
THE UNIVERSITY OF CHICAGO

UNEARTHING CONCURRENCY AND SCALABILITY BUGS IN CLOUD-SCALE

DISTRIBUTED SYSTEMS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

TANAKORN LEESATAPORNWONGSA

CHICAGO, ILLINOIS

AUGUST 2017

Copyright c© 2017 by Tanakorn Leesatapornwongsa

All Rights Reserved

To my family: father, mother, Louise, Fon, Nuch, and Nid

“Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code

as cleverly as possible, you are, by definition, not smart enough to debug it.” — Brian Kernigham

TABLE OF CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . ix

ACKNOWLEDGMENTS . x

ABSTRACT . xi

1 INTRODUCTION . 1

1.1 Distributed Concurrency Bugs . 2

1.1.1 Distributed Concurrency Bug Study & Taxonomy 3

1.1.2 Semantic-Aware Model Checking . 4

1.2 Scalability Bugs . 5

1.3 Summary of Contributions and Outline . 8

2 BACKGROUND AND RELATED WORK . 10

2.1 Cloud Computing and Cloud-Scale Distributed Systems 10

2.1.1 Cloud Computing . 10

2.1.2 Cloud-Scale Distributed Systems . 11

2.2 Distributed Concurrency . 12

2.2.1 Local Concurrency and Distributed Concurrency 12

2.2.2 Distributed Systems Model Checker (DMCK) 14

2.2.3 Symbolic Execution . 15

2.2.4 Fault Injector . 16

2.3 Scalability . 16

2.3.1 Vertical Scaling vs Horizontal Scaling . 16

2.3.2 Scalability Testing . 17

2.3.3 Scalability Benchmarking . 18

2.4 Conclusion . 18

3 TAXDC: A TAXONOMY OF NON-DETERMINISTIC CONCURRENCY BUGS IN CLOUD

DISTRIBUTED SYSTEMS . 19

3.1 TaxDC . 20

3.2 Methodology . 21

3.2.1 Basic Definitions . 21

3.2.2 Target Systems and Dataset . 21

3.2.3 Taxonomy . 22

3.2.4 Threats to Validity . 22

3.2.5 TaxDC Database . 24

3.2.6 Detailed Terminologies . 24

3.3 Trigger . 25

3.3.1 Timing Conditions (TC) . 25

v

3.3.2 Input Preconditions (IP) . 29

3.3.3 Triggering Scope (TS) . 31

3.4 Errors and Failures . 34

3.4.1 Error Symptoms . 34

3.4.2 Failure Symptoms . 35

3.5 Fixes . 36

3.5.1 Message Timing Bug Fixes . 36

3.5.2 Fault/Reboot Timing Bug Fixes . 37

3.6 Root Causes . 39

3.7 Other Statistics . 40

3.8 LC bugs vs. DC bugs . 40

3.9 Conclusion . 41

4 SAMC: SEMANTIC-AWARE MODEL CHECKING FOR FAST DISCOVERY OF DC

BUGS IN CLOUD DISTRIBUTED SYSTEMS . 43

4.1 Background . 43

4.1.1 DMCK Framework and Terms . 43

4.1.2 State-of-the-Art DMCKs . 45

4.1.3 Does State of the-Art Help? . 47

4.2 SAMC . 48

4.2.1 Semantic-Awareness Example . 48

4.2.2 Architecture . 49

4.2.3 Semantic-Aware Reduction Policies . 50

4.2.4 Pattern Extraction . 57

4.3 Implementation and Integration . 58

4.3.1 SAMPRO . 58

4.3.2 Integration to Target Systems . 59

4.4 Evaluation . 59

4.4.1 Speed in Finding Old Bugs . 61

4.4.2 Ability of Finding New Bugs . 64

4.4.3 Reduction Ratio . 64

4.5 Discussion . 66

4.5.1 Simplicity . 66

4.5.2 Generality . 67

4.5.3 Soundness . 67

4.6 Conclusion . 68

5 SCK: A SINGLE-MACHINE APPROACH FOR FINDING SCALABILITY BUGS IN

CLOUD-SCALE DISTRIBUTED SYSTEMS . 69

5.1 Scalability Bug . 70

5.1.1 A Sample Cassandra Bug . 71

5.1.2 Observations . 73

5.2 State of the Art of Large-Scale Emulation . 75

5.3 SCK . 76

vi

5.3.1 Processing Illusion (PIL) . 76

5.3.2 Single-Process Cluster (SPC) . 81

5.3.3 Global Event Driven Arch. (GEDA) . 81

5.3.4 Memory Footprint Reduction (MFR) . 82

5.3.5 Putting It All Together . 83

5.4 Implementation and Integration . 84

5.5 Evaluation . 86

5.5.1 Colocation Factor . 86

5.5.2 Accuracy . 88

5.5.3 Bugs Reproduced . 91

5.5.4 New Bugs . 92

5.6 Conclusion . 94

6 CONCLUSIONS AND FUTURE WORK . 95

6.1 Conclusion . 95

6.1.1 Distributed Concurrency Bugs . 95

6.1.2 Scalability Bugs . 96

6.2 Future Work . 97

6.2.1 Distributed Concurrency Bugs . 97

6.2.2 Scalability Bugs . 104

6.3 Closing Words . 105

REFERENCES . 107

vii

LIST OF FIGURES

2.1 ZooKeeper-1264 bug . 13

2.2 DMCK . 15

3.1 Triggering patterns . 28

3.2 A DC bug in ZooKeeper . 30

3.3 Statistical overview of TaxDC . 32

3.4 A Cassandra’s Paxos bug . 33

4.1 How dmck works . 45

4.2 SAMC Architecture . 49

4.3 LMI and CMI . 52

4.4 Crash Recovery in Leader Election . 55

4.5 Complexity of Deep Bugs . 62

5.1 The problem of gossip-based failure detection in Cassandra 70

5.2 Maximum colocation factor . 86

5.3 Cassandra internal metrics . 89

5.4 Accuracy in reproducing CA-6127 . 90

5.5 Accuracy in reproducing other bugs . 93

6.1 Race of HBase’s messages to ZooKeeper . 103

viii

http://issues.apache.org/jira/browse/CASSANDRA-6127

LIST OF TABLES

3.1 Taxonomy of DC Bugs . 23

3.2 #DC bugs triggered by timing conditions . 26

3.3 First error symptoms of DC bugs . 35

3.4 Fix strategies for message timing bugs . 37

3.5 Fix strategies for fault/reboot timing bugs . 38

4.1 Protocol-Specific Reduction Rules for ZLE . 60

4.2 SAMC Speed in Finding Old Bugs . 61

4.3 SAMC Reduction Ratio . 66

5.1 Integration (LOC) . 84

5.2 Reproduced bugs . 91

ix

ACKNOWLEDGMENTS

This Ph.D. could not be accomplished, if I did not get supports from faculty, family, and friends,

which I would like to thank these individuals here.

The first person I need to thank is my adviser (and of course, also one of the dissertation

committee), Prof. Haryadi Gunawi. He guided me since the beginning to the end. I have learned a

lot from him from “how to survive Ph.D.?” to “how to find a job?”. It is my great pleasure to have

him as my adviser (and it is also a great experience to be his first student).

Next, I need to thank the other two committee members, Professor Shan Lu and Professor Ravi

Chugh that kindly help to be my committee. I appreciate their time and their suggestions on my

presentation (which is my job talk). I also had a chance to work with Prof. Lu in one project which

is one part in this dissertation. Working with Prof. Lu taught me many great lessons.

I also need to thank my colleagues (aka co-authors), Tiratat Patana-anake, Mingzhe Hao,

Pallavi Joshi, Riza Suminto, Thanh Do, Jeffrey Lukman, Huan Ke, Cesar Stuardo, Daniar Kur-

niawan, and Bo Fu for their hard working; thank to other UCARE students Shiqin Yan, Michael

Tong, and Huaicheng Li to make UCARE group lively; and thank to all my friends, department

faculty and staff that helped me many things when I was working on the dissertation.

And also I want to give big thanks to my family. The first most important one is my mother, the

woman who always supports me throughout my life, without her, there would not be this Tanakorn.

The second one is Louise, my wife; she always helps and supports me during my hard time. The

other three are my lovely sisters, Fon, Nuch, and Nid; they always make me feel good every time

I talk with them. Lastly, I want to thank my father, a man who is my motivations for many things

including this Ph.D.

x

ABSTRACT

In the era of cloud computing, users move their data and computation from local machines to cloud,

thus the services are expected to be 24/7 dependable. Cloud services must be accessible anytime

and anywhere, not lose or corrupt users data, and scale as user base continues to grow. Unfortu-

nately, guaranteeing cloud services’ dependability is challenging because these cloud services are

backed by large sophisticated distributed systems such as scalable data stores, data-parallel frame-

works, and cluster management systems. Such cloud-scale distributed systems remain difficult to

get right because they need to address data races among nodes, complex failures in commodity

hardware, tremendous user requests, and much more. Addressing these cloud-specific challenges

makes the systems more complex and new intricate bugs continue to create dependability prob-

lems.

This dissertation tries to answer a vital question of cloud dependability: “how can we make

cloud-scale distributed systems more dependable?” We try to answer this question by focusing

on the problems of distributed concurrency bugs and scalability bugs. We focus on these two

problems because they are novel issues that occur in cloud-scale environment only and not many

works addressing them.

Distributed concurrency bug (DC bug) is one unsolved reliability problem in cloud systems.

DC bugs are caused by non-deterministic order of distributed events such as message arrivals,

machine crashes, and reboots. Cloud systems execute multiple complicated distributed protocols

concurrently. The possible interleavings of the distributed events are beyond developer’s anticipa-

tions and some interleavings might not be handled properly that can lead to catastrophic failures.

To combat DC bugs, we make two contributions. First, we conduct a formal study on DC bugs

to gain foundation knowledge for DC-bug combating research. We study 104 DC bugs from vari-

ous widely-deployed cloud-scale distributed systems in many characteristics along several axes of

analysis such as the triggering timing condition, input preconditions, error and failure symptoms,

and fix strategies. We present the first complete taxonomy of DC bugs, TaxDC, along with many

xi

findings on DC bugs that can guide future research.

Second, we advance state of the art of distributed system model checking by introducing

“semantic-aware model checking” (SAMC). Distributed system model checkers (dmck) are used to

test system reliability of real systems. Existing dmcks however rarely exercise multiple faults due

to the state-space explosion problem, and thus do not address present reliability challenges of cloud

systems in dealing with complex faults. SAMC pushes the boundary of dmcks by introducing a

white-box principle that takes simple semantic information of the target system and incorporates

that knowledge into state-space reduction policies. We show that SAMC can find deep bugs one to

two orders of magnitude faster compared to state-of-the-art techniques.

And for the second aspect of system dependability, we focus on scalability bugs. Scale sur-

passes the limit of a single machine in meeting users’ increasing demands for computing and stor-

age. On the negative side, scale creates new development and deployment issues. Developers must

ensure that their algorithms and protocol designs to be scalable. However, until real deployment

takes place, unexpected bugs in the actual implementations are unforeseen. This new era of cloud-

scale distributed systems has given birth to “scalability bugs”, latent bugs that are scale-dependent,

and only surface in large scale.

To address scalability bugs, we conduct a study on scalability bugs to understand how they

manifest and what their root causes are, and introduce SCK, a methodology that enables develop-

ers to scale-check distributed systems and find scalability bugs economically on one machine. SCK

helps developers identify potential buggy code and allows developers to colocate a large number

of nodes to test the potential buggy code without sacrificing accuracy. We remove a problem of

hardware contentions (i.e., CPU, memory, and thread) with four novel strategies, and we success-

fully integrate SCK to Cassandra, Riak, and Voldemort. With SCK, we achieve a high colocation

factor (500 nodes), and can reproduce six scalability bugs and identify two new hidden bugs.

xii

CHAPTER 1

INTRODUCTION

“Cloud computing” has been given many definitions from many companies and experts [32, 33,

34, 70]. These definitions are different in details, but they have some common characteristics; they

are on-demand internet-based services that can scale to fit increasing users, and users pay only for

their use. Cloud computing help users (from end users to organizational users) reduce the capital

investment in hardware that is mostly underutilized [89] and help business moves faster [124]. We

see a trend that users are moving their data and computation from local machines and in-house

datacenters to the cloud [2, 8, 19, 21, 26, 30, 31, 121].

This trend makes client-side software get thinner and more heavily rely on the cloud services,

thus the services are expected to be 24/7 dependable. Cloud services must be accessible any-

time and anywhere, not lose or corrupt users data, and scale as user base continues to grow [45].

Unfulfilled dependability is costly. Some researchers estimate that 568 hours of downtime at 13

well-known cloud services since 2007 to 2012 had an economic impact of more than $70 million

[66]. Others predict worse: for every hour it is not up and running, a cloud service can take a hit

between $1 to 5 million [112]. A study shows that service disruptions are widespread and still

continue to occur [79].

Unfortunately, proving cloud services’ dependability is challenging. Behind cloud computing

is backed by large sophisticated distributed software stack [44, 48, 49, 56, 58, 59, 73, 94, 105, 125,

162] that is running on top of large-scale cluster [3, 35, 36]. Such cloud distributed systems remain

difficult to get right because they need to address data races among machines, complex failures

that randomly happen, tremendous user requests, and much more issues that caused from cloud

computing infrastructure.

Data races are known to be a core problem in any concurrent software systems. Unlike non-

distributed software, cloud distributed systems are subject to not only local concurrency bugs,

which basically come from thread interleaving, but also distributed concurrency bugs, which come

1

from inter-node message interleaving. Moreover, cloud hardware is built from commodity hard-

ware such that failures can happen at anytime and can be very complex. The timing of these

hardware failures plus message interleaving makes it hard to handle the concurrency correctly.

Moreover, the size of cloud users is tremendous and cloud service providers need to guarantee

service quality (i.e., availability and performance) to their users. The providers need to ensure that

their capabilities can satisfy the current users and also make sure there is no glitch when users

are growing. Cloud providers normally employ large-scale systems to achieve high aggregate

capabilities, but large-scale systems are challenging to build and costly to test their correctness.

Addressing these challenges makes the systems getting more complex. New intricate bugs

continue to happen and create dependability problems. Guaranteeing dependability has proven to

be challenging in these systems [77, 81, 113, 151, 157]. This raises a vital question: “how can

we make cloud-scale distributed systems more dependable?” We try to answer this question by

focusing on the problems of distributed concurrency bugs and scalability bugs. These two are

critical problems because they are novel issues that occur in cloud environment only and not many

works addressing them. The following sections discuss our contributions to address the challenges.

1.1 Distributed Concurrency Bugs

Distributed concurrency bugs (DC bugs) are bugs that caused by nondeterministic orders of dis-

tributed events. Distributed events could be message arrivals, hardware crashes/reboots, network

timeout, etc. Cloud systems execute multiple complicated distributed protocols concurrently (e.g.,

serving users’ requests, operating background tasks, and combined with untimely hardware fail-

ures), and possible interleavings of the distributed events are beyond developers’ anticipation,

which some interleavings might not be handled properly, and can cause catastrophic failures such

as data loss/inconsistency and downtimes. Compared to the “countless” of efforts in combating

“local” concurrency bugs in multi-threaded software, DC bugs have not received the same amount

of attention within the research community.

2

Here are our contributions in combating DC bugs in systematic and comprehensive manners:

1. Bug study and taxonomy for DC bugs (TaxDC): We perform an in-depth study of more than

100 real-world DC bugs and build a first complete taxonomy of DC bugs. This study can

give insight to guide many future research work on DC bugs.

2. Semantic-aware model checking (SAMC): We advance the state of the art of model check-

ing for distributed systems by adopting white-box approach to tackle state-space explosion

which is the current limitation of model checking.

The brief detail of these two works are discussed below.

1.1.1 Distributed Concurrency Bug Study & Taxonomy

Bug and failure studies can significantly guide many aspects of dependability research. Many

researchers have recently employed formal studies on bugs and failures [96, 108, 109, 118, 137,

146, 155, 158]. However, we are not aware of any public large-scale DC-bug study, a recent study

from Microsoft analyzed the effect of distributed concurrency of workload and only studied five

DC bugs in MapReduce [155], and researchers from NEC Labs dissected only network-failure-

related DC bugs to study and did not publicly release it [99].

In this dissertation, we fill the void by performing large-scale DC-bug study. We study 104

real-world DC bugs from four various popular cloud-scale distributed systems: Cassandra, HBase,

Hadoop MapReduce/Yarn, and ZooKeeper. We study DC bugs in all aspects including trigger,

errors and failures, and fixes.

