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Abstract

Understanding how protein sequences confer function remains a defining challenge in

molecular biology. Two approaches have yielded enormous insight yet are often pursued

separately: structure-based, where sequence-encoded structures mediate function, and

disorder-based, where sequences dictate physicochemical and dynamical properties which

determine function in the absence of stable structure. Here we study highly charged protein

regions (>40% charged residues), which are routinely presumed to be disordered. Using

recent advances in structure prediction and experimental structures, we show that roughly

40% of these regions form well-structured helices. Features often used to predict disorder—

high charge density, low hydrophobicity, low sequence complexity, and evolutionarily vary-

ing length—are also compatible with solvated, variable-length helices. We show that a sim-

ple composition classifier predicts the existence of structure far better than well-established

heuristics based on charge and hydropathy. We show that helical structure is more preva-

lent than previously appreciated in highly charged regions of diverse proteomes and charac-

terize the conservation of highly charged regions. Our results underscore the importance of

integrating, rather than choosing between, structure- and disorder-based approaches.

Author summary

Understanding how the functions of protein molecules are encoded in their amino-acid

sequence remains one of the defining challenges in molecular biology. Considerable

insight has been gained by understanding how sequence encodes three-dimensional struc-

ture—particularly with the recent emergence of high-quality structure prediction. Yet it

has also become clear that many protein behaviors arise from disorder, without stable

structure, and tools to predict disorder from protein sequences have similarly proliferated.

We have found that a large and important class of protein sequences which is commonly

presumed and predicted to be disordered—highly charged regions—surprisingly form
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well-structured helices in roughly 40% of cases, far higher than predicted by both classic

and cutting-edge disorder predictors. By studying the evolution of these sequences, we

show how many of the intuitive methods for identifying disorder are in fact compatible

with structured regions. By illuminating this blind spot in detail, and showing that a sim-

ple method can reliably identify these structured regions, we highlight the surprising chal-

lenges that still remain in developing both conceptual intuition and detailed predictive

capability when both structure and disorder play important biological roles.

Introduction

In the overarching quest to understand how genotype shapes phenotype, the question of how

protein sequence encodes protein function has proved a rich and enduring challenge. An early

and still pervasive conceptual framework in which stable sequence-encoded protein structures

confer biological function has been met by a newer (yet by now firmly established) companion

approach born from the recognition that many functions—binding, selective recruitment, for-

mation of large-scale structures, and more—can be achieved by sequences which do not adopt

a stable conformation (intrinsically disordered regions, or IDRs). Although neither approach

is exclusive of the other, and indeed they anchor a continuum [1], for historical and methodo-

logical reasons many analyses adopt one approach or the other based on various heuristics [2–

7]. Such heuristics have had an outsized impact on how sequence-function maps are explored.

In one early and influential study of IDRs, Uversky and colleagues discovered that plotting

mean net charge against mean hydropathy (hydrophobicity) permits a dividing line to be

drawn separating folded from disordered proteins [2,8]. In these analyses, highly charged,

weakly hydrophobic sequences have a strong tendency to be disordered. More recently devel-

oped heuristics go beyond composition: simulation studies suggest that the degree of mixing

of opposite charges within a highly charged, nearly net-neutral (polyampholyte) sequence is a

predictor for the biophysical properties of such polypeptides, specifically whether they form

expanded or compact structures in solution [3,9]. These studies assume that the sequences in

question do not take on well-defined structures, largely based on the observation that many

disordered proteins are polyampholytes (~75% of known IDRs have a fraction of charged resi-

dues (FCR) > 0.35 [10]). These findings, although based on a few hand-picked sequences from

different organisms and proteins, have broadly informed the analysis of many other sequences

[11–13].

Other analyses, while still converging on the general finding that disorder is associated

most strongly with a bias toward charged residues and away from hydrophobic residues, have

emphasized extreme compositional biases themselves as strong predictors of disorder [4,5].

The most common quantitative description of sequence compositional bias is the Shannon

entropy, often referred to as complexity [6,14]. Complexity here has a statistical, not biological,

interpretation; “simple” sequences such as homopolymers or sequences composed of only a

few types of amino acids have low sequence entropy and thus low complexity.

Low-complexity regions (LCRs) have in the past decade experienced a surge of attention,

driven by the observation that they are associated with mesoscale organization in cells: clusters,

granules, hydrogels [15–17], membraneless organelles, and a host of related structures now

referred to as biomolecular condensates [18]. Charged LCRs in particular play a crucial role in

biomolecular condensation in highly influential model systems, mediating complex coacerva-

tion [7] and phase separation [19–22]. Particular sequence features such as enrichment with

positively charged residues like arginine and with conformationally flexible glycine, most
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memorably in the RGG motif [23], appear often in RNA binding proteins that are known to

condense; interactions with cationic residues can be modulated by negatively charged regions,

leading to the proposal of a molecular grammar for such interactions [24]. While further work

is needed to understand when and how these interactions drive condensation, it is also impor-

tant to develop a better understanding of their biophysical properties, and especially how the

regions behave in isolation.

Together, these lines of inquiry both reflect and create conditions in which highly charged,

low-hydrophobicity LCRs may be studied nearly exclusively through the lens of disorder

[3,10,25]. Because of the historical roots of the disorder presumption—particularly that many

of the paradigm-shaping observations were made as databases of sequences and structures

were in their infancy—the presumption itself has persisted with few challenges.

A confluence of trends and events has laid the groundwork for a productive reexamination

of these assumptions. First, the maturation of structural and sequence databases has prompted

increasingly critical looks at our understanding of LCRs [26] and IDRs [27]. In parallel, specific

examples have accumulated of well-defined structure in sequences which would, by existing

heuristics, be overwhelmingly predicted to be disordered: alpha-helices in myosin [28] and cal-

desmon [29], and a coiled-coil region in the mRNA export protein GLE1 [30]. Indeed, there is a

long-established connection between charge patterning and helix formation [10–13,31,32].

Finally, new methods now permit more reliable and farther-reaching assessment of the disorder

presumption for highly charged regions, notably high-quality structure prediction [33,34].

So motivated, we return to the root issues: to what extent are naturally occurring highly

charged protein regions structured versus disordered? What is the empirical relationship

between the fraction and patterning of charged residues and the biophysical properties of a

region? Are highly charged regions conserved over evolutionary time, as we would expect for

biologically important properties? And how easily can one distinguish between structured and

disordered regions on the basis of simple sequence heuristics?

To answer these questions, we systematically identify highly charged regions proteome-

wide in related eukaryotes (budding yeasts) and characterize their sequence properties, pre-

dicted structure, and evolution. In contrast to previous studies [3,9,10,35], our work examines

the entire proteome, permitting us to quantify the frequency and, with proteome-scale homol-

ogy, evolutionary conservation of charged regions at the genomic scale. We find that naturally

occurring polyampholytes are highly prevalent and, despite being low-complexity with often-

poor sequence conservation, these regions are often predicted to form or contain alpha-helices.

We confirm these predictions through comparison with experimentally derived structures.

These results demonstrate that certain LCRs, even those enriched for charged amino acids

thought to be important for intermolecular interactions driving phase separation, may adopt a

well-defined structure in the right sequence or physicochemical context. More broadly, we

show that it is important to consider structural properties explicitly when evaluating the other

properties of an LCR.

Results

Highly charged regions of low sequence complexity are prevalent in the

yeast proteome

We first established criteria for regions to be “highly charged” and used them to identify

regions in the S. cerevisiae proteome, our departure point owing to its extensive experimental

and evolutionary characterization. Examining amino acid usage (Fig 1A), we found that the

charged residues (glutamate, aspartate, lysine, and arginine) together constitute 23% of the

total amino acids. Unlike all other categories of amino acids, the frequency of each charged
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amino acid (as determined from the frequency of observed codons) deviates strongly from

expectation based on the underlying nucleotide frequency (Fig 1A, light gray points), evidence

for evolutionary selection.

