A fundamental ingredient for our proofs, is a classical theorem
of Makarov [58] which states that the dimension of the support for the harmonic measure
on simply connected domain in R? is 1. In this article, we will use a discrete analogue
of Makarov’s theorem which was proved in [48] by approximating Brownian motions with
random walks (and then using [58]). Previous to [58], the Beurling’s projection theorem
(see, e.g., [23, Theorem V.4.1.], and see [45, 49| for its discrete analogue) was established,
which gives an (achievable) upper bound on the maximal local expansion of the harmonic
measure compared with 1-dimensional Hausdorff measure (in the language of simple random
walk, it states that the harmonic measure at a lattice point on a simply connected curve of
diameter n is bounded by O(1/4/n)). In a sense, Makarov’s theorem states that the upper
bound in Berling’s estimate cannot be achieved globally, and thus providing a much better

control (than that guaranteed by Beurling’s projecting theorem) on the global expansion
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and compression of harmonic measure. Finally, we remark that examples have been given in
(60, 27], in which the harmonic measure is singular to the 1-dimensional Hausdorff measure.

In our opinion, this suggests that Question 2.4 below could be of serious challenge.

Isomorphism theory. The distribution of the occupation times for random walks can be
fully characterized by Gaussian free fields; results of this flavor go by the name of isomorphism
theorems (see [59, 53, 68, 64] for an excellent account on this topic). Of significance to the
present article is the following version of isomorphism theorem between occupation times for
random walk loop soups and Gaussian free fields shown in [53].

Recall the definition of random walk loop soups £, . We define the associated occupa-

A

tion time field (£3) ey, by

La= D / Ly (t)=adt

7€£Q,N

where T'(y) is the duration of the loop 7. The isomorphism theorem in [53] states that

(L7 0 Vy) ' {%m?w .z e Vy) (2.2)
(Note that this holds for random walks in general graphs). Recently, couplings between
random walks/random walk loop soups and Gaussian free fields have been developed in [54],
where the signs of GFFs are incorporated in the coupling in order to provide certificate for
vertices/edges not visited by random walks/random walks loop soups. The paper [54] was
motivated by connectivity of the loop soup clusters as well as random interlacement. Inde-
pendent of [54], such coupling was established for random walks in [71] with the application
of deriving an exponential concentration for cover times. The work [71] was motivated by
[35], where such coupling was proved for general trees and questioned for general graphs; the
advance in [54] was independent of [35].

In fact, using the coupling derived in [54] only allows us to prove a version of Theorem 2.2
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for Lupu’s loop soup on the metric graph introduced in [54]; see Section 2.3 and in particular
Theorem 2.3. In order to deal with the random walk loop soup, we will use a recent advancing
on the random current model for random walk loop soups. A random current model on a

graph, say Gy = (V, Ey) in our case, is the probability measure P with

P((ne)eery) >« | (2.3)

ecEyN

(Be)"e
ne!
where (ne)ec, are nonnegative integers such that ), . ne is even for any v € Vi, and
(Be)ecEy are positive parameters on Epy. Conditioning on {'CAQIJ/Q = ly}peVys 1ot (ne)ecEy
be a random current model with parameters e = 2,/l;ly on edge e = (z,y).

It was shown in [70, 57, 46] (see [46, Theorem 1] for a formal statement) that conditioning
on the local times the distribution of (ne)ccf, is the same as that of the number of jumps
of the random walk loop soup £1/2,N along each e € Ep, and therefore (1ne>0)e€EN has
the same distribution as the graph induced by £ /2,N On V.

We remark that the random current representation played a crucial role in a recent work
[22] which proved the continuity of spontaneous magnetization for the three-dimensional
Ising model at the critical temperature. Finally, we remark that the random Eulerian graph
model considered in [35] (which was used to reconstruct the number of visits to vertices from

the continuous occupation times) was of high resemblance of the random current model.

Entropic repulsions. Unlike the Lupu’s loop soup, the clusters for the critical random
walk loop soup is strictly dominated by the sign clusters of the GFF on the metric graph.
In order to address this, we apply the aforementioned random current model and see that
the loop clusters dominates a generalized sign cluster on the metric graph, where we replace
each original edge (which can be viewed as a unit resistor) by two edges and assign the
conductances so that it sums to 1. This is summarized in Lemma 2.3. When employing
the proof idea of Theorem 2.3, we encounter a problem which amounts to bound the typical

value of a GFF under the conditioning of staying positive in a subset. Results of this type, on

61



such entropic repulsions for two-dimensional GFFs under the presence of hard wall, has been
obtained in [41, 24]. Our set up is slightly more complicated (and somewhat non-standard),
and dealing with it forms the main technical ingredient in Section 2.4. As standard in
this type of problems, our proof crucially relies on the FKG inequality [43, 62] and the

Brascamp-Lieb inequality [25].

2.1.3  Open problems
Our results motivate a number of interesting questions, as we list below.

Question 2.1. For the random walk loop soup in the supercritical regime (i.e., with intensity

strictly larger than %), is the dimension of the chemical distance 1 with high probability?
Question 2.2. Can one prove an analogous result for Brownian loop soups?

Next, we will ask a number of questions in the context of level set percolation for GFF,
but one can ask natural analogous questions for loop soups as well as random walks. We
feel that, perhaps the questions regarding to GFF may be answered before that on random

walks.

Question 2.3. Under assumptions of Theorem 2.1, is the dimension of chemical distance 1

with high probability conditioned on the existence of an open crossing?

Question 2.4. Under assumptions of Theorem 2.1, is the length of minimal open crossing

O(n) with positive probability?

Question 2.5. Under assumptions of Theorem 2.1, is the number of disjoint open crossings

tight?

Finally, we pose a question regarding to universality of Theorem 2.1, whose difficulty is
due to the crucial role of Makarov’s theorem (which seems to only apply for GFF) in the
proof of Theorem 2.1. In fact, we choose to keep an open mind on whether such universality

holds, in light of a non-universality result in [39)].
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Question 2.6. Does an analogous result to Theorem 2.1 hold for all log-correlated Gaussian

fields?

2.2 Percolation for Gaussian free fields

This section is devoted to the proof of Theorem 2.1. For notation convenience, we say a

vertex v is A-open (or open if no risk of confusion) if v € H ), and A-closed (or closed)
. <A .

otherwise. For any A, B C V), we denote by A <~ B the event that there exists a A-open

path P connecting A and B, i.e., Dy (A, B) < oo.

2.2.1 One-arm estimate: a warm up arqgument

In this subsection, we give a warm up argument on level set percolation for GFF. Despite
being rather simple, the argument is a clear demonstration of the fundamental idea of the
paper, which allows to take advantage of the Markov field property in studying percolations.

We remark that a similar argument was employed in [69, Section 3].

Proposition 2.1. For any 0 < a < 8 < 1, there exists a constant ¢ > 0 such that for all
A>0

POV &5 OVay) > 1— 26N

Proof. By duality, the complement of the event {0V, S OVgn '} is the same as the event
that there exists a A-closed contour C C Vg surrounding V,,y. We let € be the collection
of all such contours. It suffices to estimate P(€ # ().

To this end, we consider a natural partial order on all contours. For any contour C,
we let C be the collection of vertices that are surrounded by C. For two contours C; and
Co, we say C; < Co if C; C Cy. A key observation is that this partial order generates a

well-defined (unique) global minimum on €, which we denote by C*. Furthermore, for any
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contour C C Vg surrounding Vi, we have
A —
{C"=CteFs=0o({nny,:veEC}. (2.4)

Define
1
xo Ly 25)

oy,
OVia+8)n/2] VeV a2

We will need the following standard estimates on simple random walks; we include a proof

merely for completeness.

