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SENSOR RESPONSE RATE ACCELERATOR 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

The invention was made with U.S. Government support 
under contract no. W-31-109-ENG-38 awarded by the 
Department of Energy and the U.S. Government has certain 
rights in this invention. 

FIELD OF THE INVENTION 

2 
electrical signal representative of the input. The system also 
includes a sampling system configured to sample the sensor 
output at discrete time intervals and provide sampled sensor 
output signals. Further, the system includes an adaptive filter 

5 including a plurality of inputs and at least one output, the 
plurality of inputs configured to receive sampled sensor 
output signals, and at least one output of the adaptive filter 
configured to provide at least one estimated future sensor 
output based on the plurality of sampled sensor output 

10 signals provided to the plurality of inputs to the adaptive 
filter. 

The invention relates generally to the field of signal 
conditioning. More particularly, the invention relates to an 
interoperating collection of adaptive filters supporting sen­
sor signal prediction and that prediction's application. The 15 

adaptive filter based sensor signal predictor(s) may be used 

An exemplary embodiment of the invention also relates to 
a method of predicting the output of a sensor. The sensor has 
an input for sensing an environmental characteristic, and the 
sensor having a sampled output representative of the input at 
a discrete time interval. The method includes providing, to 
a plurality of inputs of an artificial neural network, a 
plurality of discrete sensor outputs. Each discrete sensor 
output is representative of a sensor input at a different 

to increase a sensor's rate of response. 

BACKGROUND OF THE INVENTION 

Many industrial control applications require a plurality of 
sensors. In some applications, the sensors have a response 
time that is inadequate to provide effective control of the 
system. 

Sensor response time may be described as the period 
between changing physical conditions and a change in the 
sensor ( electrical) output. Sensor sensitivity may be 
described as the amount of change necessary in the physical 
condition that is needed to initiate a similar change in the 
sensor output signal. Together, the response time and the 
sensitivity of the sensor control the output signal. 

If a given sensor's response time is N (i.e., N=50 
milliseconds) and its sensitivity is S (i.e., S=+/-10 parts per 
million, for a chemical sensor) then N milliseconds after an 
S part per million change is experienced, the sensor will 
produce an approximately proportional, measurable change 
in the generated electrical signal. A control system external 
to the sensor, relying on the sensor, receives no benefit in 
polling or sampling the sensor any faster than it can physi­
cally respond, because no change ( or an inaccurate change) 
in the electrical signal will be detected. If, for example, the 
external control system requires a feedback signal at higher 
sampling frequencies than the frequency response of the 
sensor, the conventional or classic solution is to develop a 
new sensor with different (improved) physical response 
characteristics. Development of new sensors however, is 
costly and potentially not possible. 

20 discrete time interval. The method also includes generating 
at least one output of the artificial neural network. The at 
least one output being an estimate of at least one future 
sensor output. 

Further, an exemplary embodiment of the invention 
25 relates to a method of predicting sensor output. The method 

includes adapting weights of an artificial neural network. 
The method also includes receiving, by the artificial neural 
network, a plurality of discrete sensor outputs from p 
discrete time intervals, up to the time n. Further, the method 

30 includes generating an output of the artificial neural 
network, based on the sensor outputs from the p discrete 
time intervals. The output is representative of the predicted 
sensor output at time n+ 1. 

35 
Further still, an exemplary embodiment of the invention 

relates to a method of accelerating the output of a sensor. 
The method includes receiving by a first neural network a 
plurality of sensor outputs at discrete evenly spaced time 
intervals less than and including time n. The method also 

40 
includes receiving by a second neural network a plurality of 
sensor outputs at discrete evenly spaced time intervals less 
than and including time n+m, where 0<m<l. The method 
further includes generating, by the first neural network, a 
predicted sensor output that is an estimate of the sensor 

45 
output at time n+ 1. Further, the method includes generating, 
by the second neural network, a predicted sensor output that 
is an estimate of the sensor output at time n+ 1 +m. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The invention will become more fully understood from 
the following detailed description, taken in conjunction with 
the accompanying drawings, wherein like reference numer­
als refer to like parts, in which: 

FIG. 1 is an exemplary block diagram of an artificial 
neuron model; 

FIG. 2 is an exemplary block diagram of an artificial 
neuron model showing the feedback adaptation mechanism; 