For triggering conditions, we study DC bugs from two perspectives:

1. Timing conditions: For every DC bug, we identify the smallest set of concurrent events E,

so that a specific ordering of E can guarantee the bug manifestation. This is similar to the

interleaving condition for local concurrency bugs.

3

2. Input preconditions: In order for those events in E to happen, regardless of the ordering,

certain inputs or fault conditions (e.g., node crashes) must occur. This is similar to the input

condition for local concurrency bugs.

Understanding the triggering can help the design of testing tools that can proactively trigger DC

bugs, bug detection tools that can predict which bugs can be triggered through program analysis,

and failure prevention tools that can sabotage the triggering conditions at run time.

Other than the trigger, we also look into errors and failures. From the triggering conditions,

we then scrutinize the first error that happens immediately after. First errors are the pivotal point

that bridges the triggering and error-propagation process. And after the first errors, we track down

to system failures that are noticeable to users such as downtimes, lost/corrupted/inconsistent data,

failed operations, and degraded performance. Identifying errors and failures help failure diagno-

sis get closer to disclosing bug triggering and root causes and help bug detection get closer to

accurately predict failures.

Lastly, we study how developers fix DC bugs to understand their fix strategies. We want to see

how different DC bug fixes compared to local concurrency bugs. Understanding the fix strategies

will help research on runtime failure prevention and automatic bug fixing.

Our contribution from the study is the first complete taxonomy of DC bugs which named

TaxDC. TaxDC contains in-depth characteristics of DC bugs, stored in the form of 2,083 clas-

sification labels and 4,528 lines of re-enumerated steps to the bugs that we manually added. And

as mentioned above, TaxDC can guide various future research on combating DC bugs such as

model checking, bug detections, failure diagnosis, and failure prevention and fixing.

1.1.2 Semantic-Aware Model Checking

One powerful method for discovering hidden DC bugs is the use of an implementation-level (soft-

ware) distributed system model checker (dmck). A dmck can discover buggy interleavings that

lead to DC bugs by reordering every possibility of nondeterministic distributed events. The last ten

4

years have seen a rise of dmcks such as MaceMC, MODIST, or Demeter. One big challenge faced

by a dmck is the state-space explosion problem (i.e., there are too many distributed events to re-

order). To address this, existing dmcks adopt a random walk or basic reduction techniques such as

dynamic partial order reduction (DPOR). Despite these early successes, existing approaches cannot

unearth many real-world DC bugs, so we advance state of the art of dmck in this dissertation.

We start by addressing two limitations of existing dmcks. First, existing dmcks treat every

target system as a complete black box, and perform unnecessary reorderings of distributed events

that would lead to the same states (i.e., redundant executions). Second, they do not incorporate

complex multiple fault events (e.g., crashes, reboots, etc.) into their exploration strategies, as such

inclusion would exacerbate the state-space-explosion problem.

To address these limitations, we introduce Semantic-Aware Model Checking (SAMC), a novel

white-box model checking approach that takes semantic knowledge of how distributed events

(specifically, messages, crashes, and reboots) are processed by the target system and incorpo-

rates that to create reduction policies. The policies are based on sound reduction techniques such

as DPOR and symmetry. The policies tell SAMC not to re-order some pairs of events such as

message-message pairs, and message-crash pairs, yet preserves soundness, because those cut out

re-orderings are redundant, and unnecessary to check.

SAMC can reproduce twelve old bugs in three cloud distributed systems (Cassandra, Hadoop

MapReduce, and ZooKeeper) involving 30-120 distributed events and multiple crashes and re-

boots. Some of these bugs cannot be unearthed by non-SAMC approaches, even after two days.

SAMC can find the bugs up to 340 (49x on average) faster compared to state-of-the-art techniques,

it found two new bugs in Hadoop MapReduce and ZooKeeper.

1.2 Scalability Bugs

Scalability bug is a type of bug that newly born in the era of cloud computing. These bugs are

latent such that they do not surface in small/medium-scale deployments, but only surface in large

5

scale. They threaten systems reliability and availability at scale. As we discussed above, cloud

backend needs to be scalable; algorithms and protocols in cloud distributed systems are designed

to be scalable. However, until real deployment takes place, if developers do not have a large cluster

to test their actual implementations, unexpected bugs are unforeseen.

To unearth latent scalability bugs, we need an effective and economic approach to test the

systems prior to deployments, but in order to do that, we need to understand the nature of scalability

bugs first. Unfortunately, we are not aware of any study on scalability bugs at all, so in this

dissertation, we perform a study of scalability bugs to gain some foundational knowledge about

them. We study 41 bugs in seven systems including Cassandra, Couchbase, Hadoop MapReduce,

HBase, HDFS, Riak, and Voldemort. And here is our brief observations from the study:

• Scalability bugs only appear at extreme scale (e.g., hundreds node).

• Systems can be scalable in design, but not in practice.

• Scalability bugs could be implementation specific and hard to predict.

• Scalability bugs are caused from cascading impacts of “not independent” nodes.

• It is long and difficult to debug large-scale.

• Not all developers have large cluster to test the systems, especially in open-source project.

These observations accentuate the need for scale-checking distributed system implementations

at real scale, not via simulation nor extrapolation. The challenge of large-scale emulation is re-

source contention problem that is nodes compete to consume resources (e.g., CPU, memory, and

threads) and make test outcome inaccurate. In this context, we start a pilot work, SCK, a large-

scale emulation that allows developers to colocate hundreds nodes in one machines to test system

scalability, yet still get accurate testing results. SCK contains four techniques to mitigate resource

contention which we briefly describe below.

6

First, we introduce processing illusion (PIL), which replaces scale-dependent CPU-intensive

computations with sleep()without changing the cluster behavior. The insight behind PIL is that

the key to computation is not the intermediate results, but rather the execution time and eventual

output. To make PIL feasible, we analyze the characteristics of functions that can take PIL. We

employ pre-memoization and order determinism to record the output data and execution time of

PIL-replaceable functions.

In addition to PIL, we introduce other colocation strategies that reduce unnecessary CPU and

memory contentions, strategies such as single process cluster (SPC), which runs the whole cluster

in a single process, global even driven architecture (GEDA), which replaces hundreds of threads in

SPC with a few event-handler threads shared by all nodes, and memory footprint reduction (MFR),

which removes high system-specific memory footprints in our target systems.

We created SCK tools for Cassandra [105], Riak [28], and Voldemort [27]. We scale-checked a

total of 5 protocols; 3 Cassandra (bootstrap, scale-out, decommission), 1 Riak (bootstrap+rebalance),

and 1 Voldemort (rebalance) protocols. To show the simplicity of developing SCK, we have mi-

grated SCK to a total of 9 old and new releases (5 Cassandra, 2 Riak, and 2 Voldemort versions).

Across these versions, we have colocated 500 nodes and reproduced 7 (old and new) scalability

bugs (5 Cassandra, 1 Riak, and 1 Voldemort bugs).

In summary, our contributions are:

1. We present a method for scale-checking distributed systems and reproducing the scalability

bugs within.

2. We uncover the reasons why existing distributed systems are not easily scale-checkable (i.e.,

the colocation bottlenecks).

3. We show the generality of SCK by applying the concept to three real-world cloud-scale

distributed systems.

Overall, we believe that scalability bugs are new-generation bugs to combat in modern cloud-

7

scale distributed systems and SCK is one of the pilot solutions in this new area of research.

1.3 Summary of Contributions and Outline

We summarize our contributions and present the outline for the rest of dissertation below.

• Background and related work: Chapter 2 discusses a background of cloud computing and

cloud-scale distributed systems, and how concurrency and scalability affect system develop-

ment. We also discuss related work in this chapter.

• Distributed concurrency bug study and taxonomy: Chapter 3 introduces TaxDC, a DC-

bug study and taxonomy that provides insights how DC bugs are triggered, how they affect

systems, and how they are fixed which can help future research on DC bugs including model

checking, bug detection, formal verification, failure diagnosis, and failure prevention.

• Semantic-aware model checking: Chapter 4 presents SAMC, a white-box approach to

model check distributed systems. The approach advances the state-of-the-art of leverag-

ing semantic knowledge to prune out redundant executions to tackle state space explosion.

SAMC introduces some principles of semantic awareness that can mitigate the problem and

this chapter also shows SAMPRO, a prototype of how SAMC approach can be adopted to

Cassandra, Hadoop, and ZooKeeper.

• Scalability checking methodology: Chapter 5 shows our observations on scalability bugs

that accentuate the need for scale checking, and presents SCK, a methodology to check

scalability of systems in an economical manners. SCK introduces an approach for developers

to colocate multiple CPU-intensive nodes on one machine to test and debug scalability bugs.

With SCK, developers can mitigate a resource contention problem and yield the similar test

and debug outcome as deploying systems on real large scale.

8

• Conclusion and future work: Chapter 6 concludes this dissertation, and discuss research

avenues to make research work in this dissertation more complete.

9

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides the background of this dissertation. We briefly discuss about cloud comput-

ing and cloud-scale distributed systems in Section 2.1. Section 2.2 and 2.3 discuss about distributed

concurrency and scalability respectively. These are two aspects of distributed systems that could

threaten system dependability. And in those two sections (Section 2.2 and Section 2.3), we also

briefly discuss how system community address issues from distributed concurrency and scalability.

2.1 Cloud Computing and Cloud-Scale Distributed Systems

2.1.1 Cloud Computing

In the past decade, cloud computing has become widespread buzzword that IT people often talk

about. However, there is few agreement on what it really means; many companies and experts

have given many definitions [32, 33, 34, 70] that are different in details, but they share some

common characteristics: cloud computing is on-demand internet-based services that can scale to

serve growing users’ requests, and users pay as they go.

Cloud computing can attract a number of users to move their data and computation from local

machines and private datacenters to the cloud [2, 8, 19, 21, 26, 30, 31, 121]. It provides many

benefits as shown below:

• Users can access their computing resources and data any time and any where. For example,

Google Doc allows users to create/modify their documents on one machine and access them

later on mobile devices. This advantage also enables new classes of applications, especially,

mobile applications [17, 18, 20, 24, 29]

• Users can cut the cost of hardware investment, but can get immediate access to computing

resources. Moreover, this will help improve hardware utilization because users do not need

10

to pay while they are not using the resources [124].

• Most importantly, cloud computing help users to scale their services in a convenient manner.

When their workload is growing up, they can just purchase more computing power from

their cloud service providers.

2.1.2 Cloud-Scale Distributed Systems

Behind the cloud computing, it is sophisticated distributed systems running on large-scale clusters.

Unlike traditional computing, when the number of users or workload increase, we do not upgrade

hardware specification, but add more machines to the systems. Thus, cloud-scale distributed sys-

tems are distributed systems that are designed to be scalable to handle tremendous users’ requests.

Moreover, the cluster is built from commodity machines which hardware failures are not optional

and can be very complex; machines in the cluster can stop working at any time; switches and

routers can fail, and make network partitions; disks can be corrupted but still serve I/O requests;

hardware can be “limping” which functions in degraded mode [62, 147]. Cloud systems must be

able to handle these complex failures [37, 76, 85]. We will discuss some types of cloud-scale

distributed systems below as these systems are systems that we work on in this dissertation.

• Distributed file systems: these are file systems that stores files across machines in clusters

(however, some systems cannot be mounted as other traditional file systems, and some users

consider them as data store [9]). Distributed file systems do replication or erasure coding

across machines in order to be fault tolerant, and to increase performance via data aggrega-

tion. Examples of these systems are GFS from Google [73], and HDFS from Apache [141]

which is an open-source version of GFS.

• Data-parallel framework: these frameworks process big data by leveraging parallelism. It

eases parallel computing by enabling users to increase computing power by just adding more

machines without changing their programs. One of well-known data-parallel frameworks is

11

MapReduce from Google [58]. As its name states, MapReduce is a programming model

that consist of map and reduce functions. Map functions process key-value pairs of data and

generate intermediate key-value pairs, which reduce functions will process values of data

with the same keys to generate final results. Apache also has open-source framework, which

is similar to Google MapReduce, called Hadoop MapReduce [5].

• NoSQL data stores: These are data stores that are not relational database. Storing and ac-

cessing data do not have strict tabular relations like in relational database, and are not done

by SQL query (some systems support SQL query but not fully), such as key-value stores,

document stores, and object stores. Most NoSQL stores adopt the concept of “eventual con-

sistency” to improve availability during network partition (favoring “C” in CAP theorem).

An example of NoSQL is Dynamo from Amazon [59]. Dynamo is decentralized distributed

key-value store. Its open-source counterpart from Apache is Cassandra [105].

• Synchronization services: These are utility services that support other large distributed sys-

tems. They help nodes in other systems synchronize some metadata such as global lock-

ing, configuration maintaining, and naming. Examples of the synchronization services are

Chubby from Google [44] and ZooKeeper from Apache [94].

2.2 Distributed Concurrency

2.2.1 Local Concurrency and Distributed Concurrency

A well-known concurrency that developers most familiar with is from thread execution interleaving

in multi-threaded software or what we call in this dissertation “local concurrency”. Multi-threaded

software has become common in the age of multi-core processor, however, building multi-threaded

software is hard. Developers need to handle all possible interleaving of multiple threads that are

accessing to same data properly, otherwise concurrency bugs will happen. These bugs are timing-

related and non-deterministic, and they are extremely difficult to test and debug.

12

ZooKeeper Bug #1264:

1. Follower F crashed in the past,

2. F reboots and joins the cluster; then F synchronizes data with Leader L

3. F sends FOLLOWERINFO message to L [synchronization message]

4. L sends LEADERINFO message to F [synchronization message]

5. F sends ACKEPOCH message to L [synchronization message]

6. L sends SNAP message to F [synchronization message]

7. L sends data tree snapshot to F [synchronization message]

8. L sends NEWLEADER message to F [synchronization message]

9. Client C sends a request to update data with Tx-#15 to L; L does atomic broad-

cast to update all followers

10. L sends update proposal message for Tx-#15 to F [broadcast message]

11. F sends update ack message for Tx-#15 to L [broadcast message]

12. L sends update commit message for Tx-#15 to F [broadcast message]

13. F applies the update for Tx-#15 to in-memory data tree, but not to on-disk log

(because F has not received UPTODATE message)

14. L sends UPTODATE message to F [synchronization message]

15. C sends a request to update data with Tx-#16 to L

16. L sends update proposal for Tx-#16 to F

17. F sends update ack for Tx-#16 to L

18. L sends update commit for Tx-#16 to F

19. F applies the update for Tx-#16 to in-memory data tree and on-disk log

20. F crashes (before F does snapshot)

21. F reboots and joins the cluster again

22. L synchronized data with F by sending update starting from Tx-#17

23. F loses the update for Tx-15 C did in step 9

Figure 2.1: ZooKeeper-1264 bug. A concurrency bug in ZooKeeper that is caused from a mix

of untimely message arrivals and crash timing. This bug surfaces when a follower receives update

commit message (step 12) in the middle of an atomic operation (step 3-14) and the follower crashes

before it does snapshot (step 20)

13

For distributed systems, other than local concurrency, the systems are also subject to “dis-

tributed concurrency” that is caused from interleaving of computations in multiple nodes. Nodes

in distributed systems do not have shared memory and they access data in other nodes via network

communication, so concurrency in distributed systems can also come from concurrent message

arrivals and internal computations in running nodes.

Other than timing of message arrivals and local computations, concurrent bugs in distributed

systems are caused from timing of failures as well. Cloud systems are built on top of commodity

hardware for horizontal scaling purpose (Section 2.3.1). This commodity hardware is unreliable,

and hardware failures are not an option [37, 76, 85]. Cloud distributed systems need to response

to these failures, they need to detect and recover from the failures and makes sure that users’ data

will not be lost or corrupted. Guaranteeing this correctness is proven to be hard [61, 77], cloud-

scale distributed systems need to handle failures that can happen at any time and at any state of the

systems. Some ordering of message arrivals could make systems into state that developers never

anticipate and is prone to error when failure happens.

Considering hardware failures, concurrency bugs in cloud distributed systems is not only about

interleaving of message arrivals and local computations, but also timing of hardware failures as

well. Figure 2.1 shows an example of a concurrency bug that happens because of untimely or-

dering of message arrivals and node crashes. This bugs surfaces only if a follower receives an

UPTODATE message (step 14) after a commit message (step 12), and the follower crashes before

it does snapshot (step 20); only untimely message arrivals or the timing of follower crash is not

enough for bug to surface.

