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Supplementary Figures 

Figure S1. Regimes of sequence similarity probed by metagenomics, SAR11 cultured genomes, and 

protein families. Empirical distributions of gene-level percent similarity for HIMB83 compared with 

recruited metagenomic reads (red), homologous SAR11 genomes (grey), and homologous Pfams (black). 

For calculation details, see Supplementary Information. 



Figure S2. Different environments exhibit substantial variation in their environmental parameters. 

Each subplot shows how the 74 selected metagenomes distribute according to various environmental 

variables measured by the TARA ocean metagenome project. 



Figure S3. pN(site) varies more significantly between sites in a given sample than between samples 

for a given site. The x-axis is the log-transformed standard deviation of either a sample’s pN(site) values 

observed over many sites (orange), or a site’s pN(site) values observed over the 74 samples (gray). 



Figure S4. Comparisons between structures predicted by AlphaFold and MODELLER. (A-B) 

Distributions of TM scores and RMSD between structures predicted by both MODELLER and AlphaFold. 

(C) Distribution of secondary structure fractions, between MODELLER (black) and AlphaFold (green).

Secondary structure fraction was defined for each gene as the fraction of sites that DSSP predicted as part 

of an alpha helix or beta strand. (D) Comparison of secondary structure fractions between MODELLER and 

AlphaFold for two TM score groups. The y-axis is the secondary structure fraction of AlphaFold divided by 

the secondary structure fraction of MODELLER. The two groups were defined as having TM scores above 

or below 0.8, where the >0.8 group corresponded to the 291 best alignments (left) and the <0.8 group 

corresponded to the 48 worst alignments. (E-F) Distributions describing the mean pLDDT and protein 



sequence length of AlphaFold structures that either (1) had analog MODELLER structures (red) or (2) did 

not (blue). 



Figure S5. Comparison of null distributions for pN(site) and pS(site) for RSA and DTL. Each distribution 

was calculated by averaging 10 independent, randomly shuffled datasets of either pN(site) (red line) or pS(site) 

(blue line). To better visualize differences between the null distributions, the blue lines depicting the pS(site) 

distributions were shifted right by half of a bin’s width. 



Figure S6. Functional constraint is less resolved when using a sequence-distance metric of DTL. 

pN(site) (left panel) and pS(site) (right panel) distributions with respect to 1D DTL, which we defined as the 

number of sites in a protein’s sequence that separate a given site from a predicted ligand-binding site. Lines 

represent the observed distributions, and filled regions represent the null distributions, calculated via the 

shuffling procedure described in Figure 2. Insets show the same data zoomed into the 1D DTL range [0, 

20]. 



Figure S7. Select gene-sample pairs illustrate the diversity with which pN(site) associates with RSA. 

Scatterplots for handpicked gene-sample pairs are shown from three regimes of model quality: high (top), 

mid (middle), and low (bottom). The right panel shows the distribution of Pearson coefficients, and the bin 

that each example was taken from is highlighted in pink. Each scatter plot is a gene-sample pair, each 

datapoint is a residue, the x-axis is the RSA of the residue, and the y-axis is the observed log10(pN(site)). 

Lines of best fit are shown in red, with 95% confidence intervals visualized translucently. The Pearson 

coefficients of each fit are labeled on the scatterplot. 



Figure S8. Select gene-sample pairs illustrate the diversity with which pN(site) associates with DTL. 

Scatterplots for handpicked gene-sample pairs are shown from three regimes of model quality: high (top), 

mid (middle), and low (bottom). The right panel shows the distribution of Pearson coefficients, and the bin 

that each example was taken from is highlighted in pink. Each scatter plot is a gene-sample pair, each 

datapoint is a residue, the x-axis is the DTL of the residue, and the y-axis is the observed log10(pN(site)). 

Lines of best fit are shown in red, with 95% confidence intervals visualized translucently. The Pearson 

coefficients of each fit are labeled on the scatterplot. 



Figure S9. Incomplete ligand characterization leads to erroneously high DTL values. A comparison 

of DTL distributions (semi-log axis) for the 1a.3.V and the BioLiP database. The 1a.3.V core distribution 

(red) was calculated from all sites in the subset of genes with both a predicted structure and at least one 

predicted ligand-binding residue. The BioLiP distribution (gray) was calculated from the sites of 5,000 

structures in the BioLiP database. For the 1a.3.V core, DTL was calculated as the distance to the closest 

predicted ligand-binding residue. For BioLiP, it was calculated as the distance to the closest annotated 

ligand-binding residue. For both methods, distance was calculated between the sites’ side chain center of 

masses. The dashed line marks the 40Å cutoff we used for all analyses besides Figure 2b, which excludes 

8.0% of the total sites. 