Lemma 2.1. For any fixred 0 < r < 1, there exist constants c1,c9 > 0 which depend on r

such that
Z Gyy(u,v) <N, Yu € dV,y (2.6)
veIV, N
and
Gyy(u,v) > c2, Yu,v € Vo . (2.7)

Furthermore, for any 0 < a < B < 1, there exists a constant cg > 0 such that for all
u € OV, the simple random walk started at w will hit OV, before OV with probability at

least c3.

Proof. For convenience we assume that Vjy is centered at the origin. Let Sy = (S1.,52,)
be a simple random walk on Z2. It is clear that if S is on 0V, at some point, in the
next step it will move to some vertex on 0V, 1 with probability at least 1/4, and after
that, it will hit 9V before dV,.y with probability at least ﬁ (since max{|S7 |, |52,n|}
is a submartingale). Therefore, a simple random walk started at any v € 0V, will in
expectation visit V. at most 4(1 — )N times before hitting OVjy. This proves our first
bound (2.6).

For the second bound (2.7), let € = 11—6(7)" Denote by u = (uj,us) and v = (v1,v9). By

independence of the simple random walks in o and y-coordinates, there exists ¢’ = ¢/(r) such
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that with probability at least ¢’ the simple random walk started at v will hit some point v*
in the vertical line = vy before exiting Vv or before the y-coordinate deviates by more
than eN; started from v*, there is again probability at least ¢’ for the simple random walk
to hit the horizontal line y = w9 before the horizontal coordinate deviates by more than
eN. Altogether, there is probability at least (¢)? for the random walk to hit the £so-ball
of radius e N around v before exiting Vy. At this point, an application of [50, Proposition
4.6.2, Theorem 4.4.4.] completes the verification of (2.7).

The last statement of lemma was implicitly proved in the above derivation of (2.7). [

As a simple corollary of (2.6), there exists a constant ¢4 > 0 which depends on 8 such

that

1 1
Var X = ———— E Gy, (u,v) < ¢y (2.8)
2 N\™
40Vi14p)n /2l I TP

and thus we also have Var(X | Fz) < c4.

By the Markov property of the GFF, we have for each v € (9V(1+5)N/2

E(nny | Fg) =Y Hm(v,u;CUVy) - nyy - (2.9)
ueC

Here for a set A, we use Hm(v, u; A) to denote the harmonic measure at u with respect to
starting point v and the target set A ( ie., Hm(v,u; A) = Py(S;, = u), where (Sy) is a
simple random walk on Z? and 74 is the first time it hits set A). We further denote by
Hm(v, B; A) = >, g Hm(v, u; A). Now on the event {C* = C} , we have ny , > A for all

u € C. Combined with Lemma 2.1, it gives that
E(UN,U | 'F(f) > /\Hm(v, C; CU 8VN) > )\Hm(v, 8VQN; 8VQN U 8VN) > 03)\. (2.10)
Therefore, we have E(X | Fz) > c3A on the event {C* = C}. Thus,

P(X > c3)\/2 | Fz) > 1 —P(Z(cq) > c3A/2) on the event {C* =C},
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where we denote by Z(c4) a mean zero Gaussian variable with variance ¢4. Since {C* =

C} € Fp, we have
P(X >e3A/2|C*=C)>1—P(Z(cy) > c3M\/2).
Summing this over all possible contours C C V3 surrounding V,, v, we obtain that
P(X >e30/2 | €#£0)>1—-P(Z(cy) > c3M\/2).
Combined with the simple fact that
P(X > c3\/2) <P(Z(cy) > c3A/2) (2.11)

it follows that

P(X > c3\/2) < P(Z(cy) > c3A/2)
X =2 €20 = 1T B(d(cr) > 3\/2)

PE#0) < 5

This completes the proof of the proposition. O

2.2.2  Proof of Theorem 2.1

Consider A > 0. Our goal is to provide a lower bound on the probability that there exists a

A-open path with length less than Ne(logN )o/10

connecting 9V, y and V. Therefore we
may restrict our attention to A-open paths connecting 0V, y and dVjy that do not touch
the interior of Vi, y or Vv \ Vgy. This motivates the following exploration procedure. We

set Ag = OVon N Hn \ Bo = 0Van \ Hy x, Co = OV, and for i = 0,1,2,.. ., we define
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inductively

Aig1 ={v € (VN \Van) \Ci) N Hy ) : v ~ u for some u € A;},
Biy1={ve (VN \Van)\Ci) \ Hy ) : v ~u for some u € A;} UB;,

1
Ci+1=UjLgA; UBjt .

In other words, C; records all the vertices that have been explored before (or at) stage i. At
stage 7 + 1, we check all the neighbors of A; that is in Vjy \ V,;y and has not been explored:
if the vertex is in H \ then we put it to A;;1, otherwise we put it to B; 1. It is clear
that A; records all the vertices in Vi \ V,, ;v that are of chemical distance i to 0V, and B;

records all the closed vertices we have encountered. Furthermore, we observe that
e A;’s are disjoint from each other.
e C; is a connected set in Viy \ V-
e OC; (the boundary points of C;) is a subset of A; U B; U Ayp.
o Let C! 2 {u : Hm(oo, u;C;) > 0}. Then C, C 9C; and C;NAg = 0, so that C; C A;UB;.

Now suppose that the event £ 2 {DnA(OVan, OVaN) > Nellog N)9/1o} occurs, then we

9/10
(log N)?/10. Further, since A;’s

must have that C; is disjoint from Viy\ Vg for all 0 <i < Ne
are disjoint from each other, we see (from a simple volume consideration) that there exists

at least an ip < Ne(log NP Guch that

A < N0 212
We let 7 be the minimal number iy which satisfies (2.12). In summary, we have
gce s | | {(r=k}n{A4; =A;,B; =B, for 0 < i<k} (2.13)

0<k< Nellog )%/ 10
(Ao,...Ak,Bo,...Bk)EPk
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where Py, indicates all (Ag, ... Ay, By, . .. By) that are compatible with € and {7 = k}N{A; =

A;, B; = B; for 0 <i < k}. In particular, they should satisfy:
e Denote C}, 2 Uf:()Az' U By.. Then C}, is a connected set in Vg \ V-

e Denote C}, = {u : Hm(oo,u; Cy) > 0}. Then C} C A U By,

o [AL] < Ne—(og )1

Now we fix any 0 < k < Nelog N1 g any (Ag,... Ak, Bo,...By) € Pp. It is not

hard to verify that
{r=k}n{A; = A;,B;,=B; fOl"OSiSk’}Eka. (2.14)

Conditioning on Fg,, the field {ny, : v € Viy \ C}} is again distributed as a GFF. In

particular, for each v € V(4 g)n /2, we have

E(nnw | Fo) = Y Hm(v,u; C UOVN) -1y - (2.15)
ueCy,

Since Cj, € Vg \ Vo, we have from Lemma 2.1
Hm(v, Cy; Cr, U0Vy) > Hm(v, 0V, n; OVany UIVN) > c3. (2.16)
In addition, we have that
{u € C), : Hm(v,u; Cj, UVy) > 0} = {u: Hm(co,u; Cy) > 0} = C}, C AL, UBg. (2.17)
We want to show that Hm(v, Ay; Cj. U V) is small. First, we note that

Hm(v, Ay; Cp U0Vy) < Hm(v, Ag; Cr) . (2.18)

