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EDDY CURRENT TECHNIQUE FOR 
PREDICTING BURST PRESSURE 

2 
Likewise, algorithms based on EC expert rules applied to 

the identification of defects in steam generator and heat 
exchanger tubing have met with only limited success. 
Attempts to use expert systems to estimate the depth of This invention was made with Government support 

under Contract No. W-31-109-ENG-38 awarded by the U.S. 
Department of Energy. The Government has certain rights in 
this invention. 

FIELD OF THE INVENTION 

5 steam generator tubing flaws in tube support plate regions 
based on EC voltages and phase angles have met with even 
less success because complex defect morphologies have 
limited the accuracy of those algorithms to only ±20 % of 
the tube wall thickness. Thus, current EC-based expert rules 

The present invention relates to a method for predicting 
burst pressures in tubing. More particularly this invention 
relates to a method for predicting burst pressures in thin
walled tubing by deconvolving eddy current data to identify 
electrical characteristics of tubing defects and analyzing the 
deconvolved data using artificial neural network modeling to 
predict burst pressures. 

10 
have resulted in poor decisions about whether to plug 
suspect steam generator tubes. 

BACKGROUND OF THE INVENTION 

Artificial intelligence methods have held the promise of 
providing improved modeling of tube defects compared to 
conventional empirical modeling techniques. Beginning in 
the late 1970s, pattern-recognition algorithms have been 

15 used to determine which EC Lissajous-pattern features best 
correlated with the defect classification of tubes with 
electrodischarge-machined (EDM) slots, machined elliptical 
wastage, and uniform thinning. These parametric studies 
considered many signal features based on the shape of the Steam generators have a long history of being a trouble

some major component in pressurized water reactor nuclear 
power plants, and steam generator tube failures remain a 
costly concern for nuclear utilities. The thousands of thin
walled tubes of a steam generator form a containment 
boundary between the high-pressure primary and low
pressure secondary water systems. Therefore, plant opera
tors must repair or plug tubes if significant cracking is 
detected. Tube cracking has directly led to the decommis
sioning and replacement of many U.S. steam generators. 
Eddy current (EC) techniques are currently the predominant 
technology used for the in-service inspection of nuclear 30 
power plant steam generator tubing in the U.S. and else
where. Current EC measurement techniques using differen
tial bobbin-coil probes are extremely sensitive to the pres
ence of axial cracks in the tube wall, but they are equally 
sensitive to the presence of tubing artifacts, i.e. tube dents, 35 
fretting, support structures, and corrosion products. EC 
signal interpretation is further complicated by cracking 
geometries more complex than a single axial crack. Since 
cracks are difficult to distinguish from artifacts and even 
more difficult to characterize, operators are often forced to 40 
repair or plug a tube upon detection of a defect, regardless 

20 Lissajous figures and ones based on EC voltage readings. 
Along with classifying the simulated flaws, the researchers 
attempted to predict the depth of the uniform thinning based 
on a least-squares regression of EC features. However, these 
attempts to predict the size of the axial slots were largely 

25 unsuccessful. 

of its effect on tube integrity. 
Current analysis techniques based on EC bobbin-probe 

measurements have been relatively successful in detecting 
cracks, but fail almost completely when applied to the 45 

characterization of cracks and their effect on tube integrity. 
For example, EC inspection software is available to linearly 
mix signals taken at different frequencies. These mixing 
algorithms can accentuate signals from defects, aiding 
defect detection, but signal distortions due to mixing make 50 

this technique less useful for defect sizing. Since they 
respond only to an aggregate disruption of electrical current 
along the circumference of a tube at a given axial position, 
bobbin coils cannot differentiate multiple defects along the 
tube circumference. Bobbin probes, therefore, are ineffec- 55 

tive for characterizing complex cracking. Some limited 
success has been demonstrated using rotating pancake coils 
to estimate crack depth. This invention emphasizes the use 

More recently, an artificial intelligence technique of case
based reasoning has been applied to the classification and 
characterization of flaws detected through EC inspection and 
other nondestructive examination methods. Case-based rea-
soning relies on a comparison of input features ( e.g. as from 
an eddy current measurement) to values used previously for 
training the system. Cases with similar input features would 
be expected to have similar solutions. Although case-based 
reasoning has potential advantages over other artificial intel-
ligence techniques, it still has limitations, including the 
requirement of a large data base to cover the range of 
possible input-feature combinations, especially for problems 
that depend on several input variables. Additionally, case
based reasoning is particularly vulnerable to the effect of 
data noise. Input data distorted by the presence of artifacts 
can baffle the analysis system's attempt to find a matching 
comparison case in the data base. 