2.2.2 Distributed Systems Model Checker (DMCK)

In order to unearth DC bugs the question we have to answer is: “can we exercise necessary con-

ditions (i.e.workloads and faults) and test different event re-ordering to hit the bugs?”. This

is the job of distributed system model checkers (dmck), which are gaining popularity recently

14

Node 1

a
b c d

enable(c) Outstanding messages:
{a,b,d}

History of explored paths:
- abcd - abdc - ...
- bacd - badc - ...

Dmck Server

Node 2

Figure 2.2: DMCK. A typical framework of a distributed system model checker (dmck).

[81, 103, 143, 157]. Dmck works by intercepting distributed events and permuting their order-

ing, and hereby pushing the target system into corner-case situations and unearthing hard-to-find

bugs. However, the more events included, the more scalability issues will arise due to state-space

explosion.

The last ten years have seen a rise of software model checker that checks distributed systems

directly at the implementation level. Figure 2.2 illustrates a dmck integration to a target distributed

system, a simple representation of existing dmck frameworks [81, 103, 143, 157]. The dmck

inserts an interposition layer in each node of the target system with the purpose of controlling all

important events (e.g., network messages, timeouts) and preventing the target system to process

the events until the dmck enables them. A main dmck mechanism is the permutation of events; the

goal is to push the target system into all possible ordering scenarios. For example, the dmck can

enforce abcd ordering in one execution, bcad in another, and so on.

2.2.3 Symbolic Execution

Symbolic execution is another powerful formal method to verify systems correctness. Symbolic

execution also faces an explosion problem, specifically the path explosion problem. A huge body

of work has successfully addressed the problem and made symbolic execution scale to large (non-

distributed) software systems [41, 46, 50, 57, 163]. Symbolic execution and model checking can

formally be combined into a more powerful method [42], however this concept has not permeated

15

the world of distributed systems; it is challenging to track symbolic values across distributed nodes.

2.2.4 Fault Injector

Reliability bugs are often caused by incorrect handling of failures [77, 80]. Fault-injection testing

however is challenging due to the large number of possible failures to inject. This challenge led to

the development of efficient fault-injection testing frameworks. For example, AFEX [38] and LFI

[123] automatically prioritize “high-impact targets” (e.g., unchecked system calls). These novel

frameworks target non-distributed systems and thus the techniques are different than ours.

Similarly, recent work highlights the importance of testing faults in cloud systems (e.g., FATE

[77], SETSUDO [99], PREFAIL [100], and OpenStack fault-injector [101]). However, these frame-

works are not a dmck; they cannot re-order concurrent messages and failures and therefore cannot

catch distributed concurrency bugs systematically.

2.3 Scalability

2.3.1 Vertical Scaling vs Horizontal Scaling

When systems’ workload grows (the number of users raises or individual users’ requests increase),

developers need to scale the systems to add more capability and keep users satisfied. Two tradi-

tional approaches to scale system are used as we show below [126]:

• Vertical scaling or scale-up: this approach expands system capabilities by adding more re-

sources (e.g., CPU, memory, and storage) to a single node to boost its performance, and make

software to leverage additional resources. For example, run more processes of applications

in the node.

• Horizontal scaling or scale-out: this approach enhance the capability by adding more nodes

to current distributed systems to yield higher aggregate capability; mostly, the nodes that we

are adding are low-cost machines.

16

In the past, vertical scaling was widely favored by many companies. Multiprocessor with

higher clock rate can satisfy computing power need of largest companies [126]. Vertical scaling

requires less human effort than horizontal scaling; it does not need more administrative effort be-

cause the number of machines and systems administrators need to handle is still the same. The

disadvantages of vertical scaling are the upgradability is limited by existing hardware manufactur-

ing, and the upgrade cost is expensive.

Because of the upgradability and price issues, nowadays, the trend goes to horizontal scaling.

Many cloud service companies adopt this approach (e.g., Google, Facebook, Amazon, etc.). The

cost of horizontal scaling is much more cheaper than the vertical scaling and there is not limitation

for hardware to scale out infinitely (the limitations are posed by software stack) [16]. In addition,

hardware manufacturers try to facilitate scale-out approach [126].

2.3.2 Scalability Testing

As we discussed in 2.3.1, horizontal scaling or scale-out is a trend now because it does not expose

hardware limitation. The limitation is in software stack so developers need to invent scalable

algorithms and protocols, however, before real deployment, if they do not have a large cluster to

test their implementations, there could be “scalability bugs” hide there.

We now discuss popular approaches (simulation, extrapolation, and emulation) for unearthing

scalability bugs that avoid acquiring a number of machines, because testing on such deployments

is costly. First, simulation approaches test system/application models in different scales [47, 104],

However, a model can look scalable but the actual implementation can contain unforeseen bugs.

Later in Section 5.1.1, we will show our observations from real-world scalability bugs that simu-

lation cannot detect them.

Second, extrapolation monitors system behaviors in “mini clusters” and extrapolates them to

larger scales (Section 2.1 in [151]). However, mini clusters tend to be order(s) of magnitude

smaller than real deployments. Most importantly, system behaviors do not always extrapolate

17

linearly [151].

Finally, real-scale emulation checks real implementations in an emulated environment [83,

151]. This approach emulates real large-scale system in a single machine. For example, a naive

way to achieve this is just colocating multiple processes/VMs on one machine. The limitation here

is emulation consumes real resources (CPU, memory, and storage), so with limited resources, we

can not emulate really large deployment (e.g., can test up to 50-node deployment). Some works

try to resolve this resource contention issue [83, 151]. We will discuss them in Section 5.2

2.3.3 Scalability Benchmarking

Scalability benchmarking (e.g., YCSB [55]) is a standard method to check throughput/latency

scalability. The results are useful for advertising system capabilities, and thus acquiring a large

number of machines is justifiable. But this is different from testing and debugging code to check

system scalability.

2.4 Conclusion

In this chapter, we discuss about cloud-scale distributed systems, software backend for the cloud

computing. We show what the current trend of the systems is and how they are design. We

also discuss about distributed concurrency and scalability, the two important aspects of cloud-

scale distributed systems that could threaten dependability of the systems. We briefly discuss how

system community address issues from the concurrency and scalability. Unfortunately, distributed

concurrency bugs are still an unsolved problem, and scalability bugs are novel and not many works

address about them.

18

CHAPTER 3

TAXDC: A TAXONOMY OF NON-DETERMINISTIC CONCURRENCY

BUGS IN CLOUD DISTRIBUTED SYSTEMS

Concurrency bugs are one notorious type of software bugs that happen in concurrency systems.

These timing-related bugs manifest non-deterministically, and hence are extremely difficult to de-

tect, diagnose, and fix. A huge body of work exists in this space that focuses on “local” concur-

rency bugs (LC bugs) in single-machine multi-threaded software, caused by incorrect interleav-

ing of memory accesses. And for cloud-scale distributed systems, the reliability is also severely

threatened by non-deterministic concurrency bugs as well, which we refer as distributed concur-

rency bugs (DC bugs). Distributed systems execute many complicated distributed protocols on

hundreds/thousands of machines with no common clocks, and must face a variety of random hard-

ware failures [62, 78]. This combination makes distributed systems prone to DC bugs caused by

non-deterministic timing of distributed events such as message arrivals, node crashes, reboots, and

timeouts. These DC bugs cannot be directly tackled by LC bug techniques, and they cause fatal

implications such as operation failures, downtimes, data loss and inconsistencies.

Fighting DC bugs is challenging, particularly given the preliminary understanding of real-

world DC bugs. To make progress, a comprehensive bug study is needed. Past studies have

closely examined bugs in various software systems [51, 117, 131], which have motivated and

guided many aspects of reliability research. There are few bug studies on cloud-scale distributed

systems [78, 108], but they did not specifically dissect DC bugs. There was an internal bug study

dissecting network-failure-related DC bugs to be a foundation to combat those bugs, but it was

not published [99], and one recent work analyzed non-determinism in MapReduce programs but

only discussed five bugs [155]. Thorough studies have also been conducted for LC bugs [69, 118]

with many follow-up work to date, yet there is no comprehensive study on real-world distributed

concurrency bugs.

In this chapter, we fill the void by presenting our in-depth analysis of real-world DC bugs in

19

well-known cloud distributed systems, and introducing TaxDC, the largest comprehensive taxon-

omy of DC bugs that covers several axes. We briefly give an overview of TaxDC in Section 3.1,

and present our analysis in Section 3.3-3.7.

3.1 TaxDC

In this formal study on DC bugs, we do in-depth analysis of 104 DC bugs. The bugs came from

four popular cloud distributed systems: Cassandra [4], HBase [6], Hadoop MapReduce [5], and

ZooKeeper [7]. We introduce TaxDC, a comprehensive taxonomy of real-world DC bugs across

several axes of analysis such as the triggering timing condition and input preconditions, error and

failure symptoms, and fix strategies, as shown in detail in Table 3.1.

As the main contribution, TaxDC will be the first large-scale DC-bug benchmark. In the last six

years, bug benchmarks for LC bugs have been released [95, 160], but no large-scale benchmarks

exist for DC bugs. Researchers who want to evaluate the effectiveness of existing or new tools in

combating DC bugs do not have a benchmark reference. TaxDC provides researchers with more

than 100 thoroughly taxonomized DC bugs to choose from. Practitioners can also use TaxDC to

check whether their systems have similar bugs. The DC bugs we studied are considerably general,

representing bugs in popular types of distributed systems.

As a side contribution, TaxDC can help open up new research directions. In the past, the lack

of understanding of real-world DC bugs has hindered researchers to innovate new ways to combat

DC bugs. The state of the art focuses on three lines of research: monitoring and postmortem

debugging [71, 115, 116, 136], testing and model checking [81, 103, 143, 157], and verifiable

language frameworks [60, 154]. We hope our study will not only improve these lines of research,

but also inspire new research in bug detection tool design, runtime prevention, and bug fixing, as

elaborated more in Chapter 6.

20

3.2 Methodology

3.2.1 Basic Definitions

A distributed concurrency bug (DC bug) is a concurrency bug in distributed systems caused by

distributed events that can occur in non-deterministic order. An event can be a message ar-

rival/sending, local computation, fault, and reboot. A local concurrency bug (LC bug) is a concur-

rency bug that happens locally within a node due to thread interleaving. In our model, a distributed

system is a collection of shared-nothing nodes. Each node can run multiple protocols in multiple

threads.

3.2.2 Target Systems and Dataset

Our study examined bugs from four widely-deployed open-source datacenter distributed systems

that represent a diverse set of system architectures: Hadoop MapReduce (including Yarn) [5] rep-

resenting distributed computing frameworks, HBase [6] and Cassandra [4] representing distributed

key-value stores (also known as NoSQL systems), and ZooKeeper [7] representing synchroniza-

tion services. They are all fully complete systems containing many complex concurrent protocols.

Throughout the chapter, we will present short examples of DC bugs in these systems. Some de-

tailed examples are illustrated in Figure 3.2, 3.4 and 6.1.

The development projects of our target systems are all hosted under Apache Software Foun-

dation wherein organized issue repositories (named “JIRA”) are maintained. To date, across the

four systems, there are over 30,000 issues submitted. One major challenge is that issues pertaining

to DC bugs do not always contain plain terms such as “concurrency”, “race”, “atomicity”, etc.

Scanning all the issues is a daunting task. Thus, we started our study from an open source cloud

bug study (CBS) database [1], which already labels issues related to concurrency bugs. However,

beyond simple labeling, the CBS work did not differentiate DC from LC bugs and did not dissect

DC bugs further.

21

From CBS, we first filtered out LC bugs, then exclude DC bugs that do not contain clear de-

scription, and finally randomly picked 104 samples from the remaining detailed DC bugs, specif-

ically 19 Cassandra, 30 HBase, 36 Hadoop MapReduce, and 19 ZooKeeper DC bugs, reported in

January 2011-2014 (the time range of CBS work). We have seen much fewer clearly explained

DC bugs in CBS from Cassandra and ZooKeeper than those from HBase and Hadoop MapReduce,

which may be related to the fact that they are different types of distributed systems. For exam-

ple, ZooKeeper, as a synchronization service, is quite robust as it is built on the assumption of

event asynchrony since day one. Cassandra was built on eventual consistency, and thus did not

have many complex transactions, until recently when Cassandra adopts Paxos. We still see new

DC bugs throughout 2014-2015 (some pointed to us by the developers); they can be included into

TaxDC in the future.

3.2.3 Taxonomy

We study the characteristics of DC bugs along three key stages: triggering, errors & failures, and

fixing (Table 3.1). Triggering is the process where software execution states deviate from correct

to incorrect under specific conditions. At the end of this process, the manifestation of DC bugs

changes from non-deterministic to deterministic. Errors and failures are internal and external

software misbehaviors. Fixing shows how developers correct the bug. We will discuss in detail

these categories in their respective sections.

3.2.4 Threats to Validity

For every bug, we first ensure that the developers marked it as a real bug (not a false positive). We

also check that the bug description is clear. Finally, We then re-enumerate the full sequence of

operations (the “steps”) to a clearer and more concise description such as the ones in Figure 3.2.

Our study cannot and does not cover DC bugs not fixed by the developers. Even for fixed bugs, we

do not cover those that are not described clearly in the bug repositories, a sacrifice we had to make

22

Triggering

What is the triggering timing condition?

Message arrives unexpectedly late/early

Message arrives unexpectedly in the middle

Fault (component failures) at an unexpected state

Reboot at an unexpected state

What are the triggering inputs preconditions?

Fault, reboot, timeout, background protocols, and others

What is the triggering scope?

How many nodes/messages/protocols are involved?

Errors & Failures

What is the error symptom?

Local memory exceptions

Local semantic error messages & exceptions

Local hang

Local silent errors (inconsistent local states)

Global missing messages

Global unexpected messages

Global silent errors (inconsistent global states)

What is the failure symptom?

Node downtimes, data loss/corruption, operation failures, slowdowns

Fixing

What is the fix strategy?

Fix Timing: add global synchronization

Fix Timing: add local synchronization

Fix Handling: retry message handling at a later time

Fix Handling: ignore a message

Fix Handling: accepting a message without new computation logics

Fix Handling: others

Table 3.1: Taxonomy of DC Bugs.

to maintain the accuracy of our results.

Readers should be cautioned not to generalize the statistics we report as each distributed system

has unique purpose, design and implementation. For example, we observe 2:1 overall ratio between

order and atomicity violations (Section 3.3.1), however the individual ratios are different across

the four systems (e.g. 1:2 in ZooKeeper and 6:1 in MapReduce). Like all empirical studies, our

findings have to be interpreted with our methodology in mind.

23

3.2.5 TaxDC Database

We name the product of our study TaxDC database. TaxDC contains in total 2,083 classification

labels and 4,528 lines of clear and concise re-description of the bugs (our version, that we manually

wrote) including the re-enumeration of the steps, triggering conditions, errors and fixes. We release

TaxDC to the public 1. We believe TaxDC will be a rich “bug benchmark” for researchers who want

to tackle distributed concurrency problems. They will have sample bugs to begin with, advance

their work, and do not have to repeat our multi-people-year effort.

3.2.6 Detailed Terminologies

Below are the detailed terminologies we use in this chapter. We use the term “state” to interchange-

ably imply local state (both in-memory and on-disk per-node state) or global state (a collection

of local states and outstanding messages). A protocol (e.g., read, write, load balancing) creates a

chain of events that modify system state. User-facing protocols are referred as foreground protocols

while those generated by daemons or operators are referred as background protocols.

We consider four types of events: message, local computation, fault and reboot. The term

fault represents component failures such as crashes, timeouts, and disk errors. A timeout (system-

specific) implies a network disconnection or busy peer node. A crash usually implies the node

experiences a power failure. A reboot means the node comes back up.

Throughout the chapter, we present bug examples by abstracting system-specific names. As

shown in Figure 3.1, we use capital letters for nodes (e.g., A, B), two small letters for a message

between two nodes (ab is from A to B). Occasionally, we attach system-specific information in

the subscript (e.g., AAppMaster sends abtaskKill message to BNodeManager). We use “ / ” to imply

concurrency (ac/bc implies the two messages can arrive at C in different orders, ac or bc first). A

dash, “ – ”, means causal relation of two events (ab-bc means ab causally precedes bc). Finally,

we use “N*” to represent crash, “N!” reboot, and “N+” local computation at N.