68



By a combination of Theorem 1.7.6 (Harnack principle), Theorem 2.1.3 and Exercise 2.1.4
in [47], we have for constants cg, c7,cg > 0 which depend on (3, any u € C). and arbitrary

w € GVQON
Hm(v, u; C) < cgHm(w, u; Cp) < e7Hm(8N, u; Cf,) < cgHm(oo, u; Cy) ,

where Hm(8V, u; Cy,) corresponds to the H'}'(y) in [47, Theorem 2.1.3] with A = C},, m = 8N
and y = u. Therefore,

Hm(v, Ay; Ch) < cgHm(oo, Ap; Cy,) . (2.19)

Since C}, is a connected set of radius between (a/2)N and 2N, by [48, Proposition 4.1] we

deduce that for constants cg, c1g > 0 depending only on «
4
Hm(oco, {u € C}, : Hm(oco, u; C),) > cg N~ lello8 N) /5}; Cy.) < e1p(log N) =2
Therefore,

Hm(oo, Ay; C) = Hm(oco, A N{u € C}, : Hm(oo, u; C.) < 09N*1e(1°gN)4/5}; Ch)

+Hm(oco, A, N {u € C}. : Hm(oo, u; C}.) > Cngle(logN)‘l/E)}; )

4/5 9/10

< (CQN—le(logN) ).Ne—(logN)

+ c1p(log N)_QO

= o(logN)~10. (2.20)
Combining (2.18), (2.19) and (2.20), we finally have
Hm (v, Ap; Cp UOVy) = o(log N) 10 (2.21)
Combined with (2.16) and (2.17), it yields that

Hm (v, By; Cj. U V) > 3 — o(log N) 710
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Now on the event {7 = k} N {A; = A4;,B; = B; for 0 < i < k}, we have by definition that

NNy > Afor all u € By, so we can derive from (2.15) that

E(nw | Fo) = Y Hm(v,u; C, U0V - nyy

ueCy,

= ) Hm(v,u;C UdVy) -y + Y Hm(v,u;Cp UOVY) - v,
u€Ay u€ By,

> (3 — o((log N) ™)X — o((log N)~1%) sup [nul -

ueVy

Define Apaq = {supyevy [Mn,ul = 100log N}. By a straightforward computation, we
have

P(Apaq) < N~V (2.22)

We can assume without loss that Aj,,q does not occur. To be precise, for sufficiently large

N, on the event {T =k} N{A; = A;,B; = B; for 0 <i <k} \ Apaq, we have
E(nnw | Foy,) = 9c3A/10.

Recall the definition of X in (2.5). Then on the same event, we have E(X | F¢, ) > 9¢3A/10

and Var(X | F¢, ) < Var X < ¢q. Thus (still on the same event),
P(X > c3\/2 | fck) >1—P(Z(cy) > 2c3M\/5),
where Z(cy) is a mean zero Gaussian variable with variance cq. By (2.14), this gives

P(X > c3A\/2, 1=k, A; = A;,B; = B; for 0 <i <k)

- E(]P(X Z 03)\/2 | Fck)l{TZk}ﬂ{AiZAi,BiZBi for OS’LSkJ})
> (1 — ]P’(Z(C4) > 263)\/5))1@({7‘ = k} N {AZ =A;,B;,=B;for0<i< k’} \ Abad)'
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Summing this over all 0 < k < Nelog NP1 4114 all (Ag, ... Ay, By, ... B}) € Pi. and using

(2.13), we have
P(X > 3)/2) > (1 —P(Z(cq) > 2¢37/5))P(E"\ Apaq) -
Therefore,

P(E) <P(E') <P(E'\ Apad) + P(Apaq)
L B(X >c3\2)
~ 1=P(Z(cs) > 2¢3)/5)
P(Z(cq) > c37/2)
~ 1 —=P(Z(cs) > 2c3)\/5)

+ P(Apad)

+ P(Apad) -

Combined with (2.22), this completes the proof of Theorem 2.1.

2.3 Percolation of the continuous loop soup

In this section we prove an analogous result to Theorem 2.2 for the continuous loop soups
defined on the metric graph of G = (V, E) at critical intensity 1/2. The result in this
section will not be used in the derivation of Theorem 2.2. However, our proof method of
Theorem 2.2 is hugely inspired by the consideration of the continuous loop soup. Therefore,
we include the present section, with the hope of conveying the source of insight.

The continuous loop soup as well as the Gaussian free field on the metric graph were
considered in [54]. We follow the setup and definitions there. We let Gy be the metric
graph (or the cable system) of Gy where each edge in G n has length % On G N We can
define a standard Brownian motion BIN , so that BYN when restricted to Vi is the same
as the aforementioned continuous-time sub-Markovian jump process (X;). Let G g~N(u, v) be
the Green’s function of BQN, so that for u,v € Vy, GC;N(U,U) = ZIIGVN(U’ v), the Green’s
function of (Xt). Let {fjy, : v € Gy} be the Gaussian free field on Gy with covariance

function GGN (u,v). Then the restriction of {7y, : v € Q~N} to Vi is the same as the
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Gaussian free field {ny, : v € Vy}. Moreover, {fjy, : v € Gn'} can be obtained from
{nNw i v € Vn} by (for each edge e = (u,v)) independently sampling a variance 2 Brownian
bridge of length % with values 7y, and 7y , at the endpoints. In particular, as shown in
[54] {iiny v € Gy} has a continuous realization.

Now we can associate to BIN a measure [y on continuous loops in G N, and for each
a > 0 consider the continuous loop soup £~O(7 n which is a Poisson point process with intensity
afiy. The loops of /j% N may be partitioned into clusters. For u,v € Gy, we define the

chemical distance of ﬁa’ N between u and v by
Dy (u.0) =min |

where the minimum is over all path v C G n joining uw and v that stays within a cluster of

Lo N

)

Theorem 2.3. For any 0 < a < § < 1, there exists a constant ¢ > 0 such that for all N

9/10
P(Dg, , o (OVan, 0VN) < Nellog N > ¢

Remark 2.3. We expect that the probability for DEI/ZN(aVaN, OVgn) < oo is strictly less

than 1; see Remark 2.1.

By [54, Proposition 2.1], there is a coupling between /jl /2,N and a continuous version of
{iNy 1 v € G n} such that the clusters of loops of £~1 /2,N are exactly the sign clusters of
{fiN.y 1 v € Gy} In light of this, define

D=

g (:0) = min 3],

where the minimum is over all path v C G N Joining u and v such that 7y are of the
same sign (plus or minus). In order to prove Theorem 2.3, it suffices to prove the following

proposition.
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Proposition 2.2. For any 0 < a < 8 < 1, there exists a constant ¢ > 0 such that for all N

P(DﬁN(aVOZN’aVBN) < Ne(logN)Q/lo) S

Proof. For a compact connected set K C Gy and any v € Gy \ K, let TV v be the first
time the Brownian motion BYN started at v hits K U OV It is clear that B%N can

KUaVN,U
only take on finitely many values u in K U 0V)y. Therefore for such u € K U 0Vy we can
define

Hm (v, u; K UOVy) 2 IP’”(B%\(’U(W = u)
N>V

(and set Hm(v,u: K UdVy) = 0 otherwise) to be the harmonic measure of BIN at u with
respect to starting point v and target set K U V.

Our proof strategy is similar to that of Theorem 2.1. Consider the following exploration
procedure on Gy. Let Ay = 0V,n, By = 0 and Zy = 9G,, . For i = 0,1,2,..., at stage

(i+1)
e We set initially A; 11 =0, B;11 = B; and ii+1 =7T;.

o If A; =0, stop. Otherwise, for each v € A; and every edge e = (v,u) incident to v, if
u € Vi \ Vi and the neighborhood of v along e does not belong to Z;, we go (explore)
from v along e to u until we reach a zero for {7 }. In the case no zero is reached, we
add all the points in e into le and add wu, if it is not already in U;':OA ;, into Aj41;
in the case that the first zero is reached at w € e, we add all the points between v and

w into le and add w into B;1.

