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1 | INTRODUCTION

Climate scientists confront “deep uncertainties.”’ Practicing econometricians also often struggle with uncertainty about
their statistical models but usually with scant guidance from significant advances in decision theory made after Wald
(1947, 1949, 1950), Savage (1954), and Ellsberg (1961) because so much recent formal theory of decision making under
uncertainty in economics is not cast explicitly in terms of the likelihoods and priors that are the foundations of statistics
and econometrics.” Likelihoods are probability distributions conditioned on parameters while priors describe a decision
maker's subjective belief about parameters.® By distinguishing roles played by likelihood functions and subjective priors
over parameters, this paper aims to bring contributions to decision theory after Wald and Savage into closer contact

'Deep uncertainties are defined and discussed by Hallegatte et al. (2012), Maier et al. (2016), Marchau et al. (2019), and Rising et al. (2022).
*Econometricians who explicitly confronted model uncertainty include Onatski and Stock (2002), Brock et al. (2003), Stock and Watson (2006), Brock
et al. (2007), Del Negro and Schorfheide (2009), Christensen (2018), Christensen and Connault (2019), Christensen et al. (2020), Andrews and Shapiro
(2021), and Bonhomme and Weidner (2021). Chamberlain (2000, 2001) and Ho (2023) used a post Wald-Savage decision theory of Gilboa and
Schmeidler (1989) to confront model uncertainty in his econometric work.

*The term likelihood can have multiple meanings. We shall use it to represent a probability density of prize-relevant outcomes, which we refer to as
repercussions, conditioned on parameters. Distinguishing likelihood functions from subjective priors is fundamental to Bayesian formulations of
statistical learning. See de Finetti (1937), who recommended exchangeability as a more suitable assumption than independent and identically
distributed (i.i.d.) to model situations in which a decision maker wants to learn. Putting subjective probabilities over parameters that index likelihood
functions for i.i.d. sequences of random vectors generates exchangeable sequences of random variables.
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with statistics and econometrics in ways that can address practical econometric concerns about model misspecifications
and selections of prior probabilities.

Although they proceeded differently than we do, Chamberlain (2020), Cerreia-Vioglio et al. (2013), and Denti and
Pomatto (2022) studied related issues. Chamberlain (2020) emphasized that likelihoods and priors are both vulnerable
to uncertainties. His ultimate focus was on uncertainty about predictive distributions that are constructed by integrating
likelihoods with respect to priors. Our paper instead formulates a decision theory with distinct uncertainties about
priors and likelihoods. Cerreia-Vioglio et al. (2013 Section 4.2) provide a rationalization of the smooth ambiguity prefer-
ences proposed by Klibanoff et al. (2005) that includes likelihoods and priors as components. Denti and Pomatto (2022)
extend this approach by using an axiomatic revealed preference approach to deduce an implied parameterization of a
likelihood function. But neither of those papers sharply distinguishes prior uncertainty from concerns about possible
model misspecifications, something that we want to do. We formulate concerns about model misspecifications as uncer-
tainty about likelihoods.

We assemble concepts and practical ways of modeling risks and concerns about model misspecifications from statis-
tics, robust control theory, economics, and decision theory. We align definitions of statistical models, uncertainty, and
ambiguity with ideas from decision theories that build on Anscombe and Aumann's (1963) way of representing subjec-
tive and objective uncertainties. We connect our analysis to econometrics and robust control theory by using Anscombe
and Aumann (1963) states as parameters that index alternative statistical models of random variables that affect out-
comes that a decision maker cares about. By modifying Gilboa et al. (2010), Cerreia-Vioglio et al. (2013), and Denti and
Pomatto (2022), we show how to use variational preferences to represent uncertainty about priors and concerns about
statistical model misspecifications.

Some “behavioral” models in economics and finance assume expected utility preferences in which an agent's subjec-
tive probability differs systematically from probabilities that govern the data.* This literature also contains discussions
of differences among agents in their confidence in their view of the world. Lack of confidence can take different forms
under different notions of uncertainty. Preference structures that we describe in this paper allow us to formalize differ-
ent degrees of “confidence” both about details of specifications of particular statistical models and about subjective
probabilities to attach to alternative statistical models. Our representations of preferences provide ways to characterize
degrees of confidence in terms of perceived statistical plausibilities.’

1.1 | Objects and interpretations

Our decision maker knows a parameterized family of probability distributions z(w|@)dv(w), where we W is a realiza-
tion of a random vector or “repercussion” that he cares about, 6 € ® is a vector of parameters, and do(w) is a measure
over W. A realization of w can play two possible roles. It can represent an outcome over which the decision maker has
preferences, and it can capture data available to help the decision maker shape decisions. The decision maker has pref-
erences over a set of prize rules, each of which we represent as a function y: W x ® — X, where x € X is a “prize” that
he cares about. In our featured examples, for parameter vector 0 € ©, the prize rule y(w|f) determines the decision
maker's exposure to an uncertain random vector that has a realization expressible in terms of we W. A set of ys
describes the collection of prize rules under consideration. In forecasting problems of a type common in time series
statistics and econometrics, the prize depends directly on the error in forecasting a component of w and the forecast
rule depends on another component of w. While forecasting problems are interesting in their own right, in many
applications, forecasts are intermediate inputs into outcomes of ultimate interest to the decision maker. Examples that
appear in Section 2 illustrate a range of applications.®

The parameter space ® can be finite or infinite dimensional; z(w|@) is a member of a family of densities with respect
to a measure do indexed by 8 € ®. When O is infinite dimensional, we say that t(w|@)do(w) for € © is a “nonparamet-
ric” family of probability distributions. A notion of “non-informativeness” of a set of possible “prior” probability

“We put “behavioral” in quotes to emphasize that most economic models are about agents’ behaviors, including models that impose the rational
expectations and common knowledge assumptions that “behavioral” economists want to drop. “Behavioral” economics sometimes means work that is
linked more or less informally to psychology.

>Although we provide no formal links to psychology here, we think that a promising research plan would explore connections between so-called
behavior distortions and the inferential challenges that economic decision makers confront. As is often assumed in behavioral models, degrees of
confidence could differ across economic agents.

SAs a different example, that section illustrates the “parameter estimation problem” as a special case.
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distributions over ® plays an important role in justifying alternative approaches to “robustness” that we describe in
Section 3. A decision determines a pair (y,7). In Section 2, we offer a more fully articulated decision process and provide
some examples.

We use three components from decision theory, namely, (i) states, (ii) acts, and (iii) prizes, in some new ways. We
follow Anscombe and Aumann (1963) by defining consequences as lotteries over prizes. An act maps states into conse-
quences. Preferences are defined over acts. In the static setup of this paper, we take the state to be parameters of a sta-
tistical model. That distinguishes our formulation from many other applications of Anscombe and Aumann (1963). For
example, decision theorists who connect their work to revealed preference theory typically want states that are “verifi-
able.” We are instead interested in a typical econometric situation in which parameters of statistical models remain hid-
den forever. For us, parameter uncertainty is central, so it is important that parameter vector # be included as a
component of the state.”

Gilboa et al. (2010) and Cerreia-Vioglio et al. (2013) introduced parameterized models as a family of primitive proba-
bilities that a decision maker cares about. Cerreia-Vioglio et al. (2013) in effect consider an expanded state space (w,8)
that includes both repercussions with realization w and parameters 6 and then take a model to be a conditional distribu-
tion over (W,20) given 6.® Consistent with the framework of Gilboa et al. (2010), Cerreia-Vioglio et al. (2013) showed
that a family of models induces a partial ordering according to which an act is preferred to another act if it is preferred
under all models in the family.

Relative to Cerreia-Vioglio et al. (2013) and many other applications of the Anscombe and Aumann (1963) frame-
work, we use lotteries in a more essential way. Anscombe and Aumann (1963) interpret lotteries as “roulette wheels”
with known (objective) probabilities, in contrast to “horse races” with unknown (subjective) probabilities. Many
authors used an Anscombe and Aumann (1963) setup as a vehicle to extend von Neumann and Morgenstern (1944)
preferences defined over lotteries to more general settings that can include subjective uncertainty. In our formulation,
the random vector W induces a probability distribution that according to a particular Anscombe and Aumann (1963)
act implies a particular lottery that can depend on parameters of a statistical model. We represent a family of models as
a family of probability distributions indexed by an unknown parameter vector. Parameter vectors can reside in a finite
set, a manifold of possible values, or even an infinite-dimensional set. With correct statistical models (i.e., likelihoods),
each model induces a “roulette wheel” lottery. The possibility of misspecified likelihoods leads us to want a counterpart
to an Anscombe-Aumann lottery with unknown probabilities. Our extension of the Anscombe and Aumann (1963)
framework lets us distinguish robustness to misspecification of each member of a collection of substantively motivated
“structured” statistical models from robustness to the choice of a prior distribution to put over those statistical models.
We formulate preferences that express distinct concerns about both types of robustness.

To motivate their axioms, Maccheroni et al. (2006a) and Strzalecki (2011) used Hansen and Sargent's (2001) stochas-
tic formulation of a robust control problem. We use our Anscombe and Aumann (1963) formulation to show that the
axioms of Maccheroni et al. (2006a) and Strzalecki (2011) actually express prior uncertainty and not the model mis-
specification concerns that had originally motivated Hansen and Sargent (2001). We go on to show how, by using an
appropriate ambiguity index or “cost” function, we can use the variational preferences of Maccheroni et al. (2006a) to
express concerns about robustness both to statistical model misspecification and to prior selection, including priors
meant to represent “nonparametric Bayesian” methods.

