
1111111111111111 IIIIII IIIII 11111 1111111111 11111 111111111111111 lllll 111111111111111 11111111 
US 20040014044Al 

(19) United States 
(12) Patent Application Publication 

Scott et al. 
(10) Pub. No.: US 2004/0014044 Al 
( 43) Pub. Date: Jan. 22, 2004 

(54) METHOD FOR DETERMINING 
BIOLOGICAL EXPRESSION LEVELS BY 
LINEAR PROGRAMMING 

(75) Inventors: Ridgway Scott, Chicago, IL (US); 
Stephen J. Wright, Madison, WI (US); 
Stuart A. Kurtz, Homewood, IL (US); 
Terry Clark, Chicago, IL (US); Chris 
(Hristem) Dyanov, Chicago, IL (US); 
Richard Quigg, Western Springs, IL 
(US) 

Correspondence Address: 
OBLON, SPIVAK, MCCLELLAND, MAIER & 
NEUSTADT, P.C. 
1940 DUKE STREET 
ALEXANDRIA, VA 22314 (US) 

(73) Assignee: University of Chicago, Chicago, IL(US) 

(21) Appl. No.: 

(22) Filed: 

10/198,141 

Jul. 19, 2002 

Publication Classification 

(51) Int. Cl.7 ............................ C12Q 1/68; G06F 19/00; 
GOlN 33/48; GOlN 33/50 

(52) U.S. Cl. ................................................... 435/6; 702/20 

(57) ABSTRACT 

A method for determining a matrix of expression levels 
corresponding to a set of biological targets ( e.g., genes or 
gene fragments) and a set of biological samples, including 
obtaining a matrix of signal values corresponding to the set 
of biological targets; computing a vector of expression 
levels for a sample in the set of biological samples using the 
matrix of signal values; storing the vector of computed 
expression levels in a storage matrix; repeating the comput­
ing and storing steps for each sample in the set of biological 
samples; and outputting the storage matrix as the matrix of 
expression levels. The method, based on a linear program­
ming formulation of the problem, works for both "promis­
cuous" probe array data, in which there may be multiple 
targets indicated by a single probe, and the "polygamous" 
case, in which there are multiple probes for a single target. 
The preferred method can also process data obtained from 
multiple SAGE analyses using multiple markers. A second 
embodiment of the method determines optimal expression 
levels when the available probe data is noisy or uncertain. 
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METHOD FOR DETERMINING BIOLOGICAL 
EXPRESSION LEVELS BY LINEAR 

PROGRAMMING 

BACKGROUND OF THE INVENTION 

FIELD OF THE INVENTION 

[0001] The present invention relates generally to systems 
and methods for the determination of biological expression 
levels present in a biological sample using data obtained 
from biological expression arrays. 

[0002] The present invention includes the use of various 
technologies described in the references identified in the 
following LIST OF REFERENCES by the author(s) and 
year of publication and cross-referenced throughout the 
specification by reference to the respective number, in 
parentheses, of the reference: 
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[0030] The entire contents of each reference listed in the 
LIST OF REFERENCES, are incorporated herein by refer­
ence. 

DISCUSSION OF THE BACKGROUND 

[0031] Biological expression arrays are introducing a type 
of massively parallel processing in experimental biology and 
medicine [17][20]. Gene expression arrays based on 
cDNA's [18] and on oligonucleotides [21] have reached a 
level in which the technology is well established, with books 
devoted to the subject [14]. Current research includes efforts 
to refine the technology [2]. 

[0032] More recently, protein expression arrays have been 
developed [12][13][22][19], and utilized to identify antibod­
ies [10]. Other examples of biological expression arrays 
include small molecule expression arrays [11] as well as 
other specialized arrays [ 5]. 

[0033] Biological expression arrays are arrays of small 
biochemical experiments, each of which can be different 
from the other. Each "dot" on the array contains a reactant, 
called a probe. The set of all probes can be tested against a 
sample, which presumably contains a set of so-called targets 
which are to be determined, together with their quantity, or 
"expression level." For gene expression arrays, the targets 
are genes or gene fragments ( called expressed sequence tags, 
or ESTs). The "expression levels" could as well be ratios of 
other more basic quantities, such as the ratio of the observed 
value for a perfect match and a mismatch [7][8]. 

[0034] The process of matching probes and targets for 
gene expression arrays is called hybridization. If the hybrid­
ization is perfect complementarity, the product may rather be 
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called a perfect complement rather than a hybrid. But when 
there are some complementarity mismatches, as is the gen­
eral case, it is appropriate to think of the probe and target as 
coming from different genes, so the word hybrid is more 
appropriate. There is a difference between levels or detection 
signals of hybridization values (the input data) and expres­
sion values (the desired answer). In some cases, these are in 
a one-to-one relationship, so both are often called "expres­
sion" values, but in general they are not related in a simple 
way. 

[0035] Arrays based on oligonucleotide probes of various 
lengths have been widely ( often) used. A string of n bases is 
referred to as an n-mer. In the literature, one finds data from 
using 8-mers [23], 25-mers [21], 50-mers [6], and even 
longer oligonucleotides probes are currently in use as dis­
cussed on web sites. DNA-arrays based on probes consisting 
of significantly longer sequences (a few hundred bases) 
when synthesized via template-dependent enzymatic reac­
tions are often called cDNA arrays [18]. A positive hybrid­
ization signal from the array is assumed to mean a comple­
mentary match (or near match) of sequences between the 
targets and the probes. 

[0036] One successful approach to gene expression deter­
mination is that adopted by Affymetrix, Inc. (Santa Clara, 
Calif.) [21]. In their technique, oligonucleotides from sev­
eral parts (loci) of a known gene are used to define array 
probes. This redundancy insures a high degree of certainty 
in identifying the expression of that gene, allowing precise 
discriminative detection between perfect matching and mis­
matching of probes to hybrids. (One presumes that care is 
also taken to be sure that the resulting oligonucleotides are 
unique and do not also appear in other relevant, either 
known or unknown genes or ESTs, which, in general, is 
impossible to be absolutely certain about.) For each perfect­
match probe, a "mis-match-probe" is used which differs 
from the perfect-match probe by one single base, typically 
chosen in the middle of the oligonucleotide. Thus there 
should be an expected relation [3][16] between the expres­
sion level for a perfect-match complementary probe and its 
corresponding mis-match-probe. If these conditions are met 
for most, or many, of the probes for a given gene, it is highly 
likely that gene has been expressed. 

[0037] A drawback to this approach is that multiple probes 
are required to determine a given gene. This approach is 
considered "polygamous" in that there are multiple probes 
presented on the array for a single target detection. When the 
expected relationship between the hybridization levels 
detected for a probe and its corresponding mis-match-probe 
are not met, the data for these probes is regarded as noise. 
There are many potential causes of such "noise" in expres­
sion data. For example, if some genetic contaminant is 
present that complementary matches exactly the mis-match­
probe, the corresponding expression level for the "probe" 
(i.e., the perfect-match probe) would be of a "mis-match" 
level, inverting the signal ratio. 

[0038] It would be advantageous to allow for more com­
plex scenarios in which all of the discrete probe data is used 
for expression determination, rather than segregating them 
into groups and thus limiting the data from a group of 
discrete values to single-valued indications for a particular 
gene. This approach would also reduce the need for the 
probes to be "unique" markers for particular genes. 
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[0039] It could be possible to interrogate more genes even 
than the number of available probes, although this would not 
be possible if all genes were present in a given experiment. 
This would be done by having a particular probe to indicate 
the presence of multiple targets, albeit ambiguously. The 
new approach is "promiscuous" in that a single probe can 
indicate presence of multiple targets. In the promiscuous 
approach, all hybridization data becomes valuable signal. 
Complex hybridization scenarios (e.g., multiple-base mis­
matches) can (potentially) be included productively in the 
array hybridization data (signal) analysis. 