Figure S10. Sample-averaged pN/pS(gene) values correlate with dN/dS(gene) values between HIMB83 

and HIMB122. The x- and y-axes are the log-transformed dN/dS(gene) and sample-averaged pN/pS(gene) 

values (respectively) for the 743 genes that (1) belonged to the 1a.3.V core and (2) had HIMB122 homologs. 

The black line is the equation y = x, meaning that genes above this line maintain sample-averaged 

pN/pS(gene) values that exceed dN/dS(gene). The R2 is for a linear regression of the log-transformed variables. 



Figure S11. pN/pS(gene) varies more significantly between genes in a given sample than between 

samples for a given gene. The x-axis is the standard deviation of either a sample’s pN/pS(gene) values 

observed over genes (orange), or a gene’s pN/pS(gene) values observed over the 74 samples (gray). The 

gray box denotes the amount of variance explained by genes and samples in an ANOVA from the linear 

model pN/pS(gene) ~ gene + sample. 



Figure S12. Distributions of pN/pS(gene). Left panel shows the distribution of pN/pS(gene), and the right 

panel shows the distribution of sample-averaged pN/pS(gene). Insets show the same distributions with a 

log10-transformed x-axis. 



Supplementary Information 

Regimes of sequence similarity probed by metagenomics, SAR11 

cultured genomes, and protein families 

We investigated how sequence similarity between HIMB83 and aligned metagenomic reads 

compares to the traditional methods of sequence comparisons between other SAR11 cultured 

genomes, as well as between members of associated protein families. To do this, we calculated 

the percent similarity (PS) between HIMB83 genes and (a) all aligned reads, (b) homologs found 

in 20 SAR11 ocean isolates, and (c) members of the best matching Pfam protein family. 

For (a), PS values for each gene were calculated by considering one metagenome at a time. In 

each metagenome, the reads that aligned to the gene were captured, trimmed (so there were no 

reads overhanging the gene), and compared to the aligned segment of HIMB83. The PS was 

calculated by comparing non-gap positions. This was then averaged to yield a PS value for each 

gene-metagenome pair. To define a single PS value for each gene, PS values were averaged 

across metagenomes. 

For (b), gene clusters were calculated for HIMB83 and 20 additional SAR11 isolates using the 

anvi’o pangenomic workflow. An MSA was built from the sequences of each gene cluster using 

muscle (82), and then each non-HIMB83 sequence was compared to the HIMB83 sequence. The 

PS was determined by calculating the fraction of matches in non-gap positions. Each HIMB83 

gene was attributed a single PS value by averaging PS values in each pairwise comparison, 

weighted by the number of non-gap positions in the pairwise alignment. Gene clusters containing 

multiple HIMB83 genes were ignored. 

For (c), HIMB83 genes were matched to Pfam protein families via the anvi’o program `anvi-run-

pfams`. Hits that passed the GA gathering threshold were retained, and the best hit (lowest e- 



value) for each HIMB83 gene was defined as the associated Pfam. For each HIMB83 gene, the 

associated Pfam seed sequence MSA was downloaded using the Python package prody (85) and 

the HIMB83 protein sequence was added to the MSA using muscle. PS values were calculated 

from the MSAs in a manner identical to that outlined in (b). It is important to note that this 

comparison used protein sequences, whereas (a) and (b) both used nucleotide sequences. 

Figure S1 shows the distribution of percent similarities for each comparative method, roughly 

indicating the distinct regimes of evolutionary relatedness that each method probes. 

Unsurprisingly, protein families are most evolutionarily divergent (mean amino acid PS 28.8%). 

Relative to SAR11 homologs (mean nucleotide PS 77.3%), the aligned reads are highly related 

(mean nucleotide PS 94.5%), showing that metagenomics offers a modality of sequence inquiry 

more highly resolved than sequence comparisons between isolated cultures. 

Comparing structure predictions between AlphaFold and 

MODELLER 

The biggest difference between structure prediction methods was the expectedly higher portion 

of predictions yielded by AlphaFold. While AlphaFold produced 754 structures we deemed 

trustworthy (see Methods), MODELLER produced 346 due to its reliance on pre-existing template 

structures. In 339 cases both methods procured a structure prediction for a given protein 

sequence, and it is within this intersection that we drew comparisons between the methods’ 

structures. 