In summary, A; records all the lattice points in Vi \ V,,y that are of chemical distance
(under DﬁN) 1 to OV, v; B; records all the zeros reached in the exploration procedure up to
stage 4; Z; records all the points that have been explored (including the internal points of
edges) up to stage i.

It is clear from the construction that
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° Z is a compact connected set in G N\ éa N-

e A;’s are disjoint from each other. Ué’:()-Aj is exactly the set of all the lattice points in

7;.
e JZ; (the boundary points of Z;) is a subset of A; U B; U Zp.
e Let C; 2 {u: ﬁ\r?l(oo,u,iz) > 0}. Then C; C 9Z; and C;NZy = 0, so that C; C A; UB;.

Suppose that the event &£ 2 {Dj (OVan, OVaN) > Nellog N)g/w} occurs, then Z; must
be a subset of Gy \ Gan for all 0 < i < Ne(os M*™ Further, let 7 be the minimal number

19 which satisfies

Ay | < Ne~Uos NP

(log N)?/10 on the event &.

Then since A;’s are disjoint from each other, we have 7 < Ne
Conditioning on Fr = o({finy:vE 7:}), by the strong Markov property in [54, Section
3, {iiny v € Gn \ Z:} is distributed as a mean zero GFF in Gy \ Z plus the harmonic

extension of 7y, from Z- to Gy \iT In particular, on the event £ where Z; is contained in

QBN \ G, we have for each v € V48)N/2

E(in,y | Fr) = Y Hm(v,u;Zr UOVN) iy = Y Hm(v,u; Ly UOVy) iy, - (2.23)
u€l, ueCr

By definition we know that 7y, = 0 for all u € B7. Thus

> Hm(v,u;Zr UOVy) iy, = 0. (2.24)
ueB;

We want to show that If{\r/n(v,AT;i} U 0Vy) is small. Let Dy = UJT-:O.AJ- be the set of all
the lattice points in Z;. Then D, contains A, and Ay(= 0V, ) by definition, and it is a

connected subgraph of Gp;. Since Dr is a subset of Z,, and the print of BN on Vy is the
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same as the simple random walk on V), we have
Hm(v, Ay Z, UdVy) < Hm(v, Ar: Dy UOVy). (2.25)

On the event &£, Z is contained in _C’;ﬁ N \Gan- Therefore D; is a connected set in Van \Van
of radius between («/2)N and 2N. Moreover |Ar| < Ne—(10g M) Therefore by (2.21),
we have

Hm(v, Ar; Dr UdVy) = o(log N) 71V (2.26)

Let Apaq = {supyevy 1n,ul = 100log N} be as before. Then on the event &€ \ Ayyq,
combining (2.23), (2.24), (2.25) and (2.26) gives

E(iin., | Fr) = o(log N)~®

and therefore

E(X | F7)| = oflog V) < c

for some € > 0 and sufficiently large N. Now

) 1
B T S Z Gy, (u,v)
2 M
HOVaro /2 veorirs ans

and on the event &,

1
Var(X | Fr) = — Go a (u,0)
' |8V(1+5)N/2|2u,v68%5)]v/2 v\

1 1
11 Z G (u, v).
. ; Vn\Van \™

4 |8V(1+5)N/2| w,vedV(148)N/2 o
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Lemma 2.2. There exists a constant c11 > 0 which depends on o and 8 such that

1 1
Zm( Yo Gyyuw) - S Gy ) >, (227)
(1+8)N/ u,we€V (11 )N /2 u,v€AV(11g)N/2

Proof. We consider two scenarios where in scenario (1) we kill the random walk upon hitting
OV and in scenario (2) we kill the random walk upon hitting 0V, U 0V. For any
u € 8V<1+ﬁ)N/2, we will compare the expected number of visits to (9V(1+3)N/2 of a simple
random walk started at u in these two scenarios. On the event E that it hits 0V before
OVan, it will visit OV(14g)n/o the same number of times in both scenarios (1) and (2).
On the complement of E (i.e. it hits 0V, before 0V ), however, it will come back to
some w € 8V<1+5)N/2, and will then (conditionally in expectation) visit 8V<1+5)N/2 exactly
ZUE@V(H,@)N " Gy, (w,v) more times in scenario (1) than in scenario (2). Since we have

a uniform lower bound of ) a1

(1+8)N/2 GVN(waU) (by (2.7)) and that P(E€) > c3 by

Lemma 2.1, we see that

Z GVN (U, ?)) - Z GVN\VaN (U, U) > 0302|a‘/(1+ﬂ)]\7/2| )
vedV11p)N/2 veV148)N/2
and (2.27) follows by summing this over all u € V(14 g)y/2- O

Therefore we have Var X — Var(X | Fr) > ¢11 on the event £ by (2.27) and also recall
that Var X < ¢4 by (2.8). Now let t = € + sy/Var X — ¢1; where s > 0 is a constant to be

chosen later. Since given Fr, X is Gaussian, we have on the event € \ Ap.q

P(X <t|F) = P(Z(e,Var X —en) < 8) = P(Z < s),

where Z (e, Var X — ¢11) is a Gaussian variable with mean e and variance Var X — ¢11, and
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Z is a standard Gaussian variable. In addition, we have

PX < 1) = P(Z < e+ sy/Var X —cqq

S

Var X —cq1 < Vea—ci

: v
Since ¢11 < Var X < ¢4, we have 0 < xS va <1, so
Vea—cn
e+s\/VarX—011< € +S,/C4—cn < N —1—1)
VVar X RVAEE N 2
for a sufficiently large constant s > 0. Therefore (recalling ¥ 0:4/}4011 <1)
IP)(Z < e—l—sVVarX—cU) IP’(Z < s( Cj;:n +1>)
P(E\ Apaq) < VVar X < = 2 <1

P(Z <s) P(Z <s)

Combined with (2.22), this completes the proof of the proposition. n

Finally, we remark that, using an almost identical proof of Proposition 2.2, we can prove

the following result.

Corollary 2.1. For all0 < a < 8 <1 and A > 0, there exists a constant ¢ > 0 such that
for all N
P(Dy,-x(OVa 0Vay) < NellEN"?) >

2.4 Percolation of the random walk loop soup

This section is devoted to the proof of Theorem 2.2, into which the three main proof ingredi-
ents merge. Recall that as stated in (2.2), the occupation time field {ﬁqf/g}veVN of L1 9 v has
the same law as {%77]2\,71)}@6‘/]\[; and as stated around (2.3), conditioning on {ﬁqf/Q = Uy }peVi
the graph of £y /5 y has the same law as (1ne>0)ecEy, Where (ne)ecp,, follows the random

current model (see (2.3)) with parameters e = 2,/{;{y on edge e = (z,y).
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Each edge of Gy = (Viy, En) has conductance 1. In this section we will consider a graph
Gy = (VN, Ex(1) U EN(2)), where we replace each edge e € Ey in the graph Gy by two
multiple edges e(1) and e(2) and assign conductance 1/8 to e(1) and conductance 7/8 to
e(2), and we denote En(1) = {e(l) : e € Ex} and EnN(2) = {e(2) : e € Ex}. The graph
QEV is equivalent to Gy in the sense that the Gaussian free fields on G and gf\] have the
same law.