Section 2 sets the stage by reviewing axioms that support Anscombe and Aumann's (1963) subjective expected utility
representation. Section 2.4 discusses the extension to max-min utility justified by Gilboa and Schmeidler (1989), while
Section 2.5 tells how Maccheroni et al. (2006a) relaxed the Gilboa and Schmeidler (1989) axioms to arrive at variational
preferences. Section 3 characterizes a class of variational preferences that use statistical divergences as Maccheroni
et al. (2006a) cost functions. Section 4 describes and applies our formulations of variational preferences, with subsec-
tions defining cost functions that distinguish concerns about robustness of likelihoods from concerns about robustness
of priors. A Section 4.1 decision maker knows a parameterized family of models but seeks robustness with respect to a

“Stephen Stigler showed us a short working paper by Savage (1952) entitled “An Axiomatic Theory of Reasonable Behavior in the Face of
Uncertainty,” a prolegomenon to the axiomatic structure presented in Savage (1954). Savage (1952) wrote this: “The set S represents the conceivable
states, or descriptions of the world, or milieu, with which the person is concerned ...” We think of parameter values or model selection indicators as
presenting a “description of the world.”

8Cerreia-Vioglio et al. (2013) deploy a “Dynkin space” and an associated sigma algebra of events. Their conditioning on those events is a counterpart
to our conditioning on a model. As an alternative, Denti and Pomatto (2022) used an axiomatic approach to define a parameterized set of models.
While both approaches are interesting, we suppose that models can have scientific or other sources from outside the specific decision problem. In this,
we follow Hansen and Sargent (2022) who refer to such models as “structured models.”
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set of alternative priors to put over those models, while a Section 4.2 decision maker has a unique prior but a likelihood
function that he distrusts and consequently wants robustness with respect to statistically nearby models. After compar-
ing and contrasting these two decision makers in Section 4.3, Section 4.4 provides two examples of these alternative
types of robustness. Section 5 breaks new ground by describing cost functions to use for a variational preferences repre-
sentation of a decision maker who is concerned about both types of robustness. Section 6 sketches dynamic extensions
of our analysis that we want to study in subsequent papers. Section 7 briefly steps outside our decision theory to discuss
how someone might want to assess “cost” parameters that characterize a decision maker's variational preferences.
Section 8 explores connections to an approach from statistical learning called probably almost correct (PAC)-Bayesian
analysis. Section 9 concludes.

2 | PRELIMINARIES

Following Gilboa and Schmeidler (1989) and Maccheroni et al. (2006a), we adopt a version of the framework of
Anscombe and Aumann (1963) described by Fishburn (1970): (®,®) is a measurable space of potential states, (X, X) is
a measurable space of potential prizes, I is a set of probability measures over states, and A is a set of probability mea-
sures over prizes.’ For each z €11, (®,®, ) is a probability space, and for each 1 € A, (X, X, 1) is a probability space. Let
X denote an event in X and G denote an event in &.

Definition 2.1. An act is a  measurable function f: ® — A.

For a given 0, df (x|0) denotes integration with respect to the probability measure f(6) € A, which is a lottery over
possible prizes x € X."" For a given probability measure z €1, [,df(x|0)dx(0) is a two-stage lottery over prizes, with a
lottery over states 6 being described by = and another lottery over prizes x € X being described by df(x|€), which
depends on the outcome 0 from the other lottery. We shall introduce uncertainty about probability measure z.

As mentioned in Section 1, we interpret objects in the Anscombe and Aumann (1963) formulation in ways that help
us as statisticians/econometricians. We interpret a state ¢ as pinning down one among a set ® of probability models
that a decision maker regards as possible. A decision maker constructs a decision (i.e., “chooses an Anscombe and
Aumann (1963) act”) that generates a probability distribution over outcomes that he/she cares about, that is, over
Anscombe and Aumann (1963) prizes x € X.

We use Anscombe and Aumann (1963) acts to represent alternative conditional distributions of repercussions and
prize rules. An action or decision § € A, which is distinct from an Anscombe and Aumann (1963) act, can be a vector of
real numbers or, more generally, a function that is defined on appropriate spaces. A choice of 6 can influence the distri-
bution of repercussions conditioned on the parameter vector. It can also alter the exposure of the prize to repercussions.
We represent a decision maker's exposure to repercussions with prize rules ys that are Borel measurable functions that
map W into prizes in X. We represent the influence of 6 on the distribution of repercussions by a conditional probabil-
ity measure represented as a density z5(-|@) with respect to a Borel measure v on (W, W). A 0 € © implies a probability
measure

25(w| 0)do(w).

This formulation is convenient for applied statisticians because for each &, a parameterized family z;(- | 6) can define a
manifold of likelihoods indexed by a vector of unknown parameters 6 € ©. For a given decision 8, (y5,75) induces a lot-
tery over X conditioned on § and hence an Anscombe and Aumann (1963) act that can be represented with df (x | 9). As
we vary decisions § € A, we trace out a collection of such acts. A particular decision problem defines both conditional
distributions zsdv and prize rules y, for alternative decisions §. Together, they delineate a collection of Anscombe and
Aumann (1963) acts.

“For a discussion of the Anscombe-Aumann setup, see Kreps (1988), especially Chapters 5 and 7.

%We borrow our basic setup from Marinacci and Cerreia-Vioglio (2021). Following the leads of de Finetti and Savage, formulations of max-min
expected utility and variational preferences initially worked within a tradition in decision theory under uncertainty that restricted probabilities to be
finitely additive. However, much of probability theory routinely imposes countable additivity. It simplifies our presentation.
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Remark 2.2. We can expand the collection of acts by randomizing decisions. Given two decisions §; and &5,
a randomized rule chooses decision §; with probability @ and &, with probability 1 — a. Because each deci-
sion induces an Anscombe and Aumann (1963) act, the randomized decision is a convex combination of the
two induced acts."

We consider several canonical examples.

Example 2.3. For some situations, it suffices to let A be a Borel set of a finite-dimensional Euclidean space
and for the conditional distribution 7 not to depend on §. For example, § could be a particular portfolio of
assets whose random return is exposed to a repercussion vector in a particular way. A choice of a portfolio
does not affect the joint distribution of returns on individual assets, but it does influence the return on a
portfolio of those component assets.

Example 2.4. In stochastic optimal control problems like those studied by Bertsekas (1976), a decision
maker chooses a “control” that affects the distribution of a repercussion, which in this example takes the
form of a next-period state vector. For instance, in linear-quadratic Gaussian optimal control problems,
often referred to as “linear regulator” problems, this effect shows up in a mean conditioned on a current
state. For example, a repercussion vector w obeys:

w=A+Bs+Ce,

where the probability distribution over es is a standard, multivariate normal. The vector A and the matrices
B and C depend on parameters in ©."* Suppose that a controller who chooses § knows parameters only up
to an uncertain subjective distribution.'® Think of decision & as a current period control vector in the sense
of Bertsekas (1976). The conditional distribution 7z depends on &: w is distributed as multivariate normal
with conditional mean A 4B§ and conditional variance CC ' . In typical optimal linear regulator control
theory problems, prize rules depend on the vector (w',5 ") with a utility function that is the negative of
the quadratic form in this vector, for example, —w " Rw —§ T Q6 where R and Q are positive semidefinite
matrices. The linear regular problem is an example of a much larger class of stochastic control problems.
For simplicity, we formulate it as a static problem."* The Example 2.3 portfolio choice problem is a special
case of this stochastic control problem in which repercussions are the returns and a control vector of portfo-
lio weights does not influence repercussions.

Example 2.5. To build bridges to mathematical statistics, we extend a setup that Ferguson (1967) used to
analyze learning from data. We again posit a family of densities 7(w|@) for a repercussion vector whose reali-
zations are denoted by ws and where a parameter vector 6 is a “true state of nature.” In this example, the
decision 6 does not affect z. We can represent the outcome of what Ferguson (1967) calls a statistical experi-
ment as a realization of a random vector y = {(w) that contains information about w. This information can
be a signal that is correlated with the “prize” of ultimate interest. Let a decision § be a measurable function
that maps observations y from the statistical experiment into a set of what Ferguson (1967) calls actions."
In this way, Ferguson (1967) allows what he calls an “action”—our decision —to depend on an observation
y. We constrain a prize rule y; to satisfy'®

H1n some special cases, the set of acts induced by decisions may itself be convex. In this case, the randomization of decisions merely replicates the
collection of induced acts.

>The vector A absorbs the current state. In a standard optimal linear regular problem, the controller knows (A,B,C).

3This distribution might depend on past information.

“More generally, it would be input into a recursive formulation.

5For Ferguson (1967), § viewed as a function of y is a decision rule distinct from our prize rule.

*Ferguson'’s (1967) formulation of the problem introduces a loss function that for us would be the negative of the expectation of a utility function
conditioned on (Y,6) under the distribution implied by z(w|0)do(w) and ¢.
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vs(w) =¥[oL(w),w]. (1)

Ferguson's (1967) actions are not Anscombe and Aumann (1963) acts. To capture Ferguson's (1967)
setup, each prize rule y; implies a probability distribution for a prize conditioned on 8 that is induced by
7(w|8)dv(w). This probability distribution for a prize conditioned on @ is an Anscombe and Aumann
(1963) act.

By allowing decisions to depend on data that is observed at an intermediate date, the Ferguson (1967)
formulation allows a richer collection of possible decisions and nests our Remark 2.3 formulation as a spe-
cial case. It can include problems that seek to construct robustly optimal forecasts from historical data. More
generally, we are interested in decision problems for which forecasting is an input but not the ultimate goal.

