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[57] ABSTRACT 

Methods are disclosed for the comparison of nucleic acid 
sequences. Data is generated by hybridizing sets of oligo­
mers with target nucleic acids. The data thus generated is 
manipulated simultaneously with respect to both (i) match­
ing between oligomers and (ii) matching between oligomers 
and putative reference sequences available in databases. 
Using data compression methods to manipulate this mutual 
information, sequences for the target can be constructed. 

15 Claims, 5 Drawing Sheets 
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1 AAGGTTG 29 CATTGCG 57 GAGGAGG 85 TCCTCCA 
2 AATCACG 30 CCACGGC 58 GAGGCTG 86 TGAAGCT 
3 ACCTGCA 31 CCACGGG 59 GAGTGCA 87 TGATCAG 
4 ACCTGGA 32 CCAGGCT 60 GATTTTC 88 TGATGGT 
5 ACTGTTC 33 CCCACGG 61 GCAAATC 89 TGCAGTG 
6 AGAAGGT 34 ccccccc 62 GCCCACG 90 TGCCGCC 
7 AGCAGCT 35 CCCGTGC 63 GCCGCCC 91 TGCTGGA 
8 AGCGCAA 36 CCGCCTG 64 GCCTGGA 92 TGCTGGG 
9 AGCTACT 37 CCTGCGC 65 GCGGCTG 93 TGGACAA 
10 AGCTGAC 38 CGAGCAT 66 GCGTCAA 94 TGGACCT 
11 AGCTGCA 39 CGCCCAC 67 GGACAAG 95 TGGAGCA 
12 AGGAGTTC 40 CGGGTGA 68 GGACATC 96 TGGAGGA 
13 AGGATCG 41 CGTGGCC 69 GGAGAAG 97 TGGATGA 
14 AGTGGAC 42 CTACAGC 70 GGAGATG 98 TGGATTT 
15 ATGAAGC 43 CTCACCA 71 GGATGAA 99 TGGGATA 
16 ATGCGAC 44 CTGACCA 72 GGATGAG 100 TGGGATC 
17 ATGCTCC 45 CTGATGA 73 GGCGGCG 101 TGGGATG 
18 ATTGACC 46 CTGCGCA 74 GGTGAAG 102 TGGGATT 
19 ATTTFCC 47 CTGGATT 75 GGTGATG 103 TGGTGAT 
20 CAAGAAG 48 CTGGCCT 76 GTGAGCC 104 TGGTGGA 
21 CAAGGAG 49 CTGGGAT 77 GTGCCGC 105 TGTGGAC 
22 CACAGTT 50 CTGGGATC 78 GTGCTGA 106 TGTGTGC 
23 CACCAAC 51 GAAATCG 79 TACGACG 107 TTCCAGG 
24 CACCAAG 52 GAAGAAG 80 TATCCCC 108 TTGGTCA 
25 CAGAAGT 53 GAATCGC 81 TATCGGC 109 TTTFCCA 
26 CAGCTGG 54 GACATCG 82 TATGACC 
27 CATCCCA 55 GAGCCTC 83 TCCCAGC 
28 CATGGTGC 56 GAGCGTG 84 TCCGTCA 

FIG. 2 



U.S. Patent Dec.14,1999 Sheet 3 of 5 6,001,562 

1 15 29 43 
MTCAC-G TCAGCAC G-C-G-A-T-T-C G-MCAGT 

2 16 30 44 
C-GTGATT GTGCTGA G-A-A-T-C-G-C ACTGTT-C 

3 17 31 45 
ATTTTCC TGCTGGG G-CACCATG GGATGA-G 

4 18 32 46 
G-GMMT C-C-C-A-G-C-A CATGGT-G-C CTCATC-C 

5 19 33 47 
CATTGC-G T-G-C-T-C-C-A T-T-G-A-C-G-C A-G-G-A-T-C-G 

6 20 34 48 
C-GCMTG GGATGM G-CGTCM C-G-A-T-C-C-T 

7 21 35 49 
TGCAGG-T T-T-C-A-T-C-C TCATCA-G C-C-C-A-C-G-G 

8 22 36 50 
A-C-C-T-G-C-A TGGAGCA C-T-G-A-T-G-A T-A-T-C-C-C-A 

9 23 37 51 
CAGCTGG GATTTF-C T-GGAGGA C-C-G-T-G-G-G 

10 24 38 52 
C-T-G-G-G-A-T-C GMMT-C T-C-C-T-C-C-A T-G-G-G-A-T-A 

11 25 39 53 
G-A-TCCCAG T-G-G-G-A-T-C C-MCCTT G-CGGCTG 

12 26 40 54 
CCAGCTG G-A-T-C-C-C-A A-A-G-G-T-T-G C-A-G-C-C-G-C 

13 27 41 55 
AGGAGTT-C C-A-G-A-A-G-T TTTTCCA A-G-C-T-G-C-T 

14 28 42 56 
G-MCTCC-T ACTTCTG T-G-G-A-A-A-A AGCAGCT 

FIG. 3 
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DNA SEQUENCE SIMILARITY 
RECOGNITION BY HYBRIDIZATION TO 

SHORT OLIGOMERS 

The government may own certain rights in the present 
invention pursuant to grants from the W-31-109-ENG-38 
from the Department of Energy. 

FIELD OF THE INVENTION 

The invention relates to methods of determining sequence 
similarities between known and unknown nucleic acids. In 
a particular embodiment, the invention concerns methods 
for determining a nucleic acid sequence using hybridization 
experiments and a computer-assisted comparison of the 
hybridization results. 

BACKGROUND OF THE INVENTION 

Comparison of nucleic acids at the molecular level cur­
rently is based on three general types of sequence compari­
sons: (i) "wet" comparisons where nucleic acid probe frag­
ments are hybridized to target nucleic acids under varying 
degrees of stringency; (ii) "dry" comparisons where a frag­
ment having a known sequence is compared via computer 
against a database containing known sequences; and (iii) 
"restriction fingerprint" comparisons where a DNA frag­
ment is cut by restriction endonucleases to obtain a specific 
set of fragments whose lengths are compared against other 
sets of cleaved fragments obtained experimentally or com­
puted from known sequences. 

A fourth kind of comparison, generally referred to as 
"hybridization fingerprinting," is performed by hybridizing 
a set of short oligomer probes with a target DNA fragment, 
identifying complementary oligomers that occur within the 
fragment. Two versions of this approach have been pro­
posed. The first method counts common occurrences of 
oligomers in the fragment and in a candidate matching 
sequence (Lennon and Lehrach, 1991; Drmanac et al., 
1991). The second method is based on oligomer overlaps 
and a comparison of the reconstructed sequence against a 
candidate matching sequence (Drmanac et al., 1991). The 
first method, by design, ignores shared subwords (overlaps) 
between the oligomers, while the second method utilizes 
shared subwords for the purpose of sequence reconstruction, 
which is an intermediate step in the recognition of similarity. 

2 
on overlap may introduce significant error into the sequence. 
While providing a simple and potentially automated 
procedure, this method is unsatisfactory in terms of accuracy 
and confidence. Thus, there remains a need for more 

5 sophisticated, hybridization-based techniques for the com­
parison of nucleic acids. 

SUMMARY OF THE INVENTION 

In addressing the limitations in the prior art, it is an 
10 objective of the present invention to provide a hybridization­

based method for sequence comparison that overcomes the 
limitations in the prior art. The proposed method simulta­
neously considers both shared subwords of identified oligo­
mer probes and the structure of candidate matching 

15 sequences. An important aspect of this method is that it 
utilizes oligomer lists directly following identification of 
matching oligomers, avoiding sequence reconstruction as an 
intermediate step. 

In satisfying these objectives, there is provided a method 
20 for detecting sequence similarity between at least two 

nucleic acids, comprising the steps of ( a) identifying a 
plurality of putative subsequences from a first nucleic acid; 
(b) comparing the subsequences with at least a second 
nucleic acid sequence. In another embodiment of the 

25 foregoing, the method further comprises the step of (c) 
aligning the subsequences using the second nucleic acid 
sequence in order to maximize (i) matching between the 
subsequences and the second nucleic acid sequence and (ii) 
mutual overlap between the subsequences, whereby the 

30 alignment predicts the sequence of the first nucleic acid. 

35 

40 

In yet another embodiment, the foregoing method is 
applied wherein the plurality of subsequences is identified 
by hybridization of the first nucleic acid with a set of 
oligonucleotide probes. In one embodiment, this is achieved 
by (a)simultaneously contacting the first nucleic acid with an 
array of the set of oligonucleotide probes under conditions 
permitting hybridization of the oligonucleotide probes to 
substantially complementary regions within the first nucleic 
acid molecule; and (b) determining hybridization of indi-
vidual oligonucleotide probes. 

In an alternative embodiment of the foregoing, the plu­
rality of subsequences is identified by (a) simultaneously 
contacting the first nucleic acid, arrayed as a collection of 

45 
nucleic acid fragments, with individual oligonucleotide 
probes of the set of oligonucleotide probes under conditions 
permitting hybridization of the set of oligonucleotide probes 
to substantially complementary regions within the arrayed 
collection of nucleic acid fragments; and (b) determining 

In contrast to gel-based sequencing and restriction 
analysis, which are essentially one-dimensional separation 
experiments, hybridization experiments do not require one­
dimensional separation and thus can be economically con­
ducted on a much larger scale by utilizing high-density 
two-dimensional arrays of immobilized DNA fragments 
(Format 1 hybridization experiments) or oligomer probes 
(Format 2 experiments). This enhances the opportunity to 
automate the process and, therefore, increase the amount of 
information generated within a given time period. 55 

Furthermore, automation can lead to increased cost effi­
ciency. For example, data collection throughput of several 
million probe/target hybridization scores per day can be 
achieved in a laboratory of small size by utilizing current 
hybridization technology (Drmanac et al., 1994a; Drmanac 60 
et al., 1993). 

50 
hybridizations of the oligonucleotide probes with the indi­
vidual nucleic acids. 

In yet another alternative embodiment, the plurality of 
subsequences is identified by ( a) contacting the first nucleic 
acid with an array of the set of oligonucleotide probes and 
a second set of oligonucleotide probes under conditions 
permitting hybridization of the oligonucleotide probes to 
regions within the first nucleic acid molecule that are 
substantially complementary to concatenations of the oligo­
nucleotide probes; and (b) determining hybridization of the 
oligonucleotide probes. 

In still yet another embodiment according to the 
foregoing, the putative subsequences are from six to twenty 
nucleotides. In even yet another embodiment, the second 
nucleic acid is predicted from an amino acid sequence or 

An example of hybridization-based technology is pro­
vided in U.S. Pat. No. 5,202,231. There, a method is 
described for sequencing based on hybridization of sets 
oligonucleotide probes and compilation of overlapping, 
completely complementary probes to generate a sequence. 
The shortcoming of this approach is that the initial reliance 

65 motif. 
In still yet a further embodiment, the subsequences are 

used as a query to search a collection of nucleic acid 
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sequences. Alternatively, the second nucleic acid is used as 
a query to search a collection of nucleic acid sequences, each 
nucleic acid sequence of the collection being represented by 
a list of subsequences. 