As in [54], we will consider the Gaussian free field on the metric graph Qz\/- of G. The
metric graph QE\, can be obtained from va by assigning each edge e(1) € En(1) length 4
and each edge e(2) € En(2) length 7/4. Let B9 be a standard Brownian motion on Q}V,
let G’g~§V (u,v) be the Green’s function of ng\f, and let {ﬁf\]w TS Q},} be a continuous
realization of the Gaussian free field on (-%V with covariances given by Ggfv (u,v). The
restriction of {ﬁE\/’,v NS QNN} to Viy is the same as the Gaussian free field {ny, : v € Vi }.
Moreover, {ﬁf\l,v cv € gf\,} can be obtained from {ny, : v € Vy} by, for each edge
¢ = (z,y) € En(1) U Ex(2), independently sampling a variance 2 Brownian bridge of the
same length as ¢/ with values n N,z and npy 4, at the endpoints.

We now describe a coupling between the random walk loop soup cluster £ /2,N and a
graph O obtained from {%V,v NS GEV} Fix some A\ > 0. We say an edge e € Ey is open
if 77?\7, , > Afor all v € e(1) (which we denote as ﬁ?\f,e(l) > ) for notation convenience, and

the similar applies to the case of < —\) or ﬁ?\fv < = for all v € e(1). Let O be the graph

(seen as a subgraph of Gy = (Vy, E)) induced by these open edges.

Lemma 2.3. For any A > 2, the graph O is stochastically dominated by 51/2,N~ That s to

say, we have (1

Ty o) > O ﬁfv,e(1)<_)‘)e€EN is stochastically dominated by (1y,>0)ccEy -

: 1/~ A 1
Proof. Since {7(77?\7,0)2}06‘/1\, and {£71)/2}U€VN both have the same law as {777]2\7,1;}1)6‘/]\/7 we
only need to show the stochastic dominance of O when conditioned on the former, by Ly /5 x
when conditioned on the latter (with the same realization).

On one hand, conditioning on {ﬁfv »Jvevy we see that 15 <_) s are inde-

T e(1)>A O Ty o(1)
pendent Bernoulli variables with mean pe’s, where (we let (By) be a Brownian motion with
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variance 2 at time 1)

;

P(By > AVt € [0,4] | By =iy, Ba=1y,). iy v, > A
Pe = \P(By < =AYt € [0,4] | By =iy . Ba=1ly,), iy iy, < A,

0, otherwise.

\

In the case when 775\, o 775\7 y > A (the other case is essentially the same), by the reflection

principle we get that

(o il =207 iy iy,

1—pe=¢e" 16 Je” 16 —e

)2

oy . 1/~ 2 .
Therefore, conditioning on {5(7y ,)* = lv}yevy, we have (177§v,e(1)>)‘ or ﬁfv,e(1)<_>‘)eeEN is

stochastically dominated by independent Bernoulli’s with mean p.’s, where

o1 e WV g e, > Y
Pe =
0, otherwise.

On the other hand, conditioning on {£A11’/2 = lu}yevy, the graph of £y /5 x has the same
law as (15,>0)ecEy: Where (ne)ecp,, follows the random current model (as in (2.3)) with
parameters [ = 2\/% on edge e = (z,y). Note that if we further condition on the
parities of (ne)cep,,, then n(e)’s are independent with distribution Fy g, if n(e) is odd and

distribution Fy g if n(e) is even. Here Fy 5, and Fy g, are both probability distributions on

nonnegative integers such that

Fi (n):ﬂforn:135...andF2 (n):ﬂforn:024...
e n!sinh B T e n! cosh f3¢ T

This implies that, conditioning on {271;/2 = ly}yevy and the parities of (ne)ecpy, 1n.>0'

are independent Bernoulli variables with mean p!/’s, where p/ = 1 if n(e) is odd and p]/ =
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1 — 1/ cosh B¢ if n(e) is even. However, for £y, ¢y > /\72 and A > 2, we have

1/ cosh B < 2/ePe = 2/e?V ety
< oVl

< e HVIL-NW-N) _ g _

e -

Therefore, conditioning on {ﬁi’ o= Uy }vevy, we have (1,,50)ec ) stochastically dominates

independent Bernoulli’s with mean p’s.

Combining the above two parts completes the proof of the lemma. n

Remark 2.4. It is worth pointing out that for our proof strategy to go through, it suffices
as long as the law of the edge visits conditioned on vertex local times dominates the random
current model as in (2.3) for Be > c\/ﬁx_fy for some fized positive constant ¢ (since we can
tune the resistance on e(1) and e(2)). The fact that ¢ = 2 is of no importance to us. This

flexibility may be useful when attempting to extend our proof strategy to some other contexts.

In light of Lemma 2.3, define (for > A, the definition for < —\ is similar)

DﬁA//\fvEN(l),>)\(ua U) == myin |"y| ,

where the minimum is over all path v C Vy U En(1) C C;fv joining uw and v such that
ﬁ?v , > Aforall z € y. In order to prove Theorem 2.2, it suffices to prove the following

proposition.
Proposition 2.3. For any 0 < a < 8 < 1, there exists a constant ¢ > 0 such that for all N

)9/10

Pnin{ Dy g (1),22(0Van Vo), Dy (1), A(0Van 0Vay)} < Nelos M0 > ¢

Proof. For the rigor of proof (when applying e.g., FKG inequality later), we will consider the

following discrete approximation of the exploration procedure. We let Iy = (Viy UEN(1))N
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ﬁZQ be an N3-discretization of Viy U En(1). In particular, we will only examine the values

of 77?\7, , for v € Iy in the following exploration procedure. Initially we set

1

N
3 1 _ _

Boz{veavaN:|n§V’v|§)\+N}, Cr=Ar, A=A

1
A5>\ — {1} c 8VaN : ﬁ;\;’v > N+ N}, AO<7>\ = {U c 8VQN : ﬁ;vm < =A—

For i =0,1,2,..., at stage (i + 1), we run the exploration procedure as follows:

SN <= _ =\ _ p=—X\_ >SN o> p<—=A _ p<=A
o Weset initially A7 = A7 =0, B =B, ;" =0andC3 =C7",C; " =C "

o If AZ»>)‘ = (), stop. Otherwise, for each v € Ai>)\ and every edge e(1) = (v,u) € En(1)
incident to v, if u € Viy \ V,,y and the neighborhood of v along (1) does not belong
to C;*, we go (explore) from v along e(1) to u until we reach a point w € Il with
%Vw <A+ % In the case no such w is reached, we add all the points in e(1) NI
(including v and u) into Cz>+>\1 and add wu, if it is not already in U;-:OA]?)‘, into Ai>+>\1; in

the case that the first such w € Il is reached on e(1), we add w into Bi:Jr)‘l, and add

all the points in e(1) N IIy between v and w (but not w) into CZ>+/\1
e We employ a similar procedure for the version of < —A.

Let Apaq = {supyey 17y ,| = 100log N'} be as before. Define

1 1
Ao = {|ﬁ§\7,u — ﬁg\]’v\ < N,Ve(l) € En(1) and u,v € e(1) such that |u —v| < m} (2.28)

Since conditioning on {7y, : v € Vy}, we have {ﬁ?ve(l) ce(l) = (x,y) € En(1)} are
independent variance 2 Brownian bridges (which are Holder continuous of any order less

than 1/2) of length 4 with values 7y . and 7y , at the endpoints, we see that

P(Ac) > P(Afg)(1 —ox(1) = 1 —ox(1). (2.20)
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Denote

9/10

A
&= {mm{Dﬁ;V,EN(1)7>)\(5VaN,aVﬁN),D%V’EN(UK_/\(Z?VQN,6V5N)} > NellogN) 1.