Therefore, there is a need for a method and apparatus for 
improving sensor response times by predicting sensor out­
puts. Further, there is a need for inexpensive electronic 50 
devices that serve as interfaces between a closed (black box) 
control system and a given ( chemical, pressure, temperature, 
etc.) sensor. Further still, there is a need for sensor predicting 
devices that utilize adaptive filter or neural network predic­
tion algorithms to monitor sensor short-range past response 55 
and are able to predict the short-range future response of the 
sensor. Further still, there is a need for sensor predicting 
devices utilizing adaptive filter or neural network prediction 
algorithms that employ adaptive error correction and option­
ally provide interpolated output in the short time period that 

FIG. 3 is a block diagram of a sensor signal prediction 

60 
system including two artificial neural networks; 

is required by the external control system. 

SUMMARY OF THE INVENTION 

An exemplary embodiment of the invention relates to a 
system for improving the response time of a sensor. The 
sensor includes an input configured to sense an environmen­
tal characteristic and an output configured to provide an 

FIG. 4 is an illustration of an exemplary interpolation 
process used for improving sensor response time; 

FIG. 5 is an illustration of the actual sensor response 
versus the predicted sensor response using an exemplary 

65 5-point prediction; and 
FIG. 6 is an illustration of a predicted sensor signal 

utilizing time off-set predictive filters. 
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DETAILED DESCRIPTION OF EXEMPLARY 
EMBODIMENTS 

A method and apparatus configured to perform sensor 
predictions utilizing an adaptive filtering, such as an adap­
tive filter or an artificial neural network (ANN) is disclosed. 

Artificial neural network (ANN) systems are somewhat 
unique from recognized heuristic algorithms and expert 
systems. Scientists pioneered artificial neural networks as a 
method of simulating human brain activity. Today, ANNs 
show great promise as computing devices and may receive 
great attention from scientists and engineers to solve prob­
lems that are traditionally problematic for machines, in 
particular, problems involving unknown nonlinearities. For 
example, ANNs are ideal for pattern recognition tasks, 
prediction tasks, and automatic control tasks. Most 
significantly, ANNs have the ability to "learn" specific tasks, 
and "adapt" to specific environments. An ANN learns by 
comparing its output to a known output. The ANN has a set 
of adjustable internal weight settings that may be adjusted to 
minimize the error between the ANN output and the known 
output. ANNs are similar to, related to, and in some cases the 
same as some adaptive filtering techniques. Thus, it should 

4 
Referring now to FIG. 2, an exemplary artificial neural 

network 200 is depicted including an adaptive learning 
mechanism. Artificial neural network 200 receives inputs 
220 (p1 , p2 , ... ,p5). In an exemplary embodiment, p1 may 

5 be the most recent sampled sensor input and p2 , p3 , p4 , and 
p5, may be previously sampled inputs retrieved from a 
memory. Each of inputs 220 are multiplied by a set of 
weights 230 (W 1 , W 2 , ... , W 5) respectively. Inputs 220, 
multiplied by weights 230, are summed at a summation 

10 stage 240 along with a bias b 245 to produce an output 250 
n. Output 250 n is provided to activation stage 255 to 
provide a network output 260 a, each of inputs 220 and 
outputs 250 and 260 are provided as inputs to a least means 
squared (LMS) learning algorithm 270. LMS learning algo-

15 rithm 270 calculates the error between the current sampled 
signal value p1 and the previous iteration's predicted value 
a to adaptively correct the weight values (W 1 , W 2 , ... , W 5). 

A particular exemplary learning law ( algorithm) that may be 
applied is the Widrow-Hoff LMS error minimization 

20 method. The error is calculated as 

e=(a(n-1)-P,(n)). (3) 

be noted that although one exemplary embodiment shown 
and described is an artificial neural network model, the 25 
disclosure is not limited to ANNs, but includes other adap­
tive filtering techniques, or methodologies. 