To isolate highly charged regions, we took a sliding-window approach, moving a

12-amino-acid window across all protein sequences and selecting regions with a fraction of

charged residues (FCR) above 0.4, with some tolerance for transient deviations (see Fig 1B and

Methods). After trimming uncharged ends off these segments, the resulting highly charged

regions have a median length of 50 and a FCR� 0.43 (Figs 1C and S1C), more stringent than,

for example, a published definition of a strong polyampholyte (FCR> 0.30) [36]. We identi-

fied 1,047 regions in 800 proteins; about 14% of protein-coding genes encode at least one

highly charged region. The FCR in these regions is just over two standard deviations above

that for randomly chosen regions in the proteome (S1A Fig); the regions also have substan-

tially higher charge density than the proteins which contain them (S1B Fig).

We examined the distribution of both FCR and normalized net charge across all regions; it

is more common for a region to have a net charge close to zero, although there is a significant

number of net negatively charged regions (Fig 1C). Examples of neutral regions and those that

carry a net charge can be found in Table 1.

Fig 1. Regions high in charge are prevalent in the yeast proteome and are low complexity. a Top: the average frequency of amino acids in the yeast

proteome. Light gray trace is the expected frequency based on the average nucleotide frequency and the codons which code for each amino acid. Bottom: The

difference between the dark and light traces in the top panel. b Cartoon of the algorithm which detects highly charged regions. c Summary of the per-region

fraction of charged residues (FCR) and normalized net charge for identified regions. d Complexity of the charged region calculated according to the

compositional entropy defined in [14]. Gray and black distributions are normalized to the yeast proteome entropy, the purple distribution is normalized to the

entropy of a charged-enriched hypothetical proteome. Reference sequences are known low complexity domains from Sup35 (a typical prion-like low-

complexity protein) and Pab1 (atypical hydrophobic-rich intrinsically disordered region), and a folded sequence (actin). e Normalized hydropathy of the

charged regions (purple) and length-matched randomly drawn regions (gray). Reference sequences are the same as those in d.

https://doi.org/10.1371/journal.pcbi.1011565.g001
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We expected that the highly charged regions would have lower complexity and hydropho-

bicity than random regions, because they must be enriched for a small subset of (charged)

amino acids, and we confirmed that this is the case (Fig 1D and 1E gray and black traces).

Because the highly charged regions could be low complexity merely due to the selection bias

imposed by looking for enrichment for a few amino acids, we calculated the complexity nor-

malized by the entropy of a synthetic, mostly charged proteome (50% charged amino acids

and all other amino acids equally represented, see Methods for details, Fig 1D purple trace).

Even with this correction, the regions are far less complex than randomly drawn regions

(P< 10−6, Wilcoxon rank sum test), suggesting a further bias in amino acid usage in these

regions beyond that explained by their enrichment for charge.

We also examined the distribution of the proteins containing these regions within the cell.

We found that they were enriched in the nucleus, and especially in the nucleolus (S1D Fig),

consistent with recent findings that across several species nucleolar proteins are enriched for

charge-rich low-complexity sequences [37].

In summary, we find that highly charged regions which exceed even stringent definitions of

polyampholytes are common in the yeast proteome, are on average less hydrophobic and less

complex than average sequences, and are enriched in specific nuclear compartments.

Secondary structure is pervasive in highly charged regions

Given the historical and intuitive associations between low hydrophobicity/high charge density

and disorder, we predicted that the vast majority of the regions we identified would not adopt a

well-defined structure. We thus set out to determine what proportion of the regions we identified

were IDRs using experimentally derived structures and recently available proteome-wide struc-

ture prediction (AlphaFold) [33]. Although the biophysical properties of disordered regions can-

not be accurately determined using AlphaFold structures [38], disorder can be inferred in two

ways. The first is to impute disorder to residues with a low AlphaFold confidence score [38]; the

second is to ascribe disorder to regions with high-confidence coil (e.g., not helix or sheet) predic-

tions. We employ both methods. To validate of these choices, we analyzed the predicted Alpha-

Fold structure of protein regions from the DisProt database (which contains proteins that have

been empirically measured to be disordered through a variety of experimental means including

circular dichroism and NMR) and found that the vast majority of confidently predicted residues

Table 1. Example highly charged regions from the yeast proteome.

Category Gene Kappa Sequence

Net

negative

SIS2 0.756 KNNEEEDDDEDEEEDDDEEEDTEDKNENNNDDDDDDDDDDDDDDDDDDDDDDDDEDEDEAE

RNA1 0.393 DLLQSKFDDLEVDDFEEVDSEDEEGEDEEDEDEDEKLEEIETERLEKELLEVQVDDLAERLAETEIK
COP1 0.064 EEPLGEENFNDEDIGEDEGAWDLGDEDLDVGEELPEEVEQGE

~Neutral RIO1 0.433 EEFSDDEEDGSSGSEEDDEEEGEYYDDDEPKVLKGKKHEDKDLKKLRKQEAKDAKREKRKTKVKKHIKKKLVKKTKSKK
SEC3 0.106 EVNKRYELEQQQQQEEAELRRLEEQKRLQLQKENEMKRLEEERRIKQEERKRQMELEHQRQLEEEERKRQMEL

EAKKQMELKRQRQFEEEQRLKKERELLEIQRKQREQETAERLKKEEQEALAKKEEEEKSKRNKVDNE

MNN4 0.061 KLLEERKRREKKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKQEEEEKKKKEEEEKKKQ

EEGEKMKNEDEENKKNEDEEKKKNEEEEKKKQEEKNKKNEDEEKKKQEEEEKKKNEEEEKKKQEE

Net

positive

TMA23 0.317 KGKKRRRRDEDDNKVKRKKLKKDKKTSNDSESKKKKKKKSKKESKKGKKSKHSSDEGDKSKHKKSKKSKKHKKEESSARRDRKE

ZDS2 0.185 KKNSLEKRLAKLFKRKQHNGTCKSDVKVIKKSVKKELKKK
FAF1 0.071 KVKKGQFRKIESTYKKDIERRIGGSIKARDKEKATKRERGLK

https://doi.org/10.1371/journal.pcbi.1011565.t001
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in these regions were scored as “coil” by DSSP (S2A Fig). Thus, by using AlphaFold we were able

to assess both structure and disorder—with the same method—proteome-wide.

Returning to the highly charged regions, we used the AlphaFold predictions to classify each

residue as either disordered (low confidence, or high-confidence and scored as coil) or ordered

(high-confidence and scored as helix or sheet; see Methods for a complete description of scoring

cutoffs). While a significant number of the highly charged regions were almost completely com-

posed of residues classified as disordered, in many regions (40% of the total) more than half of the

residues were predicted to be structured (Fig 2A). We examined the secondary structure classifica-

tion for all confidently predicted residues (45% of the total) across the entire dataset. The highly

charged regions were markedly enriched for alpha-helical secondary structure compared to disor-

dered regions from DisProt and had a similar frequency to length-matched randomly drawn

regions (Figs 2B and S2A). There were seven (out of 800) cases where proteins predicted to have

high helical content were also found in the DisProt database. We investigated these more deeply

Fig 2. Secondary structure is pervasive in highly charged, low complexity regions. a The distribution of the fraction of a region predicted to be disordered

with AlphaFold or present in DisProt. See Methods for secondary structure scoring. b The number of predicted helical, sheet, and disordered (which includes

coil; see Methods) residues for the highly charged regions, randomly-selected regions, and experimentally verified disordered regions from DisProt. c (Left)

The proportion of the top 200 most structured regions for which the protein that contains them is in the PDB. (Right) For those that are in the PDB, the

proportion of regions that is a helix, sheet, or missing. d Uversky plot of the highly charged regions. The dividing line is from [2].

https://doi.org/10.1371/journal.pcbi.1011565.g002

PLOS COMPUTATIONAL BIOLOGY Pervasive, conserved secondary structure in highly charged protein regions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011565 October 16, 2023 6 / 23

https://doi.org/10.1371/journal.pcbi.1011565.g002
https://doi.org/10.1371/journal.pcbi.1011565


and found that in only three cases was there overlap between the region we identified and the

region annotated in DisProt. The full results of this investigation are found in S1 Table.