4 
DETAILED DESCRIPTION OF THE 

INVENTION 

The preceding methods may be practiced such that the 5 

alignment score is a function of encoding length of the 
second nucleic acid where the subsequences are a source 
dictionary for data compression. Alternatively, the align­
ment score is a function of encoding length of said subse­
quences where said second nucleic acid is a source dictio- 10 

nary for data compression. 

There is proposed here a variation of the "hybridization 
fingerprint" method for comparison of nucleic acids. An 
information-theoretic proof has been used to validate the 
method and demonstrate superior performance in terms of 
specificity of recognition. There also is demonstrated an 
efficient computational parameters for optimal sequence 
reconstruction. 

There are numerous scenarios where the present method 
can be applied. For example, a known sequence or a 
sequence pattern can be used as a query for a database of 
oligomers, the oligomers having been compiled for a large 
number of clones covering a significant portion of one or 

Alignment, according to the present invention, is based on 
an estimate of mutual information between said second 
sequence and the said subsequences or on an estimate of 
mutual information between said second sequence and the 
said subsequences. The significance of similarity, having 
been determined by either of the foregoing methods, can be 
determined using basic or extended significance methods. 

Other objects, features and advantages of the present 
invention will become apparent from the following detailed 
description. It should be understood, however, that the 
detailed description and the specific examples, while indi­
cating preferred embodiments of the invention, are given by 
way of illustration only, since various changes and modifi­
cations within the spirit and scope of the invention will 
become apparent to those skilled in the art from this detailed 
description. 

DESCRIPTION OF THE DRAWINGS 

The following drawings form part of the present specifi­
cation and are included to further demonstrate certain 
aspects of the present invention. The invention may be better 
understood by reference to one or more of these drawings in 
combination with the detailed description of specific 
embodiments presented herein: 

FIG. 1: Clones from a human genomic DNA region of the 
dystrophin gene. 

FIG. 2: Oligomers used in hybridization experiments. 

FIG. 3: The list of 56 oligomers in the source list s=C's for 
Cs. The oligomers are listed in the decreasing order of their 
hybridization intensities. The 6-mer and 7-mer subwords 
that also occur in Cs are not interrupted by dashes-a total 

15 several genomes. Alternatively, the oligomers may be based 
on clones from cDNAlibraries, in which case they represent 
a significant portion of expressed genes in a particular type 
of cells. 

In the case of genomic libraries, the recognition procedure 

20 can be used to guide sequencing of genomic regions. For 
example, the recognition information can be used to bridge 
gaps between sequenced regions, a laborious step in large­
scale genomic sequencing. This is accomplished by using a 
redundant collection of overlapping clones that covers a 

25 particular genomic region. The clones are probed by hybrid­
ization to short oligomers in order to determine hybridiza­
tion signatures and oligomer lists for each clone. The 
oligomer lists can be used to "anchor" the clones by recog­
nizing their cognate sequence within particular regions. The 

30 hybridization signatures are then used to find a "bridge" 
between the anchored clones consisting of a set of overlap­
ping clones. The overlapping clones can then be sequenced 
in order to close the gap between the two known regions. 

In the case of cDNA libraries, complete sets of cDNA 

35 clones that come from one or more cell types or from a 
number of organisms may be queried. In addition, an oli­
gomer list for a particular clone may be used as a query for 
a database of known DNA sequences or motifs. If a 
sequence that is highly similar to that of the clone is already 

40 present in the database, it will be recognized by this method. 
This method will gain in importance as the amount of 
sequenced DNA grows. Instead of being resequenced, most 
of the clones of interest will simply be recognized by this 
method and unnecessary sequencing will be avoided. 

of 33 oligomers contain a 6-mer from Cs, including the 13 45 
of them that contain a 7-mer. Note that the highest coinci­
dence with the sequence occurs at the top of the list, as 
expected. There are a total of 23 oligomers that do not share 

In addition to comparing oligomer lists against DNA 
sequences, the method can easily be applied to comparisons 
against amino acid sequences and DNA sequence patterns. 
The most straightforward application of this approach would 
be to represent an amino acid sequence or a DNA sequence a 6-mer with the true sequence. Some of them occur in 

reverse orientation while the others represent false positives. 
FIG. 4: The set of control clones from the Dystrophin 

gene intron that are used as benchmark for clustering. The 
clones are selected so that there are 9 groups of clones 
( denoted by letters A through K) with a 50% overlap within 
groups and less than 50% overlap across groups. 

FIG. 5: The restriction enzyme analysis of five cDNAs 
from the largest cluster (hypothesized and confirmed as 
elongation factor 1 a cDNA; see Section D of the Detailed 
Examples herein. The first cDNA provided seed signature 

50 pattern, implicitly or explicitly, by a set of DNA sequences, 
and then to compare such sequences against oligomer lists 
for a large number of clones. This will enable rapid identi­
fication of genes that encode particular short amino acid 
sequences or that contain a particular DNA sequence motif. 

55 Identification of genes that encode a particular amino acid 
sequence currently is a tedious step in gene hunting 
endeavor. The present method, especially if coupled with an 
adequate short oligomer selection strategy, will improve 
efficiency of this process by orders of magnitude. 

for clustering and searches, the remainder was randomly 60 

drawn from individual subclusters obtained by clustering at 
higher stringency than used for the original clustering ( the 
higher stringency of clustering enables detection of finer 
differences between the clones from the same cluster). Lanes 

An additional application of the present invention would 
involve the use of certain information, available a priori, 
concerning the target nucleic acid. For example, one may 
know a priori that the target nucleic acid resembles one of 
a limited number of possible sequences or a family of 

1 and 7 contain marker hin F pBR322; lanes 2-6 contain the 
5 clones. The pattern is consistent with identity in regions of 
overlap. 

65 sequences. The comparison can be applied to the target, 
further taking into account the established relationship with 
other sequences. 
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A Hybridization Methods 
6 

nary screening of sequences (Pevzner, 1992). The candidate 
sequences that pass the screening step are then compared by 
more rigorous, but also more time-demanding methods. 
Such methods may be viewed as the opposite of the present 

The hybridization techniques that are necessary for 
obtaining hybridization fingerprints can be of virtually any 
kind: clones-down (Format 1, "classic"), probes-down 
(Format 2, "sequencing chip") or any combinatorial exten­
sion thereof (Format 3). While all the formats give the same 
kind of information (correspondence with oligomers) and 
are interpreted the same way, the convenience of using a 
particular format depends on the number and size of clones 
and probes to be hybridized. 

5 
method, as the oligomer sequences are broken into subwords 
for the purpose of comparison. In the present method, the 
entire set of oligomers is implicitly treated as a sequence. 

The first two steps of the recognition method are basically 
the same as the first two steps in sequencing by hybridization 
(Drmanac and Crkvenjakov, U.S. Pat. No. 5,202,231). 

In Format 1, nucleic acids of unknown sequence, gener­
ally of about 100---10,000 nucleotides in length, are arrayed 
on a solid support or filter so that the unknown samples 
themselves are immobilized (Strezoska et al., 1991; 
Drmanac & Crkvenjakov, U.S. Pat. No. 5,202,231). Replicas 
of the array are then interrogated by hybridization with sets 
of labeled probes of about 6 to 10 residues in length. 

10 Clones that are few hundred to few thousand bases long are 
hybridized with oligomer probes of short length under 
conditions that enable approximate discrimination of oligo­
mer probes whose complement is present or absent in the 
sequence of the clone. The recognition method can tolerate 

In the "probes-down" Format 2, a sequencing chip is 
formed from an array of a set of oligonucleotides with 
known sequences of about 6 to 10 residues in length 
(Southern, WO 89/10977; Khrapko et al., 1991; Southern et 
al., 1992). The nucleic acids (100-10,000 bp) of unknown 
sequence are then labeled and allowed to hybridize to the 
immobilized oligonucleotides. 

15 much more error than the sequencing method because the 
sequencing method utilizes oligomer overlaps exclusively, 
while the recognition method takes advantage of any shared 
subword of sufficient length. The end-mismatch error, which 
is most frequent in hybridization experiments, is likely to 

Format 3 combines certain features from both of the 
earlier techniques. In Format 3, as described by (Drmanac, 
1994), nucleic acid sequences are determined by hybridiza­
tion with two sets of oligonucleotide probes of known 
sequences. An original set of probes is arrayed on a sequenc­
ing chip, the nucleic acids of unknown sequence are allowed 

20 
destroy oligomer overlaps and thus impede sequence recon­
struction. Long shared subwords that are necessary for 
recognition, however, will remain. The key to the vitality of 
the recognition method lies in the fact that it utilizes infor­
mation that is present in the putative matching sequence­
information that is not used for sequencing by hybridization 

25 (Drmanac and Crkvenjakov, U.S. Pat. No. 5,202,231). 
A hypothetical example illustrates why the present 

method is an advance over previous methods that include 
sequencing by hybridization as an intermediate step. 
Sequencing by hybridization is illustrated below. A sequence to hybridize, and then the hybridized complexes are them­

selves interrogated by hybridization with another set of 
labeled probes. The method achieves a larger effective 
length of a probe (beyond 10 base pairs), thus allowing 
analysis of fragments longer than 10,000 nucleotides. 

30 of twenty is reconstructed by identifying the thirteen 8-mers 
that are contained therein: 

For the purposes of this application, a "set" of oligonucle­
otides or nucleic acids is defined as one or more oligonucle- 35 
otides or nucleic acids. An "array" of oligonucleotides or 
nucleic acids entails the presentation of a set in a two­
dimensional, discernable pattern in which the location of a 
particular oligonucleotide or nucleic acid is identifiable. 
B. Scoring Function 

In order to compare a particular oligomer list against a 40 

particular target sequence, a scoring function must be 
designed. The scoring function of the present method can be 
any of a class of scoring functions that combine the follow­
ing two features. First, the scoring function utilizes oligomer 
overlaps (two oligomers that significantly overlap contribute 45 

more toward a score). Second, an overlap of oligomers 
contributes to a score only if it also occurs in the candidate 
matching sequence. 

Thus, the method attempts to construct contiguous 
stretches of overlapping oligomers that best match the 50 

contiguous stretches in the candidate matching sequence, 
ignoring overlaps that do not resemble the sequence. The 
final score depends on the degree of achieved resemblance. 
Variants of this method can also utilize imperfect overlaps, 
i.e., situations where two oligomers only share subwords, as 55 
opposed to overlaps. The combination of the two features 
has not been utilized in related methods (Lennon and 
Lehrach, 1991; Drmanac et al., 1991). 