Although the problem posed in Example 2.5 is static, it can be reinterpreted as a three-stage or three-period decision
problem. A decision rule that is chosen at an initial period zero depends on information about the repercussion that
will be revealed in a first stage. The decision maker can condition on this information when choosing his exposure to
the repercussion with realization w. The repercussion itself is fully realized at the end of stage two. In this formulation,
potential likelihood misspecifications affect the decision maker's inferences about the prize distribution in stage one. As
posed, this is an ex ante decision problem in which a decision rule, §, is chosen at Period 0. In contrast, we can view
Examples 2.3 and 2.4 as ex post problems in which the “prior” implicitly conditions on current and past data as does
the “decision.” As often happens, the timing protocol matters. When a decision maker chooses sequentially, the distinc-
tion between priors and posteriors can become obscured when an end of period j — 1 posterior becomes a period j prior.
In a recursive formulation of a dynamic decision problem, concerns about robustness of priors—posteriors can recur in
stage-specific components within a multi-stage interpretation of a decision problem. By design, our general formulation
invites dynamic extensions.

Example 2.6. It is common in econometrics and statistics to pose a decision problem as a parameter esti-
mation problem that supposes that prizes are deviations between an estimator 6(y) and a function y(6) of
the parameter vector. To capture this, we can let

]

and add a degenerate equation to the z dynamics that describes how we construct the first component of w.
This approach seems to be shorthand for something deeper. Typically, decisions of interest can be expressed
in terms of outcomes with probability distributions that depend on the unknown parameter as in the other
examples that we mention.

In what follows, a decision maker's prior over possible statistical models indexed by € is a probability measure
rell

Remark 2.7. The collection of Anscombe and Aumann (1963) acts is typically much larger than the set of
acts that can be induced by an available pair, (y;,75) for § € A as implied by alternative decisions. We know
that the axioms invoked in this paper apply to preferences over the full collection of Anscombe and
Aumann (1963) acts. While the randomization of decisions described previously enlarges the set of
Anscombe and Aumann (1963) acts by including the convex hull of the set of acts induced by prize rules, in
general that device does not construct the full set of Anscombe and Aumann (1963) acts. We recognize that
judging the plausibility or “self-evident quality” of the axioms that we impose would require extending the
set of the acts to be studied beyond the set induced by the potential actions within a “substantive decision
model” even if we allow randomization of the decisions.

Let A be the set of all acts. Each act f € .4 implies lotteries f(8) for each 8 € ®. Two collections of acts will interest
us, a set A, that lets us represent objective uncertainty and another set .4; that Anscombe and Aumann (1963) used to
express subjective uncertainty. Formally, let A, C .4 denote the collection of all constant acts where a constant act maps
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all @ € ® into a unique lottery over prizes x € X. Constant acts express objective uncertainty because they do not depend
on the parameter 8. Absence of dependence means that the probability distribution z € IT over states plays no role in
shaping an ultimate probability distribution over prizes. A constant act constructed from a prize rule y could emerge as
follows. Suppose that some component of W has a known distribution independent of # and that y depends only on this
component. Such limited dependence implies an act that is independent of 6. The collection .A; consists of acts, each of
which delivers a unique prize for each 6. We let s(#) € X denote an act in A;."” We use a probability distribution z € IT
over states in conjunction with .4 to express subjective uncertainty.

Remark 2.8. Anscombe and Aumann (1963) distinguished “horse race lotteries,” represented by acts in A,
from “roulette lotteries,” represented by acts in A,."®

Remark 2.9. While Savage (1954) did not include “objective” lotteries when he rationalized subjective
expected utility, his framework allows flexibility in defining both a state and an act. Gilboa et al. (2020)
exhibit the flexibility of a Savage-style state space with a variety of applications and discuss benefits and
challenges that this flexibility brings.'” There is also flexibility in constructing an act. Cerreia-Vioglio et al.
(2012) take advantage of this flexibility to produce a preference representation for Anscombe and Aumann
(1963) acts under Savage (1954) axioms augmented with risk independence. This representation coincides
with the familiar Savage (1954) representation for acts in A with unique prizes for each state.*

We shall often construct a new act from initial acts f and g by using a probability « € (0,1) to form a mixture
[af + (1 —a)g](0) =af () + (1 —a)g(d) e A VOcO.

We shall use instances of our Anscombe and Aumann (1963) framework to describe (a) a Bayesian decision maker with
a unique prior over a set © of statistical models, (b) a decision maker who knows a set © of statistical models and who
copes with ambiguity about those models by considering prospective outcomes under a set of priors I over those statis-
tical models, (c) a decision maker with concerns that a single known statistical model 0 is misspecified by using a
statistical discrepancy measure to delineate unknown models surrounding that known model, and (d) a decision maker
with ambiguity and concerns about model misspecifications.

2.1 | Preferences

To represent a decision maker's preferences over acts, we use ~ to mean indifference, > a weak preference, and > a
strict preference. Throughout, we assume that preferences are non-degenerate (there is a strict ranking between two
acts), complete (we can compare any pair of acts) and transitive (f > g and gz h imply f > h). We also impose an
Archimedean axiom that provides a form of continuity.** A finite signed measure on the measurable space (X,X) is a

finite linear combination of probability measures that resides in a linear space A that contains A.

2.2 | Objective probability

By analyzing preferences over the constant acts .4,, we temporarily put aside attitudes about ambiguity and model mis-
specification and focus on objective uncertainty (sometimes called “risk”). There is a unique probability measure A € A
associated with every act f € A, and a unique act in .4, associated with every 1 € A. We define a restriction > 5 of the
preference order > to the space of constant acts f € A, by

"Technically, an act in .A; is a degenerate Dirac lottery with a mass point at s(6) that is assigned probability one.

18See Kreps (1988, Chapter 5) for more about the distinction.

“They did not specifically discuss the statistical linkages that we explore here.

2*More generally, their representation includes an additional curvature adjustment much like the smooth ambiguity model. See Proposition 3 in their
appendix.

21The Archimedean axiom states: let f,g,h be acts in A with f > g > h. Then, there are 0 <a; <1 and 0 <, <1 such that

arf +(1—ay)h > g> apf + (1 — ay)h. See Herstein and Milnor (1953, Axiom 2) for an alternative formulation of a continuity axiom.
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where 4 is the probability generated by act f € 4, and « is the probability distribution generated by act g € A,.
To represent preferences >,, we follow von Neumann and Morgenstern (1944) who imposed the following
restriction®:

Axiom 2.10 Independence. If f,g,h € A, and a € (0,1), then

frzg=af+(1—a)hzag+(1—a)h.

The von Neumann and Morgenstern (1944) approach delivers an expected utility representation of preferences over
constant acts: there exists a utility function u : X — R such that for f,g € A,

fzg < Uf)2U(g), (2)

where
U(f) = / ux)a), 3)

and 1 € A is the probability distribution generated by constant act f. Representation (3) can be extended to a space A of
finite signed measures to produce a linear functional on this space. The structure of the space of finite signed measures
brings interesting properties to representation (3). Thus, although u is in general a nonlinear function of prizes, U is a
linear functional of finite signed measures 4 € A. Consequently, a representation theorem for linear functionals of finite
signed measures justifies (3). According to representation (2), for any real number r, and strictly positive real number
ry, utility functions r,u + ry and u provide identical preference orderings.

2.3 | Subjective probability

To construct subjective expected utility preferences, we extend an expected utility representation of > 5 on the set of
constant acts to a representation of preferences > on the set A of all acts. We impose restrictions on > in the form
of two axioms. The first extends the independence axiom to the set of all acts:

Axiom 2.11 Independence. If f,g,h € A and a € (0,1), then

fzg=af +(1—a)hzag+(1—a)h.

The second is:
Axiom 2.12 Monotonicity. For any f,g € A such that f(0) > ,g(0) foreach 6 € 0O, f = g.

We first use a von Neumann and Morgenstern (1944) expected utility representation to represent preferences condi-
tioned on each . From this conditional representation, we compute

22Completeness, transitivity, and the Archimedean axiom carry over directly from > to > , but not necessarily non-degeneracy. Our presentation
below presumes non-degeneracy of >,
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for any act f. A set of acts implies an associated collection B of functions F. From monotonicity Axiom 2.12, we know
that if f and f imply the same F, then f ~ f. Consequently, the preference relation > induces a unique preference rela-
tion > g for which

F >oG <:>f>g,

for acts f and g that satisfy

| utdrxio) =Fe),
/ u(x)dg(x]0) =G(0).
X

A mixture of two acts f and g has expected utility:
/ () fadf (x]0) + (1 — a)dg(x]0)] = aF(60) + (1 — @) G(6).
X

If the set of acts A is convex, then so is the set B of functions of 6. Furthermore, if F~¢G, the independence axiom guar-
antees that for any «, the associated convex combinations of F and G are also in the same indifference set of acts. From
one indifference set, we build other indifference sets by taking an act h and forming convex combinations with mem-
bers of the initial indifference set. These observations lead us to seek a utility function that is a linear functional £ on
B.