Artificial neural networks (ANNs) have held particular 
promise as an artificial intelligence tool for modeling steam 
generator tube integrity. ANN techniques have been applied 
to the eddy current identification of flaws in flat plates, and 
similar neural network defect-identification studies using 
tubes with machined flaws have been performed. Research
ers have used ANNs to characterize the defect depth and 
artifact type for tubes with drilled holes and artifacts such as 
tube supports, copper, and magnetite. Employing this same 
drilled-hole data, others have applied ANNs to eddy current 
signal analysis for defect classification and for defect sizing. 
In order to separate EC crack signals from those due to the 
artifacts, a reference signal was subtracted from the test 
signal, where the reference signal was obtained from a tube 
without holes. Accordingly, the common features of the two 
EC measurements were removed, and the hole effects in the 
test signal were enhanced. The earlier research was later of differential bobbin coils, but is not limited to that tech

nique. 
Additionally, EC signals from cracks, wastage, and other 

physical sources have similar, if not identical, frequency 
responses. Frequency-based signal processing techniques 
such as Fourier filtering and wavelet transformations are 
ineffective at winnowing out artifact signals, since their 
frequency signatures are indistinguishable from those of 
crack signals. 

60 extended to estimate the depth of laboratory-generated 
outer-diameter stress corrosion cracks in simulated steam 
generator tubes. Despite these limited successes in classify
ing and sizing defects, this research has not translated into 
a predictive capability that allows modelers to accurately 

65 assess the integrity of a damaged tube. 
More recently, researchers have proposed a hybrid system 

that combines rule-based logic, fuzzy syntactic pattern rec-
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ognition techniques, and artificial neural networks for the 
detection and basic classification of flaws from eddy current 
signals. Similarly, others are developing a hybrid eddy 
current diagnostic system. However, these systems have yet 
to address the issue of distinguishing crack signals from 5 
other signal sources, nor do they attempt to quantify tube 
burst pressure, which is a more accurate predictor of tubing 
integrity. 

It is therefore an object of the present invention to provide 
an improved method for assessing the physical integrity of 

10 
a tube having a defect. 

It is another object of the present invention to provide a 
novel method for predicting the burst pressure of a tube. 

It is yet another object of the present invention to provide 
an improved method for more accurately assessing the 

15 
integrity of a damaged tube. 

It is a further object of the invention to provide a novel 
method for predicting the burst pressure of a tube having a 
critical tubing defect from inspection data of the critical 
tubing defect. 

20 
Other objects and advantages of the invention will 

become apparent by review of the detailed description of 
preferred embodiments. 

SUMMARY OF THE INVENTION 

In one form of the present invention, a method for 25 

predicting the integrity of a tube is provided. The present 
technique correlates a signal feature or features of raw 
inspection data of the tube with a range of burst pressures. 
In another form of the invention, the raw inspection data 
from the tube can be deconvolved into Gaussian peaks 30 
which, when combined, represent separate tubing defects. 
The critical tubing defect is then selected from the combined 
Gaussian peaks and correlated with a range of burst pres
sures for the critical tube defect. 

The present method is preferably executed by collecting 35 

inspection data, such as EC data, on tubing having a defect, 
typically a crack, and deconvolving the inspection data into 

4 
BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates the root mean square (RMS) peak-to
peak distance and RMS area for crack peaks of 100 kHz 
RMS inspection data; 

FIG. 2 illustrates the radial vector angle and radial vector 
length signal features of a Lissajous pattern; 

FIG. 3 illustrates the lobe length and vertical voltage 
height signal features of a Lissajous pattern; 

FIG. 4 illustrates the deconvolution of raw EC inspection 
data into a set of Gaussian peaks; 

FIG. 5 likewise illustrates the deconvolution of raw EC 
inspection data into a set of Gaussian peaks; 

FIG. 6 illustrates Lissajous lobes for matching vertical 
and horizontal Gaussian peaks from the deconvolved Gaus
sian peaks of FIGS. 4 and 5; 