[0040] Serial Analysis of Gene Expression, or SAGE™, is 
a technique designed to take advantage of high-throughput 
sequencing technology to obtain a quantitative profile of 
cellular gene expression [24][27][25][4]. A more detailed 
description of SAGE is given in U.S. Pat. No. 5,695,937, the 
entire contents of which are incorporated herein by refer­
ence. SAGE allows for the simultaneous quantitative analy­
sis of a large number of mRNA transcripts. The SAGE 
method has two steps. First, short sequence tags (10-14 bp) 
are generated from the mRNA. Each tag should contain 
sufficient information to identify a unique transcript, pro­
vided that the tag is derived from a defined location within 
that transcript. Second, transcript tags are concatenated into 
a single molecule and then sequenced, revealing the identity 
of multiple tags simultaneously. The expression pattern of 
any population of transcripts can be quantitatively evaluated 
by determining the abundance of individual tags and iden­
tifying the gene corresponding to such a tag. The data 
produced by the SAGE method is a list of tags, with their 
corresponding count values, and can be portrayed as a digital 
representation of cellular gene expression. 

SUMMARY OF THE INVENTION 

[0041] Accordingly, it is an object of the present invention 
to provide a method and computer program product for 
determining biological expression levels from complex, 
"promiscuous" array hybridization data that also works well 
in the "polygamous" case. 

[0042] Another object of the present invention is to pro­
vide a method and computer program product for determin­
ing biological expression levels from data derived from 
SAGE analysis. 

[0043] Another object of the present invention is to pro­
vide a method and computer program product for determin­
ing biological expression levels from uncertain or noisy 
probe array hybridization data. 

[0044] The above and other objects are achieved accord­
ing to the present invention by providing a method for 
determining a matrix of expression levels corresponding to 
a set of biological targets and a set of biological samples, 
including obtaining a matrix of signal values P correspond­
ing to the set of biological targets; computing a vector of 
expression levels for a sample in the set of biological 
samples using the matrix of signal values P; storing the 
vector of expression levels computed in the computing step 
in a storage matrix; repeating the computing and storing 
steps for each sample in the set of biological samples; and 
outputting the storage matrix as the matrix of expression 
levels. 

[0045] According to this method, the computing step 
includes obtaining a vector of signal values A corresponding 
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to the sample; determining a nonnegative vector E, a non­
negative vector s, and a nonnegative vector t that minimize 
a total sum of all elements of s and t, and satisfy a constraint 
PE+s-t=A; and setting the vector of expression levels to be 
the nonnegative vector E determined in the determining 
step. 

[0046] In addition, further steps are provided for comput­
ing the vector of expression levels when the signal data is 
uncertain or noisy, including obtaining a vector of lower 
signal values L and a vector of higher signal values H 
corresponding to the sample, each element of L being less 
than or equal to a respective element of II; determining a 
nonnegative vector E, a nonnegative vector s, and a nonne­
gative vector t, that minimize a total sum of all elements of 
s and t, and satisfy constraints s~L-PE and t~PE-H; and 
setting the vector of expression levels to be the nonnegative 
vector E determined in the determining step. 

[0047] An important aspect of the present invention is the 
formulation of the biological expression determination prob­
lem as a problem that can be solved using linear program­
ming techniques. 

[0048] Further, methods are provided for expression iden­
tification. In this problem, a particular target g gives rise to 
a certain array of signal values P(g). Suppose a set U denotes 
a "universe" of targets. In any expression array experiment, 
some set of targets S, which is a subset of U, will be active, 
and are to be identified. 

[0049] To that end, according to an aspect of the present 
invention, there is provided a method for identifying a set of 
biological targets S=S(A) consistent with a vector of non­
negative signal values A, wherein the array P(g) is compared 
to the vector A, for each target g in the set of universal 
targets U. 

[0050] According to another aspect of the present inven­
tion, there is further provided a method for computing a 
multiplicity vector D(A) that corresponds to the vector of 
nonnegative signal values A Each element of D(A) indi­
cates the number of targets with a nonnegative signal value 
in the corresponding position in P(g). This method makes 
use of the set S(A) to compute the multiplicity vector D(A). 

[0051] According to another aspect of the present inven­
tion, there is further provided a method for identifying the 
subset of ambiguous targets li.S(A) that may be expressed in 
a vector of nonnegative signal values A, but cannot be 
identified with certainty. This method makes use of both the 
set S(A) and the multiplicity vector D(A). 

[0052] According to another aspect of the present inven­
tion, there is further provided a method for identifying the 
set of uniquely expressed biological targets S(A)\li.S(A) 
represented by a vector of nonnegative signal values A. This 
set consists of those targets in S(A) that are not in the set 
li.S(A). 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0053] A more complete appreciation of the invention and 
many of the attendant advantages thereof will be readily 
obtained as the same becomes better understood by refer­
ence to the following detailed description when considered 
in connection with the accompanying drawings, wherein: 
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[0054] FIG. 1 is a flowchart showing the steps of deter­
mining a matrix of biological expression levels correspond­
ing to a set of biological targets and a set of biological 
samples according to a first embodiment of the present 
invention; 

[0055] FIG. 2 is a flowchart showing the steps of deter­
mining a vector of expression levels for a biological sample 
according to the first embodiment of the present invention; 
and 

[0056] FIG. 3 is a flowchart showing the steps of deter­
mining a vector of expression levels for a biological sample 
according to a second embodiment of the present invention. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

[0057] Biological arrays have as their digital output an 
array A=(A1) of hybridization values. Even though these 
often appear in a two dimensional array, it is assumed they 
are numbered by a single index 1. A typical size array today 
has from a few thousand to as many as three-hundred 
thousand cells, and this could be expected to grow in the 
future, up to a million cells [9]. 

[0058] In a simplified model, these values are either zero 
or one ( expressed or non-expressed: this might be achieved 
by thresholding real hybridization values). If such a deter­
mination could be made unambiguously, it would provide 
useful answers to biological questions. At the moment, even 
this is not a simple matter from a practical point of view. 
What is the mathematical structure of such a problem? In 
such a simplified system, particular targets g would cause a 
certain hybridization array P(g) to occur. P(g) is an array of 
hybridization levels, but again we can think initially of these 
as being either zero or one. This simplification of hybrid­
ization levels is sufficient to define the identification prob­
lem. 

[0059] To begin with, assume that there is a set U of 
targets that denotes a "universe" of targets. The true "uni­
verse" may not be completely known at the moment, e.g., for 
gene expression arrays, since not all genes have been 
identified. But it is important to have this set as an under­
lying concept. In any expression-array experiment, some set 
S of targets that is a subset of U will be active, and it is this 
set that we want to identify. If, for some reason, it is known 
that the size of U can be restricted in a given experiment, 
then that can be done. The data from the experiment will be 
a particular hybridization array A of values of zero or one for 
each given probe. The identification problem can then be 
described as follows: 

[0060] Determine the set Sc U of targets defined by 

S-S(A)-{gEU:P(g);eA} (1) 

[0061] where for two arrays A and B we say B ~A if A1 is 
one whenever B1, is one (equivalently B1~A1 for all l). 