1. http://ucare.cs.uchicago.edu/project/taxDC

24

http://ucare.cs.uchicago.edu/project/taxDC

We cite bug examples with clickable hyperlinks (e.g., MR-3274). To keep most examples

uniform, we use MapReduce examples whenever possible. We use the following abbreviations for

system names: “c/CA” for Cassandra, “h/HB” for HBase, “m/MR” for Hadoop MapReduce, and

“z/ZK” for ZooKeeper; and for system-specific components: “AM” for application master, “RM”

for resource manager, “NM” for node manager, “RS” for region server, and “ZAB” for ZooKeeper

atomic broadcast.

3.3 Trigger

DC bugs often have a long triggering process, with many local and global events involved. To

better reason about this complicated process, we study them from two perspectives:

1. Timing conditions (Section 3.3.1): For every DC bug, we identify the smallest set of concur-

rent events E, so that a specific ordering of E can guarantee the bug manifestation. This is

similar to the interleaving condition for LC bugs.

2. Input preconditions (Section 3.3.2): In order for those events in E to happen, regardless of

the ordering, certain inputs or fault conditions (e.g., node crashes) must occur. This is similar

to the input condition for LC bugs.

Understanding the triggering can help the design of testing tools that can proactively trigger DC

bugs, bug detection tools that can predict which bugs can be triggered through program analysis,

and failure prevention tools that can sabotage the triggering conditions at run time.

3.3.1 Timing Conditions (TC)

Most DC bugs are triggered either by untimely delivery of messages, referred to as message timing

bugs, or by untimely faults or reboots, referred to as fault timing bugs. Rarely DC bugs are triggered

by both untimely messages and untimely faults, referred to as message-fault bugs. Table 3.2 shows

25

http://issues.apache.org/jira/browse/MAPREDUCE-3274

Ordering Atomicity Fault Reboot

CA 4 4 6 5

HB 13 9 8 1

MR 25 4 5 3

ZK 4 8 7 5

All 46 25 26 14

Table 3.2: #DC bugs triggered by timing conditions. The total is more than 104 because some

bugs require more than one triggering condition. More specifically, 46 bugs (44%) are caused only
by ordering violations, 21 bugs (20%) only by atomicity violations, and 4 bugs (4%) by multiple

timing conditions (as also shown in Figure 3.3a).

the per-system breakdown and Figure 3.3a (TC) the overall breakdown. Since a few bugs are

triggered by more than one type of timing conditions (Section 3.3.3), the sum of numbers in Table

3.2 is slightly larger than the total number of DC bugs.

Message Timing Bugs. The timing conditions can be abstracted to two categories:

a. Order violation (44% in Table 3.2) means a DC bug manifests whenever a message comes

earlier (later) than another event, which is another message or a local computation, but not

when the message comes later (earlier).

b. Atomicity violation (20% in Table 3.2) means a DC bug manifests whenever a message

comes in the middle of a set of events, which is a local computation or global communication,

but not when the message comes either before or after the events.

LC and DC bugs are similar in that their timing conditions can both be abstracted into the above

two types. However, the subjects in these conditions are different: shared memory accesses in LC

and message deliveries in DC. The ratio between order violation and atomicity violation bugs are

also different: previous study of LC bugs showed that atomicity violations are much more common

than order violations in practice [118]; our study of DC bugs shows that this relationship does not

apply or even gets reversed in several representative distributed systems.

26

An order violation can originate from a race between two messages (message-message race) at

one node. The race can happen between two message arrivals. For example, Figure 3.1a illustrates

ac/bc race at node C in MR-3274. Specifically, BRM sends to CNM a task-init message (bcinit), and

soon afterwards, AAM sends to CNM a task-kill preemption message (ackill), however ackill arrives

before bcinit and thus is incorrectly ignored by C. The bug would not manifest if ackill arrives after

bcinit (Figure 3.1b). Message-message race can also happen between a message arrival and a

message sending. For example, the ab/bc race in Figure 3.1c depicts HB-5780. In this bug, BRS

sends to CMaster a cluster-join request (bcjoin) unexpectedly before a security-key message (abkey)

from AZK arrives at B, causing the initialization to abort.

Interestingly, message-message race can also occur concurrently across two nodes. For exam-

ple, Figure 3.1d illustrates ab/ba race crisscrossing two nodes A and B in MR-5358. Specifically,

AAM sends abkill to a backup speculative task at BNM because the job has completed, but concur-

rently the backup task at B sends bacomplete to A, creating a double-complete exception at A. If

abkill arrives early at B, ba will not exist and the bug will not manifest (Figure 3.1e).

An order violation can also originate from a race between a message and a local computation

(message-compute race). For example, Figure 3.1f illustrates ab/b+ race in MR-4157. First, BAM

was informed that a task has finished and B plans to close the job and remove its local temporary

files (b+). However, just before b+, ARM sends to B a kill message (ab) and hence the files are

never removed, eventually creating space issues. To prevent the failure, the kill message has to

arrive after the local cleanup (Figure 3.1g).

An atomicity violation, as defined above, originates when a message arrives in the middle

of a supposedly-atomic local computation or global communication. For example, Figure 3.1h

illustrates MR-5009. When BNM is in the middle of a commit transaction, transferring task output

data (bc) to CHDFS, ARM sends a kill preemption message (ab) to B, preempting the task without

resetting commit states on C. The system is never able to finish the commit — when B later reruns

the task and tries to commit to C (bc’), C throws a double-commit exception. This failure would

27

http://issues.apache.org/jira/browse/MAPREDUCE-3274
http://issues.apache.org/jira/browse/HBASE-5780
http://issues.apache.org/jira/browse/MAPREDUCE-5358
http://issues.apache.org/jira/browse/MAPREDUCE-4157
http://issues.apache.org/jira/browse/MAPREDUCE-5009

b
c

bc

(f)

(a) (b) (c)

(d) (e)

A!

(j)

bc

ac

ac

a
b

ab

ba

b+ab ab

(i)

A*

A B C A B C A B

b+

(h)

ab
bc

bc'

bc
A*

ab

cb

ab

ba

ba
ab

C

(g)

Figure 3.1: Triggering patterns (Section 3.3.1). The three vertical lines represent the timeline

of nodes A, B and C. An arrow with xy label implies a message from X to Y. A square box with label

x+ implies a local state-modifying computation at node X. A thick arrow implies a set of messages

performing an atomic operation. X* and X! implies a crash and reboot at node X respectively

(Section 3.2.6). All figures are discussed in Section 3.3.1

not happen if the kill message (ab) comes before or after the commit transaction (bc).

Fault and Reboot Timing Bugs. Fault and reboot timing bugs (32% in Table 3.2) manifest when

faults and/or reboots occur at specific global states Si; the bugs do not manifest if the faults and

reboots happen at different global states Sj.

Figure 3.1i illustrates a fault-timing bug in MR-3858. Here, ANM1 is sending a task’s output to

BAM (ab) but A crashes in the middle (A*) leaving the output half-sent. The system is then unable

to recover from this untimely crash — B detects the fault and reruns the task at CNM2 (via bc) and

later when C re-sends the output (cb), B throws an exception. This bug would not manifest, if the

crash (A*) happens before/after the output transfer (ab).

Figure 3.1j depicts a reboot-timing bug in MR-3186. Here, ARM sends a job (ab) to BAM

and while B is executing the job, A crashes and reboots (A*, A!) losing all its in-memory job

28

http://issues.apache.org/jira/browse/MAPREDUCE-3858
http://issues.apache.org/jira/browse/MAPREDUCE-3186

description. Later, B sends a job-commit message (ba) but A throws an exception because A does

not have the job information. The bug would not manifest if A reboots later: if A is still down

when B sends bacommit message, B will realize the crash and cancel the job before A reboots and

A will repeat the entire job assignment correctly.

Message-Fault Bugs. Four DC bugs are caused by a combination of messages and faults. For

example, in Figure 3.2, a message (step 12) arrives in the middle of some atomic operation (step

3-14). This message atomicity violation leads to an error that further requires a fault timing (step

20) to become an externally visible failure.

Finding #1: DC bugs are triggered mostly by untimely messages (64% in

Table 3.2) and sometimes by untimely faults/reboots (32%), and occasion-

ally by a combination of both (4%). Among untimely messages, two thirds

commit order violations due to message-message or message-computation

race on the node they arrive; the others commit atomicity violations.

3.3.2 Input Preconditions (IP)

The previous section presents simple timing conditions that can be understood in few simple steps.

In practice, many of the conditions happen “deep” in system execution. In other words, the trig-

gering path is caused by complex input preconditions (IP) such as faults, reboots, and multiple

protocols. Let’s use the same example in Figure 3.2. First, a fault and a reboot (step 1-2) and

a client request (step 9) must happen to create a path to the message atomicity violation (step 9

interfering with step 3-14). Second, conflicting messages from two different protocols (ZAB and

NodeJoin initiated in step 2 and 9) have to follow specific bug-triggering timing conditions. Even

after the atomicity violation (after step 14), the bug is not guaranteed to lead to any error yet (i.e.,

a benign race). Finally, the follower experiences an untimely fault (step 20), such that after it re-

29

ZK-1264:

1. Follower F crashed in the past,

2. F reboots and joins the cluster; then F synchronizes data with Leader L

3. F sends FOLLOWERINFO message to L [synchronization message]

4. L sends LEADERINFO message to F [synchronization message]

5. F sends ACKEPOCH message to L [synchronization message]

6. L sends SNAP message to F [synchronization message]

7. L sends data tree snapshot to F [synchronization message]

8. L sends NEWLEADER message to F [synchronization message]

9. Client C sends a request to update data with Tx-#15 to L; L does atomic broad-

cast to update all followers

10. L sends update proposal message for Tx-#15 to F [broadcast message]

11. F sends update ack message for Tx-#15 to L [broadcast message]

12. L sends update commit message for Tx-#15 to F [broadcast message]

13. F applies the update for Tx-#15 to in-memory data tree, but not to on-disk log

(because F has not received UPTODATE message)

14. L sends UPTODATE message to F [synchronization message]

15. C sends a request to update data with Tx-#16 to L

16. L sends update proposal for Tx-#16 to F

17. F sends update ack for Tx-#16 to L

18. L sends update commit for Tx-#16 to F

19. F applies the update for Tx-#16 to in-memory data tree and on-disk log

20. F crashes (before F does snapshot)

21. F reboots and joins the cluster again

22. L synchronized data with F by sending update starting from Tx-#17

23. F loses the update for Tx-15 C did in step 9

Figure 3.2: A DC bug in ZooKeeper. This figure shows Figure 2.1 again. It shows a DC bug

in ZooKeeper that is caused from a mix of untimely message arrivals and crash timing. This bug

surfaces when a follower receives update commit messasge (step 12) in the middle of an atomic

operation (step 3-14) and the follower crashes before it does snapshot (step 20)

30

http://issues.apache.org/jira/browse/ZOOKEEPER-1264

boots (step 21), a global replica-inconsistency error will happen (step 23). Put it in a reverse way,

before step 20, the global state is Si and Si+crash→error, and the only way for the system to reach

Si is from complex preconditions such as a fault, a reboot, and some foreground and background

protocols.

Statistically, Figure 3.3b (FLT) shows that 63% of DC bugs must have at least one fault. In

more detail, Figure 3.3c-e (TO, CR, RB) shows the percentage of issues that require timeouts,

crashes and reboots respectively, including how many instances of such faults must be there; the

rest is other faults such as disk errors (not shown).

Figure 3.3f (PR) shows how many “protocol initiations” mentioned in the bug description. For

example, if the system needs to perform one execution of background protocol and also three con-

current calls to the write protocol, then we label it with four protocol initiations. Up to 3 protocol

initiations covers three quarters of DC bugs. When we count the number of unique protocols in-

volved in all the bugs we study, we record 10 Cassandra, 13 HBase, 10 MapReduce, 6 ZooKeeper

unique protocols, or 39 protocols in total. This again highlights the complexity of fully complete

systems. Figure 3.3g (B/F) shows our categorization of protocols that are concurrently running

into foreground only, background only, and foreground-background (mix) categories. More than

three quarters of the bugs involve some background protocols and about a quarter involves a mix

of foreground and background protocols.

Finding #2: Many DC bugs need complex input preconditions, such as

faults (63% in Figure 3.3b), multiple protocols (80% in Figure 3.3f), and

background protocols (81% in Figure 3.3g) .

3.3.3 Triggering Scope (TS)

We now analyze the triggering scope (TS), which is a complexity measure of DC-bug timing

conditions. We use four metrics to measure the scope: message count (TS-MSG), node (TS-ND),

31

(q) WHR

(p) FIX

(o) FAIL

(n) ER-E/S

(m) ER-L/G

(l) ERROR

(k) TS-UEv

(j) TS-PR

(i) TS-ND

(h) TS-MSG

(g) IP-B/F

(f) IP-PR

(e) IP-RB

(d) IP-CR

(c) IP-TO

(b) IP-FLT

(a) TC

Deploy (46%) Test Undefined (44%)

FixTime (30%) FixEasy (40%) FixMisc (30%)

Operation (47%) Node Data (28%) Perf

Explicit (53%) Silent (47%)

Local (46%) Global (54%)

LM LSem LH LSil GW (29%) GM GSil

1 (92%) 2+

1 (47%) 2 (53%)

1 2 (42%) 3 (48%) 4+

0 1 (27%) 2 (34%) 3+ (26%)

FG BG (52%) Mix (29%)

1 (20%) 2 (29%) 3 (24%) 4 5 6+

0 (73%) 1 (20%) 2+

0 (53%) 1 (35%) 2 3+

No (88%) Yes

No (37%) Yes (63%)

Order (44%) Atom (20%) FR (32%) Mix

Figure 3.3: Statistical overview of TaxDC. Timing Conditions (TC) is discussed in Section 3.3.1,

Input Preconditions (IP) in Section 3.3.2, Triggering Scope (TS) in Section 3.3.3, Errors (ER) in

Section 3.4.1, Failures (FAIL) in Section 3.4.2, Fixes (FIX) in Section 3.5, and Where Found (WHR)

in Section 3.7.

32

A

B

C

D n om p rq

Figure 3.4: A Cassandra’s Paxos bug. In CA-6023, three key-value updates (different arrow

types) concurrently execute the Paxos protocol on four nodes (we simplify from the actual six

nodes). The bug requires three message-message race conditions: (1) m arrives before n, (2)

o before p, and (3) q before r, which collectively makes D corrupt the data and propagate the

corruption to all replicas after the last broadcast. Note that the bug would not surface if any of the

conditions did not happen. It took us one full day to study this bug.

protocol (TS-PR), and untimely event (TS-UEv) counts as shown in Figure 3.3h-k. This statistic

is important with respect to the scalability of model checking, bug detection and failure diagnostic

tools (Section 6.2.1-6.2.1).

Message count implies the minimum number of messages involved in E as defined in the be-

ginning of section 3.3. Figure 3.3h (TS-MSG) shows that one or two triggering messages are the

most common, with 7 messages as the maximum. Informally, zero implies fault timing bugs with-

out any message-related races, one implies message-compute race, two implies message-message

as in Figure 3.1a, and three implies a scenario such as ac/(ab-bc) race where ab and ac are concur-

rent or non-blocking message sending operations.

The node and protocol scopes present how many nodes and protocols are involved within the

message scope. Figure 3.3i-j (TS-ND and TS-PR) shows that the scale of node and protocol

triggering scope is also small, mostly two or three nodes and one or two protocols.

The untimely events count implies the total number of order violations, atomicity violations,

untimely faults and reboots in the triggering timing condition of a bug. Figure 3.3k (TS-UEv)

shows that only eight bugs require more than one untimely events. Four of them are message-

fault bugs, each requiring one untimely message and one untimely fault to trigger (e.g., step 9 and

20 in Figure 3.2). Three are fault-reboot timing bugs, each requiring one untimely fault and one

untimely reboot. The last one is CA-6023, shown in Figure 3.4, requiring three message-message

order violations to happen.

33

http://issues.apache.org/jira/browse/CASSANDRA-6023
http://issues.apache.org/jira/browse/CASSANDRA-6023

Finding #3: The timing conditions of most DC bugs only involve one to

three messages, nodes, and protocols (>90% in Figure 3.3h-j). Most DC

bugs are mostly triggered by only one untimely event (92% in Figure 3.3k).

3.4 Errors and Failures

3.4.1 Error Symptoms

From the triggering conditions, we then scrutinize the first error that happens immediately after.

First errors are the pivotal point that bridges the triggering and error-propagation process. Identi-

fying first errors help failure diagnosis get closer to disclosing bug triggering and root causes and

help bug detection get closer to accurately predict failures.