FIG. 7 illustrates a Lissajous lobe for a critical tubing 
crack from the combination of deconvolved EC inspection 
data of FIGS. 4 and 5 superimposed on a Lissajous pattern; 

FIG. 8 is a plot of predicted burst pressure versus mea
sured burst pressure from Example I; 

FIG. 9 is a plot of predicted burst pressure versus mea
sured burst pressure from Example II; 

FIG. 10 is a plot of predicted burst pressure versus 
measured burst pressure from Example II showing mean 
predictions and one standard deviation for each dropout 
tube; 

FIG. 11 is a plot of predicted burst pressure versus 
measured burst pressure from Example III; and 

FIG. 12 is a plot of predicted burst pressure versus 
measured burst pressure from Example III showing mean 
predictions and one standard deviation for each dropout 
tube. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS at least one undistorted defect signal. Deconvolution of the 

inspection data for a crack defect preferably comprises: 
fitting Gaussian peaks to the root mean square voltage
versus-axial-position curve of a test frequency of the inspec
tion data; performing a least-squares fit of one of a horizon-

In one form of the invention a method for predicting the 
40 burst pressure of tubing having a critical tubing defect is 

described which correlates a feature or features of raw 

tal and vertical voltage measurement data set for the test 
frequency of the inspection data utilizing the fit Gaussian 
peaks to determine the approximate axial peak location from 45 

the root mean square voltage-versus-axial-position curve of 
the test frequency; fitting further Gaussian peaks to remain
ing horizontal and vertical inspection data of the test fre
quency utilizing the least-squares fit of the one of a hori
zontal and vertical voltage measurement for the test 50 

frequency of the inspection data as a reference point; iden
tifying matching sets of Gaussian peaks by comparing 
voltage-versus-position plots of the least-squares fit of the 
one of a horizontal and vertical voltage measurement for the 
test frequency of the inspection data; and constructing 55 

Lissajous plots of the matching pairs of Gaussian peaks 
wherein each Lissajous plot defines a separate undistorted 
anomalous signal, which may result from a tubing defect or 
artifact. The process is repeated for other EC test frequen
cies. The undistorted defect signal associated with the criti- 60 

cal tubing defect is selected from the set of all of the 
deconvolved undistorted signals and is associated with a 
range of burst pressures through a regression technique, 
preferably utilizing an ANN. 

The above described objects and embodiments are set 65 

forth in the following description and illustrated in the 
drawings described hereinbelow. 

tubing inspection data with a range of burst pressures 
utilizing a regression technique. In a preferred form of the 
present invention a novel signal processing technique is 
described which deconvolves raw eddy current signals into 
separate Gaussian peaks that represent signal contributions 
from different sources. Signals associated with the dominant 
crack are identified from the individual peaks, and the 
deconvolved signal features associated with the critical 
tubing defect are used to predict the burst pressure of the 
tube. 

In one preferred form of the present invention, EC data 
collected via a differential bobbin-probe from a tube having 
a critical tubing crack is deconvolved into independent 
Gaussian curves. The deconvolution technique attempts to 
restore the full, undistorted crack signal. Identification of 
peaks associated with cracks allows EC signal features to be 
correlated to tube burst pressure through ANN modeling. A 
person skilled in the art will realize that this technique may 
also be performed in a similar manner on tube inspection 
data gathered through other probes (e.g. rotating-pancake
coil probes, pancake array probes, cross-wound coil probes, 
transmit/receive reflection coils, and guided wave bore 
probes) and techniques, including, but not limited to, bulk 
wave ultrasonic or other acoustical techniques or methods. 
The preferred embodiments of the present invention focus 
on deconvolution of EC bobbin coil probe data because EC 
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bobbin coil probes are currently the predominant technology 
used for in-service inspection of nuclear power plant steam 
generator tubing. 

According to signal processing theory, specific, associ
ated sets of Gaussian curves represent different signal 
sources: e.g., tube support plates, cracks, deposits, and 
dents. Thus, the source of a signal can be determined based 
on the shape and position of the Lissajous pattern for each 
Gaussian curve and its phase rotation with test frequency. 