[0062] For the human genome, the size of U is expected to 
be about one-hundred thousand (105

). It is harder to predict 
the expected size of a typical S, but an estimate of 103 to 104 

might be reasonable. 

[0063] A solution S(A) to (1) can be computed by the 
following algorithm. 
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[0064] Algorithm 1 Loop over all gEU and test whether or 
not P(g)~A. If it is, include gin S(A). 

[0065] Each test P(g) ~A requires a number of operations 
proportional to the number of non-zeros in P(g). Thus we 
have the following result. 

[0066] Theorem 1 Algorithm 1 finds a solution to equation 
(1) in an amount of time that is linearly proportional to the 
size of the universe of targets U, and the constant of 
proportionality depends only on the average number of 
non-zeroes in any P(g). 

[0067] The notion of P(g) can be generalized to apply to 
a set: P(S)1=1 if P(g)1=1 for some gES, and P(S)1=0 if 
P(g)1=0 for all gES. Note that for any array A and any set 
ScU, we have P(S)~Aif and only if P(g)~Afor all gES. 
In general, if RcS then P(R)~P(S). 

[0068] Algorithm 1 always constructs S(A) so that 
P(S(A))~A. One difficulty that can arise is that P(S(A)),A 
If this occurs, either there was an error in the experiment, or 
there was a target that was not represented in U. However, 
the following theorem says that the set S(A) constructed in 
Algorithm 1 is the largest solution to the identification 
problem. 

[0069] Theorem 2. Suppose there is a set R c U such that 
P(R)~A. Then RcS(A). 

[0070] Proof: Suppose that gER. Since P(R)~A, we have 
P(g)~A. Hence by definition gES(A). 

[0071] Another problem can arise due to a kind of non­
uniqueness. It may be that there are smaller sets R c S such 
that P(R)=P(S). Any targets in the difference S\R are pos­
sibly being expressed, but they cannot be identified for sure. 
However, it is possible to quantify the amount of non­
uniqueness, as follows. 

[0072] In constructing S(A), it is possible to keep track of 
the multiplicity of each array point 1, by which we mean the 
number of times this point had a non-zero value in P(g) for 
some gES(A). This defines an array D(A) of such values, as 
follows: 

D(A)1-cardinality {gES(A):P(g)1-1 }. (2) 

[0073] Given an array D(A) of degree values for S(A) 
define D(At to be the array obtained from D(A) by decre­
menting each positive array value. Thus the non-zero array 
values in D(At correspond to array values in D(A) that 
were two or more, that is, ones that are multiply expressed. 
Now define 

L\.S(A)-{gES(A):P(g);eD(At}. (3) 

[0074] Lemma 1 For any gES(A)\aS(A) there is at least 
one array index lg such that P(g)1g =1 and for all other 
g'ES(A) (with g>'g') we have P(g\=0. 

[0075] Proof: For a given gES(A), let 11, ... , lk enumerate 
all of the array indices such that P(g)1;=1; k~l by the 
definition of S(A). In particular, this means that D(A)1; ~ 1 for 
i=l, ... , k. If the degree of li is more than one for all i (i.e., 
D(A\~2 for i=l, ... , k), then gE~S(A), If gES(A)\~S(A), 
then for one of the i's, it must be true that D(A)1 =1, and this 
means that for no other g'ES(A) can P(g'\=1. ' 

[0076] Theorem 3 For any array A and for any set R c U 
such that P(R)=P(S(A)), then S(A)\~S(A) c R. 
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[0077] Proof: To begin with, Theorem 2 implies that it can 
be assumed that R c S(A). By Lemma 1, if gES(A)\llS(A) 
then there is an index lg such that P(g)1 =1 and P(g')1 =0 for 
all g'ES(A) with g>'g', and a fortiori fcir all g>'g'ER.' 

[0078] If gEtR, then P(g')1 =0 for all g'ER. This would 
imply that P(R)1 =0~ By Theorem 2, 
P(S(A)\llS(A))~P(S(A). g Since P(g)1 =1 implies 
P(S(A)\llS(A))1 =1, it must be true that P(R)i =P(S(A))1 =1 
by assumption. gSince this would be a contradfction, it niust 
be true that gER. 

[0079] Corollary 1 S(A) is the largest possible set of 
expressed targets consistent with a hybridization array A 
S(A)\llS(A) is the largest set of uniquely expressed targets 
represented by A llS(A) contains all the ambiguous targets 
which may be expressed, but cannot be identified with 
certainty. If llS(A) is empty, the solution is unique. 

[0080] Having a set llS(A) of ambiguous targets does not 
mean that expression levels cannot be determined correctly. 
It may be possible to distinguish them due to the fact that the 
numerical value of the expression levels is different for 
different targets. An algorithm for determining these is 
considered below. 

[0081] The computation of the array D(A) and the set S(A) 
can be accomplished simultaneously by the following modi­
fication of Algorithm 1. Assume the initial construction of a 
database of indices lg1, ... , lgk of all indices such that 
P(g)1g=l for all gEU. Note that this can be done computa­
tiona'lly based on knowledge of the complementary matches 
between targets and probes and does not require experimen­
tal determination. 

[0082] Algorithm 2 Set all array values of D(A) to zero. 
Loop over all gEU. For all i such that P(g)1 =1, test whether 
or not A1;=1. If it is, include gin S(A) and i~crement D(A)1;-

[0083] Once the computation of the array D(A) and the set 
S(A) is completed, the set llS(A) can be computed by the 
following algorithm. 

[0084] Algorithm 3 Loop over all gES(A). For all i such 
that P(g)1 =1, test whether or not D1 ~2. If all of them are, 
include g' in llS(A). ' 

[0085] Theorem 4 Algorithm 2 computes the array D(A) 
defined in (2) in an amount of time that is linearly propor­
tional to the size of the universe of targets U. Algorithm 3 
computes llS(A) in an amount of time that is linearly 
proportional to the size of S(A). The constants of propor­
tionality depend only on the average number of non-zeroes 
in any P(g). 

[0086] Simple examples now presented will show how the 
algorithms presented above work in practice. If there is only 
one gEU such that P(g)1 is non-zero for a given array index 
1, then A1>'0 implies that gES(A)\llS(A). Since g is unique, 
it can be referred to as gi. If this holds for all Q, then 
llS(A)=cp for any hybridization array A, and the expression 
determination is always unique. Note that the number of 
such that g=gi for a fixed g can be greater than one, which 
is the polygamous case. 

[0087] The next most complicated case would be when 
each hybridization index 1 has at most two targets g such 
that P(g)1 is nonzero. For simplicity, also assume that the 
hybridization array P(g) has exactly two non-zero entries per 
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g. In this case, there is a canonical way to number the targets 
and the hybridization indices that simplifies the expression 
presentation and analysis, which is described below. 

[0088] Select one g and call it g1 and correspondingly 
number one of the array locations by "1" so that P(g1 ) 1 is 
nonzero. Let array index number 2 be the other 1 such that 
P(g1) 1 is nonzero. Thus P(g1) 1 is nonzero precisely for i=l, 2. 
Suppose there is another g such that P(g)2 is non-zero. Call 
that target number 2. Thus by definition P(g2) 2 is now 
nonzero. If there is another 1 such that P(g2) 1 is non-zero, let 
this be called the 3-rd array index. Continuing in this way, 
the result is a sequence of targets such that P(g)i is non-zero 
precisely for i=j, j+l. 

[0089] Of course the process could terminate in one of two 
ways. First of all, there may be no other g such that P(g); is 
non-zero, so target i-1 is uniquely identified by the i-th 
hybridization signal value. In this case, the first i-1 targets 
can be determined from the first i hybridization signal 
values. Then numbering can start over with the remaining 
targets and hybridization signal values following the same 
algorithm. 