Suppose that F > G on ©. The monotonicity axiom implies that £(F —G) >0, so L is a positive linear functional.
Under general conditions, a positive linear functional can be represented as an integral with respect to a positive finite
measure.” Positive multiples of this linear functional imply the same preference ordering. Because the preference
ordering is not degenerate, the measure must not be degenerate. This means that we can make it into a probability
measure that we denote z(df). We thereby arrive at the following representation of preferences over acts f € A:

rrge [ | [ wwao|aos [ || uedseo|aso @)

where the probability measure 7 describes subjective probabilities.
Representation (4) lets us interpret the expected utility of an act f with a two-stage lottery. First, draw a 6 from =
and then draw a prize x € X from probability distribution df (x|@). By changing the order of integration, we can write

/. [ / Xu(x)df(xwﬂ ax(0) = [ uto [ / @df<x|e>dn<9>} ,

or equivalently

[ | uwasiio]aso~ [ uwmaico, 5)

where

ZRiesz-type representation theorems provide such representations on the space of continuous functions with compact support on a locally compact
Hausdorff space. The decision theory literature typically uses a different space. Our presentation here is informal and suggestive, but it is not intended
to be a complete analysis.
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dA(x) = / dr(x{0)dx(0). (6)

Equation (6) constructs a single lottery 1 over x from the compound lottery generated by (dz(8),df(x|)).>* For a
statistician, A is a “predictive distribution” constructed by integrating over unknown parameter 6. Let f, be the constant
act with lottery 4 defined by the left side of (6) for all § € ®. Equations (5) and (6) assert that a person with expected util-
ity preferences is indifferent between f, and f.>

2.4 | Max-min expected utility

To construct a decision maker who has max-min expected utility preferences, Gilboa and Schmeidler (1989) replaced
Axiom 2.11 with the following two axioms:

Axiom 2.13 Certainty independence. If f,g€ A, h€ A,, and a € (0,1), then

frge o+(1—-ahzag+(1—a)h.

Axiom 2.14 Uncertainty aversion. If f,g € A and a € (0,1), then

f~g=af+(1-a)gxf.

An essential ingredient of this axiom is that mixing weight a is known, an assumption that can be interpreted as
describing a form of objective uncertainty. Axiom 2.14 asserts a weak preference for mixing with known weights o and
1-a.

Example 2.15. Suppose that ® ={6,,6,} and consider lotteries 4; and A,. Let act f be lottery 4, if =06,
and lottery 4, if 0 =0,. Let act g be lottery 1, if 6 =6, and lottery 4, if 8 =0,. Suppose that f ~ g. Axiom 2.14
allows a preference for mixing the two acts. If, for instance, a = %, the mixture is a constant act with a lottery
%/11 +%Az that is independent of 6. We think of mixing as reducing the exposure to € uncertainty. In the
extreme case, setting a = % for example, completely eliminates effects of exposure to 8 uncertainty.

By replacing Axiom 2.11 with Axioms 2.13 and 2.14, Gilboa and Schmeidler (1989) obtained preferences described
by

fzg e min/(9 [/Xu(x)df(x|9)] dr(0) > min/@ {/Xu(x)dg(xw)] dr(0), (7)

zell, zell,

for a convex set IT. C IT of probability measures. An act f(0) is still a lottery over prizes x € X, and as in representa-
tion (2), for each 0, [,u(x)df(x|0) is an expected utility over prizes x. Evidently, expected utility preferences (4) are a
special case of max-min expected utility preferences (7) in which I1, is a set with a single member.

**Equation (6) thus expresses the “reduction of compound lotteries” described by Luce Raiffa (1957, p. 26) and analyzed further by Segal (1990).
#Under subjective expected utility, the Remark 2.5 statistical decision problem solves

maax/ ¥(a,w)?(w|@)dz(0|w),
)

where dz(0|y) is the posterior of 6 given an observation y. Consequently, a depends implicitly on y, which implies the decision rule §(y).
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2.5 | Variational preferences

Maccheroni et al. (2006a) relaxed certainty independence Axiom 2.13 of Gilboa and Schmeidler (1989) to obtain prefer-
ences with a yet more general representation that they called variational preferences. Maccheroni et al. (2006a) replaced
Axiom 2.13 with the weaker

Axiom 2.16 Weak certainty independence. Iff,g€ A, h,k € A,, and a € (0,1), then

af +(1—a)hzag+(1-—a)h=aof + 1—a)kzag+(1—a)k

Axiom 2.16 considers only acts that are mixtures of constant acts that can be represented with a single lottery. The
axiom states that altering the constant act from h to k does not reverse the decision maker's preferences. The same a
appears in all three acts being compared. This axiom imparts to preferences a smooth tradeoff between separate contri-
butions that come from an expected utility, on the one hand, and from statistical uncertainty, on the other hand.
Mixing with pure lotteries continues to support linearity in evaluations of risks conditioned on states.

To place Axiom 2.16 within the Example 2.3 setting, use the pair (¥,7) to represent the probabilistic outcomes of
alternative decisions. Recall that for a given P, prize rule y(w) is described by (1) for some decision 5 and some parame-
terized repercussion distribution z(w|@)dv(w). Let us compare the uncertainty consequences of decisions &, and 6, that
give rise to prize rules y; and y;, via

v (W) =¥[or o {(w),w],
vs,(w) =W¥[5; o {(w),w],

for 1,6, € A. Each of these prize rules specifies how a prize depends on a realization w of the repercussion. Let y,
induce act f and y, induce act g.
Now, consider two other decisions d; and §, and use them to construct prize rules

Suppose that the prize rules y;, and y,;, both of which induce distributions of the prize x € X that do not depend on
0; decisions d3 and &4 both serve to target risk components of x € X that are not exposed to parameter uncertainty. In
particular, the dependence on the signal y={(x) could be degenerate for both rules. Denote the constant acts induced
by ys, and y,,, respectively, as h and k. For example, consider an investment problem for which some of the available
investments (indexed by a subset of the decisions § € A) yield returns that depend only on a component of the repercus-
sion vector that has a known distribution. Two such investments can be used to construct ys, and y;. Axiom 2.16
requires that if randomizing §, with respect to d; is preferred to randomizing &, with respect to &3, the preference order
will be preserved if 83 is replaced by 6, holding fixed the randomization probabilities (a,1 —a).*

A specification of ¥ may exclude the possibility described in the previous paragraph But the axioms refer to hypo-
thetical comparisons. So to explore Axiom 2.16, we extend the substantive model ¥ to ¥ where the arguments of ¥ are
a realization of an augmented repercussion vector (w,1) and the decision & is in a larger set A that contains A. Suppose
that the w component of the augmented repercussion vector has a known distribution that does not depend on . Prizes
7 that depend only on this second component of representation (1) induce constant acts. To confirm that the ¥ substan-
tive model is an extension of the original ¥ model, we require that

P[5 o C(w),w, W] = P[5(w) o £,w] forse A,weW.

*We thank Fabio Maccheroni and Massimo Marinacci for suggesting this formulation.
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We then suppose that

Ve, (W) =P[83 o (W), w, W],

where 83,54 € A but it is not necessarily true that §;,6, € A. Decisions d; and 8, confine exposure of the resulting prize
to w and not to w. As indicated in the previous paragraph, y; and y, induce constant acts. For our Remark 2.3 invest-
ment example, construction of the extended substantive model ¥ might introduce new opportunities that are not
exposed to parameter uncertainty. This opens the door to comparisons entertained by Axiom 2.16.

Maccheroni et al. (2006a) showed that preferences that satisfy the weaker Axiom 2.16 instead of Axiom 2.13 are
described by

frg < min / { / u(x)df(x|0)} dr(6) +c(x) > min / { / u(x)dg(x|9)] dr(0) +c(x), (8)
rell) o) x mell) ol x

where, as in representation (2), u is uniquely determined up to a linear translation and c is a convex function that sat-

isfies inf, ¢ jc(7) = 0. Smaller convex functions, ¢, express more aversion to uncertainty. The convex function c in varia-

tional preferences representation (8) replaces the restricted set of probabilities IT, that appears in the max-min expected

utility representation (7). In the special case that the convex function c takes on values 0 and +oo only, Maccheroni

et al. (2006a) show that variational preferences are max-min expected utility preferences.

3 | SCALED STATISTICAL DIVERGENCES AS ¢ FUNCTIONS

Scaled statistical divergences give rise to convex ¢ functions that especially interest us. We use such divergences in two
ways, one for distributions over (W,20), another for distributions over (I1,®). We construct statistical divergences for
these two situations in similar ways.

We first consider repercussion distributions over (W,20). Consider a family of probabilities represented as densities
with respect to v:

L= {fzo:/f(w)du(w)=1}. 9)

For a baseline density ¢,, a statistical divergence is a convex function D(¢|¢,) of probability measures ¢(w)dv(w)
that satisfies
« D(£]£5) 20,
(Z|¢,) =0 implies £ =7,

D
D

Given ¢, write
Z(w)do(w) =m(w)£,(w)do(w),

for m :fé, where we assume m is not infinite with positive » measure so that the probability measure # is absolutely

continuous with respect to #,(w)dv(w).>” The set of such densities is convex as is the set of implied relative densities m.
To define a scaled statistical divergence, we set

D(t|ta) = ¢ / glm(w)]eow)do(w),

*TFor ¢s for which the implied m is infinite with positive » measure, we define the divergence to be infinity.
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where £>0, and ¢ is a convex function defined over the nonnegative real numbers for which ¢(1) =0 and impose
¢"(1) =1 as a normalization. Examples of such ¢ functions and the divergences that they lead to are

¢(m) =—log(m) Burg entropy,
¢(m) =—4(y/m—1) Hellinger distance,
¢(m) =mlog(m) relative entropy,
d(m) :% (m*—m)  quadratic.

When & =1, the divergence, D, is often called a ¢ or f-divergence. When ¢(m) = mlog(m) and & =1, we obtain rela-
tive entropy

Dg1(¢|¢,) :/Wm(w)log[m(w)]dv(w).

Relative entropy is commonly referred to as Kullback-Leibler divergence.