We compared the topological similarity between AlphaFold and MODELLER structures using TM 

score (86) and alpha carbon RMSD.  Overall, the distributions of  t hese metrics ( Figures S4a, 

SS4b) illustrate the overarching similarity between AlphaFold and MODELLER structures. Since a 

TM score of 0.5 indicates that proteins likely belong to the same fold family (87), our  average TM 

score of 0.88 indicates strong overall agreement between AlphaFold and MODELLER. 



On average, AlphaFold yielded a higher proportion of secondary structure (Figure S4c), and we 

found this discrepancy to be most pronounced when TM scores were low (<0.8) (Figure S4d). In 

fact, for the worst alignments (TM score <0.6), in 15 of 16 cases AlphaFold yielded more 

secondary structure. 

Next, we turned our attention to proteins that AlphaFold predicted structures for, but that 

MODELLER did not due to absent templates. These proteins were on average smaller (Figure 

S4e) and yielded lower mean pLDDT scores compared to structures possessing a MODELLER 

analog. Since AlphaFold is trained on pre-existing structures, this result is expected and lends 

credence to pLDDT as a metric for fold confidence. Even still, these structures averaged a mean 

pLDDT score of 90.8, which is considered to be highly accurate (45). 

Overall, our findings suggest that overall similarity between the two methods is high, that 

AlphaFold may be outperforming MODELLER due to increased fraction of secondary structure, 

and that proteins modeled by AlphaFold but not MODELLER are still considered highly accurate 

predictions. 

RSA and DTL predict nonsynonymous polymorphism rates 

To complement our analyses in which we estimated the percentage of polymorphism data that 

can be explained by RSA and DTL (Table S6, Methods), we constructed synonymous models (s-

models) and nonsynonymous model (ns-models) for each gene in each sample. We excluded 

monomorphic sites (pN(site) = 0 for ns-models, pS(site) = 0 for s-models), sites with DTL > 40Å (see 

Methods), and removed gene-sample pairs containing <100 remaining sites, resulting in 16,285 

ns-models and 24,553 s-models (Table S7). 

We fit linear models of log10(pN(site)) and log10(pS(site)) to RSA. We found that applying a logarithmic 

function to polymorphism rates yielded better fits than without. We filtered out any genes that did 



not have a predicted structure and at least one predicted ligand-binding site, which when applied 

in conjunction with the above filters resulted in 381 genes for the s-models and 342 genes for the 

ns-models. ns-models yielded consistently positive correlations (average Pearson coefficient of 

rRSA = 0.353) (Figure 2c), whereas s-models exhibited correlations centered around 0 (average 

rRSA = -0.029). The average R2 was 0.137 for ns-models, however model quality varied 

significantly between gene-sample pairs. In fact, we found that R2 varied from as high as 0.526 

(gene 2264 in sample ION_42_80M), to as low as 0.0% (gene 2486 in sample ION_42_80M). 

Lines of best fit for select gene-sample pairs illustrate the range of correlatedness seen between 

log10(pN(site)) and RSA (Figure S7). Overall, these results show that RSA is a significant predictor 

that partially explains the differences in polymorphism rates observed between sites in a given 

gene and sample. 

Using the same procedure, we linearly regressed log10(pN(site)) and log10(pS(site)) with DTL and 

found that 96% of ns-models yielded positive correlations with DTL with considerable predictive 

power, where on average 11.5% of per-site ns-polymorphism rate variation could be explained 

by DTL (Table S7). R2 values varied significantly, ranging from 0.514 (gene 2326 in sample 

PSE_100_05M) to 0.0% (gene 2246 in sample PSE_102_05M). Lines of best fit for select gene-

sample pairs illustrate the range of relatedness observed between log10(pN(site)) and DTL (Figure 

S8). Interestingly, we found that log10(pS(site)) on average negatively correlates with DTL (average 

Pearson coefficient -0.057). The overall positive correlation of DTL with log10(pN(site)) suggests 

that on a proteomic scale, selection for function imposes a spectrum of per-site selective 

pressures, where pressure increases with proximity to ligand-binding regions. 