[0090] In the second case, the second hybridization index 
1 with non-zero P(gi_1 ) 1 may be previously numbered, in 
which case there is a cycle back into the current group. By 
construction, each hybridization index i> 1 already has two 
targets g (precisely gi and gi_1) with non-zero hybridization 
signal values. Since the assumption is that there are at most 
two targets g such that P(g)1 is non-zero, when a non-zero 
P(gJ1 is found which is previously numbered, it must be 
1=1. Again, the algorithm can be started over with a new g 
to form a new group. By the assumption on the bound of at 
most two targets per hybridization signal value, these groups 
will all be disjoint. This means that the matrix Pii=P(g)i is 
a lower bi-diagonal matrix, except for an occasional "loop 
back" entry. 

[0091] Note that array values and targets are numbered 
using the same numerical values such that Pii is non-zero for 
just j=i, i+ 1 in the generic case. For simplicity, consider 
hybridization array data A that is zero at the beginning and 
end of each group as defined above. Then it is easy to 
identify which parts of U are in S(A) and llS(A). The 
hybridization array A is made up of a number of connected 
intervals [i, i+k] in which the hybridization values are 
non-zero, with zero values in between. The interval bound­
aries identify the targets in the set S(A)\llS(A), since they 
can be determined uniquely. However, the targets corre­
sponding to interval interiors must be in llS(A). Thus, 
whenever there is an interval of three or more consecutive 
non zero hybridization values, there will be non-determin­
ism in the expression pattern. As discussed below, (non­
binary) hybridization signal levels can disabmiguate these 
expression patterns 

[0092] Consider the situation in which the individual 
expression levels are not just binary values. Suppose that a 
probe array has a digital output presented as an array A=(A1) 

of hybridization signal values, which are non-negative num­
bers. Similarly, particular targets g will cause a certain 
hybridization array P(g) to occur. P(g) is an array of hybrid­
ization levels indexed by 1, each entry P(g)1 a non-negative 
number. It would be a reasonable assumption that the 
non-zero values P(g)1 might have the same magnitude for all 
1. However, this appears not to be the case in some situations 
[7][8]. 
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[0093] In particular, it is quite reasonable to assume that 
P(g) will have nonzero values corresponding to hybridiza­
tions with base-pair mismatches. Hybridization kinetics for 
oligos is well understood in solution [3][16], but the details 
of hybridization at surfaces remains a problem of interest. 
The approach presented here allows expression determina­
tion even in the case when complex hybridization occurs. 

[0094] The expression determination problem can then be 
described as follows: 

[0095] Determine a set { eg~0:gEU} of target expression 
values defined by 

I egP(g)1 = A,V l. 
gcU 

(4) 

[0096] Using vector and matrix notation, this can be 
simplified. Define P to be the matrix indexed by array 
indices 1 and by gEU with value P(g)1. That is 

(5) 

[0097] Define E to be a vector with components eg indexed 
by gEU. Then the expression determination problem is as 
follows: 

[0098] Find a vector E of gene expression values defined 
by "solving" 

(6) 

[0099] where E~0 means that eg~0 for all gEU. 

[0100] Unfortunately, there need be no "solution" to (6) 
for arbitrary arrays A~0 due to the positivity constraint, 
E~0. The domain space ( e.g., the set of possible E's) of the 
matrix Pis the size n of the set U, and the range or image 
set (e.g., the set of possible A's) is of size k of the array. In 
the polygamous approach discussed earlier, k>>n, meaning 
that the system PE=A is an over-determined system. A 
necessary condition for solutions to PE=A to exist is that A 
be in the range of P, and this corresponds to k-n constraints 
which must be satisfied. 

[0101] There is a simple restriction on the matrix P that 
will occur later, but described now for clarity. If a column of 
Pis identically zero, say the column indexed by a particular 
gEU, then this would mean that P(g)1=0 for all 1, which in 
turn means that there is no probe that identifies g. Clearly 
this means that predictions about expression levels of g can 
not be made. In some sense, this would mean that g is not 
in the "universe" of targets that can be probed. Thus, a 
natural condition to impose on P (or more precisely, on the 
"universe" U) is that no column of P is identically zero. 

[0102] In the promiscuous approach discussed earlier, it is 
reasonable to assume that n>>k. This means that the system 
PE-A is an under-determined system. A sufficient condition 
for solutions to PE=A to exist is that P has full rank. The set 
of solutions to PE=A is either empty or else an affine set of 
high dimension (dimension n-k in the case of P full rank, 
even higher when Pis rank deficient). It is possible that none 
of the elements of this set satisfy the constraint E~0. The 
following algorithm does not assume that P has full rank; 
solutions in this case exist only for data satisfying con­
straints similar to those in the over-determined case. 
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[0103] A preferred method of the present invention is 
based on linear programming (LP) to determine whether the 
feasibility problem ( 6) has a solution, and to find such a 
solution if one exists. The initial linear programming for­
mulation introduces vectors s and t, each containing k 
artificial variables indexed by 1. The formulation 1s as 
follows: 

minE,s,~1S1+t1 subject to 

(E,s,t)~O, PE+s-t=A. 

(7) 

(8) 

[0104] Note several points about this LP. First, given any 
guess E satisfying E~2 0, a feasible starting point can be 
constructed by setting 

(9) 

[0105] Second, the objective value is bounded below by 0, 
because of the constraints that all components of s and t 
remain nonnegative. Thus the LP is feasible and bounded, 
and so it has a solution. Third, note that any solution E of the 
original system ( 6) can be transformed into a solution of 
(7-8) by setting s=t=0. Using this fact, a certificate of 
feasibility for ( 6) can be obtained by solving (7-8); if the 
solution of (7-8) results in a strictly positive optimal value, 
then there exists no solution to ( 6). On the other hand, if the 
solution of (7-8) yields an objective value of zero, a solution 
to (6) is obtained by simply taking the E component of the 
solution to the LP. Finally, note that no assumptions on P ( or 
k or n) are needed. These facts are collected in the following 
result. 

[0106] Theorem 5 For any P and A, the minimization 
problem (7-8) always has a solution and can be started at the 
feasible point given by (9) for any E. The minimum value in 
(7) is zero if and only if the E component of the minimizer 
is a solution of ( 6). 

[0107] One can show that there exists a solution of (7-8) 
that has at most k nonzeros in the solution vector (E, s, t), 
and that the simplex method will find such a solution. 

[0108] If in fact ( 6) is infeasible, the solution of (7-8) 
yields a nonnegative vector E for which the inconsistency in 
the equations PE=A is minimized in the 1-norm. 

[0109] A reasonable choice for initial E is the array E(A) 
defined by E(A)g=l (or a predetermined positive value) if 
gES(A)\llS(A) (see Theorem 7). 

[0110] FIG. 1 lists the steps in the preferred method for 
determining a matrix of expression levels corresponding to 
a set of biological targets and a set of biological sample. 

[0111] In step 101, a matrix of hybridization values P 
corresponding to the set of biological targets is obtained. 

[0112] Next, in step 102, a vector of expression levels for 
a sample in the set of biological samples using the matrix of 
hybridization values P is computed. 

[0113] In step 103, the vector of expression levels com­
puted in the computing step is stored in a storage matrix. 

[0114] In step 104, if expression levels have been com­
puted for all of the samples in the set of biological samples, 
the method proceeds to step 105. Otherwise, steps 102 and 
103 are repeated. 