Remark 3.1. Other families of divergences can be used in conjunction with preference representations that
follow, for instance, from Bregman and Wasserstein divergences. The family ¢ or f divergences featured
here have very nice duality properties. As we will see, duality allows us to make formal connections to the
extensive literature on smooth ambiguity. Furthermore, these divergences are invariant to one-to-one trans-
formations of the space over which the probability distributions are defined. In addition, some members of
this family have useful links to statistical discrimination procedures. The link to likelihood-based statistical
discrimination enables statistical constructions that can help us calibrate concerns about robustness.

4 | BASIC FORMULATION

We associate a probability measure z(w|0)dv(w) parametrized by 6 € ® with a random vector having possible realiza-
tions w in the measurable space (W,20). Consider alternative real-valued Borel measurable functions y € ¥ that map
we W into an x € X. Think of y as a prize rule and y(w) as an uncertain scalar prize. For each prize rule y, let dA(x|0)
be the distribution of the prize x that is induced by distribution 7(w|@)do(w) and the prize rule y. The distribution of the
prize thus depends both on the prize rule y(w) and the distribution z(w|0)do(w). Within this setting, a decision & gives
rise to a specific pair (y5,75). To avoid cluttering our notation, we will drop the explicit dependence of y and 7 on § in
much of the following discussion.

41 | Not knowing a prior

Like the robust Bayesian decision maker of Berger (1984), Gilboa et al. (2010), and Cerreia-Vioglio et al. (2013), our
decision maker has multiple prior distributions because he does not trust the baseline prior.?® We label such distrust of
a single prior “model ambiguity.” Here, we describe a static version of what Hansen and Sargent (2021, 2022) call struc-
tured uncertainty. “Structured” refers to a particular way that we reduce the dimension of a set of alternative models
relative to the much larger set considered when we explore likelihood or model misspecification.

A baseline 7, anchors a set of priors 7 over which a decision maker wishes to be robust. We describe the set of priors

by

7(d0) =n(0)r,(de),

#See Berger (1984) for a robust Bayesian perspective. By applying a Gilboa and Schmeidler (1989) representation of ambiguity aversion to a decision
maker who has multiple predictive distributions, Cerreia-Vioglio et al. (2013) forge a link between ambiguity aversion as studied in decision theory
and the robust approach to statistics.
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where n is in the set A/ defined by

N—'{nzo:n(6)20,/®n(0)dn0(9)—1}. (10)

This specification includes a form of “structured” uncertainty in which all models have the same parametric “struc-
ture” but in which each is associated with a different vector of parameter values.?® The decision maker is certain about
each of the specific models but is uncertain about a prior to put over them.

41.1 | Notknowing a prior, I

To express a form of ambiguity aversion, the decision maker uses scaled statistical divergence

=¢ / ¢[n(0)]dmo(0) (11)
and has variational preferences ordered by>°
,f‘éi}\‘/ @(/Wu[y(w)]r(w|9)du(w)> n(6)dm,(0 +§/ @[n(0)]dn,(9). (12)

Remark 4.1. 1t is convenient to solve the minimization problem (12) by using duality properties of convex
functions. Because the objective is separable in 6, we first compute

¢ (ul§) =minun + &4 (n), (13)

where u= [ufy(w)]r(w|@)do(w)+n,nisa nonnegative number, and 7 is a nonnegative real-valued Lagrange
multiplier attached to the constraint [on(6)dm,(0) =1; ¢* (ul¢) is a concave function of u.*’ The minimizing

value of n satisfies
% g1—1 _E
’ ( 5)

The dual to the minimization problem on the right side of (12) is

max / §* (uly (W)} e(w]8)do(w) + 1), (6) —n. (14)

Remark 4.2 Smooth ambiguity preferences. When statistical divergence is scaled relative entropy, prefer-
ences over y(w) are ordered by

[ ulrwiztwio)doe)
—¢log /@exp 2 W z dr,(6) |, (15)

2See Hansen and Sargent (2022).
39See Theorem 4 of Cerreia-Vioglio et al. (2013) for their counterpart to this representation.
*IThe function —¢* (—ul¢) is the Legendre transform of &p(n).
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a static version of preferences that Hansen and Sargent (2007) used to frame a robust dynamic filtering and
control problem. These preferences are also a special case of the smooth ambiguity preferences that
Klibanoff et al. (2005) justified with a set of axioms different from the ones we have used here. Furthermore,
Maccheroni et al. (2006a) and Strzalecki (2011) use this formulation to express concerns about model mis-
specification.>® In contradistinction, the robustness concerns being represented in this subsection are about
a baseline prior over known models and not about possible misspecifications of those models.

41.2 | Not knowing a prior, II

We modify preferences by using a statistical divergence to constrain a set of prior probabilities. The resulting prefer-
ences satisfy axioms of Gilboa and Schmeidler (1989). Consider

= {ﬂ' :dz(0) =n(0)dn,(0),n € ./\/',/@gﬁ[n(ﬁ)}dﬂo(ﬁ) < K}, (16)

where k> 0 pins down the size of the set of priors. Preferences over y(w) are ordered by

min / ) < / Wu[y(w)]r(w|6’)d1/(w))dﬂ(&). (17)

Remark 4.3. It is convenient to solve the minimization problem on the right side of (17) by using duality
properties of convex functions. The minimized objective for problem (17) can again be evaluated using con-
vex duality theory. We now explicitly note the dependence of ¢* on & and write the dual problem as

max [ ° [ [ ulrtwswlo)dtn) + 1l | dna(0) 1.

7,620

Maximization over £ > 0 enforces a constraint on the set of admissible priors.

Remark 4.4. Within a setting like that of Example 2.6, Ho (2023) used another approach to compute robust
adjustments to posterior expectations. He used this approach to assess the prior sensitivity of empirical mea-
surements of targets of interest to an investigator. Ho's (2023) framework could also be used to define robust
preferences defined in terms of posterior expectations. For instance, measurements of interest could be
depicted as the maximizer of the negative of an expected loss function of a type common in statistics and
econometrics. More formally, Ho (2023) used relative entropy divergence to restrict a set of priors. He com-
puted expectations conditioned on a signal and minimized over possible implied posterior distributions
given a relative entropy constraint over the priors. The minimizing “prior” from this approach typically
depends on the signal,*® unlike the outcome from solving the ex ante problem described in Remark 2.5.
Dependence of a minimizing prior on the signal like that in Ho's (2023) formulation also emerges in some
recursive formulations of dynamic problems, a situation that can lead to statistically inadmissible
decisions.*

*2Strzalecki (2011) showed that when Savage's sure-thing principle augments axioms imposed by Maccheroni et al. (2006a), the cost functions capable
of representing variational preferences are proportional to scalar multiples of entropy divergence relative to a unique baseline prior. The sure-thing
principle also plays a significant role in Denti and Pomatto's (2022) axiomatic construction of a parameterized likelihood to be used in Klibanoff et al.
(2005) preferences.

3See formula (2.7) in Ho (2023).

3See Epstein and Schneider (2003) for a formulation of a dynamic choice problem under ambiguity aversion that deploys multiple priors recursively.
Hansen and Sargent (2022) described a possible tension between admissibility and dynamic consistency.
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4.2 | Not knowing a likelihood

Instead of being about a prior as the previous subsection, we now suppose that the decision maker's uncertainty is
about a likelihood function. We start by supposing that there is a single model that the decision maker fears is mis-
specified. We then extend the analysis by introducing a parameterized family of probability models that a decision
maker thinks might be misspecified.

421 | A misspecified model

Consider first a single model that might be misspecified. We study a decision maker who knows a parameter 6,. We
also fix a decision §, a determinant of r that we continue to leave implicit in our notation. The decision maker
entertains the possible misspecification of

o(w) :=1(:6,),

in ways that the decision maker cannot precisely describe. But he can say that the alternative models that he is most
worried about are statistically close to his baseline model. The presence of too many statistically nearby models would
prevent a Bayesian from deploying a proper prior over them. (Later we will compare our approach here to a robust
Bayesian approach that requires a family of priors that are mutually absolutely continuous.)

Notice that 7, € £ where L is given by (9). To formalize concerns that z,(w) is misspecified, we entertain the
following set of repercussion probabilities:

m(w)zo(w), (18)
where

m(w) ::Tf.

¢ € L for £ given by (9). We represent the decision maker's ignorance of specific alternative models by assuming that

he entertains a potentially infinite-dimensional space £ of what we will call “unstructured” models. A decision maker's
expected utility under alternative model £z,(w)do(w) is

/ uly(w)lm(w) o (w)do(w) = / uly (w)] £ (w)dow). (19)

w

Notice that (19) evaluates expected utility for a single choice for m.

To complete a description of preferences, we require a scaled statistical divergence. We consider alternative
probabilities parameterized by entries in £. Under this perspective, a probability model corresponds to a choice of
m € M. Form a scaled divergence measure:

c(m)=¢ /  glm(w)ls,(w)do(w) (20)

where &> 0 is a real number. Variational preferences that use (19) as expected utility over lotteries and (20) as scaled
statistical divergence are ordered by

min ([ umis oo 12 gimoals oot ). (21)

m=L,/¢L
70
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This formulation lets a decision maker evaluate alternative prize rules y(w) while guarding against a concern that
his baseline model 7, is misspecified without having in mind specific alternative models z. Key ingredients are the sin-
gle baseline probability 7, and a statistical divergence over probability distributions m(w)z,(w)do(w).