We examined the subset of proteins which have empirically determined structures as a

check on AlphaFold’s predictions, to guard against hallucination or other systematic error in

highly charged regions. We searched the Protein Data Bank (PDB) for the 200 regions with the

highest predicted fraction of structured residues (>92% predicted structured, 19% of the total

regions). 27% of the proteins in this subset could be found in the PDB and, of those that were

found, 42 (68%) had the highly charged region resolved. In all of these cases but two (3%), the

region predicted to be a helix was experimentally determined to be a helix (Fig 2C). That is,

where experimental evidence is available for these regions, odds are better than 20:1 that the

helical prediction will be confirmed by experimental data.

In roughly a third of cases the region is absent from the PDB, and because disordered struc-

tures frequently evade structural resolution, it is possible that these regions are disordered

under some conditions. In particular, solvent conditions (e.g., pH) and sequence context

could modulate the net charge on each amino acid, altering the propensity for structure.

Indeed, recent simulations suggest just such a mechanism for a highly-charged LCR in Hero11

[39], and experimental studies have demonstrated that a transient helix forms in the acidic

activation domain of Gcn4 upon interaction with a binding partner [40]. Regions may also be

modified post-translationally, potentially altering net charge, charge patterning, and localiza-

tion. Given that these local effects are challenging to predict [41], and in principle could both

promote or inhibit structure formation, we consider our estimate a reasonable lower bound

on the propensity for helix formation in these regions. Lending further credence to our esti-

mate, recent work comparing AlphaFold predictions to NMR structures has demonstrated

that AlphaFold can reasonably and with high confidence predict conditionally folded struc-

tures [42]. It is also possible that the helical region is stable within a disordered element, like a

pipe on a jump rope [43], or that only a portion of the protein lacking the highly charged

region was expressed and characterized. From our analysis, we conclude that there is no evi-

dence to suggest structural predictions are inaccurate for these regions, and we confirm the

presence of many highly charged helices in experimental data.

The presence of substantial helical structure in these highly charged, low-hydrophobicity

regions raised questions as to how these regions would be scored by the metrics which initially

established connections between disorder and these sequence features. As a set, these regions

contradict the argument that large amounts of uncompensated charge predicts disorder, cap-

tured in the popular charge/hydropathy or Uversky plot [2]. We created a Uversky plot of the

highly charged regions, and all but three fell above the dividing line into the “natively

unfolded” region (Fig 2D). Thus classic methods for determining whether a region is ordered

or disordered have virtually no predictive power for regions of this composition—a surprising

result given that these regions would appear perfectly suited for such a heuristic.

More recently developed metrics have been used to assign biophysical properties to highly

charged regions. In particular, connections have been made between the patterning of charges (κ)

and the predicted radius of gyration (Rg, a measure of compaction) [3,9]. Rg is used to characterize

ensembles of disordered conformations; the implicit argument appears to be that because most

IDRs are polyampholytes, analysis of polyampholyte conformations can be carried out produc-

tively without considering structured conformations. Yet in specific cases, the very polyampholyte

sequences being assigned to various disordered conformational states by computational analysis

due to their charge patterning [3] are known to be helical—such as the (EEEKKK)n and

(EEEEKKKK)n polymers [32,41,44]. Remarkably, this is more than a mere conceptual curiosity:

our set of highly charged sequences in budding yeast contains the sequence KKKKEEEEKKK

KEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKQEEEEKKKKEEEEKKKQ in the
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protein Mnn4, a region which is, with modifications, conserved in other fungal species (S2C Fig).

Such sequences and their relatively well-studied biophysical behavior offer additional evidence of

the importance of considering helical structure in biologically relevant highly charged regions. To

emphasize this point, we calculated the FCR and κ values for all the regions in our dataset, and

compared how the helical and disordered regions fell in that space. Although the helical regions

on average had lower κ values than the disordered regions, the disordered regions spanned the

entire κ space; thus it is important to establish the structural or predicted structural state of a

sequence before interpreting how the κ value relates to the radius of gyration (S2B Fig).

Many of the sequences we identify show the hallmarks of so-called single alpha helices

(SAH), helices of length 25–200 residues frequently, though not exclusively, formed by (E4K4)n

repeats [9,34,35]. Below, we establish the evolutionary conservation of these regions, suggest-

ing their structure, as well as high charge density, are likely to confer a fitness benefit.

An ancient translation initiation factor contains a conserved highly

charged helix with sequence properties similar to an IDR

To more deeply investigate the sequence and structural properties of highly charged regions,

we focused on a specific example where a region predicted to be a helix by AlphaFold had a

solved empirical structure for comparison. We chose the broadly conserved eukaryotic transla-

tion initiation factor eIF3A (Rpg1 in S. cerevisiae) in which we identified several highly charged

regions. One such region was predicted to be almost entirely helical, which is confirmed in the

cryo-electron microscopy (cryoEM) structure (Fig 3B) [45].

When we created a sequence alignment of all the homologous proteins for which a struc-

ture had been predicted from AlphaFold, we found significant variation in both the length and

the sequence of the region (Fig 3A). Such variability is typical in disordered low-complexity

regions and seen as the accumulation of many insertions and deletions in a multiple sequence

alignment, but we were surprised to see this variation because the yeast version of this

sequence was structured. To determine whether the homologous sequences were likely to be

structured as well, we used DSSP (implemented in the MDTraj package for Python [46]) to

classify the secondary structure predicted by AlphaFold and projected the predictions into

alignment space (Fig 3C). Despite the lack of conservation at the sequence level, the helical

nature of the region was conserved across all the homologs. However, the length of the helix

varied significantly: the coefficient of variation of the highly charged helix was 0.17, compared

to 0.11 for a reference helix located elsewhere in the same protein (Fig 3D).

This analysis demonstrates that a region with all the features typically associated with IDRs

(high length variation as indicated by gaps in the alignment, poor sequence conservation, low

complexity, low hydrophobicity) can be associated with a charged region that is in fact struc-

tured and retains this structure across evolutionary time.

Helical highly charged regions can be predicted from amino acid

composition

Given the prevalence of structure in the highly charged regions that we detected, and the fail-

ure of existing composition-based heuristics to discriminate between the two categories (disor-

dered and helical), one might guess that more sophisticated and general methods might be

needed. An alternative possibility is that alternative simple heuristics exist, a possibility which

would be demonstrated by producing such a heuristic. We therefore asked whether we could

build a simple predictor of helical structure in highly charged regions from composition alone.

We stress that our objective here is to demonstrate a principle, and to gain some insight into
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the factors that determine disorder versus structure, rather than to compete with the many

examples of sophisticated software designed to broadly predict disorder [33,34,47,48].

Using the proteome-wide predictions of structure from AlphaFold, we created a dataset of

regions which were predicted to be either completely disordered or completely helical (13,437

sequences from 63.6% of the proteome). On a Uversky plot, the helices and IDRs drawn from

the yeast proteome, like the highly charged regions, overlap significantly (Fig 4A).