Suppose that both events £ and A, occur, then by (2.28) we must have that CZ->/\ and CZ-<_/\
are both disjoint from Viy \ Vg forall 0 <i < N o(log N)*/10, Further, since all of the Ai>)‘
and .Af_)‘ where 0 < i < Ne(logV )9/ are disjoint from each other, we see that there exists

at least an ig < Nelog N1 g that
9/10
AN U ASTA < Nem (o) e, (2.30)

Moreover (still on the event £ N A), for all 1 < i < Ne(log N)g/w, we have by (2.28) again

1 _ 1 _
A<y S A+ o for allv e B7  and — A= 5 Sy, < =X for all v € B
It is clear that for any £ > 0, from Ck>)‘ = Ck>)‘ and Ck<_)‘ = C’k<_)‘ we can determine
(uniquely) the sets AZ.>)‘, Ai<_>‘, Bi:)‘, Bi:_/\ for all 1 <i < k as well as By. We denote them
as AZ.>)‘,AZ.<_)‘, B~ A BZ.:_/\ for all 1 < i < k and By, respectively. They are all functions
of C’k>)‘ and C]j_)‘. We let P;. denote all (Ck>)\’ C]f_)‘) such that C’k>’\ and C’k<_/\ are both

disjoint from Vi \ Vg, and such that
min{ig : |Ai>0>\ U Afof/\] < Ne*(IOgN)Q/lo} k. (2.31)
In summary of the discussions above, we have

ENA.C | ] £ (2.32)

A -
) C'k> ,C’k<
0<k<Nelog N)?/10
(OO MePy
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where

gck>)\70k<f)\ -
vy > At = forall ve G, 7 A~ ~ forall v € C5
{iin . > +N orallve CF”, iy, < —-A- & forallve G,
1 _ 1 _
A<y, S A+ 1 forallve Uk B —a - ~ Silvy < —Aforallve Uk B

1
ol <A+ ~ forall v € By} (2.33)

Denote I}, 2 By U (Uéﬂlei:/\) U (UleBi:_)‘) U C’k>)‘ U C;_)‘. Then (2.33) above is

J1

. measurable. Conditioning on F7, , the field {ﬁ?v y U E g~§\, \ I} is distributed as a

GFF with boundary condition {7y, : v € I} and zero on dVy. In particular, for each

u € V(14 gyN 2, We have

~ —/ 5
E(ify, | Fr,) = D Hm (u,v; I UOVN) - iy, - (2.34)
UEIk

Here I/-I\n/ll(u, v; K) denotes the harmonic measure of ng\, at v with respect to starting point
u and target set K.

From the definition of our exploration procedure, we know that for any u € av(l YB)N/2>
we have {v € I}, : fI\r/n/(u, v; [, UOVy) # 0} C Jy U Jo U Jg U Jy, which can be described as

follows.

e J; = By.
o Jo=(UF BTN U (UL BT

e For each v € J3, we have v € Ai>)‘ (or v e Aff)‘ respectively) for some 0 <1 < k — 1,
and on an edge (1) = (v,v’) € En(1) thereisaw € Bf_:‘l (orw € B;_l)‘ respectively).
In particular, each v € J3 must satisfy that v € Vjy and that v has Euclidean distance
less than 1 to a point w € Js.

o Jy= AZ)‘ U A]j_)‘.
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Define

Xeot—— Y iy,

~ oV,
[0Vi148)n/2] WEV a2

Further define

] __
Xi= g 3 Y s V) iy

1 — ~
Xo=——— Z ZHm(u,v;[kuavN)-n}vv,
[0Vi118)N/2] ’
ueav(l—I—B)N/? vEJy
1 — B
Xg=——— Z ZHm(u,v;[kuﬁvN)-n}Vv,
[0Vi11)N/2] ’
ue&‘f(1+5)N/2 vEJ3
1 —
Xy=— M (u, v; I, U V) - il -
’av(1+ﬁ)N/2| Z Z N

UGaV(H_ﬁ)N/Q vEJy

Then by (2.34), we have
E(X | ‘FIk> =X1+Xo+ X3+ Xy4.

It is clear that |X1| < A+ % and [ Xo| < A+ % always hold. Let D} = (UfZOAZ?)‘) U

(UQ'C:OA;*)‘) U By be the set of all the lattice points in Ij,. Then Jy C D}, C I}, so that
Hm (u, Jy; I, U Vi) < Hm (u, Jg; Dy UVy) . (2.35)
Since |Jy| < Ne~ 108N by (9.31) we have by (2.21)
Hm' (u, Jy; Dy U V) = Hm(u, Jy; Dy U Vi) = o(log N) ™10,

and therefore ITI\IE/(u, Ju; I, UdVy) = o(log N)710. Recall that Ap,q = {sup,cvy Iy, =

1001log N'}. Then if the event Ay,q does not occur, we have | X4| = o(log N) 8.
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It now remains to control X3 on the event £ o>
k

such that

O<—A- To be more precise, we consider
“k

any fixed {IN»U}veBou(uleBfA)u(uleB:—A)

i

k
1 1 —
]xN’v|§)\—I—N for all v € By, )\<xN7U§)\+Nf0rallv€ UBZ-_)‘,

=1
1 k
A <oy, < -Aforallve B

1=1

We define three events H—, H,, H_ as follows:

1

L7 — {ﬁ?vw =N, forallv e Byu (UleB:’\) U (Ué":lBi:_)‘)};
o Hi :{ﬁfv’v >)\+% for all v EC',?)‘};
o H_= {ﬁ.lN,v < =A— % for all v € Ck<7/\}.

We will show that conditioning on H— N H_ N H4, we have

(a) E(X3 | H=,Hy, H-) < X\ + % + Cp where Cj is a constant;

(b) Var(X3 | H=,Hy,H_) = on(1) (where we use oy (1) to denote a quantity that only

depends on N and tends to 0 as N — 00).

As a corollary of (a) and (b), conditioning on {H—, Hy, H_}, we have Xj itself is
bounded from above by A + Cy + 1 with probability (1 — op(1)). By integrating over
all {xNvU}veBgU(UleB:)‘)U(UleBi:*)‘)’ we see that there exists a JFj, measurable event

ol Cc €&

/
oA o = Copres such that on the event gC,f’\,C,j_’\ \ Apad, we have E(X | Fp, )

is bounded from above by a constant A, and moreover

B(EL 1 o) 2 (1= on()B(Eqenr ) (2.36)

Now on the event €IC>>‘ <A \ Apaq, we have E(X | Fp ) < A and Var X — Var(X |
kK

Fr.) > c11 > 0 by (2.27) (also recall that Var X < ¢4 by (2.8)). Let t = A+sy/Var X —c11.
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Then on the event £ éj \ Apad, we have

k>)\’ck<7/\
P(X <t|Fp) >P(Z(A Var X —c11) <t) =P(Z < 5),

where Z(A, Var X — ¢q1) is a Gaussian variable with mean A and variance Var X — ¢, and
Z is a standard Gaussian variable. Therefore (since Eéj e is Fy, measurable)

/ o /
P(X <.8)) o) =E(B(X <] Fp) )2 B(Z < (L oo\ M)

15/
>\ A<=
Ck ’Ck

Summing this over all 0 < k < Ne(log NP and all (C’k>/\, C'k<_/\) € Py, we have

PX<t)2P(Z<sP( ] € oen) \ Abaa) -

0<k< Nellog N)9/10
(CPMCE)ePy

Therefore, for a sufficiently large constant s > 0 and a constant ¢ > 0, we have

P(X <t)
/ — /
P( L gCJ?A’sz_A) < PZ<s) +P(Apaq) S 1-¢.
0<k< Nelog )10
(CACE)ePy
Combined with (2.36), (2.32) and (2.29), this gives us the result of the proposition. O

It remains to prove (a) and (b), which are incorporated in Lemmas 2.4 and 2.5 below.