Individually, RSA and DTL respectively explain 13.7% and 11.5% of per-site ns-polymorphism 

rate variance. To quantify their collective explanatory power, we fit a third set of models that 

linearly regressed log10(pN(site)) and log10(pS(site)) with RSA and DTL together (Figure S14; Table 

S7). A Pearson correlation between RSA and DTL revealed the relative independence of each  



variable from the other (R2 = 0.082, r = 0.286), precluding effects of multicollinearity (Figure S13). 

The results revealed that including both RSA and DTL yielded a considerably better set of models 

for ns-polymorphism rates, with an average explained variance of 17.7% (average adjusted R2
RSA-

DTL = 0.177). 

The predictive power of RSA and DTL illuminates how structural and functional constraints 

influence polymorphism rates by shaping the confines within which neutral evolution operates 

(88), yet observed rates can also be dominantly driven by stochastic processes of mutagenesis     

and drift. For example, no site will be polymorphic in the absence of a seeding mutagenesis event, 

even if under low structural and functional constraints. Thus, polymorphism rates are determined 

in part by constraints, and in part by random chance, the latter of which diminishes the predictive 

power of RSA and DTL when modeling polymorphism rates of individual sites. 

By averaging across groups of sites, we vastly increased the signal-to-noise ratio of polymorphism 

rate data and revealed a two parameter model (RSA and DTL) that explains the majority of ns-

polymorphism trends. To reduce per-site noise, we first grouped sites sharing similar RSA and 

DTL values so that each group contained the same order of magnitude of data (axes in Figure 

2e, Table S8). For example, the group (RSA1, DTL2) contains the 3,164 sites with RSA values in 

the 1st RSA range [0.00,0.01) and DTL values in the 2nd DTL range [5.0Å,6.4Å). Then, we 

calculated per-group polymorphism rates pN(group) and pS(group), which are weighted averages of 

pN(site) and pS(site) values found within a group (see Methods). Averaging polymorphism rates 

across sites that exhibit similar RSA and DTL values has the effect of averaging out per-site and 

per-sample variance, which we found to reveal impressive proteome-wide trends in polymorphism 

rates with respect to RSA and DTL. pN(group) values from each group collectively describe a 2D 

surface (Figure 2e, Table S8), where one axis illustrates how structurally constrained sites tend 

to be due to RSA and the other axis illustrates how functionally constrained sites tend to be due 

to DTL. In contrast to the noisy pN(site) data observed within gene-sample pairs (Figures S7, S8),  



the pN(group) surface is smooth and roughly linear (Figure 2e). Nonsynonymous polymorphism 

rates of groups varied from as low as 0.001 to as high as 0.021. A group’s polymorphism rate 

appeared to be chiefly determined by the overall constraint of its sites, which is a composite of 

both structural and functional constraints. Structural and functional constraints appeared to be 

additive, such that sites with both low RSA and DTL (left panel of Figure 2e, bottom-left) 

statistically exhibited the lowest rates of ns-polymorphism, and sites with both high RSA and DTL 

(left panel of Figure 2e, top-right) statistically exhibited the highest rates of polymorphism. 

Additionally, these constraints are seen to act independently of one another: some groups exhibit 

low pN(group) due to structural constraint (top-left) while others exhibit low pN(group) due to functional 

constraint (bottom-right), illustrating that selection for structure and selection for function can 

independently constrain evolution. 

Sites exhibited a spectrum of ns-polymorphism rates that is roughly linear. We determined this by 

fitting a linear model pN(group) ~ i + j, where i refers to the group’s RSA and DTL indices (RSAi, 

DTLj), yielded an adjusted R2 of 0.836, meaning that 83.6% of ns-polymorphism rate variation can 

be explained by RSA and DTL when averaging over per-site effects (Figure S15, Table S8). 

Increasing the number of groups decreased the number of sites in each group, weakening the 

efficacy of signal averaging, which expectedly decreased model quality. Even still, R2 values for 

nonsynonymous models were robust to group numbers ranging from 4 (2x2) to 1,444 (38x38) 

(Figure S16). 