Fig 3. eIF3A, an essential eukaryotic translation initiation factor, contains a conserved, highly charged helix that varies in length but not in secondary

structure. a Alignment of the eIF3A highly charged region (orthologs from all distantly-related species with predicted proteomes in AlphaFold) with negatively

charged residues colored red, positively charged residues colored blue, and gaps and all other amino acids in white. Although the highly charged nature of the

region is conserved, the sequence itself is variable. b Representative image of the cryoEM structure of yeast eIF3A [42] with the highly charged region (resolved

as a helix) shown in purple, and a reference helix shown in black. c Alignment of eIF3A (same as in a) colored by the secondary structure predicted by

AlphaFold; S. cerevisiae sequence is highlighted in red. Note that the highly charged region is predicted to be helical in every species represented. d Despite

strong secondary structure conservation, the length of the highly charged helix varies significantly more than a reference helix from the same protein.

https://doi.org/10.1371/journal.pcbi.1011565.g003
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Using this dataset, we built a logistic regression model which classified regions as helical or

disordered on the basis of their amino acid composition (see Methods for model details). The

coefficients of this logistic regression (LR) model are shown in Fig 4B; as expected, residues

known to affect helical character such as proline and glycine have a large regression coefficient,

indicating that their presence is highly predictive. More generally, the coefficients from the

model are inversely correlated with the individual amino acid helix propensity [49] (Fig 4C).

Fig 4. Helical regions can be predicted from composition. a Uversky plot of all regions used to train the LR model. The marginals of the distribution are

shown on the plot border. b The coefficients of the logistic regression (LR) model which predicts whether a region is helical or disordered on the basis of amino

acid composition. The model was trained on purely helical and disordered regions (predicted by AlphaFold) selected from the S. cerevisiae proteome. Amino

acids with a positive coefficient are correlated with helices, those with a negative value are correlated with disordered regions. c The helix propensity from [46]

plotted against the LR model coefficients. d Accuracy of both the LR model (top), the Uversky dividing line (middle, from [2]), and flDPnn [47] (bottom) on

purely helical and disordered regions (held out data from the training set, n = 3360; left), randomly-drawn regions, which are predicted by AlphaFold to be

majority (but not completely) helical or disordered (n = 3405; center), and the highly charged regions (n = 681; right). e Summarized accuracy for all categories

in d. f Summarized accuracy of the LR model with only a subset of coefficients, g (Left) Accuracy of the LR model prediction of regions from other organisms.

(Right) Timetree showing the evolutionary divergence of the organisms.

https://doi.org/10.1371/journal.pcbi.1011565.g004
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We assessed the accuracy of the LR model in several ways. First, we calculated the rate of true

and false positives and negatives (Fig 4D) for several classes of sequences. The LR model per-

formed extremely well, correctly identifying both helical and disordered regions in the testing

data (25% held out from the original dataset) with an accuracy of 92.5% (Fig 4E). We also assessed

its performance on a new set of randomly selected regions which were predicted by AlphaFold to

contain both helical and disordered character; the LR model predicted the dominant structural

feature from composition alone 86.9% of the time (Fig 4E). Finally, we predicted the highly

charged regions, where the LR model performed with an overall accuracy of 90.8% (Fig 4E). Most

of this accuracy can be captured using only the top five coefficients of the model (Fig 4F). We also

scored a dataset of PDB structures with secondary structure annotation (see Methods); the model

performed with an accuracy of ~90% on these experimentally determined structures (S3C Fig).

To see whether there were systematic differences in the relationship between amino acid

composition and secondary structure when using real versus predicted structures, we also

created a second LR model trained on purely helical or disordered sequences from the

PDB-derived dataset and compared it to the original LR model (S3A and S3B Fig). The coef-

ficients of the two models are highly correlated, with the interesting exceptions of the two

helix-breakers P (which has the same order of importance in both models but a much larger

magnitude coefficient in the PDB LR model) and G (which has a much higher relative

importance in the PDB LR model). The PDB LR model performed with an accuracy exceed-

ing 90%, a result fully independent of AlphaFold predictions and as such an important

robustness check.

To put our results in context and understand the breakdown of existing heuristics, we com-

pared the accuracy of the LR model to the accuracy of the simple charge/hydropathy (Uversky)

model, as well as a state-of-the-art deep-learning based disorder-predictor called flDPnn [47].

As expected, the Uversky model performed better than chance but worse than the LR model

on the same sets of randomly drawn regions, but was completely non-predictive for highly

charged regions (Fig 4E). This reinforces the idea that normalized net charge is not predictive

of disorder (see marginal distributions in the right hand side of Fig 4C), at least for regions

with this length distribution. In sum, virtually all the predictive power in the Uversky charge/

hydropathy heuristic comes from hydropathy. Although the flDPnn predictions were signifi-

cantly better than the Uversky prediction for the highly charged regions, they did not exceed

the performance of the LR model.

Finally, we were curious whether our model was specific to amino acid usage in yeast, or if it

could be extended to other proteomes. Using three other proteomes for which structures have

been predicted, Schizosaccharomyces pombe, Caenorhabditis elegans, and Homo sapiens, we per-

formed the same procedure of random region selection, labeling using the AlphaFold predictions

and confidences, and classification with the LR model trained on AlphaFold predictions of yeast

regions. The prediction accuracy was nearly identical to or slightly higher than the S. cerevisiae
accuracy (Fig 4G). This simple model based only on the composition of a region is sufficient to

predict helical or disordered character in proteomes that diverged over a billion years ago.

Highly charged regions are evolutionarily conserved

The unique evolutionary signatures suggested by our analysis of eIF3A, coupled with the con-

sistency in predictive power of the LR model across vast evolutionary distances, led us to

broader questions about the conservation of the regions we had identified. To what extent do

highly charged regions retain their sequence properties and structure as organisms evolve?

To address this question, we turned to AYbRAH, a curated database of protein homologs

and paralogs in 33 fungal species spanning 600 million years of evolution [50]. This dataset
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combines automated homology detection and manual curation to achieve high-confidence

predictions of highly diverged orthologs.

First, we quantified the sequence conservation of the regions in question by examining

their alignments and calculating both the frequency of gaps and the sequence divergence (aver-

age position-wise entropy). Sequences with high insertion and deletion rates, a known feature

of IDRs, will have higher alignment gap frequencies. Those with a high point mutation rate

will have high divergence. A low value of both metrics indicates sequence conservation. We

calculated these values for all the highly charged regions, and compared them to length-

matched, randomly drawn regions from the rest of the same proteins. We found that the

charged regions have significantly more gaps (P<0.001, Mann-Whitney U test) and are more

divergent (P<0.001, Mann-Whitney U test) than the proteins in which they are found

(Fig 5A). We compared these distributions to the same values calculated for experimentally

verified IDRs from DisProt, and found that although the charged regions have similar gap

Fig 5. Highly charged regions are evolutionarily conserved. a The distribution of gap frequencies (left) and average position-wise entropy (right)

summarizing multiple sequence alignments (MSAs) of the highly charged regions (purple), randomly drawn regions from the rest of the proteins that contain

them (black), and IDRs from DisProt (gray). b Summary of the variance (in log odds space) of usage of categories of amino acids for all proteomes in the

AYbRAH database. c FCR values, averaged across AYbRAH alignments, for the highly charged regions identified in the S. cerevisiae proteome and length-

matched randomly-drawn regions and their associated AYbRAH MSA. d The average compositional conservation of regions enriched for all sets of four amino

acids with the same total frequency as the charged amino acids, plotted as a CDF. Higher values indicate less drift, and lower values indicate more drift

(regression to the proteome average).

https://doi.org/10.1371/journal.pcbi.1011565.g005
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frequency to IDRs, they are even more divergent at the sequence level. Thus simply viewing an

alignment of these LCRs, without using a secondary structure prediction algorithm, one might

conclude that they are disordered.

Despite this apparent lack of conservation, we were curious whether any aspects beyond

sequence of the highly charged regions were conserved. These regions were identified because

of their unique sequence composition, so we tested the degree to which they retained this com-

position over evolutionary time. To first determine the expected compositional variation, we

measured the variation in the total proportion of each amino acid across the species repre-

sented in the AYbRAH database (S4A Fig). We found that as a group, the charged amino acids

had very little variation in proportion of usage (Fig 5B). Consistent with selection, a high frac-

tion of charged residues was preserved across species and substantially differed from randomly

drawn regions in the same species (Fig 5C).