Lemma 2.4. There exists a constant Cy > 0 such that for any v € J3, we have
~ 1
E(n]\f’v ’ H:7H+7H*) < A+ N + CO .

Proof. 1f for some 0 <i < k—1,v € Af*/\, then clearly we have E(7fy, | H=,Hy, H_) <
-\ — % < \+ % + Cp. So in what follows we assume that for some 0 <1< k—1,v € Az.>/\

and on an edge e(1) = (v,v") € En(1) there is a w € Bf_ﬁ‘l This type of argument is known
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as the entropic repulsion estimates in the presence of a hard wall [41, 24]. Our context is
close to [41] with some slight complication, and our proof essentially follows from the same
line of arguments.

First of all, we claim that there exist a function f(u) defined on Q~§V and absolute constants
C,Cq > 0 that can be taken to be arbitrarily large, such that f(u) is harmonic on Gf\f \ {w},
i.e., f(u)lyevyufw) 18 harmonic on the discrete graph (Vy U {w}, Egv’w) except at w, and
f(u) is linear on each segment e’ € EEV,’[U’ where E;V’w ={e:¢ e EN(1)UEN(2) and w ¢

¢} U{(v,w), (w,v")}. In addition, we have that
|f(u) — Clog(|u —w| +2) — C1| < L(C) for all u € Gy, (2.37)

where L(C) is a function that only depends on C. In particular, we take C; > L(C') so that
f(u) >0 for all u € (jf\,

Indeed, by [41, (B17)] or [50, Theorem 4.4.4], there exist a function g(u) defined on Z?
and absolute constants C), C’i > 0 that can be taken to be arbitrarily large, such that g(u)
is harmonic on Z2 \ {(0,0)} and |g(u) — C'log(|u| +2) — C1| < L/(C) for all u € Z? (where

L'(C) is a function that only depends on C). Now let us define for u € va

(

o/ — wlg(u— v) + v — wlglu - o), if ue Vy,

fu) =9 fw), ifu=w,

linear interpolation between f(x) and f(y), ifuece€ = (z,y) € Ey,,,

\

where
Fw) = (Jo—w|*+ ' =w|*)g((0,0)=8|v—w|[v/—w| Dg((0, 0))+|v—w] |/ —w| (g (' —v)+g(v—1"))

and
Dg((0,0)) = ¢((0,1)) + g((0, =1)) + g((1,0)) + g((—1,0)) — 49((0,0)) .
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Then by definition, f(u) is clearly harmonic on -C;EV \ {v,v’,w}. To show that it is also

harmonic at v and v’, we have to verify that

7 | 7., L
(3+§+m)f(v)—;f(vi)+§f(v)+—8|v_w|f( )
and ;
7 | , T 1
(3+§+m)f(v)—;f(U@)Jrgf(U)erf(w)

where v1,v9,v3 € Viy are the three neighbors of v other than v/, and 1/1, vé, vg € Vy are the
three neighbors of v/ other than v. We give the details for verification of the first identity

(the second one is similar) as follows:

3

> H) + 250+ o

8lv — wl

f(w)

=1
3
= Y (v —wlg(v; —v) + |[v — wlg(v; =) + g(!v' —wlg(v' —v) + v — wlg((0,0)))
=1

g )

= It/ — wl(Dg((0,0)) +49((0,0)) — g/ — v) + v — wl(d4g(v ~ ) ~ g((0,0))
50 = wlglv! =)+ Jo = wlg((0.0)) + g )

= B4 g gy (1~ wlal(0.0) + o — wlg(w — )

= B g+ g,

where the penultimate equality follows by comparing the coefficients of ¢((0,0)), Dg((0,0)),

g(v' —v) and g(v —v'). For completeness, we record the detailed computations on these
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coeflicients here:

4((0,0)) 4|v/—w|+m|v/—w|2 3+ g+ g
_ ‘“/‘“’K“lsww—wﬂ_(“g*syvl—wﬂ)_o
and—\v—w|+g]v w\—i—g‘v ylv—w]2:(),
Dy(O.0): =]+ g (=8l = w — ) = 0:
g(v' —v): —|v'—w[+£\v'—w[+8|v ‘\v wl|v" —w| =0;
glv—1"): 4]v—w|+8|v |\v—va’ w| (3+g+8|v |)\v—w]
_ |v—w|(4+18_|1)|” wT" (3 §+8|vl_w|))
— 0.

Therefore we completed the verification that f(u) is harmonic on Q;V\{w}, and (2.37) follows
easily from our definition of f(u).

We now claim that

1
N’

v > A+ N Vu € Ty \ {w}). (2.38)

1
(nN’U‘H HJHH*) (nN’U‘an: ( )+)\+ f( )+>\+NVu68VN,

To show this, we follow [44, Appendix B.1]. We observe that {ﬁ§V,u cu € My UoVy}
is a Gaussian free field indexed on a finite set (here we have actually added an artificial
site o, connected it to 0Vjy, and conditioned on ﬁﬁv’ o, = 0). In particular, its law p has
density p(dr) = exp(—H(r))dr (here r = (ry)yeryuayv, denotes a general [Ily| + [0V

dimensional vector) such that for every r,r’ € RIN[+10Vi]
H(rve Y+ HrAr")y <H(r)+ H(r').
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For k > 0, we define

kth, ift <0 0, ift<0
Uk (t) = 1 , v = 1 ;o W () = ket (2.39)
0, ift>0 kA, ift>0
and
1
,ugk)(dr) x exp( — Z w k) (ru —TNy) — Z Uk (ry, — A — N)
ueBoU(UE_ BEMU(UE_ BT ueCyH
1
= > VO - >0 W )u(dr),
UEC]€<_>\ uedVy
1
M;k)(dr) x exp( — Z W(k)(ru — fu) — A — N)
ue{w}UoVy
— Y UM A ()
u€lly \{w}

It is not hard to verify that for any real numbers ¢y < t; and any pair of functions

(h1(t), ha(1)) € {W Tt —10), WE (t — 1)), W (¢ — 10), UR) (1 — 1)),

(VI = 10), UMt = 10)). (0,U") (1 — 1)), UM (¢ = 9), UM (¢ = 11))}
we have for every t,t' € R,

ho(tV ') + hi(t At') < hao(t) + hi(t),

S
and therefore for any k > 0, uék) dominates ,ugk) in the strong FKG sense (,u(lk) < ,ugk)), ie.,

() () () ()

we have py ' (dr) = exp(—H;"'(r))dr, py ' (dr) = exp(—Hy ' (r)) dr and for every r,r’

HP vy + BO G ady < HP o)+ BP0
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It follows that ,ugk) dominates ,ugk) in the FKG sense (,ugk) < ,ugk)), ie., ugk) is stochastically

smaller than ugk) . As k — oo, ,ugk) and ugk) will converge weakly to the conditional laws on
the left and right hand sides of (2.38), respectively. Therefore (2.38) is verified.

Clearly, the right hand side of (2.38) equals

1 - -
A + N + Eﬁ?\/,w:f(w)’ ﬁ?\f,u:f(u) VuE@VN(UEV,’U | 7]§V7u >0 fOl" all u € HN \ {w}) .

Denote by M the boundary condition 7y, = f(w), 7y, = f(u) Yu € 0Vy. Now under

M, for any u € QNEV—, we have 77y, is Gaussian with mean Eps (77 ,,) = f(u) and variance
~/ o ~ . .