The preferred EC voltage deconvolution technique is 
based on the following premises: 

6 
For any given tube, the following procedure is preferably 

used to identify the Lissajous lobes for the critical crack: 
1. The fitting software is used to roughly fit Gaussian 

peaks to the RMS voltage-versus-axial-position curve of one 
5 of the EC test frequencies ( e.g., either 400, 200, or 100 kHz). 

Note that the RMS curves, created from the root mean 
square of the horizontal and vertical voltage readings, have 
only positive values, so only positive Gaussian peaks are 
required to fit the RMS curves. This greatly simplifies 

10 generating a rough fit, which determines the number of 
Gaussian peaks and the approximate axial locations of the 
Gaussian peaks along the tube. This initial RMS fit provides 
the basis for the fitting of one of the various vertical or 
horizontal voltage traces. 

1. Each physical feature of the tube (e.g., a crack, a tube 
support plate, or a dent) has a corresponding set of 
peaks in the RMS voltage plot, although the composite 
set of peaks may obscure one another; 15 2. A least-squares fit of one of the horizontal or vertical 

voltage measurements for one of the test frequencies is 
performed using the previous RMS curve fitting to give the 
approximate axial locations of the peaks. This fit may 
include both positive and negative Gaussian curves. New 

2. The full width at half maximum (FWHM) value of the 
individual peaks is limited by the resolution of the 
differential bobbin-coil probe, which is determined by 
the spacing of the two coils; and 

3. The peaks associated with tubing cracks have charac
teristics ( e.g., how their Lissajous patterns rotate with 
frequency) that identify them as crack peaks. 

Once EC voltage signals have been normalized based on 
tube-standard measurements, commercially available soft
ware can be used to deconvolve the voltage traces. Each tube 

20 peaks are added as needed to reduce the residuals between 
the fit and the original data. 

3. The remaining horizontal and vertical voltage readings 
are fit using the previous fit results as a starting point. During 
the optimization of these fittings, the Gaussian peak widths 

25 are preferably held constant. Accordingly, only peak ampli
tudes and axial positions are allowed to change. 

of a bobbin-probe eddy current inspection has associated 
with it several EC voltage curves, including at least: one 
vertical and one horizontal trace for each of the ac test 
frequencies (e.g., 400, 200, and 100 kHz); and one RMS 30 
voltage curve for each frequency. 

4. By comparing the voltage-versus-position plots of the 
combined set of Gaussian curves that constitute the fit of 
each horizontal and vertical inspection data, matching pairs 
of Gaussian peaks are identified. Each horizontal/vertical 
pair represents a separate Lissajous-figure lobe. (Note that 

Twenty-two EC signal features were considered for devel-
oping ANN burst pressure models in the Examples below: 

1. 400 kHz RMS area for crack peaks; 
2. 200 kHz RMS area for crack peaks; 
3. 100 kHz RMS area for crack peaks; 
4. RMS peak-to-peak distance (axial defect length); 
5. 400 kHz radial vector length; 
6. 200 kHz radial vector length; 
7. 100 kHz radial vector length; 
8. 400 kHz vertical voltage height; 
9. 200 kHz vertical voltage height; 
10. 100 kHz vertical voltage height; 
11. 400 kHz Lissajous lobe length; 
12. 200 kHz Lissajous lobe length; 
13. 100 kHz Lissajous lobe length; 
14. 400 kHz radial vector angle; 
15. 200 kHz radial vector angle; 
16. 100 kHz radial vector angle; 
17. Radial vector angle change from 400 kHz to 200 kHz; 
18. Radial vector angle change from 400 kHz to 100 kHz; 

combinations of more than one horizontal or vertical Gaus
sian peak may be required to define the Lissajous lobe.) 

5. Lissajous plots of the horizontal/vertical peak pairs are 
35 constructed for each EC test frequency, creating a series of 

Lissajous lobes. Pairs of lobes that correspond to a single 
physical feature of the tube are matched by observing the 
phase angle change of the lobes with frequency. Ideally, 
matching lobe pairs form a figure-eight design. Often, 

40 however, the patterns are distorted. Lobe pairs are identified 
as signals from tube support plates, cracks, or other sources 
based on expert rules concerning their shapes and their 
dependence on frequency. 

A Lissajous lobe pair is identified as the signal from the 
45 dominant tubing crack and provides the basis for EC signal 

features used for ANN testing and training. Expert rules are 
required to determine the best peak fit for the EC voltage 
signal and to select the combination of fitted peaks that 
represents the critical tube flaw. For example, the two lobes 

50 for an axial crack are expected to be approximately 180° 
apart and should have the same phase-angle rotation as the 
test frequency is increased. 