The distribution in Fig 5C contains some regions that on average fall below the threshold of

0.4 FCR that we established for the original search in the yeast proteome; this is not surprising

given that all sequences are subject to drift, which pulls them towards the proteome average

for any given trait unless selection intervenes. Therefore, we created a method to quantify drift

in charged regions relative to other compositionally extreme regions.

We first identified regions in the yeast proteome enriched for all groups of four amino acids

with a combined frequency within +/–0.01 of the combined frequency of the charged amino

acids (0.233). For each of the 209 datasets, we calculated the mean proportion of the amino

acids in question for each identified region across the AYbRAH alignment (note that FCR is a

special case of this property where the four amino acids in question are glutamate, aspartate,

lysine, and arginine) If the composition (enrichment of the four amino acids in question) is

conserved, we should expect that the mean enrichment score across regions and alignments

should be close to the mean of the original enriched dataset (close to or higher than the 0.4

threshold). In contrast, if the property is not conserved, we should expect this enrichment

score to be close to the proteome average. To compare directly between datasets, we scaled this

enrichment score to a unit scale between an effective 0 (the proteome average), and 1 (the

median of the enriched regions detected from the S. cerevisiae proteome). Sets of four with a

conservation score close to 1 are highly conserved for that property, while those that are close

to 0 have experienced high levels of drift, indicating that they are not conserved. We find that

the set of four charged amino acids falls within the top 5% of these scores (Fig 5D). From this

analysis we conclude that in the highly charged regions, the charge density is extremely well-

conserved.

Discussion

To understand the biology of proteins and their subdomains, heuristics are almost inevitably

used: comparison to other proteins to infer similarity by homology, motif identification to pre-

dict binding partners, and so on. In the case of highly charged protein regions, several heuris-

tics appear to converge on the conclusion that such regions are overwhelmingly likely to be

disordered. By virtue of their strongly biased sequence composition, they tend to fall into the

class of low-complexity sequences associated with lack of stable structure [51]; they tolerate

insertion/deletion events at higher rates than typical well-folded sequences; their high charge

favors interactions with solvent, and low hydrophobicity suggests the absence of a solvent-pro-

tected hydrophobic core. Consistent with this, many analyses of such regions proceed as

though structure can be mostly or completely ignored.

Here, we have shown that naturally occurring highly charged regions are predicted to adopt

helical structure to a degree which cannot be neglected—~40% in a proteome-wide analysis—
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and that these predictions are supported by existing experimental data for both structured and

disordered sequences. Moreover, we show that all these heuristic signals of disorder are in fact

compatible with fully structured polypeptides: extended charged helices which have no hydro-

phobic core, grow and shrink in length over evolutionary time, interact with solvent on all

sides, and form from sequences of two or even one type of amino acid (Fig 6A). Together, our

results indicate that understanding the biology of highly charged sequences requires integrat-

ing insights from both structural and disorder-based approaches.

A consequence of these results is that they upend multiple well-established heuristics for

determining how to think about, and study, a sequence’s biological behaviors. The shortcut

that charge and hydrophobicity can serve as accurate dimensions for separating structured

from disordered sequences, powerfully demonstrated using limited data available at the time

[2], does not work for highly charged, low-hydrophobicity sequences. Although many sophis-

ticated methods for detecting disorder or single helices have been developed [33,34,47,48,52],

the assumption that, because many disordered sequences are polyampholytes, other polyam-

pholyte sequences can reasonably be treated as if disordered persists in modern work [3]. We

emphasize that our results say nothing about the utility of further results built on the assump-

tion of disorder, conditioned on its accuracy. And we further stress that considerable work

may properly focus only on disordered sequences with no claims regarding the assessment of

disorder. Nevertheless, as for the example of (E4K4)n polymers, it is straightforward to find

examples in which sequences known to have well-defined structure are treated as if they did

not, evidence for the undue influence of improper heuristics.

Given these results, it might seem inevitable that sophisticated structure-prediction meth-

ods would be required to more accurately discern whether particular highly charged sequences

adopt a helical conformation. However, we introduce a simple amino acid composition-based

Fig 6. Rethinking assumptions of disorder in highly charged regions. a The same set of predictors that have been associated with disordered regions turn

out to also be compatible with a fully structured helical region. b Present leading-edge methods for disorder and structure prediction disagree completely

and also fail to capture experimental reality. The highly charged region of Rcf1 is alternatively predicted to be near-completely disordered or completely

helical; experimentally and biologically, it forms most of the membrane-spanning helices and exposed loops in this dimeric mitochondrial inner membrane

protein.

https://doi.org/10.1371/journal.pcbi.1011565.g006
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classifier—logistic regression with as few as five inputs—which can predict structure (or its

absence) with accuracy above 90%. This model is trained on biologically occurring sequences, a

tiny and profoundly biased subset of protein sequence space, such that we do not expect its per-

formance to carry over to arbitrary sequences. Still, as a heuristic method implemented with a

handful of numbers, it balances simplicity and accuracy (particularly over the charge/hydropa-

thy heuristic) in a way which is practically useful in diagnosing structure for charged sequences.

The notion that intrinsically disordered proteins or regions sometimes adopt structure is

well-understood [35,53], particularly in the case of folding upon binding [54]. Because of this

distinction between conformations in isolation versus when bound to a partner, structures in

the PDB may tell only a portion of the story. Similarly, AlphaFold specifically predicts struc-

tures most likely to appear in the PDB [33,42], rather than, for example, conformations which

are occupied most of the time in the biological context. To the extent that our results depend

on these resources, they similarly remain inapplicable to questions about the broader confor-

mational ensembles that highly charged sequences may sample. But how stable or frequently

adopted might these structures be?

From the perspective of evolutionary conservation, even a conformation which is occupied

for a tiny fraction of the time may impose dominant constraints on a sequence, if this confor-

mation contributes to organism fitness. To the extent that we wish to understand the relation-

ship between sequence and biological function, this potential for rare conformations to dictate

function may permit most conformations in the ensemble to be neglected—much as recogni-

tion of folding upon binding for a disordered region may properly focus attention on the

bound state, even if it is fleeting. In the case of highly charged regions which must adopt helical

conformations to carry out their functions, certain near-absolute constraints must be satisfied;

no matter how unstable the helix, a proline kink in the backbone cannot be straightened, and

so depletion of proline from these regions provides an additional signal. On the other hand,

presence of a proline powerfully indicates that a straight helix cannot form and is therefore

unlikely to be the functional conformation, no matter what other sequence signals exist and no

matter how fleeting the helix state is proposed to be.

Even the best methods for predicting structure and for predicting disorder can disagree and

fail to capture experimental reality. Consider the highly charged region of the yeast protein Rcf1

(Fig 6B). A top-ranked modern disorder predictor, flDPnn [47,52], predicts this region to be

entirely disordered. AlphaFold predicts it to be entirely helical with high confidence. Neither

captures reality: experimentally, this region forms most of a dimeric five-pass transmembrane

protein in which charged residues, exposed on stable helices, form dimer-stabilizing salt bridges

through the mitochondrial inner membrane [55] (Fig 6B). To the extent that cases like this clos-

ing example persist [56], the challenges we identify here remain open. Moverover, discrepancies

between predicted proteome-wide frequencies of disorder [57] and inference of the same mea-

sure from experiment [58] invite deeper investigation of specific cases, as we have done here.

Broadly, while our results uncover previously overlooked structure in highly charged regions,

the dual challenges of determining the biologically active configurations of these sequences, and

of determining the statistical features of the conformational ensembles they occupy, remain open.

Rather than looking at such sequences through the lens of disorder, it appears that both lenses—

structure and disorder—will be needed to give the proper depth of focus.