A method that is based on counting co-occurrences of 
oligomers on the list and in the candidate matching sequence 
has been proposed before (Lennon and Lehrach, 1991). A 60 

scoring function for such methods does not utilize the first 
feature discussed above, thus leading to suboptimal perfor­
mance. In fact, there are numerous DNA sequence compari­
son methods (Hide et al., 1994; Pietrokovski et al., 1990; 
Pizzi et al., 1991; Blaisdell, 1986; Quentin, 1994; Pearson 65 

and Lipman, 1988) that utilize various scoring functions. 
Because of their speed, such methods are used for prelimi-

GAAGTTGC 
2 AAGTTGCG 
3 AGTTGCGC 
4 GTTGCGCA 
5 TTGCGCAT 
6 TGCGCATG 
7 GCGCATGC 
8 CGCATGCA 
9 GCATGCAC 

10 CATGCACA 
11 ATGCACAA 
12 TGCACAAG 
13 GCACAAGT 

sequence: GAAGTTGCGCATGCACAAGT (SEQ ID 
NO:1) 

One problem with sequencing by hybridization is the 
requirement that all possible oligomers of certain length be 
hybridized. Thus, sequencing of a few kilo bases of unknown 
DNA requires hybridizations with all possible 65,536 
8-mers or with all possible 16,384 7-mers. The total number 
of hybridizations can, in principle, be reduced as long as the 
overlaps are sufficient to reconstruct the sequence, as illus­
trated below: 

5 
9 

13 

GAAGTTGC 
TTGCGCAT 

GCATGCAC 
GCACAAGT 

sequence: GAAGTTGCGCATGCACAAGT (SEQ ID 
NO:1) 

Note that instead of the total set of thirteen oligomers in 
the first example, now only four are used. This indicates that 
only a fraction of the possible oligomers may suffice in some 
cases. The sequence is now computed as the shortest 
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sequence that contains within it occurrences of all four 
oligomers. An efficient computational method that optimally 
reconstructs the sequence by this method is unlikely to exist 
(Garey and Johnson, 1979) and, therefore, approximate 
methods must be applied in practice. 

Due to the inaccuracy of hybridization experiments, in 
practice the oligomers are identified only within certain 
degree of error. Hybridization error most frequently results 
in one-base mismatches at the ends of oligomers, but may 
affect internal bases as well. The presence of error further 
complicates the reconstruction problem, i.e., it is necessary 
to reconstruct sequence by simultaneously minimizing the 
sequence length and the number of postulated hybridization 
errors. 

An example of an optimal sequence reconstruction in the 
presence of error is show below. The reconstructed sequence 
is of minimal length when the number of hybridization 
errors (denoted by '?') is restricted to at most two: 

13 

5 
9 

CCACAAGT 
GAAGTTGC 

TTGCGCAT 
GTATGCAC 

sequence: CCA?AAGTTGCG?ATGCAC (SEQ ID 
N0:2) 

In this scenario, mismatches in the first base of oligomer 13 
and the second base of oligomer 9 are introduced. The 
mismatches have resulted in a new sequence that is obtained 
by moving oligomer 13 from the last to the first position. In 
addition to the scrambling of the true sequence, the errors 
have resulted in two bases being rendered ambiguous 
(denoted by '?'). 

If such erroneously reconstructed sequences (even par­
tially reconstructed) were used as queries in similarity 
searches, it might not be possible to identify matching 
sequences even if they existed in the database. If lists of 
oligomers were used directly, without committing them a 
priori to any particular sequential arrangement, the error 
might be avoided and the correct match would be more 
likely to be found. An illustration of the advantage of this 
approach is provided below: 

GAAGTTGC 

8 
plete and noisy data (practical solutions employ 
approximations), linear-time analysis is proposed for effi­
cient sequence recognition, thus allowing exhaustive search­
ing of sequence databases. Thus, if the goal is sequence 

5 comparison, using the list of oligomers as a query instead of 
using an intermediate step of sequence reconstruction will 
be advantageous. As the amount of sequenced DNA avail­
able in databases grows, more and more sequences will be 
recognized using this method rather by sequencing de nova. 

10 
The recognition method may be particularly useful in the 

situation where the set of possible sequences for the target 
sequence is known a priori. In that case, the highest scoring 
sequence from the set would be recognized as identical to 
the sequence of the examined nucleic acid. The scoring 

15 
function also may incorporate the a priori probability of 
individual matches. 

In the following, a particular implementation of the rec­
ognition method is provided. While there are many possible 
implementations and scoring functions within the general 

20 
method, there is an outstanding class of scoring functions 
which can be proven to be information-theoretically superior 
to methods that involves sequencing as an intermediate step. 

In contrast to sequencing by hybridization (Drmanac and 
Crkvenjakov, U.S. Pat. No. 5,202,231), which aims to 

25 
determine sequence information based on oligomer 
overlaps, the recognition method determines how well a 
particular known sequence matches up with a given set of 
oligomers. For that purpose, a scoring function will be used 
that measures the amount of information (in bits) revealed 

30 
about a candidate matching sequence by an oligomer set. 
The amount of information is measured by the length (in 
bits) of the most concise description (encoding) of how a 
candidate matching sequence can be assembled from a given 
oligomer list. 

35 
C. Recognition by Minimal Length Encoding 

There are many possible ways to describe (encode) a 
given sequence using a list of oligomers, or, vice versa, to 
encode a list of oligomers using a given sequence. A 
particular method is used here that is an extension of the 
basic macro substitution data compression scheme (Storer, 

40 
1988). Other generally applicable methods include 
dictionary-based compression schemes and their parallel 
implementations (Storer, 1988), statistical model-based 
compression schemes (Bell et al., 1990), adaptive and pre-

13 

5 
9 

CCACAAGT 
GAAGTTGC 
* TTGCGCAT 

GTATGCAC 

5 
9 

13 

TTGCGCAT 
GTATGCAC 

CCACAAGT 

(SEQ ID N0:2) 
CCA?AAGTTGCG?ATGCAC 

(SEQ ID N0:3) 
GAAGTTGCG?AT?CACAAGT 

I 11 11 11 I 111 11 I 111 11 11 11 I I 111 11 11 
I 11 11 11 I 111 11 I 111 11 11 11 I I 111 11 11 

sequence: GAAGTTGCGCATGCACAAGT GAAGTTGCGCATGCACAAGT 
(SEQ ID NO:l) 

Using a scoring function based on the number of match­
ing nucleotides, the optimally reconstructed sequence (left) 
achieves score 14 while the recognition score (right) is 18, 
due to the fact that oligomers are assembled so that they 
most resemble the candidate sequence. In fact, by applying 
a more sophisticated comparison method and by utilizing the 
information in the candidate matching sequence, it is pos­
sible to completely eliminate the small amount of mismatch 
error that is present in the oligomer set. 

In contrast to the optimal sequence reconstruction 
problem, which is computationally intractable for incom-

(SEQ ID NO:l) 

dictive compression schemes (Williams, 1991), and other 
approaches that have been proposed in the field of data 
compression. Generally, a compression algorithm needs to 

60 be adapted in order to take advantage of oligomer overlaps. 
In the following examples, there is presented a basic macro 
substitution compression scheme, which is extended slightly 
to utilize possible oligomer overlaps. 

First, let IAo( t) denote the encoding length of sequence t 
65 by itself and let IAo(t/s) denote the encoding of target 

sequence t relative to a source s. The source can either be a 
list of oligomers or a reconstructed sequence; the latter may 
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be specifically denoted by s'. Subscripts A
0 

and A denote 
decoding methods that define coding schemes. 

When encoding a sequence by itself, a repeated occur­
rence of a word is replaced by a pointer to its previous 
occurrence within the same sequence. One must assume that 5 
a pointer consists of two positive integers-the first integer 
indicates the beginning position of a previous occurrence of 
the word while the second integer indicates the length of the 
word. For example, the sequence AGTCAGTTTI (SEQ ID 
NO:4) may be encoded as AGTC (1,3) (7,3) where (1,3) 

10 
points to the occurrence of AGT from position 1 to position 
3, and (7,3) points to the occurrence of TIT from position 
7 to position 9 in the original sequence. 

The decoding method A
0 

comprises the following two 
steps. First, replace each pointer by a sequence of pointers 

15 
to individual letters and, second, replace the new pointers by 
their targets in the left-to-right order. Continuing the 
example, the first step would yield AGTC (1,1)(2,1)(3,1)(7, 
1)(8,1)(9,1), and the second step would yield the original 
sequence. From this decoding approach, it should be obvi-

20 
ous that the original sequence can be obtained despite 
overlaps of pointers and their targets, as is the case with the 
pointer (7,3) in the example. 

When encoding a target sequence relative to a source 
sequence, the pointers point to the occurrences of the same 

25 
words in the source. Consider an example where the target 
sequence is GATTACCGATGAGCTAAT (SEQ ID NO:5) 
and the source sequence is ATTACATGAGCATAAT (SEQ 
ID NO:6). The occurrences of some words in the target may 
be replaced by pointers indicating the beginning and the 

30 
length of the occurrences of the same words in the source, 
for example, G(l,4)CCG(6,6)(13,4). The decoding method 
Ais very simple-it only needs to replace pointers by words. 

In either kind of encoding, one can think of the encoded 
sequence as being parsed into words that are replaced by 

35 
pointers and into the letters that do not belong to such words. 
one may then represent the encoding of a sequence by 
inserting dashes to indicate the parsing. In the self-encoding 
example, the parsing is A-G-T-C-AGT-TTT, while in the 
relative-encoding example the parsing is G-ATTA-C-C-G-
ATGAGC-TAAT. 

40 

Next, the problem of encoding a target sequence relative 
to a list of oligomers is addressed. A pointer now consists of 
three numbers: an index of an oligomer, the beginning 
position within the oligomer and the length. It is important 

45 
to note that the length can exceed the length of an individual 
oligomer, provided a unique continuation can be found 
based on the oligomer suffix. To illustrate this point, return 
to the example given above: 

10 
pointer with the length decreased so as not to exceed the 
length of the oligomer. The second new pointer points to the 
oligomer that contains an occurrence of the longest suffix of 
the original oligomer; it is required that the occurrence be 
unique and not be a suffix. This procedure is repeated as long 
as there are pointers that point beyond an oligomer. 

In the preceding example, the suffix TTGC of oligomer 1 
points to oligomer 5, resulting in the pointer being broken 
down into (1,1,8)(5,5,12). After repeating the procedure two 
more times using the suffixes AT and CAC, the following list 
of pointers that point within individual oligomers is pro-
duced: 

( 1,1,8)( 5,5,4)(9 ,5 ,4 )( 13,5 ,4) 
The next step in the decoding method is a simple replace­
ment of pointers by targets, as described before, yielding the 
correct target sequence: 

GAAGTTGCGCATGCACAAGT (SEQ ID NO:1) 
It is important to note that this decoding scheme implicitly 
takes advantage of the fact that oligomers may share sub­
words. Overlaps between oligomers need not be exact, as 
they are obviously not in case of oligomers 5 and 9 
(mismatch in the second position of oligomer 9), and 9 and 
13 (mismatch in the first position of oligomer 13). Hybrid­
ization errors do not interfere as long as the subword 
structure of oligomers provides enough information about 
continuations. Indeed, the correct target sequence would be 
encoded by the same single pointer even in the absence of 
hybridization errors. This stands in sharp contrast to 
sequence reconstruction, where identical errors lead to a 
scrambled and incomplete reconstruction, as demonstrated 
above. 