[0115] Finally, in step 105, the storage matrix is outputted 
as the matrix of expression levels. 
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[0116] FIG. 2 lists the steps in the preferred method for 
computing the vector of expression levels for a sample in the 
set of biological samples using the matrix of hybridization 
values P. 

[0117] In step 201, a vector of hybridization values A 
corresponding to the sample is obtained. 

[0118] Next, in step 202, a nonnegative vector E, a non­
negative vector s, and a nonnegative vector t that minimize 
a total sum of all elements of s and t, and satisfy a constraint 
PE+s-t=A are determined. A linear programming algorithm, 
such as the simplex method, can be used at this step. 

[0119] Finally, in step 203, the vector of expression levels 
is set to be the nonnegative vector E determined in step 202. 

[0120] It is often the case that probes are duplicated on a 
single biological expression array as a way of detecting 
hybridization errors. In principle, all duplicate probes should 
have the same hybridization signal levels, but in practice 
they do not. Different protocols can be observed to deal with 
the multiple data. One approach would be to average the 
values, and another would be to "vote" on the best value. 
Either of these, or some other method, could be used to 
define a single hybridization signal value for each probe, and 
the previous algorithms can be used. 

[0121] Consider a more general formulation of the prob­
lem of determining expression levels, which is applicable 
when the correct values of some of the components of A1 is 
uncertain. Suppose that instead of a precise value A1, there 
is an interval [L1, H1] that contains the value. In other words, 
accept E as a valid vector of expression levels if 

L,:;; I egP(g)1 :;; H1. 

gcU 

[0122] (If the precise value is known, simply set both L1 

and H1 equal to A1.) The formulation analogous to (7-8) is 
then 

minE,s,1L1s1+t1 subject to 

(E, s, t)"';0, s'°';L-PE, t"';PE-H. 

(10) 

(11) 

[0123] This formulation would m general be no more 
difficult to solve than (7-8). 

[0124] FIG. 3 lists the steps in a method for computing the 
vector of expression levels for a sample in the set of 
biological samples using the matrix of hybridization values 
P, according to a second embodiment of the present inven­
tion. 

[0125] In step 301, a vector of lower hybridization values 
L and a vector of higher hybridization values H is obtained 
by testing the biological sample with an array of reactive 
probes, each element of L being less than or equal to a 
respective element of H. 

[0126] In step 302, a nonnegative vector E, a nonnegative 
vector s, and a nonnegative vector t, that minimize a total 
sum of all elements of s and t, and satisfy constraints 
s~L-PE and t~PE-H are determined. A linear program­
ming algorithm, such as the simplex method, can be used at 
this step. 
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[0127] Finally, in step 303, the vector of expression levels 
is set to be the nonnegative vector E determined in step 302. 

[0128] Returning to the formulation (7), consider the case 
in which the set ( 6) is nonempty. As mentioned above, the 
E component of any solution of (7-8) that has s=t=0 is a 
member of this set. In general, the set of vectors E satisfying 
(6) will be a (possibly unbounded) polytope. It may, how­
ever, be of interest to obtain some particular solution from 
the optimal set, or to learn something about the properties of 
this set. 

[0129] To begin with, observe that in this case, the set of 
vectors E satisfying (6) will be a bounded polytope. 

[0130] Theorem 6 Suppose that the matrix P has non­
negative entries and that none of its columns are identically 
zero. Then the set (6) is bounded. 

[0131] Proof. The set (6) is unbounded if and only if there 
is a vector F =[ fg]gEu such that 

F"';0, PF=0, F;,,0. (12) 

[0132] Suppose some component fg of F is strictly posi­
tive. By the assumptions, there is an index 1 such that P(g)1 

is strictly positive. The 1-th component of PF is at least 
P(g)ifg, which is strictly positive, contradicting PF=0. Hence 
no such component fg exists, and F=0. Thus, no solution to 
(12) exists, and hence the set ( 6) is bounded. 

[0133] It may be useful to find the solution of minimum­
norm in case there exist multiple solutions. One can mini­
mize the 1-norm by solving the following LP: 

min I eg subject to E ;a, 0, PE= A, 
gcU 

(13) 

[0134] using the E component of the solution obtained 
from (7-8) as a feasible starting point for (13). Using a 
Euclidean norm criterion, one can solve 

1 
min2 I e g subject to E ;a, 0, PE= A. 

gcU 

(14) 

[0135] This is a convex quadratic program [1] rather than 
a linear program, but it can still be solved with interior-point 
software (see Chapter 8, "Primal-dual interior-point meth­
ods" in Numerical Optimization by Nocedal and Wright 
[15]). Variants of (13) and (14) that use weighted norms or 
the ex-norm can be formulated easily. 

[0136] One could also seek extreme points of the set ( 6) by 
solving linear programs with random linear objectives. For 
instance the problem 

minixgeg subject to E;a: 0, PE= A, 
gcU 

(15) 

[0137] where each xg is a random variable ( drawn from 
some distribution that allows both positive and negative 
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values) will yield a vertex of the optimal polytope. By 
solving a sequence of problems of the form (15), for 
different choices of x, one can construct a subset of the 
optimal polytope by taking the convex hull of the solutions 
obtained in this process. By inspecting this subset, one may 
for instance be able to restrict the ambiguity produced by the 
data to certain subspaces. Noting that certain components eg 
of the solution are identical ( or nearly identical) regardless 
of the choice of x, one might conclude that these compo­
nents are well determined by the data. 

[0138] There is an intriguing connection between the 
discrete model (the identification problem) and the continu­
ous (expression-level determination) problem. The sets S 
and li.S allow us to determine the active set for the minimi­
zation problem of equations (7-8). But first consider modi­
fied definitions suitable for the more general expression 
values being considered here. 

[0139] Generalizing the definition in equation (1), define 

S=S(A)={gEU:P(g)1>0-A1>0ifl }. (16) 

[0140] The solution S(A) to (16) can still be computed by 
a simple modification to Algorithm 1. Similarly, equation (2) 
can be replaced by the more general definition 

(17) 

[0141] while keeping the definition (3) of li.S(A). These 
can be computed by simple modifications of Algorithms 2 
and 3. With these new definitions, one obtains the following 
modification of Lemma 1. 

[0142] Lemma 2 For any gES(A)\li.S(A) there is at least 
one array index lg such that P(g)1 >0 and for all other 
g'ES(A) (with g>'g'), P(g')1 >0. g 

g 

[0143] Using this Lemma, one can now prove the follow­
ing result which characterizes the active set for a minimi­
zation problem for solving (6). Note that the solution (E, s, 
t) to (7-8) satisfies PE=A=A-s+t. 

[0144] Theorem 7 Suppose there exists an expression level 
vector E such that 

PE=A, E"';0. 

[0145] Then 

S(A)\L\.S(A) c {gEU\eg>0} cS(A). 

(18) 

(19) 

[0146] Proof. Consider first the right inclusion in (19). 
Suppose for contradiction that ef>0 for some fEU\S(A). 
Then by definition of S(A) there exists an index k such that 

P(f)k>0 and Ak=0. 

[0147] From (18), it follows that 

0 =A,= I P(h),eh ;a: P(f),e1 > 0, 
hcU 

[0148] giving the desired contradiction. 