We categorize first errors into local errors and global errors, based on whether they can be

observed from the triggering node NT alone. Here, NT is the node where triggering ends. It is the

receiver node of untimely messages (e.g., node C in Figure 3.1a) or the node with untimely fault

(e.g., node A in Figure 3.1i). For each error, we also check whether it is an explicit or silent error.

Table 3.3 and Figure 3.3l (ERR) show the per-system and overall breakdowns respectively. Some

MapReduce bugs caused multiple concurrent first errors of different types.

First, DC bugs can manifest into both local explicit errors and local silent errors. The former

includes memory exceptions such as null-pointer exceptions (5% in Table 3.3) and semantic errors

such as wrong state-machine transition exceptions thrown by the software (19%). Local silent

errors include hangs, such as forever waiting for certain states to change or certain messages to

arrive which are typically observed implicitly by users (9%), and local silent state corruption, such

as half-cleaned temporary files (13%).

When local error is non-obvious in NT , we analyze if the error is observable in other nodes

communicating with NT . Many DC bugs manifest into explicit global errors through wrong mes-

34

Local Errors Global Errors

Mem Sem Hang Sil Wrong Miss Sil

CA 2 0 0 4 3 3 7

HB 1 2 1 2 15 3 6

MR 2 13 7 4 14 4 0

ZK 0 6 2 5 1 0 5

All 5 21 10 15 33 10 18

Table 3.3: First error symptoms of DC bugs. Some bugs cause multiple concurrent first errors.

sages (29% in Table 3.3). Specifically, the communicating node receives an incorrect message

from NT , and throws an exception during the message handling. However, a few DC bugs still

lead to silent global errors. These include missing messages, where NT never sends a reply that

the communicating node is waiting for in the absence of timeout (9%), and global silent state

corruption such as replica inconsistencies between NT and the other nodes (16%).

Finding #4: Local and global first errors are about equally common; 46%

vs. 54% in Figure 3.3m (ER-L/G). About half of the DC bugs generate ex-

plicit first errors (53%), including local exceptions and global wrong mes-

sages, and the remaining DC bugs lead to silent errors (47%), as shown

in Figure 3.3n (ER-E/S). Some of them immediately lead to hangs in the

triggering node NT (9%) or a node communicating with NT (9%).

3.4.2 Failure Symptoms

Figure 3.3o (FAIL) shows that errors from DC bugs will eventually lead to a wide range of fatal

failures including node downtimes (17%), data loss/corruption/inconsistencies (28%), operation

failures (47%), and performance degradation (8%). A node downtime happens when the node

either crashes or hangs (i.e., it may still be heartbeating). It happens to both master/leader nodes

and worker/follower nodes in our study. Data-related failures and performance problems are an

35

artifact of incorrect state logic induced from DC bugs. For example, in HBase, concurrent region

updates and log splittings can cause data loss. In Cassandra, some dead nodes are incorrectly

listed as alive causing unnecessary data movement that degrades performance. Node downtimes

and data-related failures could also cause some operations to fail. To avoid double counting, we

consider a bug as causing operation failures only when it does not cause node downtimes or data-

related failures.

3.5 Fixes

We next analyze bug patches to understand developers’ fix strategies. In general, we find that DC

bugs can be fixed by either disabling the triggering timing or changing the system’s handling to that

timing (fix timing vs. fix handling). The former prevents concurrency with extra synchronization

and the latter allows concurrency by handling untimely events properly. Since message timing

bugs are fixed quite differently from fault timing bugs, we separate them below.

3.5.1 Message Timing Bug Fixes

The left half of Table 3.4 shows that only one fifth of message timing bugs are fixed by disabling

the triggering timing, through either global or local synchronization. Only a couple of bugs are

fixed through extra global synchronization, mainly due to its complexity and communication cost.

For example, to prevent a triggering pattern b+/ab in Figure 3.1f, MR-5465’s fix adds a monitor

on ARM to wait for badone message from BAM after B finishes with its local computation (b+);

the result is b+-ba-ab global serialization. More often, the buggy timing is disabled through local

synchronization, such as re-ordering message sending operations within a single node. For exam-

ple, HB-5780’s fix for ab/bc race in Figure 3.1c forces the sending of bc request at B to wait for

the receipt of ab; the result is ab-bc local serialization at B.

The right half of Table 3.4 shows that fix handling is more popular. Fix handling fortunately

can be simple; many fixes do not introduce brand-new computation logic into the system, which

36

http://issues.apache.org/jira/browse/MAPREDUCE-5465
http://issues.apache.org/jira/browse/HBASE-5780

Fix Timing Fix Handling

Glob Loc Ret Ign Acc Misc

CA 0 0 0 1 3 4

HB 2 7 2 1 7 3

MR 2 8 2 7 8 3

ZK 0 4 0 3 0 1

All 4 19 4 12 18 11

Table 3.4: Fix strategies for message timing bugs. Some bugs require more than one fix strategy.

can be done in three ways. First, the fix can handle the untimely message by simply retrying it at

a later time (as opposed to ignoring or accepting it incorrectly). For example, to handle bc/ac race

in Figure 3.1a, MR-3274 retries the unexpectedly-early ackill message at a later time, right after

the to-be-killed task starts. Second, the fix can simply ignore the message (as opposed to accept-

ing it incorrectly). For example, to handle ab/ba race in Figure 3.1d, MR-5358 simply ignores

the unexpectedly-late bafinish message that arrives after AAM sends an abkill message. Finally,

the patch can simply accept the untimely message by re-using existing handlers (as opposed to

ignoring it or throwing an error). For example, MR-2995’s fix changes the node AM to accept an

unexpectedly-early expiration message using an existing handler that was originally designed to

accept the same message at a later state of AM. MR-5198’s fix handles the atomicity violation by

using an existing handler and simply cancels the atomicity violating local operation. The rest of

the fix-handling cases require new computation logic to fix bugs.

3.5.2 Fault/Reboot Timing Bug Fixes

Table 3.5 summarizes fix strategies for fault/reboot timing bugs. Unlike message timing, only rare

bugs can be fixed by controlling the triggering timing either globally or locally (e.g., by control-

ling the timing of the fault recovery actions). A prime example is an HBase cluster-wide restart

scenario (HB-3596). Here, as A shuts down earlier, B assumes responsibility of A’s regions (via a

region-takeover recovery protocol), but soon B shuts down as well with the regions still locked in

37

http://issues.apache.org/jira/browse/MAPREDUCE-3274
http://issues.apache.org/jira/browse/MAPREDUCE-5358
http://issues.apache.org/jira/browse/MAPREDUCE-2995
http://issues.apache.org/jira/browse/MAPREDUCE-5198
http://issues.apache.org/jira/browse/HBASE-3596

Fix Timing Fix Handling

G L Detect Recover

TO Msg Canc Misc

CA 1 0 3 2 4 6

HB 0 1 3 1 6 1

MR 2 1 1 1 2 1

ZK 0 3 0 1 1 7

All 3 5 7 5 13 15

Table 3.5: Fix strategies for fault/reboot timing bugs. Some bugs require more than one fix

strategy.

ZooKeeper and the takeover cannot be resumed after restart. The patch simply adds a delay before

a node starts region takeover so that it will likely get forced down before the takeover starts.

For the majority of fault timing bugs, their patches conduct two tasks: (1) detect the local/global

state inconsistency caused by the fault and (2) repair/recover the inconsistency. The former is

accomplished through timeouts, additional message exchanges, or others (omitted from Table 3.5).

The latter can be achieved by simply canceling operations or adding new computation logic.

Finding #5: A small number of fix strategies have fixed most DC bugs.

A few DC bugs are fixed by disabling the triggering timing (30% in Figure

3.3p), occasionally through extra messages and mostly through local opera-

tion re-orderings. Most DC bugs are fixed by better handling the triggering

timing, most of which do not introduce new computation logic — they ig-

nore or delay messages, re-use existing handlers, and cancel computation

(40%).

38

3.6 Root Causes

It is difficult to know for sure why many DC-bug triggering conditions were not anticipated by

the developers (i.e., the root causes). In this section, we postulate some possible and common

misbeliefs behind DC bugs.

• “One hop is faster than two hop.” Some bugs manifest under scenario bc/(ba-ac), similar to

Figure 3.1a. Developers may assume that bc (one hop) should arrive earlier than ba-ac (two

hops), but ac can arrive earlier and hit a DC bug.

• “No hop is faster than one hop.” Some bugs manifest under scenario ba-(b+/ab), similar

to Figure 3.1f. Developers may incorrectly expect b+ (local computation with no hop) to

always finish before ab arrives (one hop).

• “Atomic blocks cannot be broken.” Developers might believe that “atomic” blocks (local

or global transactions) can only be broken unintentionally by some faults such as crashes.

However, we see a few cases where atomic blocks are broken inadvertently by the system

itself, specifically via untimely arrival of kill/preemption messages in the middle of an atomic

block. More often, the system does not record this interruption and thus unconsciously leaves

state changes half way. Contrary, in fault-induced interruption, some fault recovery protocol

typically will handle it.

• “Interactions between multiple protocols seem to be safe.” In common cases, multiple pro-

tocols rarely interact, and even when they do, non-deterministic DC bugs might not surface.

This can be unwittingly treated as normally safe, but does not mean completely safe.

• “Enough states are maintained.” Untimely events can unexpectedly corrupt system states

and when this happens the system does not have enough information to recollect what had

happened in the past, as not all event history is logged. We observe that some fixes add new

in-memory/on-disk state variables to handle untimely message and fault timings.

39

Finding #6: Many DC bugs are related with a few common misconceptions

that are unique to distributed systems.

3.7 Other Statistics

We now present other quantitative findings not included in previous discussions. We attempted

to measure the complexity of DC bugs using four metrics: (a) the number of “re-enumerated

steps” as informally defined in Section 3.2.4, (b) the patch LOC including new test suites for the

corresponding bug, (c) the time to resolve (TTR), and (d) the number of discussion comments

between the bug submitter and developers. The 25th percentile, median, and 75th percentile for

the four metrics are (a) 7, 9, and 11 steps, (b) 44, 172, and 776 LOC, (c) 4, 14, and 48 days to

resolve, (d) 12, 18, and 33 comments.

In terms of where the bugs were found, Figure 3.3r (WHR) highlights that 46% were found

in deployment and 10% from failed unit tests. The rest, 44%, are not defined (could be manually

found or from deployment). Some DC bugs were reported from large-scale deployments such as

executions of thousands of tasks on hundreds of machines.

3.8 LC bugs vs. DC bugs

We now compare LC bugs and DC bugs to identify their similarities and differences. There are

clearly similarities between LC bugs and DC bugs, as, by definition, they are both timing-related

non-deterministic bugs. Many DC bugs contain LC components: untimely messages may lead to

unsynchronized accesses from multiple threads or multiple event-handlers [135, 92] in a single

machine. It is probably not a surprise that atomicity violations and order violations are two dom-

inant triggering timing conditions for both LC and DC bugs (Finding #1). Our observation of the

small triggering scope of most DC bugs (Finding #3) is similar with that for LC bugs, which may

40

be related to the nature of the bug sets — more complicated bugs may be more difficult to fix, and

hence less likely to be included in empirical studies.

There are also many differences between LC bugs and DC bugs, as they originate from different

programming paradigms and execution environments. For example, order violations are much

more common in DC bugs than those in LC bugs (Finding #1); faults and reboots are much more

common in DC bugs than those in LC bugs (Finding #2); the diagnosis of many DC bugs will have

to reason beyond one node, clearly different from that of LC bugs (Finding #4); the fix strategies

for DC bugs are very different from those of LC bugs, because enforcing global synchronization is

difficult (Finding #5).

3.9 Conclusion

In this chapter, we have shown our in-depth study result on DC bugs and introduce TaxDC, the

largest and most comprehensive taxonomy of DC bugs. TaxDC categorizes DC bugs in three

major aspects including triggering, error and failure, and fix. This chapter show some complexity

of DC bugs such as:

• We see a lack of effective testing, verification, and analysis tools to detect DC bugs during

development process.

• Many DC bugs hide in complex concurrent executions of multiple protocols and not only

user-facing foreground protocols, but also background and operational.

• Majority of DC bugs surface in the presence of hardware faults such as machine crashes (and

reboots), network delay and partition (timeouts), and disk errors.

• Half of DC bugs lead to silent failures and hence are hard to debug in production and repro-

duce offline.

However, our results also bring fresh and positive insights:

41

• From the triggering patterns, we see opportunities to build DC bug detection to focus on

timing-specification inference and violation detection.

• Half of DC bugs lead to explicit local or global errors which allow inferring timing spec-

ifications based on local correctness specifications, in the form of error checking already

provided by developers.

• Most DC bugs are fixed through a small set of strategies and some are simple which implies

research opportunities for automated in-production fixing for DC bugs.

We believe that our observations in this chapter will be a foundation to help us advance the

state of the art to combat DC bugs.

42

CHAPTER 4

SAMC: SEMANTIC-AWARE MODEL CHECKING FOR FAST

DISCOVERY OF DC BUGS IN CLOUD DISTRIBUTED SYSTEMS

As we discuss in Section 2.2.2, a recent popular approach to unearth DC bugs is adopting dis-

tributed system model checker or dmck. However, due to the complexity of DC bugs that we

discuss in Chapter 3 (e.g., interactions of multiple protocols, and various and multiple faults), the

state of the art of dmcks still cannot work effectively [81, 103, 143, 157]. We observe that the ex-

isting systematic reduction policies cannot find bugs quickly, and cannot scale with the inclusion

of fault events.

In this chapter, we discuss how to advance the state of the art by leveraging semantic awareness

to assist model checking, and introduce “Semantic-Aware Model Checking” (SAMC), a white-box

model checking approach that takes semantic knowledge of how events (e.g., messages, crashes,

and reboots) are processed by the target system and incorporates that information in reduction

policies. We first discuss background of dmck and the state of the art in Section 4.1, then we

discuss about the concept of SAMC and its implementation in Section 4.2 and 4.3 respectively.

We evaluate SAMC by comparing with the state of the art in Section 4.4, and lastly, we discuss

other issues in adopting SAMC to check distributed systems in Section 4.5.

4.1 Background

This section gives more background on dmck and related terms, followed with a detailed overview

of the state of the art.

4.1.1 DMCK Framework and Terms

As mentioned before, we define dmck as software model checker that checks distributed systems

directly at the implementation level. Figure 4.1 illustrates a dmck integration to a target distributed

43

system, a simple representation of existing dmck frameworks [81, 103, 143, 157]. The dmck

inserts an interposition layer in each node of the target system with the purpose of controlling all

important events (e.g., network messages, timeouts) and preventing the target system to process

the events until the dmck enables them. A main dmck mechanism is the permutation of events; the

goal is to push the target system into all possible ordering scenarios. For example, the dmck can

enforce abcd ordering in one execution, bcad in another, and so on.

We now provide an overview of basic dmck terms we use in this dissertation and Figure 4.1.

Each node of the target system has a local state (ls), containing many variables. An abstract

local state (als) is a subset of the local state; dmck decides which als is important to check. The

collection of all (and abstract) local states is the global state (gs) and the abstract global state

(ags) respectively. The network state describes all the outstanding messages currently intercepted

by dmck (e.g., abd). To model check a specific protocol, dmck starts a workload driver (which

restarts the whole system, runs specific workloads, etc.). Then, dmck generates many (typically

hundreds/thousands) executions; an execution (or a path) is a specific ordering of events that dmck

enables (e.g., abcd, dbca) from an initial state to a termination point. A sub-path is a subset of

a path/execution. An event is an action by the target system that is intercepted by dmck (e.g., a

network message) or an action that dmck can inject (e.g., a crash/reboot). Dmck enables one event

at a time (e.g., enable(c)). To permute events, dmck runs exploration methods such as brute-force

(e.g., depth first search) or random. As events are permuted, the target system enters hard-to-reach

states. Dmck continuously runs state checks (e.g., safety checks) to verify the system’s correctness.

To reduce the state-space explosion problem, dmck can employ reduction policies (e.g., DPOR or

symmetry). A policy is systematic if it does not use randomness or bug-specific knowledge. In this

chapter, we focus on advancing systematic reduction policies.

44

Node 1

ls1:{…}

a
b c d

enable(c)

Messages: {a,b,d}

GS: {ls1, ls2, …}

Policy: DPOR, Random, …

Checks / assertions

Features (crash, reboot, …)

Dmck ServerNode 2

ls2:{…}

Figure 4.1: How dmck works. The figure illustrates a typical framework of a distributed system

model checker (dmck).