It should be noted that there are many possible encodings 
that arise from the use of an oligomer set; the instant 
methods focus on the shortest ones. For that purpose, it is 
necessary to count the number of bits that are needed for a 
particular encoding. One may assume that an encoding of a 
sequence consists of units, each of which corresponds either 
to a letter or to a pointer. Every unit contains a (log 5)-bit 
field that either indicates a letter or announces a pointer. A 
unit representing a pointer contains two additional fields 
having positive integers indicating the position and length of 
a word, and possibly, in case of the encoding relative to a list 
of oligomers, a third additional field containing the oligomer 
index. 

If it takes more bits to encode a pointer than to encode the 
word letter by letter, then it is not worthwhile to use the 
pointer. Thus, the encoding length of a pointer determines 
the minimum length of common words that are replaced by 
pointers in an encoding of minimal length. Note it is not 

5 
9 

13 

GAAGTTGC 
TTGCGCAT 
GTATGCAC 
CCACAAGT 

50 necessary to actually construct encodings-it suffices to 
estimate the encoding lengths. Thus, one may assume that 
even more powerful decoding methods would enable 
smaller pointer sizes. For further details on pointer sizes, see 

In the new coding scheme, the true sequence can be encoded 
relative to the four oligomers above by a single pointer 
(1,1,20). 

An important feature of the new decoding method is that 

55 

Milosavljevic (1993). 
The encodings of minimal length can be computed effi-

ciently by a variation on classical data compression (Storer, 
1988). Here, a method for encoding one sequence relative to 
the other or relative to a list of oligomers is provided. The 
case when a sequence is self-encoded requires only a slight 

60 modification. it can recognize unique continuations of an oligomer by 
finding its longest suffix that has a unique additional 
occurrence, but not as a suffix of another oligomer. The 
additional occurrence of the suffix (possibly within the same 
oligomer) defines a continuation. More precisely, if the 
length recorded in a pointer exceeds the oligomer length, the 65 

decoding algorithm breaks down the pointer into two new 
pointers. The first new pointer is the same as the original 

The minimal length encoding algorithm takes as an input 
a target sequence t and the encoding length p ~ 1 of a pointer 
and computes a minimal length encoding of t for a given 
source s. Since it is only the ratio between the pointer length 
and the encoding length of a letter that matters, it is assumed 
without loss of generality that the encoding length of a letter 
is 1. 
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Let n be the length of sequence t and let tk denote the 
(n-k+l)-letter suffix oft that starts in the k th position. Using 
a suffix notation, write t1 instead oft. By IA(tJs) is denoted 
the minimal encoding length of the suffix tk. Finally, let l(i), 
1 ~i~n, denote the length of the longest word that starts at 5 

the ith position in target t and that can be encoded by a 
pointer to source s. If the letter at position i does not occur 

12 
Even though the negative values do not imply significant 
similarity between t and s, they still have some heuristic 
value in the sense that they indicate degree of dissimilarity 
and will be considered in the experimental section. 

The significance of similarity depends exponentially on 
mutual information by the following formula: 

p o[I(s;t) "';d];e2-d+O(l) 
in the source, then l(i)=0. Using this notation, the main 
recurrence is stated: 

IA (t;/s)-min(l +IA (t;.1/ s),p+IA (t;+l({/s )) 

A derivation of this inequality is known. The method of 
10 establishing significance by this formula is referred to as the 

algorithmic significance method. 
Proof of this recurrence can be found in (Storer, 1988). Mutual information also provides a way of demonstrating 

that lists of oligomers can serve better as a query than an 
optimally reconstructed sequence. It will suffice to show that 

15 I(s';t)~I(s;t), where t is the true sequence, s is the list of 
oligomers, and s' is a reconstruction based on s. Indeed, this 
inequality can be proven for the generally defined mutual 
information up to an additive constant: 

Based on this recurrence, the minimal encoding length 
now can be computed in linear time by the following 
two-step method. In the first step, the values l(i), 1 ~ i ~ n are 
computed in linear time using a directed acyclic word graph 
data structure that contains the source s (Blumer et al., 
1985). In the case when s is a list of oligomers, the pointer 
structure of the directed acyclic word graph is exploited to 
efficiently find continuations. In the second step, the mini- 20 

mal encoding length IA(t/s)=IA(tifs) is computed in linear 
time in a right-to left pass using the recurrence given above. 

As mentioned above, the encoding length need only be 
estimated-the recognition method does not require that the 
exact encoding be computed. For example, the pointer sizes 25 

may be chosen so that they provide the optimal recognition 
in practice, even though they may not suffice for correct 
decoding. In other words, the scoring function may be a 
heuristic function that does not correspond to the exact 
coding length but is justified by good practical recognition 30 

performance. 
A reverse encoding-length based scoring function also 

may be used. Instead of calculating the number of bits 
needed to encode sequence t relative to oligomer list s, one 
calculates the number of bits need to encode s relative to t. 35 

Assuming an encoding method that takes into account both 
mutual overlaps of words in s and their alignment with t, it 
may concluded that the sequence t that results in a small 
relative encoding length I(s/t) exhibits a high degree of 
similarity with the oligomer list s. 40 

D. Assessing Significance of Matches 
A method for assessing significance of matches by apply­

ing the minimal length encoding approach described above 
now is presented. It will be demonstrated that every bit of 
information revealed by a list of oligomers leads to a 45 

two-fold improvement of significance of a match. The 
following definitions are provided to facilitate this demon­
stration. 

I(s';t) ;eI(s;t)+o(1) 

This is an algorithmic version of data processing inequality, 
analogous to the Shannon-entropy version (e.g., Cover and 
Thomas, 1991). The proof is based on the fact that s' is a 
result of processing of s. This inequality should not be 
surprising because algorithmic processing does not increase 
information obtained by experiments. Being a result of 
processing of s, the reconstructed sequence s' cannot contain 
more information about the underlying sequence. In the 
following, there is presented an example which indicates 
that I(s';t) may in practice be considerably less than I(s;t), 
implying that sequence reconstruction may cause significant 
loss of information. 

Going back to the earlier example, the list of oligomers s, 
the reconstructed sequence s' and the target sequence t are as 
follows: 
oligomer list s: 

5 
9 

13 

GAAGTTGC 
TTGCGCAT 
GTATGCAC 
CCACAAGT 

reconstruction s': CCA?AAGTTGCG?ATGCAC (SEQ ID 
N0:2) 

true sequence t: GAAGTTGCGCATGCACAAGT (SEQ ID 
N0:1) 
Assuming a pointer size of 10 bits (2 bits for the encoding 

oligomer plus 3 bits to encode the position within oligomer, The mutual information scoring function I(s;t) is defined 
as the difference IAo(t)-IA(t/s) or, equivalently, IAo(s)-IA(s/t). 
This definition is motivated by the universal definition ( e.g., 
(Chaitin, 1987; Li and Vitanyi, 1993) of mutual information, 
which is the difference between the universal encoding 
length oft, and the universal encoding length oft relative to 

50 
plus 5 bits to encode length), an optimal encoding of the true 
sequence relative to the list of oligomers would be I(t/s')= 
l0+log 5-12, because, as shown above, a single pointer 
suffices. On the other hand, assuming the same pointer size 
of 10 bits ( 5 bits to encode the beginning plus 5 bits to 

55 
encode length), an optimal encoding of the target would 
require approximately I(t;s')=38 bits (-8*log 5+2*10), as 
illustrated by the following parsing: 

s. Since encoding schemes for A
0 

and A are not universal, 
the scoring function is only an approximation of the uni­
versal definition of mutual information; the quality of 
approximation depends on the choice of schemes A and A

0
• 

The approximation can, in this case, be justified by the fact 
that A and A

0 
indeed capture the kinds of structure that are 60 

expected to occur in the sequences. As demonstrated in the 
previous section, both IAo(S) and IA(s/t) can be computed in 
linear time, and thus I(s;t) can be computed in linear time as 
well. This is in sharp contrast with the sequence reconstruc­
tion problem, which is NP-hard. 

It also should be noted that since I(s;t) is only an approxi­
mation of mutual information, it may take negative values. 

65 

parsing of t relative to s': G-AAGTTGCG-C-ATGCAC­
A-A-G-T 

Assuming that the target t does not contain much regularity, 
and thus it cannot be encoded in less than I(t)=2*20=40 bits, 
the following values for mutual information are obtained: 

I(s;t)=I( t)-I( t/s)=40-12=28 
and 

I( s' ;t)=I( t )-I( t/s')=40-38=2 
Note that the mutual information of the true sequence 
exceeds by 26 bits the mutual information relative to the 



6,001,562 
13 

reconstructed sequence. Thus, the reconstructed sequence 
gives a much less significant match than the list of oligo­
mers. 

14 
For each clone, a source lists consisting of 28 ( approx. ¼ 

of the total) oligomers plus 28 reverse complements, repre­
senting a total of 56 oligomers, was compiled based on the 
highest hybridization scores using a calibration procedure. It also should be pointed out that conditioning of mutual 

information provides a means of factoring out the bias that 
is introduced by choosing an incomplete set of oligomers for 
hybridization. By w, the total set of oligomers that are 
examined is denoted and I(s;t/w)=IA(t/w)-IA(t/s,w) denotes 
mutual information that is conditional on the choice of 
oligomers w. To see how the conditioning factors out bias in 
the choice of w, consider the case where sequence t1 simply 
happens to contain many words from w, even though it is not 
related to s. Then 

5 As an example, the oligomer lists for clone Cs (also denoted 
by C's) is given in FIG. 3. The list w consisted of 218 
oligomers (109 oligomers from FIG. 2) plus their reverse 
complements. When computing IA(t/s), the pointer size was 
set to 10 bits and, for IA(t/w), the pointer size was set to 10.3 

10 bits. The pointer sizes were chosen heuristically as giving 
the best results across a wide range of data, including many 
cDNA clones. 

I(s;tifw)=IA(tifW)-I(tifs,w)-IA(tifw)-IA(tifw)-0 
Now, if t2 is related to s, but contains only a subset of words 
from w that are also in t1 , then 15 

I( s;t2/w )= IA ( t2/w )-I( t2 /s,w )-IA ( t2 /w )-IA ( t2 /s )>0 
In contrast, the value of mutual information that is not 
conditional on w would be the same for both t1 and t2 , that 
is IA(t1/s)=IA(tis) and t2 would not be recognized as the only 

20 
correct match. Thus, conditioning factors out the bias in the 
choice of w and enables recognition of truly related 
sequences. 

Finally, it should be noted that in practical applications, 
when computing IA(t/s), pointers are not restricted to the 
source s, but also may point to the left in t, in the same 
manner as in self-encoding. This leads to a correct estimate 
of relative information when t contains significant internal 
repetitive patterns. 