Methods

Extraction of highly charged regions from the yeast proteome

The S288C reference genome was obtained from the Saccharomyces Genome Database

(SGD). For each gene in the reference genome, we first computed fractional charge as a
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moving average across its sequence using a window size of 12 residues and a triangular weight,

where the highest weight was assigned to the middle region of each window. We then searched

for highly charged regions in each sequence based on a fractional charge threshold of 0.4 and

tolerance of 10 residues. Tolerance refers to the maximum number of residues that we allow to

have moving average values below the fractional charge threshold before terminating the

region. This tolerance allows for transient deviations from high charge and prevents fragment-

ing highly charged regions with small insertions of uncharged amino acids. We extracted

regions that were longer than a given minimum region length of 30 residues, then trimmed

any remaining uncharged residues from the N and C terminal ends of the sequences (these

result from the triangular weighting scheme and the tolerance).

Calculating sequence complexity

Sequence complexity was calculated according to [6] using the following equation:

K2 ¼ �
XN

i¼1

ni

L
log

ni

L

� �

where K2 is the unnormalized complexity, N is the number of possible residues (in this case

the 20 natural amino acids), and ni is the number of each residue in the sequence, which has

length L. This value is normalized to the “entropy of the language” (e.g., the yeast proteome),

such that a sequence with compositional properties exactly equal to the average frequencies

will have a complexity of 1.

The entropy of the language is calculated using the equation

Hlanguage ¼ �
XN

i¼1

pilog pi

where pi is the frequency of letter i in the reference. We used two different languages as refer-

ences; the first is the yeast proteome (so each pi represents the average frequency of that amino

acid in the proteome). We also used a modified reference enriched for charged residues; each

of the amino acids lysine, arginine, aspartate, and glutamate had a frequency of 0.125; the

remaining frequency (0.5) was distributed evenly among the other amino acids.

Generation of null distribution for amino acid usage

We counted the number of occurrences of adenine (A), thymine (T), cytosine (C), and gua-

nine (G) in the DNA sequences of all open reading frames in S. cerevisiae. The expected fre-

quency of each codon was computed as the product of the frequencies of all nucleotides that

appear in that codon and the expected frequency of each amino acid was computed as the sum

of the expected frequencies of all codons specifying that amino acid.

Extraction of AlphaFold data

We used proteome-wide structure predictions from AlphaFold to analyze the structure of the

regions we identified with high proportions of charged residues. We downloaded the struc-

tures for all S. cerevisiae proteins from the AlphaFold website (https://alphafold.ebi.ac.uk/

download#proteomes-section) [33]. We read the PDB files into Python and used DSSP imple-

mented in MDTraj [46] to score secondary structure. We used custom Python functions to

extract the confidence scores from the predicted structure file for each protein.
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Construction of a logistic regression (LR) model to predict secondary

structure

To classify the secondary structure of a region on the basis of composition, we first constructed

a training dataset built from AlphaFold structures. We classified all residues in all structures as

either helical (classified as helical by DSSP and with a pLDDT score above 70), disordered

(classified as coil by DSSP and with a pLDDT score above 70 or any residue with a pLDDT

score less than 50) [38], sheet (classified as sheet by DSSP and with a pLDDT score above 70),

or other. The pLDDT cutoff of 70 marks was chosen because this value was used by the crea-

tors of AlphaFold to distinguish between “Confident” and “Low” model confidence. We did

not explicitly test the dependence of our results on the value of this cutoff since it was defined

and extensively validated by the creators of the model.

To generate training and testing data for the LR model, we exhaustively searched for purely

helical and disordered regions by identifying regions that were greater than 25 amino acids

long and only contained either helical or disordered residues. We extracted 6882 helical

regions and 6366 disordered regions from the S. cerevisiae proteome. We randomly selected

75% of these regions as training data and 25% of the regions as testing data and built a LR

model using amino acid composition as the predictor, that is, each individual amino acid is

assigned a weight in the regression. The LR model is built using the scikit-learn package in

Python.

We also constructed a LR model based on empirical structures from the PDB; secondary

structure and disorder were annotated on a per-residue basis from the experimental 3D struc-

ture by the PDB and were obtained by request [59] (see their Methods for details). The final

dataset contained 64,804 regions greater than 25 amino acids long and consisting solely of

either helix or disorder; the regions were approximately equally split between helical and disor-

dered. Otherwise, the procedure was identical to that used for the AlphaFold predictions.

Classifying regions and computing model accuracy

We used the per-residue secondary structure classifications described above to score the highly

charged regions: regions with more than 60% helical or disordered residues were labeled as

their dominant type, and all others were labeled as “intermediate.” These experimental classifi-

cations were taken to be ground truth in the accuracy scores for each method (Uversky, LR,

and flDPnn). Out of all the regions, 34% were labeled as disordered and 31% were labeled as

helical. We then used the LR model to classify these regions on the basis of their amino acid

composition. The ground-truth labels were used to compute the false negative and positive

rates, and the overall model accuracy.

To directly compare to the LR dataset, we extracted all purely helical or purely disordered

regions as well as random regions from the AlphaFold dataset. We used the same scoring con-

ditions as that used for the highly charged regions (>60% helical or disordered), scored each

region using the LR model, and computed model accuracy in the same way as described

above.

To compare between the accuracy of the LR model and the Uversky model, we also used

the Uversky model to classify the three sets of protein regions as helical or disordered. In par-

ticular, we calculated the normalized net charge and normalized mean hydropathy for each of

the regions. The regions that fall above and to the left of the dividing line are classified as disor-

dered and the remaining regions are classified as helical. The accuracy of the Uversky model is

computed in the same way as for the LR model.

Finally, we used flDPnn to classify each of the highly charged and random regions as disor-

dered or ordered. We averaged the predicted score for disorder for each of the residues in each
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given region and classified regions with a mean disorder score of 0.3 (the threshold chosen by

flDPnn) or higher as disordered. The remaining non-disordered regions were assumed to be

compatible with helices, the only order type in this dataset. The accuracy of flDPnn predictions

was then computed in the same way as above.

Evolutionary analysis: sequence properties

We used custom Python scripts to extract multiple sequence alignments (MSAs) for all pro-

teins in the AYbRAH alignment [50]. A region was considered “present” in a protein in the

MSA if the region which aligned to the S. cerevisiae sequence that we identified as highly

charged contained at least 30 amino acids (the same length minimum length as was required

for a region detected by the algorithm).

To compute alignment quality, the longest and shortest sequences in each alignment were

removed, and any resulting columns containing only gaps (represented by the symbol “-” in

the alignment) were removed. We then quantified the frequency of gaps as well as sequence

column-wise entropy, which we refer to as “sequence divergence.” The mean frequency of

gaps was computed as the number of “-” characters divided by the total number of characters

across all sequences in an alignment. Sequence divergence was computed by summarizing the

frequency of amino acids in each column as a one-dimensional probability distribution and

calculating the Shannon entropy of that distribution.

Evolutionary analysis: compositional drift

To test compositional drift for regions enriched in selected amino acids, we identified all

unique sets of four amino acids (excluding the charged amino acids) with the same combined

frequency as the four charged amino acids. We modified the charged region algorithm to

detect regions enriched for these sets of four. We used an enrichment threshold of 0.35 (35%

of the region composed of the amino acids in question), minimum length of 30 amino acids,

and a tolerance of 15; these parameters were selected to yield datasets that most closely

matched the number of hits and length distribution of the original dataset (enrichment for E,

D, R, and K). For each of these datasets, we calculated the conservation by averaging the

enrichment score (percent composition of the specific amino acids) across the alignment in

each region, taking the mean of that distribution, and scaling it between the S. cerevisiae prote-

ome average (0) and the average enrichment of the hits detected by the algorithm (1). This

allowed us to compare datasets directly: sets of amino acids with values close to 0 experienced

enough drift that they approach the proteome average; those with values close to 1 stay far

from the average and close to the (rescaled) enrichment threshold and thus are likely

conserved.

Analysis of the eIF3A charged helix

We used MUSCLE version 3.8.31 [60] with default parameters to generate an alignment of all

the eIF3A homologs for which a structure was available on AlphaFold as of April 2022 (35 spe-

cies of model organisms including bacteria, yeast, mold, rice, soybean, mouse, and human).