4.1.2 State-of-the-Art DMCKs

MODIST [157] is arguably one of the most powerful dmcks that comes with systematic reduction

policies. MODIST has been integrated to real systems due to its exploration scalability. At the heart

of MODIST is dynamic partial order reduction (DPOR) [68] which exploits the independence of

events to reduce the state explosion. Independent events mean that it does not matter in what order

the system execute the events, as their different orderings are considered equivalent.

To illustrate how MODIST adopts DPOR, let’s use the example in Figure 4.1, which shows four

concurrent outstanding messages abcd (a and b for N1, c and d for N2). A brute-force approach

will try all possible combinations (abcd, abdc, acbd, acdb, cabd, and so on), for a total of 4!

executions. Fortunately, the notion of event independence can be mapped to distributed system

properties. For example, MODIST specifies this reduction policy: a message to be processed by a

given node is independent of other concurrent messages destined to other nodes (based on vector

clocks). Applying this policy to the example in Figure 4.1 implies that a and b are dependent1 but

they are independent of c and d (and vice versa). Since only dependent events need to be reordered,

this reduction policy leads to only 4 executions (ab-cd, ab-dc, ba-cd, ba-dc), giving a 6x speed-up

(4!/4).

Although MODIST’s speed-up is significant, we find that one scalability limitation of its DPOR

1. In model checking, “dependent” events mean that they must be re-ordered. “Dependent” does not mean

“causally dependent”.

45

application is within its black-box approach; it only exploits general properties of distributed sys-

tems to define message independence. It does not exploit any semantic information from the target

system to define more independent events. We will discuss this issue later (Section 4.2.1).

Dynamic interface reduction (DIR) [81] is the next advancement to MODIST. This work sug-

gests that a complete dmck must re-order not only messages (global events) but also thread inter-

leavings (local events). The reduction intuition behind DIR is that different thread interleavings

often lead to the same global events (e.g., a node sends the same messages regardless of how

threads are interleaved in that node). DIR records local exploration and replays future incoming

messages without the need for global exploration. In our work, SAMC focuses only on global

exploration (message and failure re-orderings). We believe DIR is orthogonal to SAMC, similar to

the way DIR is orthogonal to MODIST.

MODIST and DIR are examples of dmcks that employ advanced systematic reduction policies.

LMC [75] is similar to DIR; it also decouples local and global exploration. dBug [143] applies

DPOR similarly to MODIST. There are other dmcks such as MACEMC [103] and CrystalBall [156]

that use basic exploration methods such as depth first (DFS), weight-based, and random searches.

Other than the aforementioned methods, symmetry is another foundational reduction policy [63,

145]. Symmetry-based methods exploit the architectural symmetry present in the target system.

For example, in a ring of nodes, one can rotate the ring without affecting the behavior of the system.

Symmetry is powerful, but we find no existing dmcks that adopt symmetry.

Besides dmcks, there exists sophisticated testing frameworks for distributed systems (e.g.,

FATE [77], PREFAIL [100], SETSUDO [99], OpenStack fault-injector [101]). This set of work

emphasizes the importance of multiple failures, but their major limitation is that they are not a

dmck. That is, they cannot systematically control and permute non-deterministic choices such as

message and failure reorderings.

46

4.1.3 Does State of the-Art Help?

We now combine our observations in the previous section and our insight from TaxDC (Chapter

3), and describe why state-of-the-art dmcks do not address present reliability challenges of cloud

systems.

First, existing systematic reduction policies often cannot find bugs quickly. Experiences from

previous dmck developments suggest that significant savings from sound reduction policies do

not always imply high bug-finding effectiveness [81, 157]. To cover deep states and find bugs,

many dmcks revert to non-systematic methods such as randomness or manual checkpoints. For

example, MODIST combines DPOR with random walk to “jump” faster to a different area of the

state space (Section 4.5 of [157]). DIR developers find new bugs by manually setting “interesting”

checkpoints so that future state explorations happen from the checkpoints (Section 5.3 of [81]). In

our work, although we use different target systems, we are able to reproduce the same experiences

above (Section 4.4.1).

Second, existing dmcks do not scale with the inclusion of failure events. Given the first problem

above, exercising multiple failures will just exacerbate the state-space explosion problem. Some

frameworks that can explore multiple failures such as MACEMC [103] only do so in a random

way; however, in our experience (Section 4.4.1), randomness many times cannot find deep bugs

quickly. MODIST also enabled only one failure. In reality, multiple failures is a big reliability

threat, and thus must be exercised.

We conclude that finding systematic (no random/checkpoint) policies that can find deep bugs

is still an open dmck research problem. We believe without semantic knowledge of the target

system, dmck hits a scalability wall (as also hinted by DIR authors; Section 8 of [81]). In addition,

as crashes and reboots need to be exercised, we believe recovery semantics must be incorporated

into reduction policies. All of these observations led us to SAMC, which we describe next.

47

4.2 SAMC

4.2.1 Semantic-Awareness Example

In a simple leader election protocol, every node broadcasts its vote to reach a quorum and elect a

leader. Each node begins by voting for itself (e.g., N2 broadcasts vote=2). Each node receives vote

broadcasts from other peers and processes every vote with this simplified code segment below. As

depicted in the code segment below, if an incoming vote is less than the node’s current vote, it is

simply discarded. If it is larger, the node changes its vote and broadcasts the new vote.

if (msg.vote < myVote) {

discard;

} else {

myVote = msg.vote; broadcast(myVote);

}

Let’s assume N4 with vote=4 is receiving three concurrent messages with votes 1, 2, and 3 from

its peers. Here, a dmck with a black-box DPOR approach must perform 6 (3!) orderings (123, 132,

and so on). This is because a black-box DPOR does not know the message processing semantic

(i.e., how messages will be processed by the receiving node). Thus, a black-box DPOR must treat

all of them as dependent (Section 4.1.2); they must be re-ordered for soundness. However, by

knowing the processing logic above, a dmck can soundly conclude that all orderings will lead to

the same state; all messages will be discarded by N4 and its local state will not change. Thus, a

semantic-aware dmck can reduce the 6 redundant executions to just 1 execution.

The example above shows a scalability limitation of a black-box dmck. Fortunately, simple se-

mantic knowledge has a great potential in removing redundant executions. Furthermore, semantic

knowledge can be incorporated on top of sound model checking foundations such as DPOR and

symmetry, as we describe next.

48

Local
Message
Indep.

SAMC
Reduction
Policies

Crash
Message
Indep.

Crash
Recovery
Symmetry

Reboot
Sync.
Symmetry

DPOR DFS SymmetryBasic Mechanisms

Protocol-
Specific Rules

Leader
election

Atomic
broadcast

Cluster
Mgmt.

...Gossip

Figure 4.2: SAMC Architecture.

4.2.2 Architecture

Figure 4.2 depicts the three levels of SAMC: sound exploration mechanisms, reduction policies,

and protocol-specific rules. SAMC is built on top of sound model checking foundations such as

DPOR [68, 74] and symmetry [53, 145]. We name these foundations as mechanisms because a

dmck must specify accordingly what events are dependent/independent and symmetrical, which in

SAMC will be done by the reduction policies and protocol-specific rules.

Our main contribution lies within our four novel semantic-aware reduction policies: local-

message independence (LMI), crash-message independence (CMI), crash recovery symmetry (CRS),

and reboot synchronization symmetry (RSS). To the best of our knowledge, none of these ap-

proaches have been introduced in the literature. At the heart of these policies are generic event

processing patterns (i.e., patterns of how messages, crashes, and reboots are processed by dis-

tributed systems). Our policies and patterns are simple and powerful; they can be applied to many

different distributed systems. Testers can extract the patterns from their target protocols (e.g.,

leader election, atomic broadcast) and write protocol-specific rules in few lines of code.

In the next section, we first present our four reduction policies along with the processing pat-

terns. Later, we will discuss ways to extract the patterns from target systems (Section 4.2.4) and

then show the protocol-specific rules for our target systems (Section 4.3.2).

49

4.2.3 Semantic-Aware Reduction Policies

We now present four semantic-aware reduction policies that enable us to define fine-grained event

dependency/independency and symmetry beyond what black-box approaches can do.

Local-Message Independence (LMI)

We define local messages as messages that are concurrently in flight to a given node (i.e., intra-

node messages). As shown in Figure 4.3a, a black-box DPOR treats the message processing se-

mantic inside the node as a black box, and thus must declare the incoming messages as dependent,

leading to 4! permutation of abcd. On the other hand, with white-box knowledge, local-message

independence (LMI) can define independency relationship among local messages. For example,

illustratively in Figure 4.3b, given the node’s local state (ls) and the processing semantic (embed-

ded in the if statement), LMI is able to define that a and b are dependent, c and d are dependent,

but the two groups are independent, which then leads to only 4 re-orderings. This reduction illus-

tration is similar to the one in Section 4.1.2, but this time LMI enables DPOR application on local

messages.

LMI can be easily added to a dmck. A dmck server typically has a complete view of the local

states (Section 4.1.1). What is needed is the message processing semantic: how will a node (N)

process an incoming message (m) given the node’s current local state (ls)? The answer lies in

these four simple message processing patterns (discard, increment, constant, and modify):

50

Discard: Increment:

if (pd(m,ls)) if (pi(m,ls))

(noop); ls++;

Constant: Modify:

if (pc(m,ls)) if (pm(m,ls))

ls = Const; ls = modify(m,ls);

In practice, ls and m contain many fields. For simplicity, we treat them as integers. The

functions with prefix p are boolean read-only functions (predicates) that compare an incoming

message (m) with respect to the local state (ls); for example, pd can return true if m<s. The first

pattern is a discard pattern where the message is simply discarded if pd is true. This pattern is

prevalent in distributed systems with votes/versions; old votes/versions tend to be discarded (e.g.,

our example in Section 4.2.1). The increment pattern performs an increment-by-one update if pi

is true, which is also quite common in many protocols (e.g., counting commit acknowledgments).

The constant pattern changes the local state to a constant whenever pc is true. Finally, the modify

pattern changes the local state whenever pm is true.

Based on these patterns, we can apply LMI in the following ways.

1. x is independent of y if pd is true on any of x and y. That is, if x (or y) will be discarded, then

it does not need to be re-ordered with other messages.

2. x is independent of y if pi (or pc) is true on both x and y. That is, the re-orderings do not

matter because the local state is monotonically increasing by one (or changed to the same

constant).

3. x and y are dependent if pm is true on x and pd is not true on y. That is, since both messages

modify the local state in unique ways, then the re-orderings can be “interesting” and hence

should be exercised.

51

X
a b c d

Black
box

ls:{..};

if(){..}

all dependent

a b c d

dep. dep.

(a)

L

F1

F2

F3

a,b

c,d

(b) (c)

Figure 4.3: LMI and CMI. The figures illustrate (a) a black-box approach, (b) local-message

independence with white-box knowledge, and (c) crash-message independence.

All these rules are continuously evaluated before every event is enabled. If multiple cases are true,

dependency has higher precedence than independency.

Overall, LMI allows dmck to smartly skip redundant re-orderings by leveraging simple pat-

terns. The job of the tester is to find the message processing patterns from a target protocol and

write protocol-specific rules (i.e., filling in the content of the four LMI predicate functions (pd, pi,

pc, and pm) specific to the target protocol). As an example, for our simple leader election protocol

(Section 4.2.1), pd can be as simple as: return m.vote < ls.myVote.

Crash-Message Independence (CMI)

Figure 4.3c illustrates the motivation behind our next policy. The figure resembles an atomic

broadcast protocol where a leader (L) sends commit messages to the followers (Fs). Let’s assume

commit messages ab to F1 and cd to F2 are still in flight (i.e., currently outstanding in the dmck;

not shown). In addition, the dmck would like to crash F3, which we label as a crash event X. The

question we raise is: how should X be re-ordered with respect to other outstanding messages (a, b,

c, and d)?

As we mentioned before, we find no single dmck that incorporates crash semantics into reduc-

tion policies. As an implication, in our example, the dmck must reorder X with respect to other

outstanding messages, generating executions Xabcd, aXbcd, abXcd, and so on. Worse, when abcd

52

are reordered, X will be reordered again. We find this as one major fundamental problem why

existing dmcks do not scale with the inclusion of failures.

To solve this, we introduce crash-message independence (CMI) which defines independency

relationship between a to-be-injected crash and outstanding messages. The key lies in these two

crash reaction patterns (global vs. local impact) running on the surviving nodes (e.g., the leader

node in Figure 4.3c).

Global impact: Local impact:

if (pg(X,ls)) if (pl(X,ls))

modify(ls); modify(ls);

sendMsg();

The functions with prefix p are predicate functions that compare the crash event X with respect

to the surviving node’s local state (e.g., the leader’s local state). The pg predicate in the global-

impact pattern defines that the crash X during the local state ls will lead to a local state change and

new outgoing messages (e.g., to other surviving nodes). Here, no reduction can be done because the

new crash-induced outgoing messages must be re-ordered with the current outstanding messages.

On the other hand, reduction opportunities exist within the local-impact pattern, wherein the pl

predicate specifies that the crash will just lead to a local state change but not new messages, which

implies that the crash does not need to be re-ordered.

Based on the two crash impact patterns, we apply CMI in the following ways. Given a local

state ls at node N, a peer failure X, and outstanding messages (m1...mn) from N to other surviving

peers, CMI performs:

1. If pl is true, then X and m1...mn are independent.

2. If pg is true, then X and m1...mn are dependent.

In Figure 4.3c for example, if pl is true in node L, then X does not impact outstanding messages to

F1 and F2, and thus X is independent to abcd; exercising Xabcd is sufficient.

53

An example of CMI application is a quorum-based write protocol. If a follower crash occurs

and quorum is still established, the leader will just decrease the number of followers (local state

change only). Here, for the protocol-specific rules, the tester can specify pl with #follower >=

majority and pg with the reverse. Overall, CMI helps dmck scale with the inclusion of failures,

specifically by skipping redundant re-orderings of crashes with respect to outstanding messages.

Crash Recovery Symmetry (CRS)

Before we discuss our next reduction policy, we emphasize again the difference between message

event and crash/reboot event. Message events are generated by the target system, and thus dmck

can only reduce the number of re-orderings (but it cannot reduce the events). Contrary, crash

events are generated by dmck, and thus there exists opportunities to reduce the number of injected

crashes. For example, in Figure 4.3c, in addition to crashing F3, the dmck can also crash F1 and F2

in different executions, but that might not be necessary.

To omit redundant crashes, we develop crash recovery symmetry (CRS). The intuition is that

some crashes often lead to symmetrical recovery behaviors. For example, let’s assume a 4-node

system with node roles FFFL. At this state, crashing the first or second or third node perhaps lead to

the same recovery since all of them are followers, and thereby injecting one follower crash could

be enough. Further on, if the system enters a slightly different state, FFLF, crashing any of the

followers might give the same result as above. However, crashing the leader in the two cases (N4

in the first case and N3 in the second) should perhaps be treated differently because the recovery

might involve the dead leader ID. The goal of CRS is to help dmck with crash decision.

The main question in implementing CRS is: how to incorporate crash recovery semantics into

dmck? Our solution is to compute recovery abstract global state (rags), a simple and concise

representation of crash recovery. CRS builds rags with the following steps:

First, we define that two recovery actions are symmetrical if they produce the same messages

and change the same local states in the same way.

54

broadcast() sendMsgToAll(role, leaderId);

quorumOkay() return (follower > nodes / 2);

// pr1

if (role == L && C.role == F && quorumOkay())

follower--;

// pr2

if (role == L && C.role == F && !quorumOkay())

follower = 0;

role = S;

broadcast();

// pr3

if (role == F && C.role == L)

leaderId = myId;

broadcast();

Figure 4.4: Crash Recovery in Leader Election. The figure shows a simplified example of

crash recovery in a leader election protocol. The code runs in every node. C implies the crashing

node; each node typically has a view of the states of its peers. Three predicate-recovery pairs are

shown (pr1, pr2, and pr3). In the first, if quorum still exists, the leader simply decrements the

follower count. In the second, if quorum breaks, the leader falls back to searching mode (S). In the

third, if the leader crashes, the node (as a follower) votes for itself and broadcasts the vote to elect

a new leader.