EXAMPLES 

The method for pairwise comparisons using scoring func­
tion I(s;t/w)=IA(t/w)-IA(t/s) was implemented in C++ on a 
Sun Sparcstation under UNIX. This program, called SMPL, 

25 

30 

35 

The oligomer lists were compared against the known 
DNA sequences of the clones. Table 1 contains the results of 
comparisons using scoring function I(s;t/w): 

c, 
C2 
C3 
C4 
Cs 

Co 
C1 
Cs 
C9 

C' 

TABLE 1 

Recognition of known DNA sequences (C) based 
on oligomer lists (C'). Three largest scores per row 

are listed; the largest score in each row correctly 
identifies corresponding clone. Relative score is the 
difference between the largest and the second largest 

score in a row. 

1 C' 2 C' 3 C' 4 C' 5 C' 6 C' 7 C' 8 C' 9 

6 3 
8 -11 -11 

34 16 11 
3 6 4 

25 18 
9 

3 16 
3 11 
8 13 
9 

20 
average relative score 

rel. score 

3 
19 
18 

2 
7 

13 
8 
5 

11 

10 

Rows correspond to known sequences of the clones ( C1 , ... , 

C9) while columns correspond to oligomer lists (C'1 , ... , 

C'9). Note that in every row, the highest value occurs in the 
correct column, indicating that all clones can be correctly 
recognized using their sequences as queries. The difference 
between the highest and second-highest score in each row, 
which referred to as relative score, indicates quality of 
recognition; the values of relative scores for each row are 

is available through ARCH Development Corp., Chicago, 
Ill., as part of the newest version of the software packages 
DB_DISCOVERY and PYTHIA. The purpose of the 
experiments was to examine performance of the recognition 
method for sequence comparisons. The first experiment uses 
real data, the second uses simulated data and the third uses 
both types of data. These experiments are based on a control 40 

set of nine sequenced genomic DNA clones of average 
length 1300 basepairs which cover a 12 kB sequenced 
portion of the dystrophin gene (Pizzuti et al., 1992), as 
represented in FIG. 1. The fourth experiment describes large 
scale cDNA analysis. 45 listed in the rightmost column. 
A. Real Data 

The control set of nine clones was interrogated with 109 
(mostly 7-mer) probes, listed in FIG. 2, using the SBH 

As an example of highly significant correct recognition, 
the following is the parsing of a segment of clone Cs relative 
to C's: 

TCCTTTAA-A-AAGTGC-T-T-T-A-G-AATTTTC-TTCAATC-A-CTAATAAC-CATGGT-A-A 
-G-G-T-AAAGCT-G-A-A-G-AGCAGCT-AAAGGG-A-G-AGCTGAAGAGCAGCTAAA-C-T-T 
-GGCTTT-G-A-CATTTTTGTAC-T-C-TTTTTTT-G-CCTTCT-C-T-CAACTCCA-A-AGCAC 
CA-G-TGTGCTCT-T 

AGCTGAAGAGCAGCTAAA is SEQ ID NO:7 and 
CATTTTTGTAC is SEQ ID NO:8. 

technology (Drmanac et al., 1991) as part of a larger 
experiment (Crkvenjakov et al., 1993; Milosavljevic and 
Crkvenjakov, 1993). Ideally, hybridization experiments 

60 
would have revealed for each probe whether or not the A more detailed examination revealed that most, but not all, 

of the long uninterrupted words in this segment come from 
repetitions within the clone itself rather than being recog­
nized by overlapping oligomers. As the amount of hybrid-

complementary oligomer was present in the cloned 
sequences. Since the clones were obtained by PCR 
reactions, the orientation of oligomers could not be resolved. 
In addition, due to inaccuracy in the experiment, the pres­
ence of oligomers could be only determined within a certain 
degree of error. 

65 ization data increases, ever longer segments will be recog­
nized by overlapping oligomers, thus improving significance 
of recognition. 
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A closer look at how well the experimentally obtained 
lists of oligomers reflect the true sequence is provided. As an 
example, first consider the oligomer list s=C's for clone Cs 
in FIG. 3. In order to estimate the sensitivity of hybridization 
experiments in detecting complementary oligomers, list w 5 

must be considered. Out of a total of 16 oligomers from w 
that contain a 7-mer from Cs, a total of 13 also occur ins. 
Thus, the true positive rate for 7-mers is 13/16=81 %. If one 
considers 6-mers, the situation is much worse. Out of a total 

10 
of 82 positive oligomers in w, only 33 also occur in s. Thus, 
the true positive rate for 6-mers is 33/82=40%. 

One may views as being a sublist of w that is enriched for 
oligomers that share long common subwords with the true 15 

sequence: only 16/218=7% oligomers from w contain a 
7-mer from Cs, while for the corresponding source lists the 
fraction is 13/56=23%. In the case of 6-mers, the fractions 
are 82/218=37% and 33/56=59%, respectively. The statistics 

20 
for clone Cs as well as for other clones are summarized in 
Table 2: 

c, 
C2 
C3 
C4 
Cs 
Co 
C1 
Cs 
C9 

TABLE 2 

Oligomer recognition statistics for the 
experiment with real data. The first two colunms give 

counts of oligomers (both in terms of an absolute count 
and in terms of a percentage of total) in s and w that 

share a 7-mer with the clone sequence. The third column 
gives the ratio of oligomers in s and w, i.e., the true­

positives ratio. The last three columns contain the same 
statistics for 6-mers. 

common 7-mers common 6-mers 

w s/w w 

5 9% 73% 70% 19 34% 62 28% 
13 23% 16 7% 81% 27 48% 74 34% 
19 34% 2411% 79% 35 53% 94 43% 
11 20% 12 5% 92% 22 39% 60 27% 
13 23% 16 7% 81% 33 59% 82 37% 
16 29% 2110% 76% 30 54% 76 35% 
18 32% 19 9% 95% 28 50% 77 35% 
12 21% 16 7% 75% 33 59% 82 37% 
12 21% 13 6% 92% 26 46% 58 26% 

average 15 27% 17 8% 83% 28 55% 73 37% 

25 

30 

s/w 
35 

53% 
36% 
37% 
37% 
40% 
39% 40 
36% 
40% 
45% 
39% 

16 

TABLE 3 

Oligomer recognition statistics for the 
experiment with simulated data. The first two columns 
give countrs of oligomers (both in terms of an absolute 
count and in terms of a percentage of total) in s and w 
that share a 7-mer with the clone sequence. The third 

column gives the ratio of oligomers in s and w, i.e., the 
true-positive ratio. The last three columns contain the 

same statistics for 6-mers. 

common 7-mers common 6-mers 

w s/w w s/w 

c, 7 13% 8 4% 88% 22 39% 57 26% 39% 
C2 8 14% 10 5% 80% 28 50% 69 32% 41% 
C3 4 7% 4 2% 100% 20 36% 52 23% 38% 
C4 6 11% 7 3% 86% 20 36% 53 24% 38% 
Cs 18 32% 22 10% 82% 33 59% 86 39% 38% 
Co 6 11% 7 3% 86% 28 50% 69 32% 41% 
C1 4 7% 4 2% 100% 17 30% 44 20% 39% 
Cs 11 20% 13 6% 85% 28 50% 67 30% 42% 
C9 5 9% 6 3% 83% 24 43% 64 29% 37% 

average 8 14% 9 4% 85% 24 44% 62 28% 39% 

The scores with the simulated signatures are given in 
Table 4: 

c, 
C2 
C3 
C4 
Cs 
Co 
C1 
Cs 
C9 

TABLE 4 

Recognition based on combined oligomer lists C'. The 
largest score in each row correctly identifies the 

corresponding clone. Relative score is the difference between 
the largest and the second largest score in a row. 

C' 1 C' 2 C' 3 C' 4 C' 5 C' 0 C' 7 C' 8 C' 9 rel. score 

2 -4 0 2 
20 -4 6 14 

25 13 14 11 
0 18 3 15 

-7 27 -10 34 
12 34 10 22 

4 2 9 5 
5 12 35 23 

0 0 11 11 
average relative score 15 

In order to compare the experiments with real and simulated 
data, criteria for quality of recognition in a particular experi-

Experiments also were performed with a scoring function 
I(s;t) that is not conditional on w. As expected, most clones 
show the highest score with the DNA sequences that happen 
to have a high content of oligomers from w. 

45 ment must be defined. Good sequence recognition may be 
characterized by a large difference between the highest and 
the second-highest score in a particular row; this is referred 
to as a relative score. The average relative score for all rows 
in a table reflects the overall quality of recognition. For the 

50 real data, the average relative score is 10, while for the 
simulated data the score is 15. 

B. Simulated Data 
It was somewhat surprising to obtain better recognition 

with probes that are less representative of the sequence. One 
possible explanation is that, in the simulated experiment, all 

In the previous experiment, the fraction of oligomers from 
w that contain a 7-mer from the clone was on average 8%, 
and the fraction for 6-mers was 37% (last row of Table 2). 

55 the relevant statistics and dependencies of the real experi­
ment were not considered. The simulated experiment still 
provides a clear indication that sequence recognition may 
not critically depend on the choice of probes. 

In order to test if similar recognition would be achieved with 
a set of oligomers that are less representative of the 

60 
sequence, an independent set of 109 oligomers, plus their 
reverse complements, with respective fractions of 4% and 
28% was used as dictionary w. Signatures s for each clone 
were then simulated so that the fraction of true positives for 
both 6-mers and 7-mers was approximately the same as in 65 

the experiment with real data. The detailed statistics are in 
Table 3: 

C. Real and Simulated Data 
The goal of this last experiment was to determine how 

rapidly recognition improves as new hybridizations are 
performed. For this purpose, the data from the real and the 
simulated experiment were merged together to create a 
single experiment: a new dictionary w ( consisting of 218 
probes and their reverse complements) was formed by 
concatenating dictionaries from the two previous experi­
ments. Source oligomer lists for each clone also were 
obtained by simple merging. 
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The scores are given in Table 5: 

TABLE 5 

Recognition based on combined oligomer lists C'. The 
largest score in each row correctly identifies the 

corresponding clone. Relative score is the difference between 
the largest and the second largest score in a row. 

C' 1 C' 2 C' 3 C' 4 C' 5 C' 6 C' 7 C' 8 C' 9 rel. score 

5 -9 -9 14 
14 -23 -24 37 

33 -1 6 27 
16 -12 -15 28 

-16 13 -13 26 
-5 -2 15 20 

-4 15 14 
-12 -11 21 32 

-19 -21 7 26 
average relative score 25 

18 
cise mutual comparisons of clones as well as comparisons of 
clones against DNA sequence databases (Drmanac et al., 
1991; Lennon and Lehrach, 1991). The data production lines 
that are being developed for the purpose of sequencing by 

5 hybridization (SBH) can in fact be easily employed for rapid 
generation of OSS-s (Drmanac and Drmanac, 1994; 
Drmanac et al., 1992a; 1992b; Grujic et al., 1994; Meier­
Ewert et al., 1993). Densely arrayed clones can be examined 
at a 10- to 100-fold higher rate, and much more 

10 
economically, than by standard sequencing. Thus, data 
throughputs required for exhaustive gene discovery and for 
detailed studies of expression patterns can be achieved. 