This dataset was used in Fig 3.

A cryoEM structure of eIF3A in complex with the ribosome was used for structural analysis.

The structure has PDB code 6ZCE (http://doi.org/10.2210/pdb6ZCE/pdb) [45].

Secondary structure was scored with DSSP as described above. The length of the charged

helix was calculated by identifying the start of the highly charged region and then counting the

amino acids until a run of more than three non-helix characters was encountered. A reference

helix from earlier in the sequence was chosen as a comparison.
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Analysis of Rcf1

The 70-residue Rcf1 charged region (Fig 6B) was used for disorder predictions with flDPnn

[47] at http://biomine.cs.vcu.edu/servers/flDPnn/ with default settings, and for structure pre-

diction with AlphaFold through ColabFold [48].

Statistical tests

All p-values were calculated with the Mann-Whitney U Test (Wilcoxon Rank Sum Test), either

two-sided if no hypotheses were formed about the relationship between the two distributions

or one-sided otherwise. The evaluation of these tests was done in Python and can be found

(along with the data) in the Jupyter notebook for the relevant figure.

Supporting information

S1 Fig. Regions high in charge are prevalent in the yeast proteome and are low complexity.

a The distribution of FCR values for randomly-drawn regions of different length in the yeast

proteome (black, purple), and randomly generated regions using the average S. cerevisiae

amino acid frequencies (gray). Vertical lines show two standard deviations above the mean.

The minimum FCR of the highly charged regions after trimming is shown with a red dashed

line. b The distribution of FCR values for the regions detected (purple), the proteins that con-

tain them (green and gray), and the per-protein FCR for all yeast proteins (black). c Distribu-

tion of region lengths for highly charged regions. d Enrichment for proteins containing highly

charged regions in different cell compartments. The proportion of the proteins in the category

with at least one highly charged region is shown in black. The expected proportion (based on

the number of unique genes detected by the algorithm and the total number of yeast proteins)

is shown as a horizontal white line.

(TIFF)

S2 Fig. Secondary structure is pervasive in highly charged, low complexity regions. a The

frequency of (per-residue) secondary structure for all the confidently predicted (pLDDT > 70)

residues from the AlphaFold structure for highly charged regions, length-matched random

regions, and experimentally-verified disordered regions from DisProt. The majority of confi-

dently prediction regions in disordered (DisProt) regions are coil. b The κ value of the region

versus the proportion predicted helix for all regions that are more than 60% helix or disor-

dered. c Alignment of MNN4 C-terminal region in fungal species in the AYbRAH database.

(TIFF)

S3 Fig. Helical regions can be predicted from composition. a Coefficients from the LR

model trained on helical and coil/disordered regions randomly drawn from the PDB. b Com-

parison between model coefficients in both the PDB and AlphaFold trained models. The

importance of P and G varies the most between the two; P in magnitude and G in order of

importance. c Accuracy of the AlphaFold and PDB trained models and the accuracy of the

AlphaFold model when used to classify PDB structures.

(TIFF)

S4 Fig. Highly charged regions are evolutionarily conserved. a Variation in frequency for

each individual amino acid. Distribution is the frequency of usage in each proteome in the

AYbRAH database. b Absolute coverage (number of species in the AYbRAH alignment which

contain non-gap characters in the detected highly charged region relative to the maximum

number of species possible) and relative coverage (number of species in the AYbRAH align-

ment which have non-gap characters in the highly-charged region relative to the number of
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species with a homolog of the protein) for each protein with a detected highly charged region.

c Length variation (between AYbRAH homologs) in regions labeled as helix (teal) or disor-

dered (gray) based on their predicted structure from AlphaFold and experimentally-verified

yeast disordered regions from DisProt (black).

(TIFF)

S1 Table. Overlap between predicted helical highly charged regions and proteins found in

DisProt. The proteins listed were predicted to contain highly helical regions (summarized in

Fig 2C) and also found in the Disprot database (a reference for experimentally verified disor-

dered proteins and regions).

(XLSX)

Acknowledgments

The authors thank Alex Holehouse for helpful discussions, and Alexander Cope for providing

the structure-annotated PDB data.

Author Contributions

Conceptualization: Catherine G. Triandafillou, Aaron R. Dinner, D. Allan Drummond.

Formal analysis: Catherine G. Triandafillou, Rosalind Wenshan Pan.

Funding acquisition: Catherine G. Triandafillou, Rosalind Wenshan Pan, Aaron R. Dinner,

D. Allan Drummond.

Investigation: Catherine G. Triandafillou, Rosalind Wenshan Pan.

Methodology: Catherine G. Triandafillou, D. Allan Drummond.

Supervision: Aaron R. Dinner, D. Allan Drummond.

Visualization: Catherine G. Triandafillou, Rosalind Wenshan Pan, D. Allan Drummond.

Writing – original draft: Catherine G. Triandafillou, Rosalind Wenshan Pan, Aaron R. Din-

ner, D. Allan Drummond.

Writing – review & editing: Catherine G. Triandafillou, Rosalind Wenshan Pan, Aaron R.

Dinner, D. Allan Drummond.

References

1. Babu MM, Kriwacki RW, Pappu RV. Structural biology. Versatility from protein disorder. Science. 2012;

337: 1460–1461. https://doi.org/10.1126/science.1228775 PMID: 22997313

2. Uversky VN, Gillespie JR, Fink AL. Why are “natively unfolded” proteins unstructured under physiologic

conditions? Proteins. 2000; 41: 415–427. https://doi.org/10.1002/1097-0134(20001115)41:3<415::aid-

prot130>3.0.co;2-7 PMID: 11025552

3. Das RK, Pappu RV. Conformations of intrinsically disordered proteins are influenced by linear sequence

distributions of oppositely charged residues. Proc Natl Acad Sci U S A. 2013; 110: 13392–13397.

https://doi.org/10.1073/pnas.1304749110 PMID: 23901099

4. Weathers EA, Paulaitis ME, Woolf TB, Hoh JH. Reduced amino acid alphabet is sufficient to accurately

recognize intrinsically disordered protein. FEBS Lett. 2004; 576: 348–352. https://doi.org/10.1016/j.

febslet.2004.09.036 PMID: 15498561

5. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK. Sequence complexity of disordered

protein. Proteins. 2001; 42: 38–48. https://doi.org/10.1002/1097-0134(20010101)42:1<38::aid-

prot50>3.0.co;2-3 PMID: 11093259

PLOS COMPUTATIONAL BIOLOGY Pervasive, conserved secondary structure in highly charged protein regions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011565 October 16, 2023 20 / 23

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011565.s005
https://doi.org/10.1126/science.1228775
http://www.ncbi.nlm.nih.gov/pubmed/22997313
https://doi.org/10.1002/1097-0134%2820001115%2941%3A3%26lt%3B415%3A%3Aaid-prot130%26gt%3B3.0.co%3B2-7
https://doi.org/10.1002/1097-0134%2820001115%2941%3A3%26lt%3B415%3A%3Aaid-prot130%26gt%3B3.0.co%3B2-7
http://www.ncbi.nlm.nih.gov/pubmed/11025552
https://doi.org/10.1073/pnas.1304749110
http://www.ncbi.nlm.nih.gov/pubmed/23901099
https://doi.org/10.1016/j.febslet.2004.09.036
https://doi.org/10.1016/j.febslet.2004.09.036
http://www.ncbi.nlm.nih.gov/pubmed/15498561
https://doi.org/10.1002/1097-0134%2820010101%2942%3A1%26lt%3B38%3A%3Aaid-prot50%26gt%3B3.0.co%3B2-3
https://doi.org/10.1002/1097-0134%2820010101%2942%3A1%26lt%3B38%3A%3Aaid-prot50%26gt%3B3.0.co%3B2-3
http://www.ncbi.nlm.nih.gov/pubmed/11093259
https://doi.org/10.1371/journal.pcbi.1011565


6. Wootton JC. Non-globular domains in protein sequences: automated segmentation using complexity

measures. Comput Chem. 1994; 18: 269–285. https://doi.org/10.1016/0097-8485(94)85023-2 PMID:

7952898

7. Pak CW, Kosno M, Holehouse AS, Padrick SB, Mittal A, Ali R, et al. Sequence Determinants of Intracel-

lular Phase Separation by Complex Coacervation of a Disordered Protein. Mol Cell. 2016; 63: 72–85.

https://doi.org/10.1016/j.molcel.2016.05.042 PMID: 27392146

8. Huang F, Oldfield CJ, Xue B, Hsu W-L, Meng J, Liu X, et al. Improving protein order-disorder classifica-

tion using charge-hydropathy plots. BMC Bioinformatics. 2014; 15 Suppl 17: S4. https://doi.org/10.