Remark 4.5. As was the case for robust prior analysis, it is again convenient to solve the minimization prob-
lem on the right side of (21) by using duality properties of convex functions. Because the objective is separa-
ble in w, we can first compute

¢* (u[g) :rr;ggueréqﬁ(m), (22)

where u=u[y(w)]+#, m is a nonnegative number, and 7 is a nonnegative real-valued Lagrange multiplier
that we attach to the constraint [ m(w)z,(w)do(w) =1; ¢* (u|¢) is a concave function of u. The minimizing
value of m now satisfies
af u
m*=¢ <— )
¢

The dual problem to the minimization problem on the right side of (21) is

max [ 0 ()] 1) 0) o) = (23)

Remark 4.6. We posed minimum problem (21) in terms of a set of probability measures on the measurable
space (W,20) with baseline probability z,(w)do(w). Because the integrand in the dual problem (23) depends
on w only through the control law y, we could instead have used the same convex function ¢ to pose a mini-
mization in terms of a set of probability distributions dA(x) with the baseline being the probability distribu-
tion over prizes induced x =y(w) with distribution di,(x). Doing that would lead to equivalent outcomes.
Representations in Sections 2 and 2.5 are all cast in terms of induced distributions over prizes. Because con-
trol problems entail searching over alternative ys, it is more convenient to formulate them in terms of a
baseline model z,(w)do(w), as we originally did in Section 4.2.

Remark 4.7. If we use relative entropy as a statistical divergence, then
u+n
b () =gexp (- 11),

and dual problem (23) becomes™

max—¢ [ exp| - HONEN 1o wydot) —n = ctog [ exp|~1LEN e, oot ). (24)

The minimizing m in problem (21) is

m* (w) =

33See Dupuis and Ellis (1997, Section 1.4) for a closely related connection between relative entropy and a variational formula that occurs in large
deviation theory.
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The worst-case likelihood ratio m* exponentially tilts a lottery toward low-utility outcomes. Bucklew
(2004) calls this adverse tilting a statistical version of Murphy's law:
The probability of anything happening is in inverse proportion to its desirability.

Remark 4.8 Risk-sensitive preferences. The right side of Equation (24), namely,

—Elog [ / Wexp (— @) ro(w)du(w)] , (26)

defines what are known as “risk-sensitive” preferences over control laws y. Because a logarithm is a mono-
tone function, these are evidently equivalent to von Neumann and Morgenstern (1944) expected utility pref-
erences with utility function

]

in conjunction with the baseline distribution z, over repercussions. Risk-sensitive preferences are widely
used in robust control theory (e.g., see Jacobson, 1973; Petersen et al., 2000; Whittle, 1990, 1996).

Remark 4.9. Although our notation suppressed it, the ms in the minimization problem can depend on the
decision &, as dependence that carries over to implied densities, £.

We could say that (18) gives a parameterization of alternative models expressed in terms of m or #. But because the
divergence (21) is not expressed as a divergence in terms of priors over the parameter space, we then could not view
preferences (21) as a special case of the robust Bayesian decision theory described in Section 4.1.1. With potential mis-
specifications present, we have deliberately avoided imposing a baseline prior over £.>® Instead, each m induces an
alternative Anscombe and Aumann (1963) roulette wheel. For reasons that will become clear in the next subsection,
we think of m as a way to introduce ambiguities about lotteries, disarming the “roulette wheel” analogy.

Remark 4.10. Preferences that use a relative entropy divergence to capture concerns about model mis-
specification are often referred to as “multiplier preferences.” Because of the different ways that we apply
the language of decision theory, the preceding construction of multiplier preferences differs from construc-
tions provided by Maccheroni et al. (2006a) and Strzalecki (2011). Specifically, Maccheroni et al. (2006a)
define the domain of their cost function to be probabilities over the state space. In our analysis, the state
space is ©®, which means that their application of variational preferences gives rise to the robust Bayesian
approach in Section 4.1.1.

422 | A misspecified likelihood function
We now propose a generalization of the previous approach by starting from a parameterized family of probabilities
7(w|0) and prior probability measure z. Typically, a parameterized family of probability models is specified so that each

model is absolutely continuous with respect to an underlying measure, a condition required to apply likelihood-based
methods. Consider relative densities m such that, for each 8, have been rescaled so that

/ i)z do(u) =1 (27)

To acknowledge misspecification of a model implied by parameter 6, let #1(w|@) represent an “unstructured” relative
perturbation with a parameterized family of densities:

*Divergence preferences typically are expressed in terms of probabilities distributions over the collection states, which in the present case would be
over the set Ls.
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2 (w]0) = m(w|6)z(w]6),

where Z(-|0) € L for each 6 € ©. With this in mind, let M be the space of admissible relative densities riz(w|6) associated
with model 8 for each 6 € ®. The pair (m,60) implies a probability distribution represented as

m(w|6)z(w|0)do(w),

over W conditioned on 4. When m is not identically one, we view this as a misspecified likelihood function. Uncertainty
about the nature of this misspecification induces corresponding uncertainty in the induced distribution or the lottery in
the language of decision theory.

Preferences that acknowledge this form of model misspecification are ordered by solutions to

meM

min ([ ubyliwio)swlo)doe) +¢ [ glinwio)stuiodotw) )dnf0), 28)

where the decision maker commits to the baseline prior distribution z,.

Remark 4.11. Please remember that we have left dependencies of  and y on § implicit. Consequently, con-
straint (27) holds for each § € A, where 7 depends implicitly on 6.

Remark 4.12. Another approach would be to use the baseline prior to construct
/ (w|0)dm,(0)
)

and treat this as the baseline model of Section 4.2.1; this would correspond to a predictive distribution pro-
vided that learning is not formally incorporated into the analysis or that the “prior” dz, has already condi-
tioned on what has been learned from available data.*’

4.3 | Robustness reconsidered

It is useful to compare two approaches to robustness that we have taken. Section 4.1.1 decision maker starts with a
baseline prior over parameter vectors and considers consequences of misspecifying that prior. This decision maker takes
as given the parameterized family of densities z(w|@) for 0 € ®. In contrast, Section 4.2 decision maker searches over
the entire space M, subject to a penalty on a statistical divergence from a baseline parameterized family of models. This
decision maker considers only the baseline prior distribution.

Our setup allows the parameter space to be infinite dimensional. Consider a prior 7, that is consistent with a Bayes-
ian approach to “nonparametric” estimation and inference. Because z(+|@) can be viewed as a mapping from © into £, a
prior distribution z, over ® implies a corresponding distribution over L. This procedure necessarily assigns prior proba-
bility zero to a substantial portion of the space L. Specifying a prior over the infinite-dimensional space £ brings chal-
lenges associated with all nonparametric methods, including ‘“nonparametric Bayesian” methods that must assign
probability one to what is called a “meager set.” A meager set is defined topologically as a countable union of nowhere
dense sets and is arguably small within an infinite-dimensional space.*® This conclusion carries over to situations with
families of priors that are absolutely continuous with respect to a baseline prior, as we have here. To us, prior robust-
ness of this form is interesting, although it is distinct from robustness to potential likelihood misspecifications. Indeed,
the Section 4.2 decision maker who is concerned about model misspecification does not restrict himself to priors that

37See Chamberlain (2020) for a discussion of robustness relative to a predictive distribution.
38Sims (2010) critically surveys an extensive statistical literature on this issue. Foundational papers are Freedman (1963), Sims (1971), and Diaconis
and Freedman (1986).
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are absolutely continuous with respect to a baseline prior because doing so would exclude many probability distribu-
tions he is concerned about.

The distinct ways in which Sections 4.1 and 4.2 formulations use statistical discrepancies lead to substantial
differences in the associated variational preferences, namely, representation (12) or (17) for Section 4.1 way of prior
ambiguity and representation (28) way of ambiguity about the parameterized family of densities, z(-|9).

44 | Two examples

It is instructive to apply the distinct approaches of Sections 4.1 and 4.2 to simple examples. The first example gives a
simple illustration of preference inputs into robust control problems, and the second one explores a forecasting
problem.

44.1 | Robust preferences
Assume the following constituents:

« Baseline model is 7,(w) ~ Normal (u,,02).

« Alternative structured models 7(w|6;) ~ Normal(u;,67),i=1,...,k, where potential parameter values (states) are
0; = (u;,0;) and parameter space ® = {6;:i=1,2,...,k}.. The baseline model can be one of these k models.

« Baseline prior over structured models is a uniform distribution 7,(6;) = %,i =1,..,k.

+ Prize is the induced distribution of c(w) =y(w).

« Utility function is u[c(w)] = log[c(w)], where c(w) is consumption.

« Prize rule is y(w) = exp(yo +r;w)-

To obtain an alternative prior z; for i = 1,...,k, we set n; = kx; so that the product of n; times the baseline prior is

n;
-— =T;.

k

The expected utility conditioned on parameter vector 0; is
[ utesptro+ raw)lwi)dot) = ro-+ o

and a statistical divergence applied to alternative priors is
k

> k).

i=1

A Section 4.1.1 decision maker with variational preferences orders prize rules y(w) =exp(y, +y,w) according to

k k
. ¢
min  yo+7y, E ”i//‘iJFE E $(km;).
7; >0 Z =1 i=1 i=1

=7 i=1

For a relative entropy divergence, prize rules are ordered by

£ . ko /1 )
—¢log Z (k) exp {5(70 + }’1/41‘)] =70 —¢log Z (k) P ( ylfﬂl> ’
< i=1
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and the associated minimizing z; is

A Section 4.1.2 decision maker, in effect, chooses the multiplier ¢ to hit a relative entropy constraint on the prior.
A criterion that expresses robustness to prior misspecification with a relative entropy divergence ranks prizes as
either

—510g2< )eXP[ =(ro +71ﬂ1)}

max - flogZ( )exp[ 2(70+7/1/4i):| — k.