[0149] To prove the left inclusion in (19), take an arbitrary 
gES(A)\li.S(A) and try to show that eg>0. By Lemma 2, 
there is an index 1 such that 

P(g)1>0, while P(h)1=0 for all hES(A)\{g}. (20) 
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[0150] In particular, since gES(A), it follows from (16) 
that 

(21) 

[0151] In addition, it is true that eh=0 for all hEU\S(A), by 
the argument above. By (18) and (20), it follows that for this 
index 1 

0 < A, = I P(h),,h 
hcU 

= P(g),, + °\' P(h),, + °\' P(h),, 
g L.,. h L.,. h 

hES(A)\{g) hEU\5(A) 

[0152] Therefore eg>0 as required, proving the result. 

[0153] This result says that, if there is a solution to ( 6), 
then any algorithm for finding it may be restricted by 
assuming that eg=0 for gEtS(A). That is, compute S(A) first, 
and then start looking for a solution E "supported" in S(A). 
Moreover, one can be sure that all eg are positive for 
gES(A)\li.S(A). For example, restrict the minimization prob­
lem in equations (7-8) to EES(A) only. 

[0154] One question of interest is what the linear program­
ming model does when there is a hybridization array that 
relates to a target expression pattern for a target not in the 
universe U. Suppose that there is some gEt U with hybrid­
ization pattern B=P(g). If there is an hybridization pattern 
A

0

=PE0 perturbed by adding B to get an hybridization 
pattern A=A0 +B, then the linear programming model (7-8) 
will produce an answer (E, s, t) with 

PE+s-t=A=A 0+B=PE0 +B. (22) 

[0155] Thus the error E-E0 satisfies the error equation 

P(E-E0 )=B-s+t. (23) 

[0156] Similarly, it is useful to know what the linear 
programming model will produce if there is a perturbation, 
e.g., due to noise. But the formulation reduces to the same 
considerations in which B is interpreted as a perturbation 
due to noise. 

[0157] The algorithm of equations (7-8) is a minimization 
problem, and the vector (E0

, s0
, t0

) is a feasible approximant, 
where s0 -t0 =B, that is 

[0158] Note that 

PE0 +s0 -t0 =A O +s0 -t0 =A O +B=A. 

[0159] By the optimality condition of (7-8) 

ll(s,t)ll11 ;ell(s0
, t°)ll11=l~ll11-

(24) 

(25) 

(26) 

[0160] Thus the role of s and t can be interpreted as 
making the hybridization A=A0 +B-s+t satisfy the implicit 
constraint needed so that the system (6) has a solution E~0 
with right hand side A One bound on the size of s and t is 
thats and t need be no bigger than required simply to cancel 
B completely, but s and t can be smaller as well. Thus s and 
t provide a lower bound for the size of the (unknown) 
perturbation B. 
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[0161] In the case that the matrix P is invertible, this 
means that whatever the perturbation B there will be a 
unique expression E attributed to it. The only indicator of 
error is the size of s and t. 

[0162] The lower bound (26) means that the size of ll(s, 
t)ll11 is a conservative estimation of the size of the hybrid­
ization error. Thus it may underestimate the error, but it will 
never overestimate it. Otherwise said, if it is large, then there 
is definitely a large discrepancy in the data, and it should not 
be trusted. 

[0163] Recall that the error E-E0 satisfies the error equa­
tion (23), namely, P(E-E0 )=B-s+t. But then (26) implies 
that 

(27) 

[0164] In the case that Pis invertible, this allows us to give 
a bound on the expression error E-E0

• 

[0165] Previously, two examples of possible expression 
array matrices were presented. In the first example there is 
only one gEU such that P(g)1 is non-zero for a given array 
index 1, which is referred to as g1. One can number the targets 
and probes in such a way that the expression matrix Pii=PG)i 
has a simple form. Let the first target index j=l correspond 
to some gEU for which P(g)1 is non-zero for some 1. There 
is some number 11 ~ 1 of array indices 1 such that P(g)1 is 
non-zero. Number these array indices 1, ... , 11 . Now pick 
another gEU for which P(g)1 is non-zero for 12 ~1 array 
indices 1, and call this target j-2 and number these array 
indices 11 + 1, ... , 11 +12 . Continuing in this fashion, one 
constructs a matrix P with only one non-zero per row, such 
that the j-th column consists of 11 +12 + . . . Ii_1 zeros, 
followed by Ii non-zeros, and then followed by all zeros. For 
simplicity, assume that all the non-zeros are ones. 

[0166] As shown above, expression determination is 
always unique in this case. However, it is interesting to 
consider how the algorithm (7-8) deals with this case, 
especially in the presence of noisy data. The role of the extra 
variables s and t in this case is to make sure that the 
hybridization array A-s+t is in the range of the matrix P. The 
range of P is easy to describe. It consists of vectors A such 
that the entries Ii+ 1, ... , Ii+l all have the same value, for 
each j (for completeness, define l

0
=0). For any A not 

satisfying this constraint, algorithm (7-8) will adjust the 
variables s and t to make the vector A-s+t satisfy this 
property. 

[0167] It suffices to see what happens with a single block 
j, so consider the case when Pis a k=l1 by 1 matrix (one 
expression value only, with k hybridization array values). 
For simplicity, assume that the first k-1 hybridization values 
of A are a<0 and the k-th value is ~ ~a. This would 
correspond to a simple error in one of the hybridization array 
values. Then it is easy to see that the optimal vectors s and 
twill have the following form. The first k-1 values of swill 
be some value a and the k-th value will be zero. The first k-1 
values oft will be zero, and the k-th value will be some value 
-i:. To have A-s+t be in the range of P, it must be true that 
a-a=~+-i:. Thus 

L,(s,+t,)-a(k-1)+i:-a(k-2)+a-j3. (28) 

[0168] If k>2, this is minimized by taking a=0 (and so 
"t=a-~) which corresponds to the expression value obtained 
by the "voting" algorithm: the consensus k-1> 1 values a are 
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confirmed. In the case k=2 (when there is a tie), the resulting 
solution adjusts the array so that A-s+t corresponds to the 
average (a+~)/2. Thus the optimization algorithm (7-8) does 
a very reasonable thing in this case. 

[0169] When the data is more complex, the effect of the 
optimization algorithm (7-8) is more complicated to 
describe. The resulting "consensus value" will be one of the 
array values, the one that minimizes the L1 norm of the 
deviation from the other values. FIG. 1 shows how this 
would work with some synthetically generated random data. 
As shown in FIG. 1, the algorithm does a good job of 
"healing" errors introduced by noise. 

[0170] In the second example above the case in which 
there are at most two targets g such that P(g)1 is nonzero for 
any 1, and for which there are exactly two non-zero hybrid­
ization levels per target was considered. In this case, the 
expression matrix Pi•i=PG); is a lower bi-diagonal matrix, 
except for an occasional "loop back" entry. Each of these 
"loop backs" marks a block of independent expression, so 
focus on just one. For simplicity, just assume that P=(pi) is 
of the form p11 =1, Pi•i-l=Pi,1=1 for all i=2, ... , n and the 
rest are zero. Expression analysis in this case is equivalent 
to solving the equation PE=A, and it is possible to invert the 
matrix P explicitly. Let Q=(%) be the _lower-triangular 
matrix whose i-th row satisfies qi-i=(-1y-i. Then Q is the 
inverse of P. Thus expression levels can be determined from 
E=QA, provided these values are non-negative. 

[0171] One thing this example makes clear is that the 
ambiguity resulting from llS(A)>'<P above, which occurs for 
any array data with three or more consecutive non-zero 
values, does not lead to an inability to determine expression 
levels. Any hybridization array A will yield an unambiguous 
expression E=QA Thus utilizing (non-binary) expression 
levels leads to a more robust identification system. 