VarM(nN#) = Ggfv\{w}(u,u). It is well known that there exists a constant Co > 0 such

that Gy, (o1 (u, u) < Calog(|u — v] 4 2) for all u € Vly. Therefore we have for all u € Vi,
VarM(ﬁ§V7u) = GQEV\{M}(U,U) < 32(1+ Gy (o) (u,w)) < 32(1+ Calog(Ju—v[+2)). (2.40)
In particular, for v = v we have the following bound (using (2.37) and (2.40))

EM(ﬁ?V,vlﬁ&u>O for all uEHN\{w}) < EM(|77§V,’U|> < (3, (2.41)

where ('3 is a positive constant which only depends on C' and (.

It now remains to lower bound PM(ﬁEV,u > 0 for all u € Iy \ {w}). We will do this by
giving a lower bound of IP’M(ﬁEV’u > 0 for all u € -C;EV \ {w}). First, by a union bound over
all u € Vy and using the bounds in (2.37) and (2.40), we have (first take C', then C7 to be
sufficiently large)

Pas (7 > f(w)/2 for all u € Viy) > 1/2. (2.42)

Conditioning on the values ﬁ?v ,, for all u € Vi, for each segment e = (z,y) € E?V ws e

have (here d(x,y) denotes the distance between = and y in the metric graph Q}V)

- A | 1
IP’(ﬁEV,u =0 for some u € ¢’ | M, Fyy) =e NNy dy) < o 16/ ()1 ()
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on the event {7, > f(u)/2 for all u € Viy}. By another union bound over all segments

e e E?Vw and using (2.37), we have on the same event,
P(ijy , > Oforallu € ¢ and all €' € By, | M, Fy,) > 1/2. (2.43)

Combining (2.42) and (2.43) we have Pp/(ify, > Oforallu € Giy \ {w}) > 1/4, and
therefore

Py (7, > 0 for all u € Ty \ {w}) > 1/4. (2.44)

Combining (2.38), (2.41) and (2.44), we see that we can take Cy = 4C3 and we completed

the proof of the lemma. O

Lemma 2.5. There exists a constant Cy > 0 such that

Cy
X3 |H=,Hy , H ) < .
Var( 3 | =, 414, ) = IOgN
Proof. We first claim that
Var(X3 | H=, Hy, H-) < Var(X3 | H=) = Var(X3 | Fj,0uJ,) - (2.45)

To show this, we use the Brascamp-Lieb inequalities (see, e.g., [44, Appendix B.2]). Denote
by p the law of Z where Z is distributed as {ﬁfN,u cu € Iy \ (J1 U J2)} conditioned on
H_. Then Z is a finite dimensional Gaussian vector. Let m and A be its mean vector and
covariance matrix, respectively. The density of u is of the form pu(dr) o exp(—%(r —m) -

A= (r —m))dr. For any k > 0, consider the measure

1) (dr) o exp(— Z Utk )\—— — Z vk ru+)\+i))u(d7‘),

N
uGC,?’\ ueCy™ A

where U%) and V(%) are as defined in (2.39). Since the second order derivatives of U (k)
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and V(%) are both nonnegative, we see that the density of u(k) is of the form ,u(k)(dr) =
exp(—H (r)) dr where inf, Hess(H)(r) > %A_l. Therefore, by the Brascamp-Lieb inequality,

for the random vector Y () ~ u(k) and for every [ € ]R|HN\(‘]1UJ2)|, we have
Var(l- YWy < Var(l - 2).

Since as k — oo, the law of Y (¥) (i.e. u(k)) converges weakly to the law of Z conditioned on

Hy and H_, we see that
Var(l-Z | Hy+,H-) < Var(l- 7).
Note that

Var(X?) | H—, H+7H—>

1 —
Z Z Hm,(vvuﬂlkuaVN)ﬁfN,u | H:7H+7H—)'

- Var(——
Vispnyel o =

H\Iﬂl(v, w; [, U0Vyy) for u € J3 and 0 otherwise,

Thus, by setting [, = W y
(1+B)N/2

/2l yeg
this gives the inequality (2.45).
Now let us define
Up = {ug € J3: Jug —u| > (log N)!V for all u € Jy}
and for uy € Uy, define

Up(ur) = {ug € J3 : Jug — ug| > (log N)'°}.

For uy,u9 € J3, we say a pair (uq,u9) is good if uy € Uy and ug € Us(uy). We can expand
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the right hand side of (2.45) as follows (where we write Zj, y = I}, U0V ):

— B
Var( Y Y Hm (0w n) vy | Frug,) =
1168\/'(1+5)N/2 u€EJ3

— —
> > Hm (v1, u1; 2, v)Hm (vo, UQQZk,N)GGEV\(Jlujz)(UL ug )+
1}1,11268‘/(1+5)N/2 u1 €J3\Uy ug€J3
— —
> > > Hm (v1,u1; Ty, v)Hm (02, u2; T, NG\ (yu) (815 42)
v1,v2€0V(1 4.8 N/2 W1 €U ug€J3\Ua (u1)
— —
+ > > Hm (vy,ug; Ty y)Hm (v, u2; Ty N)Ggr \ (u) (015 42) -
v1,v2€0V (14 gyN/2 (u1,u2) is good
(2.46)
Recall that we have |Jy| < N o~ (log N)?/10 By a simple volume consideration, we have
173\ U] < Ne— (108N (160 N)21 and for ug € Uy, |J3\ Us(ug)| < Ne— (108 M) (15 N)21,
Therefore, for any vy, v9 € 8‘/(1-5-5)3\7/2’ we have
Hm (v1, J3 \ U I UAVy) = o(log N)~10 (2.47)
and
Hm' (vg, J3 \ Us(uy); I, UdVy) = o(log N) 10 (2.48)
It is well known that for a constant C5 > 0, we have for any uy,u9 € G§V
Géjv\(Jlng)(ul’W) < Géjv<u1’u2) < CslogN . (2.49)
We claim that there exists a constant Cg > 0, such that if (uq,u2) is good, then
Ce
5 < . .
Gggv\(JluJQ)(ula ug) < log N (2.50)

We will show that if BIN is started at ug, then the probability that it goes (log N)1V away
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from wq before hitting J; U Jo is, say, less than (log—}\f)Q for a constant C7 > 0. Since
lug — ug| > (log N)1V, and the expected number of visits of ug by BIN is by (2.49) at most
C5log N, we see that (2.50) is valid with Cg = C7C5.

To do this, we use the Beurling’s estimate (see, e.g., [50, Theorem 6.8.1]). We observe
that Jy UJo U Jy (as the “outer boundary” of Ij,) is a *-connected set (where we regard two

vertices as neighboring each other if their ¢1-distance is at most 1) with diameter of order

N, in the sense that
Vé{UGVN:|v—u| <1 for some u € Jy U Jy U Jy}

is a connected set with diameter of order N. In particular, by the definition of J3 we have
J3 C V. By Beurling’s estimate, once BIN is at v € V', it will hit V again before going

(log N)6 away from v, with probability at least 1 — —(log?v);g

constant). Thus, if BIN is started at uy € J3, then with probability at least 1 — ﬁ, it

will hit V' at least log N times, before going (log N )7 away from uq. However, it is clear that

(where Cs > 0 is an absolute

if ng\/ is at v € V, then it has at least constant probability (> 1/32) to hit J;UJoUJy before

(or at) hitting a neighbor of v. Therefore, at these log N times that BIN hits V (before

going (log N)7 away from wuq), it has at least 1 — llggQ probability to hit J; U J9 U Jy at
N©&31

least once in the following step, and since Jy is (log N )10 away from wy, it must hit J; U Jo.

That is to say, the probability that Béf\f hits J; U Jo before going (log N )10 away from wuq is
C R C

Tog ?\7)2)(1 - Nlolg%% ), which is greater than 1 — W for any C7 > Cj.

Now substituting the bounds in (2.47), (2.48), (2.49) and (2.50) into (2.46) completes

at least (1 —

the proof of the lemma. O
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