19. Radial vector angle change from 200 kHz to 100 kHz; 
55 

As an example, FIGS. 4 through 7 give the deconvolution 
results for the 400 kHz EC measurement of a cracked tube 
pulled from service at an operating nuclear power station. 
Field data often have more complicated Lissajous patterns 20. Radial vector length change from 400 kHz to 200 

kHz; 
21. Radial vector length change from 400 kHz to 100 

kHz; 
22. Radial vector length change from 200 kHz to 100 60 

kHz; 
The EC signal feature data were normalized from O to 1 

to treat all input features equally in the ANN model. FIGS. 
1-3 illustrate the definitions of the various features. Signal 
features based on the EC Lissajous patterns (features 5 65 

through 22) are derived from the coordinates of the crack 
lobe ends. 

than this, but the example serves to illustrate the deconvo
lution technique. FIGS. 4 and 5 show the set of deconvolved 
Gaussian curves used to fit the vertical and horizontal EC 
voltage signals. PeakFit Version 4 (SPSS, Inc.) software was 
used to perform these Gaussian curve fits. In each figure the 
lower plot shows the individual Gaussian peaks; the upper 
plot compares the combined set of Gaussian peaks to the 
original voltage signal. Twenty-one Gaussian peaks were 
used for both the vertical- and horizontal-signal curve fits. A 
series of Lissajous lobes were constructed from matching 
pairs of vertical and horizontal peaks located at the same 
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axial position (FIG. 6). The Lissajous diagram represents a 
plot of vertical versus horizontal voltage at each axial 
position. A combination of lobes was selected as associated 
with a critical tubing crack (FIG. 7). Note that the selected 
lobes ( dashed lines) do not directly correspond to positions 5 

on the original Lissajous pattern (solid line). Instead the 
measured crack-related lobes were distorted by the presence 
of the tube support plate edge near the crack tips. 

The following non-limiting Examples set forth below 
employed PeakFit, Version 4 (SPSS, Inc.) software to fit the 10 

EC voltage signals with independent Gaussian curves. Peak-
Fit determines the least-squares fit of a series of peaks to a 
data set. 

8 
that without the deconvolution technique, only twelve of the 
fourteen tubes could be adequately modeled. 

For this example, feed-forward artificial neural networks 
were trained using software that employs the method of 
conjugate gradients to improve the learning process. ANN 
testing was performed with a separate program. Parametric 
studies were performed to determine which combination of 
features best predicted tubing burst pressure. In all cases, a 
leave-one-out (single-dropout) cross-validation technique 
was used to assess the ANNs. In addition to examining 
various EC signal features, the parametric studies also 
considered the dependence of the burst pressure predictions 
on the ANN architecture (i.e., on the number of hidden 
layers and the number of nodes in each hidden layer). 

EXAMPLE I 

The data set for Example I used tubes with cracks grown 
within a simulated steam generator environment. The 
inspection data included, along with the EC readings, mea
surements of the pressure required to rupture the tubes at 
room temperature. The inspection data used in this Example 
covered fourteen tubes. 

15 Furthermore, the ANN models were optimized in terms of 
the fixed convergence criterion selected or, alternatively, in 
terms of the fixed number of training iterations. The standard 
deviation of the residuals between the ANN-predicted burst 
pressures and the measured burst pressures was used to 

20 judge the quality of each ANN. 

The 7/2-inch outside-diameter Alloy 600 tubes were fit 
with collars along their axis to simulate various tube support 
plate configurations and were packed with simulated steam 
generator sludge. The tubes were exposed to an aggressive 
environment in an experimental facility to promote accel
erated cracking. In most cases, the tubes developed cracks 
with complete penetration through the tube wall at the 
collars. Bobbin probes were used to collect EC signals 

30 
through the cracked regions. Afterward, the tubes were 
removed from their collars, burst-pressure tested and 
destructively examined. The burst pressure tests were per
formed at room temperature using an air-driven differential 
piston water pump. The reported burst pressures were nor-

35 
malized to account for the differing room-temperature flow 
stresses of the Alloy 600 lots. The flow stress is defined as 
the average of the yield and ultimate tensile strengths. 