[0172] Having an explicit inverse for P allows one to study 
the effect of errors in the data. Suppose an array A is 
perturbed by E=(EJ The resulting expression values are 
given by E=Q(A=E)=E+QE, provided these values are 
positive. Suppose that Ei=0(-1Y-i. Then (QE)i=0i. This 
means that the error can be as large as the number of 
expression values times the perturbation. Otherwise said, the 
inverse matrix Q can amplify the error significantly. 

[0173] One problem with the current approach is the 
limitation to two non-zero hybridization array locations. It is 
certainly possible to pick oligos which can target an essen­
tially arbitrary number of genes [ 4]. There is another simple 
expression matrix one can examine. Suppose that the i-th 
probe identifies the first i targets. This corresponds to 
assuming that Pii=l for all j=l, ... , i for i=l, ... , n. In this 
case the inverse matrix Q has the simple form q11 =1, qi i=-1, 
and qi,i=l for all i=2, ... , n. ' 

[0174] In this example, it is possible to characterize the 
arrays A for which the corresponding expression levels E are 
non-negative. The condition E=QA~0 can be used induc­
tively as follows. First of all, 0~ e1=a1, but this only says that 
the hybridization array value al should not be negative. But 
for i>l, 0~ei=ai-ai-l• and this says that the array values 
should not decrease in this ordering of the values. This is 
reasonable since each succeeding value represents more and 
more targets. 

[0175] Previously, an analysis of what the linear program­
ming model does when there is an array A=PE0 +B for some 
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perturbation B was considered. The algorithm (7-8) pro­
duces a solution (E, s, t) where 

PE=A-s+t. (29) 

[0176] Then the role of s and t can be interpreted as 
making the vector A-s+t satisfy the constraint needed so that 
E~0. In the example, this means that A-s+t must be 
non-decreasing; recall that A-B=PE0 must be non-decreas­
ing to begin with, but there is no reason that A would be. 

[0177] Consider now the situation when targets in the 
same experiment have been labeled in different ways, e.g., 
so the targets appear on the array with different colors. For 
example, targets could be from different samples: a "nor­
mal" sample might be labeled with a green fluorescence 
label and another sample might be labeled with a red label. 
If both types of samples are present in equal amounts, the 
resulting color will appear yellow. 

[0178] From a mathematical point of view, the expression 
levels are simply vectors, with one component for each 
color. Let us assume that there is some number c~l of 
colors. In the more general, multi-color case, one supposes 
that the probe array has a digital output presented as an array 
A=(A1) of hybridization vectors, where each component A/ 
is a non-negative number, for i=l, ... c. 

[0179] Particular targets g will still generate a hybridiza­
tion array P(g) of scalar hybridization values for each 1, 
again with non-negative components. The color would be 
determined by the marking, but the response would presum­
ably be the same independent of the marking color, or at 
least that is the assumption. Let an expression vector eg~0 
if e/''0 for all i=l, ... , c. 

[0180] The multi-color expression determination problem 
is then as follows: 

[0181] Determine a set { eg~0:gEU} of gene expression 
vectors defined by "solving" 

I egP(g)1 = At VI. 
gcU 

(30) 

[0182] Using vector and matrix notation, this can be 
simplified as before. Define P to be the matrix indexed by 
array indices 1 with value P(g)1and by gEU. Define E to be 
a vector-valued array indexed by gEU, and define E~0 to 
mean that eg~0 for all gEU. Then the multi-color expres­
sion determination problem is as follows: 

[0183] Determine an array E~0 of gene expression vec­
tors defined by "solving" 

(31) 

[0184] This is really just c independent problems, of the 
form 

(32) 

[0185] for i=l, ... c. Thus the techniques and results 
discussed above apply. If the original data for the problem 
is an array A of color values, these will have to be decom­
posed into constituent colors A\ i=l, ... , c. But after that, 
the problem can be solved by techniques developed for the 
single color case. 
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[0186] Algorithms have been presented based on linear 
programming that determine expression values from arrays 
of biological experiments with complex relationships 
between probes and targets. The algorithms have been 
analyzed abstractly and bounds have been given to relate 
certain computed quantities to hybridization error. They 
have been shown to work for both "promiscuous" array data, 
in which there may be multiple targets indicated by a single 
probe, as well as in the "polygamous" case where there are 
multiple probes for a single target. 

[0187] In an alternative embodiment, the method for 
determining biological expression levels can be used with 
Serial Analysis of Gene Expression (SAGE™) data [4][24] 
[25][27]. In standard SAGE analysis, probes are represented 
by SAGE tags, n-mer sequences following a given marker 
sequence, such as CATG. The targets are the genes that 
contain them. Of course, there can be many such genes 
[24][ 4]. Using the notation described above, the correspond­
ing matrix entry P(g)1 is non-zero if the 1-th SAGE tag is in 
the gene (or EST) g, and zero otherwise. For simplicity, one 
can take the non-zero entries to be equal to one. Multiple 
matches correspond to a row of P with multiple non-zeros. 
However, in any given column, there will be at most one 
non-zero entry. Thus, there is no way to distinguish different 
expression levels with standard SAGE analysis using the 
method of the present invention described above. 

[0188] However, if multiple SAGE analyses are per­
formed with multiple markers ( e.g., CTAG, etc.), one can get 
multiple non-zero entries in columns of P. This provides a set 
of equations that are amenable to the method of the present 
invention. Note that there is no concept of mis-hybridization 
with SAGE (the error rates in sequencing are very small). 
However, it might be that different markers (CTAG versus 
CATG) would have different affinity levels, leading to 
different non-zero coefficients in P. Note that in multi-SAGE 
analysis, the index 1 would be different for different mark­
ers. That is, CATGAACCGGTTAA is different from CTA­
GAACCGGTTAA. There are potentially sixteen different 
4-mer palindromes available to use as markers in multi­
SAGE analysis. This would lead to having up to sixteen 
non-zero elements in each column of the matrix P. 

[0189] It will be appreciated from the foregoing that the 
present invention represents a significant advance over other 
systems and methods for determining biological expression 
levels. It will also be appreciated that, although a limited 
number of embodiments of the invention have been 
described in detail for purposes of illustration, various 
modifications may be made without departing form the spirit 
and scope of the invention. Accordingly, the invention 
should not be limited except as by the appended claims. 

1. A method for determining a matrix of expression levels 
corresponding to a set of biological targets and a set of 
biological samples, comprising: 

obtaining a matrix of signal values P corresponding to the 
set of biological targets; 

computing a vector of expression levels for a sample in 
the set of biological samples using the matrix of signal 
values P; 

storing the vector of expression levels computed in the 
computing step in a storage matrix; 
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repeating the computing and storing steps for each sample 
in the set of biological samples; and 

outputting the storage matrix as the matrix of expression 
levels. 

2. The method of claim 1, wherein the computing step 
comprises: 

obtaining a vector of signal values A corresponding to the 
sample; 

determining a nonnegative vector E, a nonnegative vector 
s, and a nonnegative vector t that minimize a total sum 
of all elements of s and t, and satisfy a constraint 
PE+s-t=A; and 

setting the vector of expression levels to be the nonne­
gative vector E determined in the determining step. 

3. The method of claim 2, wherein obtaining the vector of 
signal values A comprises: 

testing the sample with an array of reactive probes. 
4. The method of claim 2, wherein obtaining the vector of 

signal values A comprises: 

testing the sample with an array of reactive probes, at least 
one probe in the array of reactive probes being indica­
tive of more than one target in the set of biological 
targets. 

5. The method of claim 2, wherein obtaining the vector of 
signal values A comprises: 

testing the sample with an array of reactive probes, each 
probe in the array of reactive probes being a sequence 
of oligonucleotides. 