Site averaging yielded an unexpected relationship between s-polymorphism rates and RSA/DTL. 

pS(group) is not as strongly affected by RSA or DTL as pN(group), as indicated by the noisy contour 

lines of its surface (right panel Figure 2e). Even still, the linear model pS(group) ~ i + j yielded a 

significant, anti-correlated relationship with both RSA and DTL (adjusted R2 of 0.206), in which s-

polymorphism rates tended to decrease when RSA and DTL were high (Figure S15). We have 

observed this surprising finding through other means as well: in the sample-gene models, (1) the  



mean Pearson correlation coefficient between pS(site) and RSA is -0.013 (Figure 2c), and (2) the 

mean Pearson correlation coefficient between pS(site) and DTL is -0.052 (Figure 2d). Signal 

averaging has revealed the extent of its effect: 20.6% of s-polymorphism rates can be explained 

by RSA and DTL when averaging over per-site effects, compared to 83.6% for ns-polymorphism 

rates. 

Figure S13. RSA and DTL are not problematically correlated. Scatter plot of RSA vs. DTL for the 143,181 sites 

belonging to genes with a predicted structure and at least one predicted ligand. The line of best fit is shown in black, 

The Pearson coefficient is 0.313 and the R2 is 0.098. 



Figure S14. Parameter estimate and standard error distributions of the multidimensional linear regression 

models for pN(site) and pS(site). Red denotes parameter/error distributions for the 16,285 nonsynonymous models of 

the form pN(site) = β0 + βRSARSA + βDTLDTL and blue denotes parameter/error distributions for the 24,553 models of the 

form pS(site) = β0 + βRSARSA + βDTLDTL. 



Figure S15. Observations, fits, and residuals of linear regressions for pN(group), pS(group), and pN/pS(group). The x-

axis and y-axis for each heatmap are RSA and DTL groups, respectively. The first column shows the observed values 

(those seen in Figure 2e), the second column shows the planes of best fit, and the third column shows the residuals. A 

legend for corresponding colors to values are shown below each heatmap. Contour lines for observed values and 

planes of best fit are shown as white and are calculated from smoothed data. Note that for the planes of best fit, the 

contour lines of the underlying data are by definition straight and perpendicular to one another, though due to edge 

effects of the smoothing procedure, there is a slight bend in the visualization of some contour lines. 



Figure S16. Model quality decreases for pN(site) and pS(group) as the number of RSA and DTL groups increases. 

The x-axis represents how many bins RSA and DTL are each split into. For example, the heatmaps in Figure 2e 

correspond to # bins = 15, since RSA and DTL are split into 15 bins, totaling 225 (=15x15) groups. The left y-axis 

corresponds to the adjusted R2 value for the models pN(group) (red) and pS(group) (blue). The right y-axis corresponds to 

the average number of data points (# sites multiplied by # samples) found in a group (dashed black line). 

dN/dS(gene) and sample-averaged pN/pS(gene) yield consistent 

results 

To validate our pN/pS(gene) calculations, we ascribed a sample-averaged pN/pS(gene) value to each 

gene and compared the values to dN/dS(gene) (Table S11), a more commonly and classically 

utilized metric that is the ratio of nonsynonymous to synonymous substitutions observed between 

homologous genes of two or more species. We calculated dN/dS(gene) for 753 homologous gene 

pairs found between HIMB83 and a closely related cultured representative HIMB122 (see 

Methods). Importantly, ANI between HIMB83 and HIMB122 was 82.6%, whereas the average 

ANI between HIMB83 and recruited reads was 94.5%, making it unlikely that sample-averaged 

pN/pS(gene) and dN/dS(gene) were cross-contaminated due to HIMB83 recruiting significant 

proportions of reads from HIMB122-like populations. We found that log-transformed sample-

averaged pN/pS(gene) highly correlated with log-transformed dN/dS(gene) (Pearson R2 = 0.380), 

showing that the two metrics are commensurable. Nevertheless, differences were expected and 

observed. The ratio between sample-averaged pN/pS(gene) and dN/dS(gene) was on average 6.23 

(Figure S10), matching expectations that slightly deleterious, nonsynonymous mutants commonly 

drift to observable frequencies, yet far less commonly drift to fixation. 



Transcript abundance largely explains genic differences in the 

strengths of purifying selection 

Sample-averaged pN/pS(gene) values varied significantly between genes, varying from 0.004-

0.539, with a mean of 0.063 (Figure S12, Table S9). What causes such variation in purifying 

selection strengths? Across diverse taxa (89),  it has been shown that highly expressed proteins 

evolve more slowly due to being selectively constrained to be robust to mistranslation in order to 

safeguard against toxicity of misfolded proteins, whose detrimental fitness costs scale with 

expression level (90). We assessed the extent to which expression level may explain purifying 

selection variation in 1a.3.V by calculating metatranscriptomic coverage values for each 1a.3.V 

core gene in the 50 of 74 environments that had accompanying metatranscriptomics datasets 

(see Methods). We defined transcript abundance (TA) as the ratio of metatranscriptomic to 

metagenomic relative abundances (see Methods), which yielded a widely skewed distribution of 

values (Figure S17a, Table S12). 