The parametric studies showed that the best ANN models 
required five EC signal features as input variables: radial 
vector length for either 100 kHz or 200 kHz; RMS peak
to-peak distance ( axial defect length); 400 kHz radial vector 

25 angle; 200 kHz radial vector angle; and angle change from 
400 kHz to 200 kHz. The studies showed that two of the 

All tube cracks originated on the outer (OD) tube wall and 
were, in general, oriented axially along the tube, which is 40 
typical of stress corrosion cracking in operating steam 
generators. The crack morphologies ranged from single 
axial cracks to interconnected networks of small cracks. 
These various crack geometries complicated the description 
of the cracking by a single measure, such as crack length or 45 
crack depth. 

The EC inspection data consisted of differential bobbin
probe voltage signals taken along the axis of each tube at 
four test frequencies (400, 200, 100, and 10 kHz). An ac 
frequency of 10 kHz gives a penetration depth far deeper 50 

than the thickness of a steam generator tube wall. Although 
EC readings taken at this frequency are useful in quickly 
locating tube support plates and other structures, their use in 
identifying and characterizing tube defects is minimal. Thus, 
the method provided by the preferred embodiments of the 55 

present invention was based on the other 400, 200 and 100 
kHz frequencies. The amplitudes of the voltage signals for 
the fourteen tubes were normalized and their phases rotated 
based on EC measurements of tubes with standard notches. 

fourteen tubes had less than optimal ANN predictions. These 
outliers were removed from the ANN training set. A plot of 
predicted burst pressure versus measured burst pressure is 
presented in FIG. 8. In FIG. 8, each open symbol represents 
the ANN prediction of a tube when the model was trained 
using the remaining eleven tubes. The leave-one-out cross
validation standard deviation ( calculated for the residuals of 
the ANN-predicted burst pressures versus the known burst 
pressures) was 258 psi, an error on the order of 4%. The 
worst burst pressure prediction residual was less than 450 
psi. This result is a substantial improvement over previous 
reported attempts to predict tubing burst pressure from EC 
inspection signals. 

The solid symbols in FIG. 8 are the predictions for the 
outlier tubes using an ANN trained with the remaining 
twelve tubes. In both cases, the ANN model greatly over
predicted the burst pressure-by up to 1650 psi. As shown 
in Example II, the explanation for these outliers is that the 
crack-related Lissajous-pattern lobes could not be correctly 
identified from the eddy current voltage data without the 
peak deconvolution technique. 

EXAMPLE II 

Example II demonstrates how the deconvolution tech
nique can improve the prediction of tube burst pressure. The 
inspection data of Example I were analyzed using the eddy 
current signal deconvolution procedure described above. 
Signal features were extracted from the Lissajous-pattern 
crack lobes generated through the deconvolution technique. 
ANNs were trained and tested using the same EC signal 
features as determined through the earlier parametric studies 
discussed in Example I. A new parametric analysis was used 

In this Example I analysis of the inspection data, signal 
features that could be used as artificial neural network input 
variables were extracted directly from the original eddy 
current readings. That is, the deconvolution technique was 
not applied to the data. The candidate signal features 
included the radial vector lengths and radial vector angles 
for each of the three ac test frequencies along with numerous 
other Lissajous-pattern characteristics. The results showed 

60 to determine the optimal ANN architecture and convergence 
criterion. The best ANN architecture, having eight nodes in 
a single hidden layer with a fixed convergence criterion of 
360 psi, had a single-dropout standard deviation of 236 psi 
(FIG. 9), an improvement of 22 psi over the ANNs based on 

65 the raw (un-deconvolved) inspection data of Example I. 
More significantly, the two tubes that were dismissed as 
outliers in the Example I were successfully predicted by the 
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new ANNs. That is, signal deconvolution resulted in a more 
accurate identification of the critical crack in the EC signals, 
which allowed for a better ANN analysis. 

A multiple-dropout analysis was also performed for the 
final ANN architecture. One hundred ANN models were 5 

10 
mechanical properties among Alloy 600 lots. Rather, the 
ANNs were able to use the yield strength to determine an 
improved compensation for differing mechanical properties. 