Second, we extract recovery logic from the code by flattening the predicate-recovery pairs (i.e.,

recovery-related if blocks). Figure 4.4 shows a simple example. Different recovery actions will be

triggered based on which recovery predicate (pr1, pr2, or pr3) is true. Each predicate depends on

the local state and the information about the crashing node. Our key here is to map each predicate-

recovery pair to this formal pattern:

if (pri(ls, C.ls))

modify(ralsi);

(and/or)

sendMsg(ralsi);

Here, pri is the recovery predicate for the i-th recovery action, and ralsi is the recovery abstract

55

local state (i.e., a subset of all fields of the local state involved in recovery). That is, each recovery

predicate defines what recovery abstract local state that matters (i.e., pri→{ralsi}). For example,

in Figure 4.4, if pr1 is true, then rals1 only contains the follower variable; if pr3 is true, rals3

contains role and leaderId variables.

Third, before we crash a node, we check which pri will be true on each surviving node and

then obtain the ralsi. Next, we combine ralsi of all surviving nodes and sort them into a recovery

abstract global state (rags); sorting rags helps us exploit topological symmetry (e.g., individual

node IDs often do not matter).

Fourth, given a plan to crash a node, the algorithm above gives us the rags that represents the

corresponding recovery action. We also maintain a history of rags of previous injected crashes. If

the rags already exists in the history, then the crash is skipped because it will lead to a symmetrical

recovery of the past.

To recap with a concrete example, let’s go back to the case of FFFL where we plan to enable

crash(N1). Based on the code in Figure 4.4, the rags is {*, ⊘, ⊘, #follower=3}; * implies the

crashing node, ⊘ means there is no true predicate at the other two follower nodes, and #follower=3

comes from rals1 of pr1 of N4 (the leader). CRS will sort this and check the history, and assuming

no hit, then crash(N1) will be enabled. In another execution, SAMC finds that crash(N2) at FFFL will

lead to rags:{⊘, *, ⊘, #follower=3}, which after sorting will hit the history, and hence crash(N2)

is skipped. If the system enters a different state FFLF, no follower crash will be injected, because

the rags will be the same as above. In terms of leader crash, crashing the leader in the two cases

will be treated differently because in a leader crash, pr3 is true on followers and pr3 involves

leaderId which is different in the two cases.

In summary, the foundation of CRS is the computation of recovery abstract global state (rags)

from the crash recovery logic extracted from the target system via the pri→{ralsi} pattern. We

believe this extraction method is simple because CRS does not need to know the specifics of crash

recovery; CRS just needs to know what variables are involved in recovery (i.e., the rals) .

56

Reboot Synchronization Symmetry (RSS)

Reboots are also essential to exercise (Section ??), but if not done carefully, will introduce more

scalability problems. Reboot reduction policy is needed to help dmck inject reboots “smartly”.

The intuition behind reboot synchronization symmetry (RSS) is similar to that of CRS. When a

node reboots, it typically synchronizes itself with the peers. However, a reboot will not lead to

a new scenario if the current state of the system is similar to the state when the node crashed.

To implement RSS, we extract reboot-synchronization predicates and the corresponding actions.

Since the overall approach is similar to CRS, we omit further details.

In our experience RSS is extremely powerful. For example, it allows us to find deep bugs

involving multiple reboots in the ZooKeeper atomic broadcast (ZAB) protocol. RSS works effi-

ciently here because reboots in ZAB are only interesting if the live nodes have seen new commits

(i.e., the dead node falls behind). In contrast, a black-box dmck without RSS initiates reboots even

when the live nodes are in similar states as in before the crash, prolonging the discovery of deep

bugs.

4.2.4 Pattern Extraction

We have presented four general, simple, and powerful semantic-aware reduction policies along

with the generic event processing patterns. With this, testers can write protocol-specific rules by

extracting the patterns from their target systems. Given the patterns described in previous sections,

a tester must perform what we call as “extraction” phase. Here, the tester must extract the patterns

from the target system and write protocol-specific rules specifically by filling in the predicates

and abstractions as defined in previous sections; in Section 4.3.2, we will show a real extraction

result (i.e., real rules). Currently, the extraction phase is manual; we leave automated approaches

as a future work (Section 4.5). Nevertheless, we believe manual extraction is bearable for several

reasons. First, today is the era of DevOps [111] where developers are testers and vice versa; testers

know the internals of their target systems. This is also largely true in cloud system development.

57

Second, the processing patterns only cover high-level semantics; testers just fill in the predicates

and abstractions but no more details. In fact, simple semantics are enough to significantly help

dmck go faster to deeper states.

4.3 Implementation and Integration

In this section, we first describe our SAMC prototype, SAMPRO, which we built from scratch

because existing dmcks are either proprietary [157] or only work on restricted high-level languages

(e.g., Mace [103]). We will then describe SAMPRO integration to three widely popular cloud

systems, ZooKeeper [94], Hadoop/Yarn [148], and Cassandra [105]. Prior to SAMPRO, there was

no available dmck for these systems; they are still tested via unit tests, and the test code size is

bigger than the main code, but the tests are far from reaching deep bugs.

4.3.1 SAMPRO

SAMPRO is written in 10,886 lines of code in Java, which includes all the components mentioned

in Section 4.1.1 and Figure 2.2. The detailed anatomy of dmck has been thoroughly explained in

literature [75, 81, 103, 143, 157], and therefore for brevity, we will not discuss many engineering

details. We will focus on SAMC-related parts.

We design SAMPRO to be highly portable; we do not modify the target code base significantly

as we leverage a mature interposition technology, AspectJ, for interposing network messages and

timeouts. Our interposition layer also sends local state information to the SAMPRO server. SAM-

PRO is also equipped with crash and reboot scripts specific to the target systems. The tester can

specify a budget of the maximum number of crashes and reboots to inject per execution. SAMPRO

employs basic reduction mechanisms and advanced reduction policies as described before. We

deploy safety checks at the server (e.g., no two leaders). If a check is violated, the trace that led

to the bug is reported and can be deterministically replayed in SAMPRO. Overall, we have built

all the necessary features to show the case of SAMC. Other features such as intra-node thread

58

interleavings [81], scale-out parallelism [144], and virtual clock for network delay [157] can be

integrated to SAMPRO as well.

4.3.2 Integration to Target Systems

In our work, the target systems are ZooKeeper, Hadoop 2.0/Yarn, and Cassandra. ZooKeeper [94]

is a distributed synchronization service acting as a backbone of many distributed systems such as

HBase and High-Availability HDFS. Hadoop 2.0/Yarn [148] is the current generation of Hadoop

that separates cluster management and processing components. Cassandra [105] is a distributed

key-value store derived from Amazon Dynamo [59].

In total, we have model checked 7 protocols: ZooKeeper leader election (ZLE) and atomic

broadcast (ZAB), Hadoop cluster management (CM) and speculative execution (SE), and Cassan-

dra read/write (RW), hinted handoff (HH) and gossiper (GS). These protocols are highly asyn-

chronous and thus susceptible to message re-orderings and failures.

Table 4.1 shows a real sample of protocol-specific rules that we wrote. Rules are in general

very short; we only wrote 35 lines/protocol on average. This shows the simplicity of SAMC’s

integration to a wide variety of distributed system protocols.

4.4 Evaluation

We now evaluate SAMC by presenting experimental results that answer the following questions:

1. How fast is SAMC in finding deep bugs compared to other state-of-the-art techniques?

2. Can SAMC find new deep bugs?

3. How much reduction ratio does SAMC provide?

To answer the first question, we show SAMC’s effectiveness in finding old bugs. For this, we

have integrated SAMPRO to old versions of our target systems that carry deep bugs: ZooKeeper

59

Local-Message Crash-Message Crash Recovery Reboot Synchronization

Independence (LMI) Independence (CMI) Symmetry (CRS) Symmetry (RSS)

bool pd : !newVote(m, s);

bool pm : newVote(m, s);

bool newVote(m, s) :

if (m.ep > s.ep)

return true;

else if (m.ep == s.ep)

if (m.tx > s.tx)

return true;

else if (m.tx == s.tx &&

m.lid > s.lid)

return true;

bool pg (s, X) :

if (s.rl == F && X.rl == L)

return true;

if (s.rl == L && X.rl == F

&& !quorumAfterX(s)

return true;

if (s.rl == S && X.rl == S)

return true;

bool pl (s, X) :

if (s.rl == L && X.rl == F

&& quorumAfterX(s))

return true;

bool quorumAfterX(s) :

ret ((s.fol-1) >=

s.all/2);

bool pr1(s,C):

if (s.rl == L && C.rl == F

&& quorumAfterX(s))

return true;

rals1:{rl,fol,all};

bool pr2(s,C):

if (s.rl == L && C.rl == F

&& !quorumAfterX(s))

return true;

rals2: {rl,fol,lid,ep,tx,clk}

bool pr3(s,C):

if (s.rl == F && c.rl == L)

return true;

rals3: {rl,fol,lid,ep,tx,clk}

bool pr4:

if (s.rl == S)

return true;

rals4: {rl,lid,ep,tx,clk}

bool ps1(s,R):

if (s.rl == L)

return true;

sals1: {rl,lid,ep,tx,clk}

bool ps2(s,R):

if (s.rl == F)

return true;

sals2: {rl,lid,ep,tx,clk}

bool ps3(s,R):

if (s.rl == S &&

s.clk > R.clk)

return true;

sals3: {rl,lid,ep,tx,clk}

bool ps4(s,R):

if (s.rl == S &&

moreUpdated(s, R))

return true;

sals4: {rl,lid,ep,tx,clk}

bool moreUpdated(s, R):

if (R.ep > s.ep)

return true;

else if (R.ep == s.ep)

if (R.tx > s.tx)

return true;

else if (R.tx == s.tx)

if (R.lid > s.lid)

return true;

Table 4.1: Protocol-Specific Reduction Rules for ZLE. The code above shows the actual protocol-specific rules for ZLE protocol.

These rules are the inputs to the four reduction policies. Many variables are abbreviated (ep: epoch, tx: latest transaction ID, lid:

leader ID, rl: role, fol: follower count, all: total node count, clk: logical clock, L: leading, F: following, S: searching, X/C: crashing

node, R: rebooting node). LMI pc and pi predicates are not used for ZLE, but used for other protocols.

6
0

v3.1.0, v3.3.2, v3.4.3, and v3.4.5, Hadoop v2.0.3 and v2.2.0, and Cassandra v1.0.1 and v1.0.6. To

answer the second question, we have integrated SAMPRO to two recent stable versions: ZooKeeper

v3.4.6 (released March 2014) and Hadoop v2.4.0 (released April 2014). In total, we have integrated

SAMPRO to 10 versions, showing the high portability of our prototype. Overall, our extensive

evaluation exercised more than 100,000 executions and used approximately 48 full machine days.

4.4.1 Speed in Finding Old Bugs

This section evaluates the speed of SAMC vs. state-of-the-art techniques in finding old deep bugs.

In total, we have reproduced 12 old deep bugs (7 in ZooKeeper, 3 in Hadoop, and 2 in Cassandra).

Figure 4.5 illustrates the complexity of the deep bugs that we reproduced.

#Executions Speed-up of SAMC vs.

Old Issue# Protocol E C R bDP RND rDP SAMC bDP RND rDP

ZK-335 ZAB 120 3 3 ↑5000 1057 ↑5000 117 ⇑43 9 ⇑43

ZK-790 ZLE 21 1 1 14 225 82 7 2 32 12

ZK-975 ZLE 21 1 1 967 71 163 53 18 1 3

ZK-1075 ZLE 25 3 2 1081 86 250 16 68 5 16

ZK-1419 ZLE 25 3 2 924 2514 987 100 9 25 10

ZK-1492 ZLE 31 1 0 ↑5000 ↑5000 ↑5000 576 ⇑9 ⇑9 ⇑9

ZK-1653 ZAB 60 1 1 945 3756 3462 11 86 341 315

MR-4748 SE 25 1 0 22 6 6 4 6 2 2

MR-5489 CM 20 2 1 ↑5000 ↑5000 ↑5000 53 ⇑94 ⇑94 ⇑94

MR-5505 CM 40 1 1 1212 ↑5000 1210 40 30 ⇑125 30

CA-3395 RW+HH 25 1 1 2552 191 550 104 25 2 5

CA-3626 GS 15 2 1 ↑5000 ↑5000 ↑5000 96 ⇑52 ⇑52 ⇑52

Table 4.2: SAMC Speed in Finding Old Bugs. “E”, “C” and “R” represent the number of

events, crashes, and reboots necessary to hit the bug. The numbers in the middle four columns

represent the number of executions to hit the bug across different policies. “bDP”, “RND”, and

“rDP” stand for black-box DPOR (in MODIST), random, and random + black-box DPOR respec-

tively. We stop at 5000 executions (around 2 days) if the bug cannot be found (labeled with “↑”).

Thus, speed-up numbers marked with “⇑” are potentially much higher.

Table 4.2 shows the result of our comparison. We compare SAMC with basic techniques

(DFS and Random) and advanced state-of-the-art techniques such as black-box DPOR (“bDP”)

and Random+bDP (“rDP”). Black-box DPOR is the MODIST-style of DPOR (Section 4.1.2). We

61

http://issues.apache.org/jira/browse/ZOOKEEPER-335
http://issues.apache.org/jira/browse/ZOOKEEPER-790
http://issues.apache.org/jira/browse/ZOOKEEPER-975
http://issues.apache.org/jira/browse/ZOOKEEPER-1075
http://issues.apache.org/jira/browse/ZOOKEEPER-1419
http://issues.apache.org/jira/browse/ZOOKEEPER-1492
http://issues.apache.org/jira/browse/ZOOKEEPER-1653
http://issues.apache.org/jira/browse/MAPREDUCE-4748
http://issues.apache.org/jira/browse/MAPREDUCE-5489
http://issues.apache.org/jira/browse/MAPREDUCE-5505
http://issues.apache.org/jira/browse/CASSANDRA-3395
http://issues.apache.org/jira/browse/CASSANDRA-3626

MR-5505:

1. A job finishes,

2. Application manager (AM) sends a “remove-app” message to Resource Manager

(RM),

3. RM receives the message,

4. AM is unregistering,

5. RM crashes before completely processes the message,

6. AM finishes unregistering,

7. RM reboots and reads the old state file,

8. RM thinks the job has never started and runs the job again.

CA-3395

1. Three nodes N1-3 started and formed a ring,

2. Client writes data,

3. N3 crashes,

4. Client updates the data via N1; N3 misses the update,

5. N3 reboots,

6. N1 begins the hinted handoff process, (7) Another client reads the data with

strong consistency via N1 as a coordinator,

7. N1 and N2 provide the updated value, but N3 still provides the stale value,

8. The coordinator gets “confused” and returns the stale value to the client!

Figure 4.5: Complexity of Deep Bugs. Above are two sample deep bugs in Hadoop and

Cassandra. A sample for ZooKeeper was shown in the introduction (Section ??). Deep bugs

are complex to reproduce; crash and reboot events must happen in a specific order within a long

sequence of events (there are more events behind the events we show in the bug descriptions above).

To see the high degree of complexity of other old bugs that we reproduced, interested readers can

click the issue numbers (hyperlinks) in Table 4.2.

62

http://issues.apache.org/jira/browse/MAPREDUCE-5505
http://issues.apache.org/jira/browse/CASSANDRA-3395

include Random+DPOR to mimic the way MODIST authors found bugs faster (Section 4.1.3). The

table shows the number of executions to hit the bug. As a note, software model checking with the

inclusion of failures takes time (back-and-forth communications between the target system and the

dmck server, killing and restarting system processes multiple times, restarting the whole system

from a clean state, etc.). On average, each execution runs for 40 seconds and involves a long

sequence of 20-120 events including the necessary crashes and reboots to hit the bug. We do not

show the result of running DFS because it never hits most of the bugs.

Based on the result in Table 4.2, we make several conclusions. First, with SAMC, we prove

that smart systematic approaches can reach to deep bugs quickly. We do not need to revert to

randomness or incorporate checkpoints. As a note, we are able to reproduce every deep bug that

we picked; we did not skip any of them. (Hunting more deep bugs is possible, if needed).

Second, SAMC is one to two orders of magnitude faster compared to state-of-the-art tech-

niques. Our speed-up is up to 271x (33x on average). But most importantly, there are bugs that

other techniques cannot find even after 5000 executions (around 2 days). Here, SAMC’s speed-up

factor is potentially much higher (labeled with “⇑”). Again, in the context of dmck (a process

of hours/days), large speed-ups matter. In many cases, state-of-the-art policies such as bDP and

rDP cannot reach the bugs even after very long executions. The reasons are the two problems we

mentioned earlier (Section 4.1.3). Our micro-analysis (not shown) confirmed our hypothesis that

non-SAMC policies frequently make redundant crash/reboot injections and event re-orderings that

anyway lead to insignificant state changes.