The weight values are then updated for the next iteration 
following the Widrow-Hoff rule 

W(n+1)=W(n)+2ae(n)pT(n), b(n+1)=b(n)+2ae(n) (4) 

where 
Referring now to FIG. 1, a single neuron ANN 10 is 

depicted. Exemplary ANN 10 includes a plurality of j inputs 
(p1 , ... ,P) 20. Each input P; 20 is multiplied by a weight 30 
W; 30 (w;=w1 , ... ,w). The weighted inputs are added 
together at a summation stage 40, along with a bias b, to 
produce an output n 45, where 

p(n) = [ Pl P2 p3 P4 Ps ], 

W1 

W2 

W(n)= W, 

W4 

w, 

(5) 

(6) 

j 

n = I (P;W;) +b 
i=l 

(1) 35 

In the exemplary embodiment of ANN 10, output n is 
passed through an activation stage or function 50 to produce 
an output a 55. Activation function 50 may be any of a 
variety of activation functions, including, but not limited to, 
a linear function, a logistic function, a hyperbolic tangent 
function, a discontinuous function, such as, but not limited 

and O<a<l is the learning rate. The error correction is 
completed each iteration and may be capable of achieving a 

40 small fraction of a percent error within a few iterations. This 
type of adaptively correcting algorithm may also be catego­
rized as an adaptive filter that may be put into the framework 
of a neural network or provided as a software implemented 
algorithm. 

to, the sign function, or other activation functions, squashing 45 

functions, sigmoidal functions, Gaussian functions, etc. 

Referring now to FIG. 4, an exemplary graph 400 of a 
sensor output 410 is depicted. In one embodiment, a single 
ANN may be used to predict a sensor output one time 
increment into the future. For example, values p1 , p2 and 
prior values of p may be used to predict the point p0 • Point 

In a particular exemplary embodiment, ANN 10 includes 
an activation stage that is a linear function where a=C1 n+C2 

such that C1 and C2 are constants, and is therefore known as 
an ADALINE (adaptive linear element) network such that 

(2) 

An ANN, such as ANN 10, or any of a variety of other 
ANNs or adaptive filters, such as, but not limited to, 
multi-layer perceptron networks, back propagation 
networks, radial basis function networks, adaptive linear 
filters, and the like, may be used to provide approximations 
of nonlinear functions or approximations between nonlinear 
associations between input and output. 

In an exemplary embodiment, an ANN, such as ANN 10 
may be used in a system to predict sensor output and/or 
improve sensor response time through sensor output predic­
tion and estimation. 

50 Po may be exactly the same time step ahead of p1 that p1 is 
ahead of p2 . In order to predict a value prior to p0 , a 
prediction may be made for p0 by the ANN and a separate 
value, between p1 and p0 may be established by interpola­
tion. In FIG. 4, the interpolated point is designated as 

55 interpolated q1 . This may be suitable for high-speed opera­
tions where computational capability is limited but where 
small error introduced by the interpolation is acceptable. In 
the exemplary illustration of FIG. 4, a single value interpo­
lated between p1 and p0 is shown, however, many values 

60 could be calculated using simple linear interpolation or other 
interpolation mechanisms, such as quadratic interpolation, 
hyperbolic interpolation, and the like. 

In another exemplary embodiment, multiple ANNs may 
be used to eliminate the error introduced by the interpolation 

65 mechanism. The use of multiple predicting ANNs requires 
that the ANNs receive sensor input off-set in time and 
synchronized with one another. The examples shown and 
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interface) may include correcting/conditioning software or 
hardware for supplying a conditioned signal to an external 
controller system. The signal conditioning software or hard­
ware may include the described prediction and acceleration 

described herein show only two networks used to double an 
effective sensor response rate, but the number of neurons 
and the scaling/acceleration are limited only by processing 
power and ND sampling speed. 

Referring now to FIG. 6, sample values p1 through p5 may 
be used as inputs to the first neural network to predict the 
value of p0 . Off-set in time inputs q1 through q5 may be used 
to predict output q0 in the future. The p and q values are 
off-set by a fixed amount controlled by the device, sampling 
rate, and the new p1 and q1 values are sampled indepen­
dently with the same off-set. 

5 algorithms along with, but not limited to, scaling (gain) 
algorithms, offset adjustments, integration ( or smoothing) 
algorithms, derivative calculation (rate of change), threshold 
detection, and the like. 