When we use relative entropy as a statistical divergence, variational preferences for a Section 4.2 decision maker are
ordered by

1
—2*5(0071)2-

Yo T Y1Ho
Larger values of the positive scalar ¢ call for smaller adjustments — (ooyl) of expected utility y,+y,4, for concerns
about misspecification of z,(w)dv(w).

4.4.2 | Robust forecasting

Consistent with Example 2.5, partition

Wi
w= ,
w;
where w, is scalar outcome of a variable to be forecast and w, constitutes data underlying a forecast. Assume that:

+ The baseline model is z,(w).

+ Alternative structured models are z(w|0) for a parameter space ® = {6;:i=1,2,...,k}. The baseline model can be one
of the k models.

+ The baseline prior over structured models is a uniform distribution z,(6;) —% i=1,..,k.

+ The prize is the induced distribution of the forecast error w; — §(w,), where & is the forecast rule.

« The utility function is —[w; — §(w;)]*.

+ The prize rule is y5(w) =w; — 6(w,).

To study a Section 4.1.1 decision maker, we proceed as follows. As in the Section 4.4.1 example, to obtain an alterna-
tive prior z; for i =1,...,k, we set n; = kx; so that n; times the baseline prior is

:ﬂi’

n;i
k
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and a statistical divergence is

Given a forecast rule 8, for each model, form the second moment of the forecast error:
)= [ o) d i),
w

and then solve

k k
min _2”16§(1)+%Z¢(k”1)
i=1

k
20,y m=1 =1

For a relative entropy divergence, prize rules are ordered by
k
—&log ; <%) exp Eog(i)] ,

and the associated minimizing z; is

exp Lo ()]
St iexp[Los(i)]

which places more emphasis on larger second moments of forecast errors than would the equal weighting that is
implied by setting £ to be arbitrarily large. A Section 4.1.2 decision maker can be interpreted as choosing the multiplier
£ to hit a relative entropy constraint on the prior.

When we use relative entropy as statistical divergence, variational preferences for a Section 4.2 decision maker with
model misspecification concerns are ordered by

_flog / e (é w1 — 6(w2)]2) dzy(w). (29)

Criterion (29) reshapes a baseline density to place more weight on larger squared forecast errors. When the baseline
probability measure dr, is a normal distribution and ¢ is the mean conditioned on the forecasting variables under the
reshaped distribution, the change in probability measure preserves normality and leaves the conditional mean
unaltered; however, it does increase the conditional variance.>®

5 | HYBRID MODELS

We now use components described above as inputs into a representation of preferences that includes uncertainty about
a prior to put over structured models and concerns about possible misspecifications of those structured models. We use
probability perturbations in the form of alternative relative densities in M to capture uncertainty about models and

39An extension of this observation shows that in this special case, the conditional mean under the baseline normal distribution is robust to
misspecification concerns represented with relative entropy.
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probability perturbations in the form of alternative relative densities N to capture uncertainty about a prior over
models.
Let 7,(0) be a baseline prior over 6. To conduct a prior-robustness analysis, consider alternative priors

dr(0) = n(0)dm,(0),

forneN.
Consider relative densities m that for each € have been rescaled so that

/ rulo)z(wlo)do(w) =

To acknowledge misspecification of a model implied by parameter 6, let #1(w|@) represent an “unstructured” perturba-
tion of that model. With this in mind, let M be the space of admissible relative densities #(w|0) associated with model
6 for each 6 € ®. We then consider a composite parameter (i1,6) for i € M and 6 € ©. The composite parameter (r1,0)
implies a distribution m(w|6)#(w|@)z(w|@)dv(w) over W conditioned on 6.

To measure a statistical discrepancy that comes from applying m to the density ¢ of w conditioned on 8 and by
applying n to the baseline prior over #, we first acknowledge possible misspecification of each of the 6 models
by computing:

T [r](6) = min (uly (w)]i(w]6) + &1, [m(w]0)])¢ (w]0)z(w|0)do(w).

The T, operator maps prize rules y into functions of 8. We use this for both hybrid approaches.

51 | First hybrid model

We can rank alternative prize rules y by including the following adjustment for possible misspecification of the baseline
prior z,:

Ty T [y] = min / @(Tl [V1(0)n(6) + &2, [n(0)])dmo (6).

neN
Here, ¢; and ¢, are possibly distinct convex functions with properties like the ones that we imposed on ¢ in Section 3.
Such a two-step adjustment for possible misspecification leads to an implied one-step variational representation

with a composite divergence that we can define in the following way. For m € M and neN, form a composite scaled
statistical discrepancy

Dl =&, [ ([ ituiolrwlo)do(o) ) n@)dns(0) - [ ln@)iani(o), (30)

for &, > 0,&, > 0. Then variational preferences are ordered by

min / ) < / Wu[y(w)]rh(w|6)r(w|0)dv(w)> n(8)dro(6) + D(rit,nlr, 7o)

meMneN
In Appendix S1, we establish that divergence (30) is convex over the family of probability measures that concerns the
decision maker.

Remark 5.1. As noted earlier, Cerreia-Vioglio et al. (2013) posit a state space that includes parameters but also
can include what we call repercussions. Thus, think of the state as the pair (w,0). In this setting, one could
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apply a statistical divergence to a joint distribution over possible realizations of (w,8). Because the joint dis-
tribution can be factored into the product of a distribution over W conditioned on 8 and a marginal distribu-
tion over ©, such an approach can capture robustness in the specification of both z and #,, albeit in a very
specific way. For instance, for the relative entropy divergence, this results in the joint divergence measure:

DO nle, ) = &, / ) { / th(w|9)logrh(w|9)1(w|9)dv(w)] n(0)dr(6) + &, / n(0)logn(0)dz, (6),

(€]

fOI' 51 — 52.

In earlier work, we have demonstrated important limits to such an approach in dynamic settings.*® As
we have shown here, we find both robustness to model misspecification and robustness to prior specification
to be interesting in their own rights and see little reason to group them into a single ¢ divergence.

5.2 | Second hybrid model

As an alternative to the Section 5.1 approach, we could instead constrain the set of priors to satisfy:

| #uln@)an(0)< (31)

so that a decision maker's preferences over prize rules y would be ordered by

min / Til(O)n(0)dny(0) (32)

nenN

where minimization is subject to (31).

As in Cerreia-Vioglio et al. (2022), preferences ordered by (32) subject to constraint (31) can be thought of as using a
divergence between a potentially misspecified probability distribution and a set of predictive distributions that have
been constructed from priors over a parameterized family of probability densities within the constrained set ®.*' Notice
how the first term in discrepancy measure (30) uses a prior ndz, to construct a weighted averaged over 6 € © of the fol-
lowing conditioned-on-@ misspecification measure

a( [ pinwiosiodm) )

The objective in problem (32) is to make the divergence between a given distribution and each of the parameterized
probability models small on average by minimizing over how to weight divergence measures indexed by 6 subject to
the constraint that z € I1.** Equivalently, in place of (30), this approach uses cost function

D(r|z,z,) = §1m1n/ (/ ¢, [m(w|6)] df(w&)) n(0)dr,(0).

Remark 5.2. 1t is possible to simplify computations by using dual versions of the hybrid approaches delin-
eated in Sections 5.1 and 5.2. Such formulations closely parallel those described in our discussions of robust
prior analysis and potential model misspecification in Remarks 4.5-4.7.

“0See Hansen and Sargent (2007, 2011) and Hansen and Miao (2018).

“#ICerreia-Vioglio et al. (2022) provide an axiomatic justification of set-based divergences as a way to capture model misspecification within a Gilboa
et al. (2010) setup with multiple models.

42By emphasizing a family of structured models, this set-divergence concept differs from an alternative that could be constructed in terms of an
implied family of predictive distributions.
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6 | DYNAMIC EXTENSION

Although a complete treatment of dynamics deserves its own paper, here, we describe briefly how to extend the familiar
recursive utility specification of Kreps and Porteus (1978) and Epstein and Zin (1989) to accommodate our two robust-
ness concerns to an intertemporal environment. We accomplish this by using conditional counterparts to the preceding
analysis to explore consequences of misspecifying Markov transition dynamics and prior distributions over unknown
parameters. The resulting preferences have a recursive structure. There is an inherent tension between dynamic consis-
tency and statistical consistency in these preferences that we discuss elsewhere (Hansen & Sargent, 2022).

6.1 | A deterministic warm up

We represent preferences using recursions that apply to continuation values. Abstracting from uncertainty, a commonly
used intertemporal preference specification is captured by the value recursion:

Vi=[1=A)C)" "+ BVe) ]

for 0<f <1 and p>0. V; is the date ¢ continuation value, and C; is date t consumption. The parameter  governs dis-
counting, and the parameter p is the reciprocal of the intertemporal elasticity of substitution. Applying the recursion
over an infinite horizon leads to the following expression for the continuation value:

1
o] 1-—p

Vi=|(1-p) Zﬂi(cwrj)l_p

Jj=0

Because the logarithmic transformation is increasing, we can use the following recursion in the logarithm V; of the con-
tinuation value to represent preferences:

1
1-=p

V.= log[(1—p)exp[(1—p)Ci] +Bexp[(1 —p)Vii1]],

where C; is the logarithm of consumption.

6.2 | Introducing uncertainty

Let 2; denote a sigma algebra capturing information available to the decision maker at date ¢. Think of the repercussion
W41 as generating new information relative to 2, that is pertinent for constructing ?;,;. Think of the continuation
value, V,,; as the counterpart to a prize that can depend on a repercussion vector W,.1. A continuation value V. is
constrained to be measurable with respect to 2,,;. We explore model misspecification by using nonnegative random
variables M, that are 2;,; measurable and satisfy E(M;|2;,0) = 1. We explore prior/posterior misspecification using
nonnegative random variables N; that are measurable with respect 2; augmented by knowledge of 6 and satisfy
E(N|2) =1.