The ANN architecture with the smallest standard devia
tion (213 psi) for a leave-one-out cross-validation analysis 
consisted of three nodes in a single hidden layer where the 
number of training iterations was fixed at nineteen. FIG. 11 
shows a plot of the predicted burst pressures versus mea
sured burst pressure. The worst burst pressure prediction 

10 deviates from the measured burst pressure by less than 500 
psi. The standard deviations shown in this FIG. approach the 
inherent accuracy limit of burst pressure testing, meaning 
that the ANN model variability may in large part reflect the 

created from training sets of fourteen randomly selected 
tubes created from the original fourteen tubes. Each model 
was tested on the remaining tubes not used for training. The 
results are presented in FIG. 10, which displays the mean 
predictions and one standard deviation for each dropout 
tube. The standard deviation of the residuals of the mean 
predictions was 299 psi. In comparison, the multiple
dropout standard deviation for the ANNs using 
un-deconvolved data was 384 psi. This result demonstrates 
that the final ANN modeling is robust. Predictions were still 15 

good even when training was based on very few tubes. 
Notable in FIG. 10 are the results of the two tubes previously 
identified as outliers. The burst pressure estimates were 
consistently accurate even with multiple dropouts in the 
training set. This improvement in modeling performance 20 

was possible once a proper identification of the crack-related 
Lissajous-pattern lobes could be made through the peak 
deconvolution technique. 

reproducibility of burst pressure testing, rather than model
ing errors. 

A multiple-dropout analysis was performed for the opti
mized Pulled-Tube ANN architecture. One hundred ANN 
models were trained from random training sets ( each with 
nine tubes) created from the original nine tubes selected 
from the Pulled-Tube inspection data. Each model was 
tested on the remaining tubes not used for training. The 
results shown in FIG. 12 display the mean predictions and 
one standard deviation for each dropout tube. The standard 
deviation of the residuals of the mean predictions was 226 

EXAMPLE III 25 psi, only slightly greater than the single-dropout result of 
213 psi. This indicates that the ANN model is robust. Even 
with a multiple number of tubes removed from the small 
data set, the model successfully predicted the burst pressure 

The inspection data for this Example ( the Pulled-Tube 
Burst Pressure inspection data) included bobbin probe EC 
measurements from 7/2-inch steam generator tubes removed 
from service at different operating nuclear plants. All tubes 30 
had a ½-inch outer diameter and were made from various 
heats of Alloy 600 with differing mechanical properties. The 
differing mechanical properties of the tubes were accounted 
for by normalizing the burst pressure to the room
temperature flow stress of the alloy, where the flow stress is 35 
defined as the average of the yield and the ultimate tensile 
strengths. The tubes, which all had defect indications near 
tube support plates, were burst-pressure tested using pres
surized water within plastic bladders and then destructively 
examined. The Inventors did not have access to the exami-

40 
nation results. The tubes had no support plate restraints 
during burst testing. The reported burst pressures were 
normalized based on a flow stress of 75 ksi. All tubing cracks 
originated in the outer diameter tube wall and were reported 
to be oriented axially along the tube. The cracks were 45 
generally shallower than the cracks in the data of Examples 
I and II. 

of the tubes within the data set. 
While preferred embodiments have been illustrated and 

described, it should be understood that changes and modi
fications can be made therein in accordance with ordinary 
skill in the art without departing from the invention in its 
broader aspects. Various features of the invention are defined 
in the following claims. 

What is claimed is: 
1. A method for predicting the burst pressure of tubing 

having a critical tubing defect, comprising the steps of: 
collecting inspection data on a tube having a critical 

tubing defect; 
selecting a defect signal which corresponds to the critical 

tubing defect of the tube; and 
relating the selected undistorted defect signal of the 

critical tubing defect with a range of burst pressures. 
2. The method of claim 1 wherein the inspection data 

comprises data collected by at least one of an electrical 
technique and an acoustical technique. 

3. The method of claim 2 wherein the data collected by the 

50 
electrical technique consists of eddy current data collected 
by a differential technique. 

Nine data files of ½-inch tubes from two nuclear plants 
were utilized in the final ANN model. Two outlier tubes from 
one plant had consistently poor ANN burst pressure predic
tions and were excluded from further study. Parametric 
studies were performed to determine which combination of 
features best predicted tubing burst pressure. In addition, 
parametric studies considered the dependence of the burst 
pressure predictions on the ANN architecture. Furthermore, 55 

the ANN models were optimized in terms of the fixed 
convergence criterion selected or, alternatively, in terms of 
the fixed number of iterations. 