Comparing sample-median TA values to sample-averaged pN/pS(gene) values yielded a strong, 

negative correlation (Figure S17b, Pearson r = -0.539, R2 = 0.290) according to an inverse power-

law relationship. The specific form of the linear model used was log10(medians(TA)+0.01) ~ 

log10(means(pN/pS(gene))), where medians and means denote the median and mean across 

samples for a given gene, respectively. To avoid excluding zeros, we added 0.01 to the log-

transformation of medians(TA). These findings indicate that 29.0% of purifying selection variation 

between genes can be explained via transcript abundance alone, a value in line with what has 

been observed between yeast homologs (90). Overall, these results recapitulate a central result 

in protein evolution, and demonstrate its validity in situ using culture-independent approaches that 

link genetic variation and transcript abundance for a naturally occurring microbe. 



Next, we tested whether pN/pS(gene) values between samples of a given gene also follow an 

inverse power-law relationship with TA. We found that of the 799 genes tested, 74% exhibited 

(weak) negative correlations between log10(TA+0.01) and log10(pN/pS(gene)) (Figure S17c), yet 

only 11.5% of genes passed significance tests (one-sided Pearson, 25% Benjamini-Hochberg 

false discovery rate) (Figure S17d). Given the strong correlation observed between genes, the 

lack of correlation observed between samples is a seemingly contradictory result, yet can be 

attributed to a difference in timescales: TA fluctuates on the order of minutes, often occurring in 

‘bursts’, whereas pN/pS(gene) is shaped over time scales orders of magnitude longer than the 2 

week replication time of SAR11. Since metagenome-metatranscriptome pairs sample single 

snapshots in time, measured TAs are unlikely to reflect the time-averaged values that constrain 

pN/pS(gene). These fluctuations therefore muddy signals that may exist between pN/pS(gene) and 

TA. Smoothing these fluctuations by averaging across samples thereby reveals the strong 

negative correlation observed (Figure S17b). In other words, TAs that are not averaged across 

environments are unreliable proxies for overall transcription level. 



Figure S17. Associations of transcript abundance (TA) data with pN/pS(gene). (A) Log-transformed distribution 

of TA values across genes and samples. See Methods for details on TA calculation. 0.01 has been added to the log-

transformation to avoid the exclusion of zeros. (B) TA is a strong predictor of pN/pS(gene) when pooling data across 

samples. Each datapoint is a gene, where the x-axis is the gene’s median TA across samples, the y-axis is the gene’s 

sample-averaged pN/pS(gene), and each axis has been log-transformed. The linear model yielded a Pearson coefficient 

of 0.539, an R2 of 0.290 and a line of best fit !"#"$%&'()"*"&'&+,-"."$%)'/("*"&'&+, shown in pink (95% confidence 

intervals shown in translucent pink). (C) pN/pS(gene) between samples of a given gene weakly correlate (on average) 

with TA.  A one-side Pearson correlation between log10(TA + 0.01) and log10(pN/pS(gene)) was calculated separately for 

799 genes, resulting in the following distribution of Pearson coefficients, of which 74% were negative (pink). (D) 

Accounting for multiple testing yields few statistically significant negative correlations. The x-axis is the 

Benjamini-Hochberg false discovery rate (FDR) and the y-axis is the fraction of genes that have statistically meaningful 

negative correlations for a given FDR. Allowing a FDR of 25% (pink line), only 11.5% of genes have statistically 

significant negative correlations of log10(TA + 0.01) with log10(pN/pS(gene)). 