6. The method of claim 2, wherein obtaining the vector of 
signal values A comprises: 

testing the sample with an array of reactive probes includ­
ing at least one probe which is a sequence of oligo­
nucleotides from at least one part of a known gene. 

7. The method of claim 2, wherein the determining step 
comprises: 

identifying a set of biological targets S(A) consistent with 
the vector of nonnegative signal values A; and 

setting, for each target in the set of biological targets that 
is not in S(A), a respective element of the nonnegative 
vector E to zero. 

8. The method of claim 2, wherein the determining step 
comprises: 

using a linear programming algorithm to determine the 
nonnegative vector E, the nonnegative vector s, and the 
nonnegative vector t. 

9. The method of claim 8, wherein the determining step 
further comprises: 

constructing a feasible starting point for the linear pro­
gramming algorithm, for an initial nonnegative vector 
Ea, by initializing an 1-th element of the vector s to be 
s1=-min((PEa-A)1, 0), and initializing an 1-th element 
of the vector t to be t1=-max((PEa-A),1,0). 

10. The method of claim 9, wherein the determining step 
further comprises: 

constructing the initial nonnegative vector Ea, by setting 
each element of Ea to be either zero or, if a correspond-
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ing biological target could have uniquely contributed to 
the vector of signal values A, to a predetermined 
positive value. 

11. The method of claim 2, wherein obtaining the vector 
of signal values A comprises: 

generating a plurality of short nucleotide sequence tags 
from the sample; 

concatenating the plurality of short nucleotide sequence 
tags into a single molecule; 

sequencing the molecule to determine a count for each tag 
in the plurality of short nucleotide sequence tags; and 

mapping the counts determined in the sequencing step 
into the vector of signal values A 

12. The method of claim 1, wherein the matrix of signal 
values P obtained in the obtaining step includes more 
columns than rows. 

13. The method of claim 1, wherein obtaining the matrix 
of signal values P comprises: 

testing each target in the set of biological targets with an 
array of reactive probes. 

14. The method of claim 1, wherein obtaining the matrix 
of signal values P comprises: 

testing each target in the set of biological targets with the 
array of reactive probes, 

each target being a gene or a gene fragment. 
15. The method of claim 1, wherein the computing step 

comprises: 

obtaining a vector of lower signal values L and a vector 
of higher signal values H corresponding to the sample, 
each element of L being less than or equal to a 
respective element of H; 

determining a nonnegative vector E, a nonnegative vector 
s, and a nonnegative vector t, that minimize a total sum 
of all elements of s and t, and satisfy constraints 
s~L-PE and t>PE-H; and 

setting the vector of expression levels to be the nonne­
gative vector E determined in the determining step. 

16. The method of claim 1, wherein obtaining the matrix 
of signal values P comprises: 

generating a plurality of short nucleotide sequence tags 
for a target in the set of biological targets; 

concatenating the plurality of short nucleotide sequence 
tags into a single molecule; 

sequencing the molecule to determine a count for each tag 
in the plurality of short nucleotide sequence tags; 

mapping the counts determined in the sequencing step 
into the matrix of signal values P; and 

repeating the generating, concatenating, sequencing, and 
mapping steps for each target in the set of biological 
targets. 

17. A method for determining a vector of expression 
levels, comprising: 

obtaining a vector of signal values A corresponding to a 
biological sample; 

obtaining a matrix of signal values P corresponding to a 
set of biological targets; 
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determining all N nonnegative vectors satisfying an equa­
tion PE=A; 

outputting, if N=l, the nonnegative vector determined in 
the determining step as the vector of expression levels; 

computing, if N=O, a nonnegative vector E* that mini­
mizes an L1 norm of an inconsistency in the equation 
PE=A, and outputting the nonnegative vector E* as the 
vector of expression levels; and 

selecting and outputting, if N>l, one of the N nonnegative 
vectors determined in the determining step as the vector 
of expression levels. 

18. The method of claim 17, wherein the selecting and 
outputting step comprises: 

choosing one of the N nonnegative vectors determined in 
the determining step that minimizes a vector norm, the 
vector norm being a total sum of all elements. 

19. The method of claim 17, wherein the selecting and 
outputting step comprises: 

choosing one of the N nonnegative vectors determined in 
the determining step that minimizes a vector norm, the 
vector norm being a total sum of the squares of all 
elements. 

20. A method for identifying a set of biological targets 
S(A) consistent with a vector of nonnegative signal values 
A, comprising: 

obtaining a vector of nonnegative signal values P(g) for a 
target g in a known universe of biological targets U; 

determining if, for every positive element of P(g), 
whether a respective element of A is also positive, and 
if so, including the target g in the set of biological 
targets S(A); 

repeating the obtaining and determining steps for each 
target gin the known universe of biological targets U; 
and 

outputting the set of biological targets S(A). 
21. A method for identifying a set of uniquely expressed 

biological targets consistent with a vector of nonnegative 
signal values A, comprising: 

identifying a set of targets S(A) consistent with the vector 
of nonnegative signal values A; 

identifying a set of ambiguous biological targets DS(A) 
that may be expressed in the vector of nonnegative 
signal values A, but cannot be identified with certainty; 
and 

outputting those targets that are in S(A), but not in DS(A), 
as the set of uniquely expressed biological targets 
consistent with the vector of nonnegative signal values 
A 

22. The method of claim 21, wherein identifying the set 
of ambiguous biological targets DS(A) comprises: 

computing a multiplicity vector D(A) corresponding to A; 

obtaining a vector of nonnegative signal values P(g) for a 
target g in S(A); 
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including the target g in DS(A) if, for each positive 
element of P(g), a respective element of D(A) is at least 
two; and 

repeating the obtaining and including steps for every 
target g in S(A). 

23. The method of claim 22, wherein computing the 
multiplicity vector D(A) comprises: 

initializing D(A) to all zeros; 

obtaining a vector of nonnegative signal values P(g
0

) for 
a target go in S(A); 

incrementing by one those elements of D(A) that corre­
spond to positive elements of P(g

0
); and 

repeating the obtaining a vector of nonnegative signal 
values P(g

0
) step and the incrementing step for each 

target g
0 

in S(A). 
24. A computer program product configured to store 

plural computer program instructions which, when executed 
by a computer, causes the computer to determine a matrix of 
expression levels corresponding to a set of biological targets 
and a set of biological samples, by performing plural steps 
comprising: 

obtaining a matrix of signal values P corresponding to the 
set of biological targets; 

computing a vector of expression levels for a sample in 
the set of biological samples using the matrix of signal 
values P; 

storing the vector of expression levels computed in the 
computing step in a storage matrix; 

repeating the computing and storing steps for each sample 
in the set of biological samples; and 

outputting the storage matrix as the matrix of expression 
levels. 

25. The computer program product as claimed in claim 
22, wherein the computing step comprises: 

obtaining a vector of signal values A corresponding to the 
sample; 

determining a nonnegative vector E, a nonnegative vector 
s, and a nonnegative vector t that minimize a total sum 
of all elements of s and t, and satisfy a constraint 
PE+s-t=A; and 

setting the vector of expression levels to be the nonne­
gative vector E determined by the preceding determin­
ing step. 

26. A system configured to determine a matrix of expres­
sion levels corresponding to a set of biological targets and a 
set of biological samples by performing the steps recited in 
any one of claims 1-16. 

27. A system configured to determine a vector of expres­
sion levels by performing the steps recited in any one of 
claims 17-19. 

* * * * * 