A pilot study is presented here using methods for mutual 
clone comparison and for comparison of clones against 
known DNA sequences. This analysis involves 29,570 

15 cDNAmolecules from the recently developed human infant 
brain cDNA libraries (Soares et al., 1994). For the purpose 
of this study, more than ten million individual clone/probe 
hybridization experiments were performed. A complemen­
tary study utilized the same data production line, but is based 

The average relative score is 25, which equals the sum of the 
relative scores in the previous two experiments (10+15). In 
retrospect, this result may have been expected because the 
dictionaries from the two previous experiments contain 
non-overlapping sets of probes, each providing independent 
evidence for the identity of clones. In any case, this experi-

25 ment indicates that, on average, around 1 bit of recognition 
specificity (which corresponds to a twofold improvement in 
significance level) is gained per 10 probes. 

20 on an independent collection of hybridization data that were 
analyzed using an independent set of data analysis methods. 
These two studies demonstrate unique opportunities in 
genome-scale cDNA analysis that are made possible by 
large-scale hybridization experiments. 

Clones from the original and normalized versions of the 
human infant brain cDNAlibraries (Soares et al., 1994) were 
arrayed and immobilized on nylon filters as PCR products 
by applying previously described techniques (Drmanac and 
Drmanac, 1994; Drmanac et al., 1992a; 1992b; Grujic et al., 

D. Discovery of Genes from an Infant Brain cDNA Library 
One of the goals of the Human Genome Project is the 

sequencing of all human genes. An intermediate and cur­
rently feasible step toward this goal is the sequencing of 
cDNA fragments, referred to as expressed sequence tags 
(EST-s) (Adams et al., 1991). EST strategy relies on a "one 

30 1994;). In the following discussion, two physical filters are 
of the same type if they contain the same cDNAs that are 
spotted using the same pattern; i.e., two replicas of filters 
belong to the same filter type. Each type of filter contained 

at a time" random sampling of cDNA libraries, with the 
result that every second or third sequence is needlessly 35 

resequenced, depending on the library used. Over 40,000 
distinct ESTs have been compiled so far by this method 
(Khan et al., 1992; Matsubara & Okubo, 1993; Adams et al., 
1993). As the number of sequenced cDNAs grows, the 
resequencing problem inevitably will worsen. In order to 
reduce resequencing, the libraries are typically normalized 

a set of clones spotted in duplicate. 
A total of 11 filter types were created (see Table 6): 8 

small filter types contained 3,456 dots each, arrayed on a 
8x12 cm surface; 2 medium filter types contained 7,776 dots 
each, arrayed on a 8x12 cm surface; 1 large filter type 
contained 31,104 dots arrayed on a 16x24 cm surface. A 

40 common set of 107 heptamers was hybridized with each of 
the 11 distinct filter types (for an example of a hybridization 
experiment, see FIG. 4). Several physical copies of each 
type of filter were prepared in order to parallelize hybrid­
ization experiments. Each physical copy of a particular type 

by biochemical procedures (Soares et al., 1994). In the 
normalized libraries, relative abundancies of the most fre­
quent and rarest cDNAs are equalized to a large degree, but 
the chance of finding a new gene is not expected to more 
than double (Drmanac et al., 1994b). The EST resequencing 
problem is exacerbated by the fact that many genes are 
expressed in multiple libraries. Two cDNA clones may not 
even be recognized as identical by the EST strategy because 
the sequenced fragments may not overlap. 

45 of filter was hybridized with a different subset of heptamer 
probes (probe list available on request). The results obtained 
with all filter replicas were pooled together to give OSS-s 
consisting of hybridization intensities for the entire probe 
set. 

While beneficial for discovering new genes, normalized 50 

libraries do not permit accurate quantification of the abun­
dancy of individual RNAs, which is a necessary step in 
understanding of mammalian gene expression. In order to 
quantitatively study expression of genes across different cell 
types, developmental stages, and physiological conditions, 55 

hundreds of thousands, and perhaps millions of clones from 

TABLE 6 

Summary of filter types used in hybridization 
experiments. A fraction of dots spotted on each type of filter 

contained control clones: 11.1 % on small filters, 3.7% on medium 
filters, and 1.25% on large filters. 

a number of potentially highly redundant non-normalized 
cDNAlibraries must be comparatively studied. Redundancy 
also may be profitably employed for complete cDNA 
sequencing. For example, an average 3-6 kB mRNA can be 
efficiently sequenced by current methods based on up to 10 
overlapping cDNAs from various libraries. All of the fore­
going puts a premium on a method that enables rapid and 
economical mutual clone comparisons and comparisons of 
clones against previously sequenced DNA 

It has been estimated that oligomer sequence signatures 
(OSS-s) consisting of 100-1000 probes would enable pre-

total false separation 
filter filter dots dots cDNAs of repeated dots 
format types per filter scored scored (%) 

60 small 8 3,456 24,353 11,078 1 
medium 2 7,776 13,461 6,810 5.5 
large 31,104 23,448 11,682 4.5 

In order to achieve reproducibility of individual clone/ 
65 probe hybridization intensities across different filters despite 

variations in experimental conditions, two scaling steps 
were performed. To estimate relative molarity in individual 
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dots, each physical copy of a filter was hybridized with a 
mass probe which consisted of an oligomer that was comple­
mentary to the primer region of cDNA PCR products. 

20 
1994), spotted in duplicate. The two medium filters con­
tained 3840 and the large filter contained 15,867 duplicates 
from the normalized version (Soares et al., 1994) of the same 
library. The clustering error, estimated as the percentage of In the first scaling step, in order to factor out differences 

in molarity of cDNA in individual dots, the hybridization 
intensities of each probe were divided by the hybridization 
intensities of the mass probe. The dots that did not give 
hybridization intensities with the mass probe above a pre­
specified threshold were considered empty and all hybrid­
izations with them were discarded from further analysis. 

5 dots that do not occur together with their duplicate in the 
same cluster, ranged from 1 % on the small filters to 5.5% on 
medium filters, as indicated in Table 6. 

These results indicate a high reproducibility for hybrid-

In the second scaling step, the mass-scaled intensities of 
each dot were replaced by their rank value among all others 
on the same filter. While the first (mass-scaling) step 
achieves reproducibility across different dots on the same 
filter, the second (rank-scaling) step achieves reproducibility 
across different filters, regardless of their size, due to the fact 
that they all contain large numbers of clones from the same 
library. 

10 ization experiments and low clustering error rate for all filter 
formats and array densities. The actual failure rate of clus­
tering is even smaller because the signatures whose dupli­
cates were eliminated due to missing values also were 
counted as clustering failures. The slight loss of accuracy on 

15 medium and large filters may be justified by an almost 
10-fold increase in hybridization throughput per filter. 

Sequence signatures for particular clones were compiled 
by pooling rank-scaled hybridization intensities across dif- 20 

ferent physical copies of a particular filter type. Signatures 
that were missing more than 25% hybridization values (due 
to empty dots) were discarded from further analysis. A 
clustering analysis was then applied to group the signatures 
into disjoint clusters according to their mutual similarities. 25 

Two independent approaches were applied in order to 
estimate clustering error: (i) individual cDNAs are spotted in 
duplicate and (ii) groups of highly overlapping control 
clones of known sequence were spotted along with the 
cDNAs. The degree of false separation into disjoint clusters 30 

of signatures that come from identical or highly overlapping 
clones, as well as the degree of false joining of non­
overlapping control clones into identical clusters, was used 
as an estimate of clustering error. 

Each of the 8 small filters contained a set of 1,728 cDNAs 35 

from the original human infant brain library (Soares et al., 

In addition to the cDNAs, each of the filters contained 
several independent amplifications of a set of 46 clones of 
known sequence as controls (Pizzuti et al., 1992). The 
control clones were 1 to 2 kB in length and they cover a 12 
kB sequenced portion of the human dystrophin gene intron 
segment. Each control clone was multiply spotted on each of 
the filters (Table 6). A subset of the clones that are actually 
used as a benchmark are depicted in FIG. 4. This set of 
clones was chosen so that there are nine distinct groups 
where clones within a group overlap by at least 50%, and 
clones across different groups overlap by less than 50%. 
(Theoretical analysis indicates that an overlap of 50% is 
equivalent to a homology of 80% in terms of OSS 
similarity.) The presence of identical and highly overlapping 
control clones across different filters enabled the testing 
whether identical or highly similar clones are grouped 
together by the clustering algorithm despite the fact that they 
are spotted on different filters and separately hybridized. The 
clustering of control clones spotted on all eight small filter 
types is summarized Table 7. 

TABLE 7 

Clustering of control clones depicted in FIG. 4. Columns 
correspond to groups of overlapping clones. Rows correspond to clusters 

obtained by the algorithm based on signatures obtained from all eight 
small filters. The error of false separatino, estimated by dividing the 
number of clones i nsplinter clusters by the total number of clones 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

outside "garbage" clusters is 45%. Theoretical analyses show that the 
probability of false joining of two signatures is at most 10-5

, which is 
consistent with the experimental results: 1 false joining (0.13%) in 
cluster 12 resulted from more than 100,000 pairwise comparisons. 
However, even that single false joining may be a result of sample 

contamination rather than clustering error. 

A B C D E F G H 

131 
2 

126 
7 
2 

150 
2 
2 
2 
5 
2 
2 

52 
164 

7 
44 

148 
5 

K total 

131 
2 

126 
7 
2 

150 
2 
2 
2 
5 
2 
3 

52 
164 

7 
44 

148 
5 
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TABLE 7-continued 

Clustering of control clones depicted in FIG. 4. Columns 
correspond to groups of overlapping clones. Rows correspond to clusters 

obtained by the algorithm based on signatures obtained from all eight 
small filters. The error of false separatino, estimated by dividing the 
number of clones i nsplinter clusters by the total number of clones 

outside "garbage" clusters is 45%. Theoretical analyses show that the 
probability of false joining of two signatures is at most 10-5

, which is 
consistent with the experimental results: 1 false joining (0.13%) in 
cluster 12 resulted from more than 100,000 pairwise comparisons. 
However, even that single false joining may be a result of sample 

contamination rather than clustering error. 

22 

A B C D E F G H K total 

20 
21 
22 

discarded 23 20 28 4 37 

40 

10 9 7 

89 
40 
89 

4 4 
15 153 --------------------------

total 156 155 193 56 209 54 162 48 108 1141 

An additional feature of the clustering analysis, compared 
to the one described, was that there was a "garbage" cluster 
(bottom row in Table 7). All the clusters that contained 
signatures whose average mutual similarity was larger than 25 

a prespecified threshold were assigned to it. Only 0.13% of 
non-overlapping clones were falsely joined together into the 
same cluster, and only 4.5% of overlapping clones were 
falsely split across different clusters. The low error rate 30 

indicates the ability of the clustering analysis to recognize 
significantly overlapping or homologous clones even if they 
are spotted on different filters. Indeed, the single case of 
false joining was most likely due to contamination of 
samples. 35 

The observed grouping of overlapped control clones 
demonstrates that existing contigs for complete sequencing 
of long cDNAs have been assembled to the extent allowed 
by the directional nature of the library. The low rate of false 40 

joining is further supported by the fact that none of the 
clusters in the final clustering of all the signatures contained 
both a cDNA clone and a control clone. This was indeed 
expected because the control clones come from an intronic 

45 
region. Since tens of thousands of cDNA clones were 
clustered together with one thousand control clones, this 
indicates that the probability of false joining is less than one 
in ten million pairwise comparisons. 