Stability analysis of polymorphism distributions with respect to 

pN/pS(core) 

To assess whether the ‘use it or lose it’ accumulation of ns-polymorphism in low RSA/DTL sites 

was specific to GS, or a more general feature of 1a.3.V, we performed a comparable procedure 

where instead of restricting our analysis to GS, we compiled polymorphism rates across all sites 

in genes with predicted structures and ligand-binding sites, and calculated pN/pS(core) for each 

sample, which serves as a proxy for genome-wide selection strength (see Methods). Within this 

dataset, we observed the same phenomena: in samples with high selection strength (low 

pN/pS(core)), ns-polymorphism throughout the genome distributed (a) in more solvent-exposed 

sites (Figure 4a) and (b) farther from predicted binding sites (Figure 4b). Our bootstrapping 

stability analysis (Figure S18, Table S13) showed that in 99.5% of gene resamplings, the mean 

RSA of ns-polymorphism negatively associated with pN/pS(core) (one-sided Pearson coefficient p-

value <0.05), whereas in only 69.5% of gene resamplings did the mean DTL of ns-polymorphism 

negatively associate with pN/pS(core). This latter finding indicates that the signal in Figure 4b is 

driven by an incomplete set of the 1a.3.V core genes. We hypothesized this is due to the many 

shortcomings of DTL estimation discussed priorly leading to false-positive and/or false-negative 

ligand predictions that skew DTL distributions, or that not all ligands constraint ns-polymorphism 

patterns equally. 



Figure S18. Robustness of negative associations between sample selection strength (pN/pS(core)) and mean 

RSA/DTL of polymorphisms. We tested the robustness of results in Figure 4 by performing a bootstrapping stability 

analysis in which we created 200 bootstrapped estimates of the correlation coefficients, where each bootstrap was a 

resampling of genes. (A) Histograms of the correlation coefficients between the mean RSA of s-polymorphism (blue) 

and ns-polymorphism (red) versus pN/pS(core). These correspond to Figures 4a and 4c, respectively. (B) Histograms of 

the correlation coefficients between the mean DTL of s-polymorphism (blue) and ns-polymorphism (red) versus 

pN/pS(core). These correspond to Figures 4b and 4d, respectively. 

Enabling interactive, exploratory, structure-informed metagenomic 

analyses using anvi-display-structure 

There is an absence of computational tools that allow researchers to interactively explore 

metagenomic sequence variance in the context of predicted protein structures and ligand-binding 

sites. We addressed this gap by developing an interactive interface in which users can visualize, 

filter, and interact with metagenomic sequence variants in the context of modeled protein 

structures and predicted binding sites (Figures S19, S20, S21, S22). The exploratory analyses 

enabled by the interface is what has made the current research possible. 

We created an interactive interface that dynamically processes data from anvi’o databases, which 

is done with the program `anvi-display-structure`. Once the interactive interface is initiated, users 

can select any gene with a modeled structure in their dataset, upon which anvi’o renders the 

predicted structure of the gene using NGL (91, 92)  and   ov erlays  sequence   variants  from 

metagenomes directly on the structure. By default, all variants across all metagenomes for a given 

gene are superimposed on a single display, however, the user can subdivide the display into as 

many as 16 sub-displays to compare and contrast variation across arbitrary groups of 

metagenomes (Figure S19). The interface offers numerous ways to interact with and explore 

single-codon variants (SCVs) and single-amino acid variants (SAAVs). Hovering the mouse 

above any variant reveals its allele frequency vector and structural information of the reference  



residue such as solvent accessibility and secondary structure (Figure S20). Interactive sliders 

filter variants displayed on structures through a suite of continuous, discrete, and categorical 

variables, including variant-specific parameters such as site entropy, solvent accessibility, 

BLOSUM scores of the competing alleles, residue number, and secondary structure (Figure S20). 

These same variables can also dynamically change the color and size of individual variants 

(Figure S21). Filters can be combined for exploratory investigations. For example, a user could 

simultaneously color variants by site entropy, size them by their coverage in metagenomes, and 

filter out those that exhibit high solvent accessibility (Figure S21). The protein surface and 

backbone can be colored according to arbitrary user-provided data, for example, to visualize 

predicted binding sites of the protein. `anvi-display-structure` can save and load sessions to 

preserve filters, export displays as PNG images, and generate rich tabular outputs for allele 

frequencies and other properties of displayed variants. Finally, users can faithfully migrate the 

current view into PyMOL (Schrödinger, LLC) for further graphical refinement or statistical analyses 

(Figure S22). 



Figure S19. Screenshot of the interface with the "Main" tab active. The user has chosen to visualize Gene ID 2 

from the left-hand side panel. Functional annotations from COG indicate this is a Pyridoxine 5’-phosphate synthase, 

and its structure was modeled using the PDB IDs 3O6C, 1M5W, and 3F4N templates. The resulting structure is 

visualized on the right-hand side in 3 separate views corresponding to each of the 3 groups of metagenomes specified 

by the user in the bottom left corner. The spheres overlaid onto the 3 views are the positions of single-amino acid 

variants found from each group, and can be switched to single-codon variants by switching the Variant Type Engine 

from “AA” (amino acid) to “CDN” (codon). 