1186/1471-2105-15-S17-S4 PMID: 25559583

9. Sawle L, Ghosh K. A theoretical method to compute sequence dependent configurational properties in

charged polymers and proteins. J Chem Phys. 2015; 143: 085101. https://doi.org/10.1063/1.4929391

PMID: 26328871

10. Mao AH, Crick SL, Vitalis A, Chicoine CL, Pappu RV. Net charge per residue modulates conformational

ensembles of intrinsically disordered proteins. Proc Natl Acad Sci U S A. 2010; 107: 8183–8188. https://

doi.org/10.1073/pnas.0911107107 PMID: 20404210

11. Zarin T, Strome B, Nguyen Ba AN, Alberti S, Forman-Kay JD, Moses AM. Proteome-wide signatures of

function in highly diverged intrinsically disordered regions. Elife. 2019; 8. https://doi.org/10.7554/eLife.

46883 PMID: 31264965

12. Das RK, Huang Y, Phillips AH, Kriwacki RW, Pappu RV. Cryptic sequence features within the disor-

dered protein p27Kip1 regulate cell cycle signaling. Proc Natl Acad Sci U S A. 2016; 113: 5616–5621.

https://doi.org/10.1073/pnas.1516277113 PMID: 27140628

13. Wang Y, Zhou H, Sun X, Huang Q, Li S, Liu Z, et al. Charge Segregation in the Intrinsically Disordered

Region Governs VRN1 and DNA Liquid-like Phase Separation Robustness. J Mol Biol. 2021; 433:

167269. https://doi.org/10.1016/j.jmb.2021.167269 PMID: 34571015

14. Wootton JC, Federhen S. Statistics of local complexity in amino acid sequences and sequence data-

bases. Comput Chem. 1993; 17: 149–163.

15. Xiang S, Kato M, Wu LC, Lin Y, Ding M, Zhang Y, et al. The LC Domain of hnRNPA2 Adopts Similar

Conformations in Hydrogel Polymers, Liquid-like Droplets, and Nuclei. Cell. 2015; 163: 829–839.

https://doi.org/10.1016/j.cell.2015.10.040 PMID: 26544936

16. Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, et al. Cell-free formation of RNA granules: low complexity

sequence domains form dynamic fibers within hydrogels. Cell. 2012; 149: 753–767. https://doi.org/10.

1016/j.cell.2012.04.017 PMID: 22579281

17. Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P, Mirzaei H, et al. Phosphorylation-regulated binding

of RNA polymerase II to fibrous polymers of low-complexity domains. Cell. 2013; 155: 1049–1060.

https://doi.org/10.1016/j.cell.2013.10.033 PMID: 24267890

18. Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: organizers of cellular biochem-

istry. Nat Rev Mol Cell Biol. 2017. https://doi.org/10.1038/nrm.2017.7 PMID: 28225081

19. Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, et al. Phase transition of a disor-

dered nuage protein generates environmentally responsive membraneless organelles. Mol Cell. 2015;

57: 936–947. https://doi.org/10.1016/j.molcel.2015.01.013 PMID: 25747659

20. Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen CC-H, Eckmann CR, Myong S, et al. The disordered

P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics.

Proc Natl Acad Sci U S A. 2015; 112: 7189–7194. https://doi.org/10.1073/pnas.1504822112 PMID:

26015579

21. Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, et al. Phase separation by low com-

plexity domains promotes stress granule assembly and drives pathological fibrillization. Cell. 2015; 163:

123–133. https://doi.org/10.1016/j.cell.2015.09.015 PMID: 26406374
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55. Zhou S, Pettersson P, Huang J, Sjöholm J, Sjöstrand D, Pomès R, et al. Solution NMR structure of

yeast Rcf1, a protein involved in respiratory supercomplex formation. Proc Natl Acad Sci U S A. 2018;

115: 3048–3053. https://doi.org/10.1073/pnas.1712061115 PMID: 29507228

56. O’Neil PT, Vasquez-Montes V, Swint-Kruse L, Baldwin MR, Ladokhin AS. Spectroscopic evidence of

tetanus toxin translocation domain bilayer-induced refolding and insertion. Biophys J. 2021; 120: 4763–

4776. https://doi.org/10.1016/j.bpj.2021.09.030 PMID: 34555358

57. Lee R van der, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, et al. Classification of

intrinsically disordered regions and proteins. Chem Rev. 2014; 114: 6589–6631. https://doi.org/10.

1021/cr400525m PMID: 24773235

58. Leuenberger P, Ganscha S, Kahraman A, Cappelletti V, Boersema PJ, von Mering C, et al. Cell-wide

analysis of protein thermal unfolding reveals determinants of thermostability. Science. 2017;355.

https://doi.org/10.1126/science.aai7825 PMID: 28232526

59. Cope AL, Gilchrist MA. Quantifying shifts in natural selection on codon usage between protein regions:

a population genetics approach. BMC Genomics. 2022; 23: 408. https://doi.org/10.1186/s12864-022-

08635-0 PMID: 35637464

60. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity.

BMC Bioinformatics. 2004; 5: 113. https://doi.org/10.1186/1471-2105-5-113 PMID: 15318951

PLOS COMPUTATIONAL BIOLOGY Pervasive, conserved secondary structure in highly charged protein regions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011565 October 16, 2023 23 / 23

https://doi.org/10.1038/s41592-022-01488-1
http://www.ncbi.nlm.nih.gov/pubmed/35637307
https://doi.org/10.1016/s0006-3495%2898%2977529-0
http://www.ncbi.nlm.nih.gov/pubmed/9649402
https://doi.org/10.1093/database/baz022
http://www.ncbi.nlm.nih.gov/pubmed/30893420
https://doi.org/10.1002/prot.10150
http://www.ncbi.nlm.nih.gov/pubmed/12012345
https://doi.org/10.1038/s41592-021-01117-3
https://doi.org/10.1038/s41592-021-01117-3
http://www.ncbi.nlm.nih.gov/pubmed/33875885
https://doi.org/10.1016/j.jmb.2007.12.016
http://www.ncbi.nlm.nih.gov/pubmed/18177895
https://doi.org/10.1016/j.sbi.2018.09.008
http://www.ncbi.nlm.nih.gov/pubmed/30340123
https://doi.org/10.1073/pnas.1712061115
http://www.ncbi.nlm.nih.gov/pubmed/29507228
https://doi.org/10.1016/j.bpj.2021.09.030
http://www.ncbi.nlm.nih.gov/pubmed/34555358
https://doi.org/10.1021/cr400525m
https://doi.org/10.1021/cr400525m
http://www.ncbi.nlm.nih.gov/pubmed/24773235
https://doi.org/10.1126/science.aai7825
http://www.ncbi.nlm.nih.gov/pubmed/28232526
https://doi.org/10.1186/s12864-022-08635-0
https://doi.org/10.1186/s12864-022-08635-0
http://www.ncbi.nlm.nih.gov/pubmed/35637464
https://doi.org/10.1186/1471-2105-5-113
http://www.ncbi.nlm.nih.gov/pubmed/15318951
https://doi.org/10.1371/journal.pcbi.1011565