TABLE 8 

cDNA abundancies in original and normalized infant brain 
libraries, as compared with calculated abundancies for rat brain. The 

abundancies are estimated within a factor of two; for example, some of 
the 84 cDNAs species assigned to the abundancy class 0.2 may in fact 
belong to the abundancy classes 0.1 or 0.5. In light of this degree of 

precision, the disagreement between the rat and original human 
libraries at the abundance level 0.2 may not be significant. 

Number of cDNA species 

calculated for 
rat brain library 

Abundance ((Milner & human infant brain library 

class Sutcliffe 1983), original normalized 
(%) Table 7) (11,078 clones) (10,340 clones) 

"';1 13 8 
0.5 11 13 4 
0.2 23 84 21 
0.1 146 150 51 
0.05 456 443 429 
0.02 290 668 1032 

;eO.Ql 1520 3529 6703 
total species: 2459 4895 8246 

average 0.04 0.02 0.01 
abundance: 

The average abundance of individual cDNA was 0.02% 
for the original library and 0.01 % for the normalized; the 

The pattern of false splitting (Table 7) indicates that, for 
most large clusters, there are a few "satellite" clusters 
containing apparently dissimilar signatures. The rate of 
4.5% indicates that the number of distinct cDNA clones in 
the final clustering experiment may be slightly overesti­
mated. A number of small "satellite" cDNA clusters may 
contain clones that are highly similar to clones from a larger 
cluster, but are not detected as such. 

50 original library contained 3-fold more clusters that achieve 
abundancy of 0.1 % or more. Apparently, normalization did 
not affect the total number of moderate and low abundancy 
clusters, while at the same time it significantly reduced the 
number of high abundancy clusters. Clone identification 

55 ~=~~~b~a~e~:~(e~~~;e!~c~::~rs:~:ti~:e th~~~~e :~~~ea~~ 
RNAs: the abundancies for tubulin alpha, elongation factor 
alpha 1, and cytoskeletal gamma actin RNAs fell 35-, 32-
and 10-fold respectively (Table 10). 

The goal of a first cDNA clustering experiment was to 
60 

The results indicate the biochemical normalization did not 
increase the number of distinct cDNAs in a randomly drawn 
sample of about 10,000 clones by more than 90%. An 
approximately two-fold increase also is expected on statis­
tical grounds (Drmanac et al., 1994b). 

compare clone abundancies in original and normalized 
human infant brain libraries. Clone abundancies in the 
normalized library were shown to exhibit less variation than 
the abundancies in the original library, thus facilitating more 
efficient gene discovery. The measured abundancy structures 
of 11,078 independent clones from the original library and 
10,340 from the normalized library are shown in Table 8. 

The most abundant cDNAs in brain account for a lesser 
65 fraction of total RNA than in other differentiated tissues like 

muscle or liver (chikaraishi, 1979; Milner and Sutcliffe, 
1983). The results confirm this: depending on the sample 
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size (the maximal sample consisting of 11,078 clones rep­
resented in Table 8), on average, one out of every 1.5-2.3 
clones from the original brain library contained a distinct 
sequence. 

The goal of the final cDNA clustering experiment was to 
count the total number of distinct genes represented in the 
sample by clustering together signatures of all 29,570 clones 
from both original and normalized libraries. The clustering 
analysis produced 16,741 clusters, each corresponding to a 
distinct cDNA. A total of 12,363, or 74%, of all clusters 
contained single clones. Some of these single clones might 
represent subfunctional RNAs, nuclear leakage, or a sub­
functional readthrough from nonbrain genes. 

24 
fact that both strands of PCR products were hybridized and 
the orientation of oligomers could not be resolved. Since the 
number of oligomers used was small, in order to correctly 
recognize similarities it was necessary to somewhat restrict 

5 the searches. For that purpose, only the 100 most frequent 
(as determined by cluster size) cDNAs from the original 
(non-normalized) infant brain library were compared with 
sequences of 195 genes expected to be highly to moderately 
expressed in the brain. In order to identify the most frequent 

10 cDNAs, the clones from the original library were clustered 
at high stringency (to maximize homogeneity of clones 
within clusters) and a single representative from 100 largest 
clusters was selected. The corresponding 100 oligomer lists To further demonstrate that the cDNA clustering proce­

dure is reliable, the individual cDNAs from some clusters 
were mapped by restriction enzymes. A typical result from 
such an experiment is shown in FIG. 5, where five clones 
picked randomly out from 525 clones from the most abun­
dant cluster, representing elongation factor alpha 1 cDNA 
(identified as described bellow), share at least two fragments 20 

totaling 1000 bp, presumably from the common 3'-end. This 
confirms the expected homogeneity of clones within the 
cluster. 

15 
were used as a database for searches using known DNA 
sequences as queries. A total of 195 searches involving gene 
sequences of average length 2.5 kB were performed against 
the database consisting of the 100 oligomer lists. 

Significance of similarity between a sequence and a list 
was determined by the analytical significance method: for 
each sequence and a candidate oligomer list, it was esti­
mated how many bits of information about the sequence are 
revealed by the list; every bit of information implies a 
two-fold improvement in significance value of the particular In addition to the restriction analyses, cDNAs from a few 

of the clusters also were sequenced from both ends. The 
sequencing confirmed homogeneity within clusters. For 
example, end-sequencing of 4 clones from a gamma actin 
cluster and 5 clones from elongation factor alpha 1 cluster 
(examined by restriction analysis in FIG. 5) revealed that the 
clones from the same cluster share essentially the same 
sequence, except that 5' ends of individual clones started at 
variable positions within the gene as much as 200 bp apart. 

A further step in the characterization of cDNAs was a 
systematic recognition of the genes that give rise to the 
identified clusters. The lists of oligomers that were puta­
tively identified to occur in particular clones were compared 
against known DNA sequences in order to identify genes 
that have already been sequenced. In the following, there is 
presented a brief outline of the recognition experiment. 

For each hybridization signature consisting of 107 hybrid­
ization intensities, a list consisting of the 28 oligomer probes 
(roughly one quarter) that exhibit the highest intensities was 
compiled. The list of 28 oligomers was augmented by the 
additional 28 reverse complementary oligomers due to the 

25 match. Two parameters were considered for each query 
sequence-the top score with a particular oligomer list and 
the difference between the top score and the second highest 
score, termed absolute and relative scores, respectively. A 
list of all the sequences that resulted in a relative score of 10 

30 bits or more were further considered. Some inconsistencies 
( different sequences matching the same clone) were resolved 
by selecting the one with the highest absolute score. This 
resulted in a set of 21 matches. It was hypothesized that 
these matches are due either to sequence identity or to high 

35 sequence similarity. 

In order to test the putative identifications, the 5'-ends of 
18 clones ( average length 300 bp) were obtained by single­
pass sequencing on an ABI sequencer. The three remaining 
clones (out of a total of 21) could not be sequenced due to 

40 technical problems. The sequences were then used in a 
BLAST search against GenBank. The sequenced fragments, 
BLAST matches and the hypothesized sequences were then 
pairwise aligned. The results of the analysis of alignments 
are summarized in Table 9. 

TABLE 9 

Recognition of sequence identities and similarities by comparison of 100 oligomer lists against 195 
GenBank entries. Out of 18 putative recognitions, 6 identities and 5 significant similarities were confirmed 

by single pass gel sequencing and subsequent BLAST search of GenBank. An identity was considered 
confirmed if it occurred as the top-scoring entry of a BLAST search. The numbers of mutations indicated 

in the bottom table include single-pass sequenceing errors. 

hyposthesized 

based on 

hybridization 

to short oligomers 

1. elongation factor alpha 1 

2. macmarcks mRNA 

3. calmodulin 

Exact identifications 

top GenBank score 

in a BLAST search 

using a 5' single-pass 

sequence as a query 

elongation factor alpha 1 

macmarcks mRNA 

calmodulin 

4. hexokinase hexokinase 1 

5. thyrdoid hormone receptor alpha thyroid hormone receptor alpha 

6. ADP-ribosylation factor alpha ADP-ribosylation factor alpha 
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TABLE 9-continued 

Recognition of sequence identities and similarities by comparison of 100 oligomer lists against 195 
GenBank entries. Out of 18 putative recognitions, 6 identities and 5 significant similarities were confirmed 

by single pass gel sequencing and subsequent BLAST search of GenBank. An identity was considered 
confirmed if it occurred as the top-scoring entry of a BLAST search. The numbers of mutations indicated 

in the bottom table include single-pass sequenceing errors. 

Significant similarities 

hyposthesized 
based on 

top GenBank score 
in a BLAST search hypothesized/GenBank alignment 

hybridization point-
to short oligomers 

using 5' single-pass 
sequence as a query length indels mutations transition 

1. elongation factor gamma 1 
2. glial fibr-acid 
3. adaptin b 
4. 80K-H protein 
5. cAMP-d kinase Ia 

pancreatic tumor-related protein 
rat dynein-associated protein 
HDL-binding protein 
anonymous EST 
initiation factor 4Ia 

TABLE 10 

58 
172 

54 
56 
51 

17 4 
8 56 22 
0 23 10 
2 17 10 

14 6 

20 

Abundancies of identified clones in original and normalized cDNA libraries, as determined by 
OSS clustering and gel-based sequencing. The starred entries denote abundancies estimated based 

on clustering of OSS-s in the complementary study. The missing values could not be reliably 
estimated due to missing data, uncertain correspondencies and other problems. 

Abundancies of identified clones 

original library normalized library 

clone oss gel oss 

tubulin alpha 2.58/1.7* 2.69 0.74/0.82* 
elongation factor alpha 1 2.83/2.53* 3.06 0.88/0.33* 
cytoskeletal gamma actin .47/24* .43 .022* 
cytochrome bl+ .044* .072* 
voltage dependent channel .018/.022* .066* 
olfactomedin .045 .299* 
mitochondrial genome 1700-2100 .722/.48* .249/.299* 
90 kD heat shock .180 .18 .027 
ubiquitin .144 .06 .022 
thyroid hormone receptor .144 .12 .011 
G(s) alpha .135 .06 .016 
G(s) alpha .135 
alpha collagen-like .117 
ADP-ribosylation factor .091 .12 .011 
calmodulin .091 .43 .038 
hexokinase 1 .081 .06 .005 
macmarcks mRNA .072 
elongation factor 1 gamma .261 .24 
enonymous .081 .011 
mitochondrial genome 2660-3100 .099 

In 11 ( out of a total of 18) cases, the BLAST search 
confirmed the putative identification. The first 6 items rep­
resent 6 confirmed identities followed by 5 confirmed simi­
larities. The remaining 7 identifications were not confirmed 

55 
by BLAST searches. In most of the 7 unconfirmed cases, the 
sequences that were identified by BLAST were not present 
in the selected set of 195 genes. In 4 of the 7 cases, due to 
the absence of identical sequences in the selected set, the 
sequences that exhibit significant similarity to the identical 
sequences turned up as best matches instead. There was only 60 

one case where a sequence returned by BLAST search was 
also present in the selected set but was not recognized. 