Figure S20. Screenshot of the interface with the "Filter" tab active. Variants can be filtered in the “Filters” tab, 

which shows a suite of filters, each represented as an interactive slider with endpoints that can be clicked and dragged 

by the user. Above each slider is a histogram detailing how the variants distribute according to the filter. In this 

screenshot, the user has included variants with mid-range “departure from consensus” values, high “entropy” values, 

and low “relative solvent accessibility” variants. The right-hand side reveals that two variants (red spheres) match this 

filter criteria. Hovering the mouse above one of the variants activates a pop-up menu from which relevant statistics can 

be learned about. 



Figure S21. Screenshot of the interface with the "Views" tab active. In the “Views” tab, variants can be colored 

and sized according to variables. In this screenshot, the user has colored variants according to their entropy values on 

a linear gradient between white and red, and sized them according to their metagenomic coverage values. 



Figure S22. The interface can seamlessly migrate user sessions into PyMOL for visual refinement and more 

sophisticated analysis than is possible with `anvi-display-structure`. Under the “Output” tab, users can select 

“Generate in PyMOL” to auto-generate a script (middle) that when pasted into the PyMOL command line, reproduces 

the current interface view directly in PyMOL. 



Supplementary Tables 

Table S1. Read recruitment and coverage statistics of the 21 SAR11 genomes. (A-D) Genome-wide statistics for each 

genome in each metatranscriptomic and metagenomic sample. (A) is the mean coverage, (B) is the mean coverage, 

excluding nucleotide coverage values outside the interquartile range (IQR), (C) is the detection, and (D) is the 

percentage of reads mapping to a genome (sums to 100 for a given sample) (E) The mean coverage of each HIMB83 

gene in each metatranscriptomic and metagenomic sample.

Table S2. Average percent similarity of recruited reads by HIMB83 for each (A) gene-sample pair, (B) gene 

(marginalized over samples), and (C) sample (marginalized over genes). 

Table S3. Mean per-site polymorphism rates (pN(site) and pS(site)) of HIMB83 (A) over all sites, genes, and samples, as 

well as (B) for each gene-sample pair (C) each gene (marginalized over samples), and (D) each sample (marginalized 

over genes).

Table S4. Methodological comparisons between AlphaFold and MODELLER structures. (A) Key metrics for AlphaFold- 

and MODELLER-predicted structures and their alignments. (B) PDB structures used as templates for MODELLER 

predictions. (C) Per-residue pLDDT scores for AlphaFold-predicted structures. (D) Gene-averaged pLDDT scores for 

AlphaFold-predicted structures. (E-F) Genes with AlphaFold and MODELLER structures, respectively, that we 

determined to be of sufficiently high quality.

Table S5. Summary of ligand-binding residue predictions with InteracDome. (A) All predicted ligand-binding sites, the 

predicted ligand, and the predicted ligand binding score. (B) Characterization of each HMM domain hit. (C) Each match 

state from the Pfam profile HMMs that contributed to each predicted ligand-binding residue of HIMB83. 

Table S6. Summary of models used for estimating the explanatory power of RSA and DTL on polymorphism rates (see 
Methods).

Table S7. Summary statistics for the polymorphism models of gene-sample pairs. 

Table S8. Summary of per-group polymorphism data for (A) pN(group), (B) pS(group), (C) pN/pS(group), and (D) the size of each 

group.

Table S9. Summary of per-gene polymorphism data for (A) pN/pS(gene), (B) sample-averaged pN/pS(gene), (C) pN(gene), (D) 

pS(gene) and (E) the number of potential synonymous and nonsynonymous point mutations of each gene. 



Table S10. Correlations of pN/pS(gene) for each 1a.3.V core gene with respect to the measured environmental parameters: 

nitrates, chlorophyll, temperature, salinity, phosphate, silicon, depth, and oxygen.

Table S11. Comparison between dN/dS between HIMB83 and HIMB122 homologs and sample-averaged pN/pS(gene) of 

1a.3.V genes.

Table S12. Per sample and gene measures of transcript abundance (TA) and related quantities. 

Table S13. Bootstrap estimates of Pearson correlation coefficients and p-values from Figure S18. 
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