It should be noted that a variety of embodiments may be 

Referring now to FIG. 3, a block diagram/flowchart 
depicts a system including two simultaneous executing 
networks predicting and accelerating the incoming signal by 
a factor of two. It should be noted that any number of 
networks may be applied in a similar manner as that illus­
trated in FIG. 3 which will increase the acceleration of the 
predicted sensor output. A sample input synchronizer 310 
receives an incoming signal from an analog to digital (ND) 
converter 305 which is coupled to an analog sensor 302. AID 
converter 305 samples analog sensor 302 signal and pro­
vides the sampled output to sample input synchronizer 310. 
Sample input synchronizer 310 alternately copies to the p 
network 320 an input p1 and then to the q network 330 an 
input q1 . The P network may normally be executed first to 
calculate p0 . Previous signals p1 , ... ,p4 are shifted in inputs 

10 
employed without departing from the spirit and scope of the 
invention, as to the configuration of the ANNs, the interpo­
lation mechanism, the information processing device, and 
the ND converter. For example, in one embodiment of the 
invention the AID converter may be part of the sensors 
system and not a part of the computer whereby the computer 

15 receives a sampled signal from the AID converter. Similarly, 
the ANN may be a program running in the memory of the 
computer, or, alternatively, the ANN or multiple ANNs may 
be embodied in dedicated hardware devices, such as dedi­
cated neural processing hardware. Furthermore, the interpo-

20 lation mechanism may be incorporated into the system as 
software running on the computer, or as software running on 
another dedicated device. 

While the detailed drawings, specific examples, and par­
ticular formulations given describe exemplary 

25 embodiments, they serve the purpose of illustration only. 
The materials and configurations shown and described may 
differ depending on the chosen performance characteristics 
and physical characteristics of the sensor prediction systems. 
For example, the type of neural network or training meth-

30 odologies used may differ. The systems shown and described 
are not limited to the precise details and conditions dis­
closed. Furthermore, other substitutions, modifications, 
changes, and omissions may be made in the design, oper­
ating conditions, and arrangement of the preferred embodi­
ments without departing from the spirit of the invention as 

by a shift time-synchronized inputs mechanism 340 and 345. 
For example, in shift time-synchronized inputs mechanism 
340, p1 is assigned the latest sampled input from sample 
input synchronizer 310, p2 is assigned the previous value of 
p1 , p3 is assigned the previous value of p2 , p4 is assigned the 
previous value of p3 and p5 is assigned the previous value of 
p4 . The neural network processing takes place by calculating 
the weighted product n 355 and applying the threshold 
squashing function to produce the predicted output a 360 
and 365. Outputs a are provided to a synchronized output 
controller module 370 which alternates in synchronized 
sequential output of the two networks. The alternating 
synchronized output may be supplied to a D/A controller to 
provide an analog output, or further may be provided to any 40 

of a number of data acquisition systems, stored in a memory, 

35 expressed in the appended claims. 

or the like. 
As described earlier, output a 360 and input p1 , the current 

sampled value from the sensor, are provided to the weight 
adaptation or learning algorithm 380 for the networks where 45 

adjustments are made to weights W and bias b. Similarly, 
output a 365 and input q1 are provided to the weight 
adaptation or learning algorithm 385 to make weight W and 
bias b adjustments for the q network. 

Referring now to FIG. 5, an exemplary graphical repre- 50 

sentation of the capability of an exemplary system, such as 
a system utilizing ANN 200, used to predict the sensor 
output at a time one sampling ahead of the sampled sensor 
output, is plotted. Line 500 depicts the sampled output using 
an ANN, such as ANN 200 and line 510 depicts the actual 55 

sensor output sampled. It can be seen that there is a time, 
approximately between time 250 and 255 where line 500 is 
substantially different than line 510 because the ANN does 
not have enough sampled historical data points to make an 
accurate prediction. In an exemplary demonstration, when 60 

approximately five time points have been sampled, the ANN 
is able to make relatively accurate predictions of time steps 
one time step ahead of the sampled. 

The sensor response rate accelerator as described above, 
in an exemplary embodiment, may be part of a suite of signal 65 

conditioning algorithms that are all embedded on a micro­
controller ( a sensor interface). The microcontroller (sensor 

What is claimed is: 
1. A system for improving the response time of a sensor, 

comprising: 
a sensor including an input configured to sense an envi­

ronmental characteristic and an output configured to 
provide an electrical signal representative of the input; 

a sampling system configured to sample the sensor output 
at discrete time intervals and provide sampled sensor 
output signals; 

an adaptive filter including a plurality of inputs and at 
least one output, the plurality of inputs configured to 
receive sampled sensor output signals, and at least one 
output of the adaptive filter configured to provide at 
least one estimated future sensor output based on the 
plurality of sampled sensor output signals provided to 
the plurality of inputs to the adaptive filter, the adaptive 
filter including an artificial neural network, the artificial 
neural network including a set of weights that are 
adapted using a learning law; 

a processing unit including the adaptive filter; and 
a program configured to be run by the processing unit, the 

program configured to provide a plurality of estimated 
future sensor outputs based on the at least one esti­
mated future sensor output provided by the adaptive 
filter and based on the plurality of inputs to the adaptive 
filter, 

wherein the plurality of estimated future sensor outputs 
represent sensor outputs at time intervals between the at 
least one estimated future sensor output and the 
sampled sensor output signals input to the adaptive 
filter. 
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2. The system of claim 1, wherein the processing unit 
includes the sampling system. 