In addition to the GenBank search, the gel-sequenced 
fragments also were used as queries in a search of dbEST. 
All of the searches identified either highly similar or iden- 65 

tical sequences, indirectly confirming that frequently 
expressed genes were chosen for the comparisons. 

original/normalized 

abundance ratio 

34.87 
32.16 
10.1 * 

.61 * 

.33* 

.15* 
2.89/1.6* 

6.66 
6.54 

13.09 
8.44 

8.27 
2.39 

16.2 

7.36 

As a preliminary test of the possibility of cross-correlation 
of OSS data across different laboratories, the hybridization 
experiments reported in the complementary study were 
coordinated with the experiments so that a portion of clones 
from the other study were hybridized with the same set of 
107 probes. A total of about 22,000 signatures from the two 
laboratories were clustered together using the described 
method. A significant degree of cross-correlation was con­
firmed by correct grouping of control clones of known 
sequence from the two data sets. Correspondence between a 
number of clusters obtained in the two studies could be 
established and the abundancy information could be 
integrated, as shown in Table 10. A number of clusters from 
individual laboratories were identified by gel-sequencing of 
individual members and by subsequent database searches. 
By cross-correlating the data across different laboratories, a 
number of clusters could be identified without sequencing. 
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Crkvenjakov et al., "Analysis of 15,000 human brain cDNA 
clones for new expressed genes and remapping of previ­
ously sequenced human cosmid DNA. In Genome 
Sequencing and Analysis Conference V, 1993. 

Moreover, the published abundance information that is 
obtained through EST gel sequencing of the same library 
could be compared against abundancies obtained by the 
clustering experiments. The results (shown in Table 10) 
indicate an excellent agreement of EST gel sequencing and 
the results on the abundances of elongation factor alpha, 
tubulin alpha and gamma actin cDNAs, the first two being 
the most prevalent species in the library. The seven-fold 
smaller sample size in the gel-based study does not allow a 
comparison of abundances of remaining cDNAs. The extent 
of agreement of abundancies obtained from the independent 
hybridization experiments of the two laboratories demon­
strates the possibility of cross-correlation of independently 
obtained OSS-s. 

5 Drmanac, "Abstract Book for Genome Mapping and 
Sequencing"' arranged by Richard Myers, David Porte­
ous and Robert Waterstone, Cold Spring Harbor 
Laboratories, p.60, 1994. 

Drmanac et al., R., Drmanac, S., Jarvis, J., and Labat, I., 
10 "Sequencing by hybridization," In J. Venter, editor,Auto­

mated DNA Sequencing and Analysis Techniques, pages 
29-36, Harcourt Brace Jovanovich, New York, 1994a. 

The gel-based EST sequencing and analysis (Adams et 
al., 1991; Khan et al., 1992; Matsubara and Okubo, 1993; 15 

Adams et al., 1993) has already demonstrated that commer­
cial cDNA libraries, while adequate for screening with 
specific probes, are not very useful for systematic gene 
discovery and for gene expression studies. The high fraction 
of contaminating mitochondrial and ribosomal sequences 20 

and various cloning and amplification biases make for an 
unacceptably high sampling redundancy. Also, it is impor­
tant to use cDNA libraries which do not exhibit any cloning 
bias, which may distort the true gene expression pattern. 
Several EST studies (Khan et al., 1992; Matsubara and 25 

Okubo, 1993; Adams et al., 1993) have found that the 
libraries used in the study are superior to other examined 
libraries in all important respects. 

To check for a possible cloning bias using cDNA, abun­
dance measurements were compared with the earlier esti- 30 

mates for rat brain obtained on RNA directly (Milner and 
Sutcliffe, 1983). Table 8 summarizes the results of the 
comparison. Assuming similar abundancy structure in the rat 
and the original human libraries, the agreement between the 
abundancies for highly and moderately frequent cDNAs 35 

indicates that the original library does not exhibit any major 
cloning bias. One should note that the abundancies for rat 
brain are not directly measured, but are calculated by 
extrapolating from experiments involving fewer than 200 
distinct cDNAs. Due to the small size of the sample, the 40 

large number of distinct but infrequent cDNAs that are 
detected by SBH methodology could not be detected in that 
study. Assuming that the infrequent cDNAs detected in 
humans also are present in rat, it may be concluded that 
extrapolation from small samples is not an adequate substi- 45 

tute for large-scale cDNA studies. 
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SEQUENCE LISTING 

(1) GENERAL INFORMATION: 

(iii) NUMBER OF SEQUENCES: 8 

(2) INFORMATION FOR SEQ ID NO:1: 

(i) SEQUENCE CHARACTERISTICS: 
(A) LENGTH: 20 base pairs 
(B) TYPE: nucleic acid 
(C) STRANDEDNESS: single 
(D) TOPOLOGY: linear 

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1: 

GAAGTTGCGC ATGCACAAGT 

(2) INFORMATION FOR SEQ ID NO:2: 

(i) SEQUENCE CHARACTERISTICS: 
(A) LENGTH: 19 base pairs 
(B) TYPE: nucleic acid 
(C) STRANDEDNESS: single 
(D) TOPOLOGY: linear 

(ix) FEATURE: 
(A) NAME/KEY: modified_base 
( B) LOCATION: one-of ( 4, 13) 
(D) OTHER INFORMATION: /mod_base- OTHER 

/note= uN = A, G, c, or T" 

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: 

CCANAAGTTG CGNATGCAC 

(2) INFORMATION FOR SEQ ID NO:3: 

(i) SEQUENCE CHARACTERISTICS: 
(A) LENGTH: 20 base pairs 
(B) TYPE: nucleic acid 
(C) STRANDEDNESS: single 
(D) TOPOLOGY: linear 

(ix) FEATURE: 
(A) NAME/KEY: modified_base 
(B) LOCATION: one-of(l0, 13) 

(D) OTHER INFORMATION: /mod_base-
/note= uN = A, G, c, or T" 

OTHER 

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3: 

GAAGTTGCGN ATNCACAAGT 

(2) INFORMATION FOR SEQ ID NO:4: 

(i) SEQUENCE CHARACTERISTICS: 
(A) LENGTH: 10 base pairs 
(B) TYPE: nucleic acid 
(C) STRANDEDNESS: single 
(D) TOPOLOGY: linear 

30 
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-continued 

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: 

AGTCAGTTTT 

(2) INFORMATION FOR SEQ ID NO:5: 

(i) SEQUENCE CHARACTERISTICS: 
(A) LENGTH: 18 base pairs 
(B) TYPE: nucleic acid 
(C) STRANDEDNESS: single 
(D) TOPOLOGY: linear 

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: 

GATTACCGAT GAGCTAAT 

(2) INFORMATION FOR SEQ ID NO:6: 

(i) SEQUENCE CHARACTERISTICS: 
(A) LENGTH: 16 base pairs 
(B) TYPE: nucleic acid 
(C) STRANDEDNESS: single 
(D) TOPOLOGY: linear 

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: 

ATTACATGAG CATAAT 

(2) INFORMATION FOR SEQ ID NO:7: 

(i) SEQUENCE CHARACTERISTICS: 
(A) LENGTH: 18 base pairs 
(B) TYPE: nucleic acid 
(C) STRANDEDNESS: single 
(D) TOPOLOGY: linear 

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: 

AGCTGAAGAG CAGCTAAA 

(2) INFORMATION FOR SEQ ID NO:8: 

(i) SEQUENCE CHARACTERISTICS: 
(A) LENGTH: 11 base pairs 
(B) TYPE: nucleic acid 
(C) STRANDEDNESS: single 
(D) TOPOLOGY: linear 

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: 

CATTTTTGTA C 

What is claimed is: 
1. A method for detecting sequence similarity between at 50 

least two nucleic acids, comprising the steps of: 
(a) identifying a plurality of putative subsequences from 

a first nucleic acid; 
(b) comparing said subsequences with at least a second 

nucleic acid sequence; and 55 

( c) aligning said subsequences using said second nucleic 
acid sequence in order to simultaneously maximize 
(i) matching between said subsequences and said sec­

ond nucleic acid sequence and 
(ii) mutual overlap between said subsequences, 60 

whereby said aligning predicts a subsequence that occurs 
within both said first and said second nucleic acids. 

2. The method of claim 1, wherein said plurality of 
subsequences is identified by hybridization of said first 
nucleic acid with a set of oligonucleotide probes. 65 

3. The method of claim 2, wherein said plurality of 
subsequences is identified by: 

10 

18 

16 

18 

11 

( a) simultaneously contacting said first nucleic acid with 
an array of said set of oligonucleotide probes under 
conditions permitting hybridization of said oligonucle­
otide probes to substantially complementary regions 
within said first nucleic acid molecule; and 

(b) determining hybridization of individual oligonucle­
otide probes. 

4. The method of claim 2, wherein said plurality of 
subsequences is identified by 

( a) simultaneously contacting said first nucleic acid, 
arrayed as a collection of nucleic acid fragments, with 
individual oligonucleotide probes of said set of oligo­
nucleotide probes under conditions permitting hybrid­
ization of said set of oligonucleotide probes to substan­
tially complementary regions within said arrayed 
collection of nucleic acid fragments; and 

(b) determining hybridizations of said oligonucleotide 
probes with said individual nucleic acids. 

5. The method of claim 2, wherein said plurality of 
subsequences is identified by: 
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(a) contacting said first nucleic acid with an array of said 
set of oligonucleotide probes and a second set of 
oligonucleotide probes under conditions permitting 
hybridization of said oligonucleotide probes to regions 
within said first nucleic acid molecule that are substan- s 
tially complementary to concatenations of said oligo­
nucleotide probes; and 

(b) determining hybridization of said oligonucleotide 
probes. 

6. The method of claim 1, wherein each of said putative 10 

subsequences is from six to twenty nucleotides. 
7. The method of claim 1, wherein said second nucleic 

acid is predicted from an amino acid sequence or motif. 
8. The method of claim 1, wherein said subsequences are 

used as a query to search a collection of nucleic acid 15 

sequences. 
9. The method of claim 1, wherein said second nucleic 

acid is used as a query to search a collection of nucleic acid 
sequences, each nucleic acid sequence of said collection 
being represented by a list of subsequences. 

34 
10. The method of claim 1, wherein said aligning is a 

function of encoding length of the second nucleic acid. 

11. The method of claim 1, wherein said aligning is a 
function of encoding length of said subsequences. 

12. The method of claim 10, wherein said aligning is 
based on an estimate of mutual information between said 
second sequence and the said subsequences. 

13. The method of claim 11, wherein said aligning is 
based on an estimate of mutual information between said 
second sequence and the said subsequences. 

14. The method of claim 12, wherein the significance of 
said similarity is determined using basic or extended sig­
nificance methods. 

15. The method of claim 13, wherein the significance of 
said similarity is determined using basic or extended sig­
nificance methods. 

* * * * * 