Only one EC signal feature was found to correlate to the 
flow-stress adjusted burst pressures of the nine selected 60 

Pulled-Tube cases: the 400 kHz radial vector angle (RVA). 
Better correlations than those achieved by previous 
researchers were obtained by relating the 400 kHz RVA and 
the yield strength to the measured non-adjusted burst pres
sures. This implies that the flow stress was not the best 65 

measure of the crack resistance of the tube, and accordingly, 
was not the best measure for accounting for varying 

4. The method of claim 1 wherein the selected undistorted 
defect signal is related with a range of burst pressures by an 
artificial neural network. 

5. A method for predicting the burst pressure of tubing 
having a critical tubing defect, comprising the steps of: 

collecting inspection data on a tube having a critical 
tubing defect; 

deconvolving the inspection data of the tube into at least 
one undistorted defect signal; 

selecting the undistorted defect signal which corresponds 
to the critical tubing defect of the tube; and 

relating the selected undistorted defect signal of the 
critical tubing defect to a range of burst pressures. 

6. The method of claim 5 wherein the inspection data 
comprises data collected by one of an eddy current tech
nique and an acoustical technique. 
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7. The method of claim 6 wherein the data collected by the 
electrical technique consists of eddy current data collected 
by a differential technique. 

8. The method of claim 5 wherein the selected undistorted 
defect signal is related with a range of burst pressures by an 5 

artificial neural network. 
9. The method of claim 5 wherein the step of deconvolv

ing the inspection data of the tube into at least one undis
torted defect signal for all test frequencies of the inspection 
data comprises the steps of: 10 

fitting Gaussian peaks to the root mean square voltage
versus-axial-position curve of a test frequency of the 
inspection data; 

performing a least-squares fit of one of a horizontal and 
vertical voltage measurement for the test frequency of 15 

the inspection data utilizing the fit Gaussian peaks to 
determine the approximate axial peak location from the 
root mean square voltage-versus-axial-position curve 
of the test frequency; 

fitting further Gaussian peaks to remaining horizontal and 
vertical inspection data of the test frequency utilizing 
the least-squares fit of the one of a horizontal and 
vertical voltage measurement for the test frequency of 
the inspection data as a reference point; 

identifying matching sets of Gaussian peaks by compar
ing voltage-versus-position plots of the least-squares fit 
of the one of a horizontal and vertical voltage mea
surement for the test frequency of the inspection data 
and the fitted further Gaussian peaks; and 

constructing Lissajous plots of the matching pairs of 
Gaussian peaks wherein each Lissajous plot defines a 
separate signal that represents the undistorted defect 
signal of the critical tubing defect. 

20 

25 

30 

10. The method of claim 5 wherein the critical tubing 35 

defect comprises a crack. 

12 
11. A method for predicting the burst pressure of tubing 

having a critical tubing crack, comprising the steps of: 

collecting eddy current data on a tube having a critical 
tubing crack; 

fitting Gaussian peaks to the root mean square voltage
versus-axial-position curve of a test frequency of the 
eddy current data; 

performing a least-squares fit of one of a horizontal and 
vertical voltage measurement for the test frequency of 
the eddy current data utilizing the fit Gaussian peaks to 
determine the approximate axial peak location from the 
root mean square voltage-versus-axial-position curve 
of the test frequency; 

fitting further Gaussian peaks to remaining horizontal and 
vertical eddy current data of the test frequency utilizing 
the least-squares fit of the one of a horizontal and 
vertical voltage measurement for the test frequency of 
the eddy current data as a reference point; 

identifying matching pairs of Gaussian peaks by compar
ing voltage-versus-position plots of the least-squares fit 
of the one of a horizontal and vertical voltage mea
surement for the test frequency of the eddy current data 
and the fitted further Gaussian peaks; 

constructing Lissajous plots of the matching pairs of 
Gaussian peaks wherein each Lissajous plot defines a 
separate undistorted anomaly signal; 

selecting the undistorted anomaly signal which corre
sponds to the critical tubing crack of the tube; and 

utilizing an artificial neural network to relate the selected 
undistorted crack signal of the critical tubing crack with 
a range of burst pressures. 

* * * * * 