To accommodate robustness concerns in decision making, define preferences with three recursions for updating the
continuation value

V[:

—tog[(1—plexp[(1 - p)C:] + pexp[(1 - )R]

Ry =M1 20,E(Mi12,0) = 1minE [Mt+1‘7t+1 + &1 (M) |21, 6], (33)

Rt :Nt Z O,E(thlt) = lmlnE [Ntfet + §2¢n(Nt) |91¢] ,
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where R; adjusts next period's continuation value for potential model misspecification captured by conditioning the
unknown parameter § and R, adjusts for “prior robustness.” Date ¢t “priors” actually condition on 2I,. The three recur-
sions affect values in different ways:

« the first adjusts for discounting and intertemporal substitution;
« the second adjusts for model misspecification;
« the third adjusts for prior misspecification.

The second and third recursions provide a dynamic counterpart to the approach in Section 5.1. Replacing the third
recursion in (33) with a constrained counterpart gives a dynamic counterpart to the approach in Section 5.2.*3

6.3 | Shadow valuation

Following Hansen and Richard (1987) and others, we can use stochastic discount factors to value assets having uncer-
tain one-period ahead payoffs. We deduce shadow values by computing a one-period intertemporal marginal rate of
substitution. Of particular interest to us are contributions that our model-misspecification operator R, and our prior-
robustness operator R, make to this shadow value.

A contribution to the shadow value that comes from the first recursion in (33) looks at marginal contributions in
adjacent time periods. Date ¢t marginal contributions of C; and R; to the current period continuation value are

MC: =(1-pexp[(p—1)V:](C))*,
MR, =pexp[(p—1)V:]exp[(1-p)R].

Because our aim is to infer the one-period intertemporal marginal rate of substitution, we look across adjacent time
periods using consumption at each date as a numeraire:

MC;.1MR; _5 (Ct+1

MC; C, >_ €xXp [(pfl) (Vt+1 *E)].

This would give the deterministic intertemporal marginal rate of substitution if we were to substitute ‘7:+1 for R, in this
expression.

For the uncertainty adjustments, we deduce the marginal contributions by applying the envelope theorem to the
minimization problems in the second and third recursions in (33):

* M?Hl :M[:.p
« MR,=N;.

Thus, the minimizing changes in probabilities contribute directly to the shadow valuation. The resulting increment
to a stochastic discount factor process is

Stv1 L, Cia - 5 ] N E
< Pl exp[(p—1)(Vir1 —R) M N/,
t t

where

« M/, adjusts for possible model misspecification,
« N/ adjusts for possible prior misspecification.

“3See Hansen and Sargent (2021, 2022) for elaboration and application of this alternative approach.
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7 | AN APPROACH TO UNCERTAINTY QUANTIFICATION

Section 5 posed a minimum problem that comes from variational preferences with a two-parameter cost function that
we constructed from two statistical divergences. Along with a robust prize rule, the minimum problem produces a
worst-case probability distribution that rationalizes that prize rule. Strictly speaking, the decision theory tells us that
particular values of cost function parameters (£,,&,) express a decision maker's concerns about uncertainty, broadly
conceived. In the spirit of Good (1952), it can be enlightening to study how worst-case distributions depend on (&;,¢,).
The concluding paragraph of Chamberlain (2020) recommends exploring sensitivities with respect to a likelihood and
with respect to a prior. Sensitivity of worst-case distributions to (&;,&,) provides evidence about the forms of subjective
uncertainty and potential model misspecification that should be of most concern. That can provide decision makers and
outside analysts better understandings of the consequences of uncertainty aversion.

Motivated partly by a robust Bayesian approach, we have used decision theory to suggest a new approach to uncer-
tainty quantification. By varying the aversion parameters (&;,£,), we can trace out two-dimensional representations of
prize rules and worst-case probabilities. A representation of worst-case probabilities includes both worst-case priors and
a worst-case alteration to each member of a parametric family of models. A decision maker can explore alternative
choices and associated expected utilities by studying how (&;,&,) trace out a two-dimensional set of worst-case probabil-
ities. In this way, we reduce potentially high-dimensional subjective uncertainties to a two-dimensional collection of
alternative probability specifications that should most concern a decision maker along with accompanying robust prize
rules for responding to those uncertainties.

8 | RELATION TO STATISTICAL LEARNING

We briefly compare our approach to related analyses coming from statistical learning theory and, in particular, PAC-
Bayesian analysis. See Guedj (2019) for a recent survey of PAC-Bayesian methods and see McAllester (1999) and Can-
tani (2007), among others, for fundamental contributions. While their formulations of a decision problem differ from
ours, there are intriguing connections.

To understand some of the connections, partition a random vector, Y, with realization y as

Y/::[Yll Yzl Y2/ YK/],

and regard it as “training data” for a machine learning method. For an objective function, construct an “empirical risk”
criterion:

The object of interest # can be an element of a collection of functions. Define the population counterpart to ®(Y,6) as
©(0), the law of large numbers limit of ®(W,6) as K — co. Suppose that an idealized target decision solves:

0" = argmin®(0).

gmind(6)
This estimator appears in an extensive literature on M estimation; the idealized optimized decision #* defines a param-
eter or decision of interest. In this setting, we use decisions and parameters interchangeably, in contrast to our
formulation.

A common approach to M-estimation is to solve the finite-sample analog problem:

0= arggleigﬁ)(Y, 0).
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This approach struggles when the space © is “large,” the typical case with machine learning methods that fit flexible
functional forms with many parameters. More generally, statistical learning often seeks meaningful worst-case bounds
of finite-sample approximates to a solution of the population problem.

Motivated by concerns for applications when the space © in standard M-estimation is expansive, the PAC-Bayesian
approach proceeds differently. The approach seeks a probability distribution z over the space © given the data W,
rather than a single value, 6. By analogy to Bayesian methods, such a distribution is referred to as a “generalized poste-
rior.” The approach imposes a baseline prior distribution z, over the space ® and considers generalized posteriors in a
family:

dr(0) = n(0)dm,(0),

for [ndm,=1.
Instead of solving the finite-sample M-estimation problem, consider a family of problems:

min / &(Y,0)dx(0) + & / logn(6)n(0)dz, (6), (34)
(€] (C]

n,/ndﬂ'oz 1

indexed by &. Applying the same mathematics we have used in previous sections, minimization brings exponential
tilting:

The PAC-Bayesian uses this minimizer to construct an approximation to a minimizer of the underlying (infeasible) pop-
ulation problem.

Problem (34) provides a way to incorporate probabilistic restrictions into the M-estimation problem. There are some
interesting special cases. When ®(W,-) is the negative of the log-likelihood function and & =1, we are led to a standard
calculation of a Bayesian posterior. Zhang (2006), Griinwald (2011), and others propose and defend a “safe Bayesian
framework” by exploring other values of £ > 1 based on robustness considerations. The PAC-Bayesian approach studies
alternative specifications of <i>( W,-) based on more general loss functions. As in M-estimation more generally, this con-
struction may embed some robustness concerns. When ¢ tends to infinity, the generalized posterior collapses to the
prior distribution. When ¢ tends to zero, the prior becomes inconsequential, and the generalized posterior collapses to
the finite-sample M-estimation solution. The penalty parameter £ governs a tradeoff between the importance of the
objective ®(Y,-) and the baseline prior 7z,. The PAC-Bayesian literature discusses extensively the role of the parameter
in approximation.

While our approach shares much mathematical structure with PAC-Bayesian methods, it differs in ways that are
significant for applications. The M-estimation formulation ties its decision problem directly to an underlying unknown
“parameter” and contains no counterpart to the maximization steps that we use to represent uncertainty aversions. Fur-
thermore, the PAC-Bayesian problem (34) conditions on W and focuses exclusively on uncertainties about unknown
states or parameters. Also, PAC-Bayesian methods use problem (34) as a device to approximate a solution to an infeasi-
ble population problem, which is not a component of our analysis.

To elaborate more on the differences between PAC-Bayesian methods and our approach, we study decision prob-
lems in which parameters are not the objects of ultimate interest but instead are just intermediate “means to ends” of
constructing decision rules for making choices of economics quantities that are robust to misspecifications. Rather than
replacing a log-likelihood function with an M-estimation objective and possibly down-weighting its importance, we
introduce potential likelihood misspecifications explicitly; we also formally acknowledge possible misspecification of
priors. By appropriately adjusting the divergence “cost” structure, our approach allows us to explore tradeoffs between
concerns about misspecifications of likelihoods, on the one hand, and priors, on the other hand.
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9 | CONCLUDING REMARKS

Except for our brief Section 6 excursion, we have confined ourselves to a “static” setting that allowed us to apply and
extend a framework created by Maccheroni et al. (2006a) to distinguish ambiguity about a prior from concerns for mis-
specifications of likelihood functions. In doing this, we both reinterpret objects that appear in the Anscombe and
Aumann (1963) formulation and identify a need for further axiomatic exploration. We shall undertake this challenge in
subsequent research. Moreover, we intend the present paper as a prolegomenon to a sequel in which we shall extend
and reinterpret the dynamic variational preferences based on an extension of Maccheroni et al. (2006b). That dynamic
formulation will connect to a dynamic measure of statistical divergence based on relative entropy and the recursive
preferences of Kreps and Porteus (1978) and Epstein and Zin (1989). While the issues studied here will arise in that
framework, additional ones such as dynamic consistency and appropriate choices of state variables for recursive formu-
lations of preferences will also appear.**
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