3. The system of claim 1, wherein the adaptive filter is a 
program configured to be run by the processing unit. 

4. The system of claim 1, wherein the adaptive filter is a 5 

hardware device of the processing unit, having program­
mable characteristics. 

5. The system of claim 1, wherein the program includes 
linear interpolation. 

6. The system of claim 1, wherein the learning law is a 10 

least mean square learning law. 
7. The system of claim 1, wherein the artificial neural 

network is an ADALINE network. 
8. The system of claim 1, wherein the artificial neural 

network is a multi-layer neural network. 15 

9. The system of claim 8, wherein the multi-layer neural 
network is a back propagation neural network. 

10. The system of claim 1, wherein the artificial neural 
network is a radial basis function network. 

11. The system of claim 1, further comprising: 20 

at least two artificial neural networks, each of the artificial 
neural networks configured to provide an estimated 
future sensor output representative of different discrete 
times. 

12. The system of claim 1, wherein the adaptive filter 25 

includes at least two outputs, each of the outputs configured 
to provide an estimated future sensor output representative 
of different discrete times. 

13. A method of predicting sensor output, comprising: 

adapting weights of a first artificial neural network, 

receiving, by the first artificial neural network, a plurality 
of discrete sensor outputs from p discrete time 
intervals, up to the time n; 

30 

generating an output of the first artificial neural network, 35 
based on the sensor outputs from the p discrete time 
intervals, the output representative of the predicted 
sensor output at time n+ 1; and 

generating an output of a second artificial neural network, 
based on the sensor outputs from k discrete time 40 

intervals, the k discrete time intervals being offset from 
the original k discrete time intervals by a time m, where 
O<m<l, such that the generated output predicts sensor 
output for a time n+l+m. 

14. The method of claim 13, further comprising: 45 

estimating k sensor outputs between the time n and n+l, 
based on the sensor output at time n and the estimated 
sensor output at time n+ 1. 

15. The method of claim 13, wherein the adapting is 
carried out in an off line training period. 

8 
16. The method of claim 13, wherein the adapting is 

carried out adaptively on line during use. 
17. The method of claim 13, wherein the training is based 

on the optimization of an objective function. 
18. A method of accelerating the output of a sensor, 

comprising: 

receiving by a first artificial neural network a plurality of 
sensor outputs at discrete evenly spaced time intervals 
less than and including time n; 

receiving by a second neural network a plurality of sensor 
outputs at discrete evenly spaced time intervals less 
than and including time n+m, where O<m<l; 

generating, by the first neural network, a predicted sensor 
output that is an estimate of the sensor output at time 
n+l; and 

generating, by the second neural network, a predicted 
sensor output that is an estimate of the sensor output at 
time n+l+m. 

19. The method of claim 18, further comprising: 

updating the weight values of the first neural network 
based on the actual sensor output at time n and the 
estimated sensor output at time n; and 

updating the weight values of the first neural network 
based on the actual sensor output at time n+m and the 
estimated sensor output at time n+m. 

20. A method of synthetically accelerating the output 
response rate of a sensor, comprising: 

receiving by an adaptive filter predictor a plurality of 
sensor outputs at discrete evenly spaced time intervals 
less than and including time n; 

receiving by a second adaptive filter predictor a plurality 
of sensors outputs at discrete evenly spaced time inter­
vals less than and including time n+m, where O<m<l; 

generating, by the first adaptive filter predictor, a pre­
dicted sensor output that is an estimate of the sensor 
output at time n+l; 

generating, by the second adaptive filter predictor, a 
predicted sensor output that is an estimate of the sensor 
output at time n+l+m; and 

synchronizing the inputs and outputs of the two adaptive 
filter predictors to provide synthetic sensor output data 
at a rate faster than the sensor can physically respond. 

21. The method of claim 20, wherein the first adaptive 
filter predictor includes a first neural network and the second 
adaptive filter predictor includes a second neural network. 

* * * * * 