Third, Random is truly “random”. Although many previous dmcks embrace randomness in

finding bugs [103, 157], when it comes to failure-induced bugs, we have a different experience.

Sometimes Random is as competitive as SAMC (e.g., ZK-975), but sometimes Random is much

slower (e.g., ZK-1419), or worse Random sometimes did not hit the bug (e.g., ZK-1492, MR-5505).

We find that some bugs require crashes and/or reboots to happen at very specific points, which is

probabilistically hard to reach with randomness. With SAMC, we show that being systematic and

63

http://issues.apache.org/jira/browse/ZOOKEEPER-975
http://issues.apache.org/jira/browse/ZOOKEEPER-1419
http://issues.apache.org/jira/browse/ZOOKEEPER-1492
http://issues.apache.org/jira/browse/MAPREDUCE-5505

semantic aware is consistently effective.

4.4.2 Ability of Finding New Bugs

The previous section was our main focus of evaluation. In addition to this, we have integrated

SAMPRO to recent stable versions of ZooKeeper (v3.4.6, released March 2014) and Hadoop

(v2.4.0, released April 2014). In just hours of deployment, we found 1 new ZLE bug involv-

ing 2 crashes, 2 reboots, and 52 events, and 1 new Hadoop speculative execution bug involving 2

failures and 32 events. These two new bugs are distributed data race bugs. The ZLE bug causes the

ZooKeeper cluster to create two leaders at the same time. The Hadoop bug causes a speculative

attempt on a job that is wrongly moved to a scheduled state, which then leads to an exception and

a failed job. We can deterministically reproduce the bugs multiple times and we have reported the

bugs to the developers. Currently, the bugs are still marked as major and critical, the status is still

open, and the resolution is still unresolved.

We also note that in order to unearth more bugs, a dmck must have several complete fea-

tures: workload generators that cover many protocols, sophisticated perturbations (e.g., message

re-ordering, fault injections) and detailed checks of specification violations. Further discussions

can be found in our previous work [77]. Currently, SAMPRO focuses on speeding up the pertur-

bation part. By deploying more workload generators and specification checks in SAMPRO, more

deep bugs are likely to be found. As an illustration, the 94 deep bugs we mentioned in Section ??

originated from various protocols and violated a wide range of specifications.

4.4.3 Reduction Ratio

Table 4.3 compares the reduction ratio of SAMC over black-box DPOR (bDP) with different bud-

gets (#crashes and #reboots). This evaluation is slightly different than the bug-finding speed eval-

uation in Section 4.4.1. Here, we measure how many executions in bDP are considered redundant

based on our reduction policies and protocol-specific rules. Specifically, we run bDP for 3000

64

executions and run SAMC policies on the side to mark the redundant executions. The reduction

ratio is then 3000 divided by the number of non-redundant executions. Table 4.3 shows that SAMC

provides between 37x-166x execution reduction ratio in model checking ZLE and ZAB protocols

across different crash/reboot budgets.

Table 4.3b shows that with each policy the execution reduction ratio increases when the number

of crashes and reboots increases. With more crashes and reboots, the ZLE protocol generates more

messages and most of them are independent, and thus the LMI policy has more opportunities to

remove redundant message re-orderings. Similarly, the crash and reboot symmetry policies give

better benefits with more crashes and reboots. The table also shows that LMI provides the most

reduction. This is because the number of message events is higher than crash and reboot events (as

also depicted in Table 4.2).

We now discuss our reduction ratio with that of DIR [81]. As discussed earlier (Section 4.1.2),

DIR records local exploration (thread interleavings) and replays future incoming messages when-

ever possible, reducing the work of global exploration. If the target system does not have lots

of thread interleavings, DIR’s reduction ratio is estimated to be between 101 to 103 (Section 5

of [81]). As we described earlier (Section 4.1.2), DIR is orthogonal to SAMC. Thus, the reduction

ratios of SAMC and DIR are complementary; when both methods are combined, there is a poten-

tial for a higher reduction ratio. The DIR authors also hinted that domain knowledge can guide

dmcks (and also help their work) to both scale and hit deep bugs (Section 8 of [81]). SAMC has

successfully addressed such need.

Finally, we note that in evaluating SAMC, we use execution reduction ratio as a primary metric.

Another classical metric to evaluate a model checker is state coverage (e.g., a dmck that covers

more states can be considered a more powerful dmck). However, in our observation state coverage

is not a proper metric for evaluating optimization heuristics such as SAMC policies. For example,

if there are three nodes ABC that have the same role (e.g., follower), a naive black-box dmck will

crash each node and covers three distinct states: *BC, A*C and AB*. However, with a semantic-

65

Execution Reduction Ratio in

C R ZLE ZAB

1 1 37 93

2 2 63 107

3 3 103 166

Execution Reduction Ratio in ZLE with

C R All LMI CMI CRS RSS

1 1 37 18 5 4 3

2 2 63 35 6 5 5

3 3 103 37 9 9 14

(a) (b)

Table 4.3: SAMC Reduction Ratio. The table (a) shows the execution reduction ratio of SAMC

over black-box DPOR (bDP) in checking ZLE and ZAB under different crash/reboot budgets. “C”

and “R” are the number of crashes and reboots. The table (b) shows the execution reduction ratio

in ZLE with individiual policies over black-box DPOR (bDP).

aware approach (e.g., symmetry), we know that covering one of the states is sufficient. Thus, less

state coverage does not necessarily imply a less powerful dmck.

4.5 Discussion

In this section, we discuss SAMC’s simplicity, generality and soundness. We would like to em-

phasize that the main goal of this thesis is to show the power of SAMC in finding deep bugs

both quickly and systematically, and thus we intentionally leave some subtasks (e.g., automated

extraction, soundness proofs) for future work.

4.5.1 Simplicity

In previous sections, we mentioned that policies can be written in few lines of code. Besides LOC,

simplicity can be measured by how much time is required to understand a protocol implementation,

extract the patterns and write the policies. This time metric is unfortunately hard to quantify. In our

experience, the bulk of our time was spent in developing SAMPRO from scratch and integrating

policies to dmck mechanisms (Section 4.1.1). However, the process of understanding protocols

and crafting policies requires a small effort (e.g., few days per protocol to the point where we feel

the policies are robust). We believe that the actual developers will be able to perform this process

much faster than we did as they already have deeper understandings of their code.

66

4.5.2 Generality

Our policies contain patterns that are common in distributed systems. One natural question to ask

is: how much semantic knowledge should we expose to dmck? The ideal case is to expose as much

information as possible as long as it is sound. Since proving soundness and extracting patterns

automatically are our future work, in this thesis we only propose exposing high-level processing

semantics. With advanced program analysis tools that can analyze deep program logic, we believe

more semantic knowledge can be exposed to dmck in a sound manner. For example, LMI can be

extended to include commutative modifications. This is possible if the program analysis can verify

that the individual modification does not lead to other state changes. This will perhaps be the

point where symbolic execution and dmck blend in the future (Section ??).

Nevertheless, we find that high-level semantics are powerful enough. Beyond the three cloud

systems we target in this thesis, we have been integrating SAMC to MaceMC [103]. MACEMC al-

ready employs random exploration policies to model check Mace-based distributed systems such as

Mace-based Chord and Pastry. To integrate SAMC, we first must re-implement DPOR in MaceMC

(existing DPOR implementation in MaceMC is proprietary [81]). Then, we have written 18 lines

of LMI protocol-specific rules for Chord and attain two orders of magnitude of reduction in exe-

cution. This shows the generality of SAMC to many distributed systems.

4.5.3 Soundness

SAMC policies only skip re-orderings and crash/reboot events that are redundant by definition,

however currently our version of SAMC is not sound; the unsound phase is the manual extraction

process. For example, if the tester writes a wrong predicate definition (e.g., pd) that is inconsis-

tent with what the target system defines, then soundness (and correctness) is broken. Advanced

program analysis tools can be developed to automate and verify this extraction process and make

SAMC sound. Currently, the fact that protocol-specific rules tend to be short might also help in

reducing human errors. Our prototype, SAMPRO, is no different than other testing/verification

67

tools; full correctness requires that such tools to be free of bugs and complete in checking all spec-

ifications, which can be hard to achieve. Nevertheless, we want to bring up again the discussion in

Section 4.1.3 that dmck’s scalability and ability to find deep bugs in complex distributed systems

are sometimes more important than soundness. We leave soundness proofs for future work, but we

view this as a small limitation, mainly because we have successfully shown the power of SAMC.

4.6 Conclusion

In this chapter, we present semantic-aware model checking, a white-box principle that takes simple

semantic information of the target system and incorporates that knowledge in state-space reduction

policies by skipping redundant executions. We find that simple semantic knowledge can assist

dmck greatly; the semantic are from event processing semantic (i.e., how messages, crashes, and

reboots are processed by the target system). To help testers extract such information from the

target system, we provide generic event processing patterns, patterns of how messages, crashes,

and reboots are processed by distributed systems in general.

We introduce four novel semantic-aware reduction policies:

1. Local-Message Independence (LMI) reduces re-orderings of intra-node messages.

2. Crash-Message Independence (CMI) reduces re-orderings of crashes among messages.

3. Crash Recovery Symmetry (CRS) skips crashes that lead to same recovery behaviors.

4. Reboot Synchronization Symmetry (RSS) skips reboots that lead to same synchronization

actions.

Our reduction policies are generic; they are applicable to many distributed systems. SAMC users

(i.e., testers) only need to feed the policies with short protocol-specific rules that describe event

independence and symmetry specific to their target systems. And SAMC is purely systematic; it

does not incorporate randomness or bug-specific knowledge.

68

CHAPTER 5

SCK: A SINGLE-MACHINE APPROACH FOR FINDING SCALABILITY

BUGS IN CLOUD-SCALE DISTRIBUTED SYSTEMS

In the previous two chapters, we discuss about distributed concurrency bugs that how we make

sense of them and how we advance the state of the art of model checking to unearth them faster.

In this chapter, we will focus on scalability aspect of cloud backend. As we mention in Section

2.3, the trend of cloud distributed systems goes to horizontal scaling or scale-out systems. On the

positive side, scale surpasses the limit of a single machine in meeting users’ increasing demands of

computing and storage, which led to many inventions of “cloud-scale” distributed systems [48, 58,

59, 73, 91, 150]. The field has witnessed a phenomenal deployment scale of such systems; Netflix

runs tens of 500-node Cassandra clusters [35], Apple deploys a total of 100,000 Cassandra nodes

[3], and Yahoo! recently revealed the use of 40,000 Hadoop servers, with a 4500-node cluster as

the largest one [36].

On the negative side, scale creates new development and deployment issues. Developers must

ensure that their algorithms and protocol designs to be scalable. However, until real deployment

takes place, scalability bugs in the actual implementations are unforeseen. These scalability bugs

are latent bugs that are scale-dependent; they only surface in large-scale deployments, but not in

small/medium-scale ones. Their presence jeopardizes systems reliability and availability at scale.

In this chapter, we show our observations from our initial study on scalability bugs that high-

lights an urgency in tackling scalability bugs and our pilot work to introduce a single-machine

testing methodology to check scalability of the systems. Section 5.1 discusses about our initial

study and shows our observations toward scalability bugs; Section 5.2 discusses about the state of

the art; Section 5.3-5.5 explains our pilot work on scalability bug checking named SCK1 and some

evaluations.

1. SCK is a joint work with Cesar A. Stuardo.

69

 (Y5, map[N]) {

 O(N3)

} node X

f
Y5Y9 Y7...

backlog
gossip(Y1)

gossips

node Z
...

Y=dead
(no new
gossip)

Figure 5.1: The problem of gossip-based failure detection in Cassandra.

5.1 Scalability Bug

To begin our work on combating scalability bugs, we start by conducting a study to see their nature

and how critical they are. We perform a study of 41 scalability bugs reported from the deployments

of popular large-scale systems such as Hadoop, HBase, HDFS, Cassandra, Couchbase, Riak, and

Voldemort. From the study, we observed many challenges in finding, reproducing, and debugging

scalability bugs. For example, let us consider a bug in Cassandra, a highly-scalable peer-to-peer

key-value store. If a user decommissions a single node from a cluster of 50 nodes, the operation

can be done smoothly. However, if the user decommissions a node from a cluster of 200 nodes,

the protocol that re-calculate the key-range partitions (which nodes should own which key ranges)

becomes CPU intensive as the calculation has an O(N3) complexity where N is the number of

nodes. This combined with the gossiping and failure detection logic leads to a scalability bug that

makes the cluster unstable (many live nodes are declared as dead, making some data not reachable

by the users). We give a full detail of the Cassandra bug in Section 5.1.1.

As in the example above, bug symptoms sometimes surface only in large deployment scales

(e.g., N>100 nodes), hence small/medium-scale testing is not enough. Yet, not all developers have

large test budgets, and even when they do, debugging on hundreds of nodes is time consuming

and difficult. Furthermore, protocol algorithms can be scalable in the design sketches, but not

necessarily in the real deployments; there are specific implementation details whose implications

at scale are hard to predict. We discuss more about our observations on scalability bugs in Section

5.1.2.

70

5.1.1 A Sample Cassandra Bug

We now describe in detail a scalability bug in Cassandra, which we use as a sample bug. Our

journey in understanding scalability bugs began when we observed repeated “flapping” problems

in large-scale Cassandra deployments (i.e., hundreds of nodes). Flapping is a cluster instability

problem where node’s up/down status continuously flaps. A “flap” is when a node X marks a peer

node Y as down (and soon marks Y as alive again). We rigorously study a series of Cassandra bugs

below that surfaced as the code evolved.

To understand this bug, we need to understand the following protocols.

1. Bootstrap: Each node first creates partition keys (e.g., 32 random numbers) and gossips this

information to peer nodes.

2. Gossip broadcast: Every second, each node gossips to one random node about a list of

nodes and partitions it knows (including itself) and their version numbers. Each node also

increments its version number (“I’m still alive”) before gossiping.

3. Gossip processing: The receiving node then finds any state (metadata) differences between

the two nodes to synchronize their views of the ring. Eventually, all nodes know about each

other.

4. Failure detection: Every second, a failure detection daemon runs [105]. Put simply, if a

node X has not received a new gossip about Y from anyone (Y’s version has not changed

after some period of time), X will declare Y dead (a flap). When X receives a new gossip

about Y, it marks Y alive.

There are two factors that induce the bug. The first is the long latency of scale-dependent

state-update gossip processing during bootstrapping (“f” in Figure 5.1). While gossip processing

is usually fast in a stable cluster, it is expensive during bootstrapping as the gossips carry many

new state changes about the ring; the state-update processing time is scale-dependent (i.e., greater

71

than O(N3)); the larger the cluster (N), the larger the ring map, the longer the processing time is.

This long latency is caused by (1) state-update checkpoint to on-disk database and (2) multi-map

cloning and updates. The first one is needed for fast fault tolerance; after a node crashes, it can

reboot fast as it knows the latest view of the ring. The second one is preferred for simplicity;

Cassandra clones its MultiMap ring table and applies changes one by one to alleviate long write

locks.

The second factor is the single threaded implementation of gossip processing. As shown in

Figure 5.1, this inability to process multiple gossips/state updates concurrently (for the sake of

preventing concurrency bugs) creates a backlog of new gossips. For example, in every second, Y

tells someone it’s alive with increasing version number (e.g., Y7), but the receiving nodes are still

busy processing state changes and only forward Y’s old version number (e.g., Y1). As Y’s new

gossip is not propagated on time, other nodes (e.g., Z) will mark Y as dead. This happens to all

nodes, not just Y.

The journey starts with Bug #CA-3831 [10], when a node D is decommissioned from a cluster

ring, D initiates a gossip telling that all other nodes must rebalance the ring’s key-ranges. This

scale-dependent “pending key-range calculation” is CPU intensive with O(MN3log3(N)) com-

plexity; M is the list of key-range changes in the gossip message. This in turn leaves many gossips

not propagated on time, creating flapping symptoms that only appear at scale (at 200+ nodes). The

developers then optimized the code to O(MN2log2(N)) complexity.

Soon afterwards (Bug #CA-3881 [11]), Cassandra added the concept of virtual partitions/nodes

(e.g., P=256 per physical node). As an implication, the fix above did not scale as “N” becomes

N×P . The bug was fixed with a complete redesign of the pending key-range calculation, making

it O(MNPlog2(NP)).

About a year later (CA-5456 [12]), Cassandra code employs multi-threading between the pend-

ing key-range calculation and the gossip processing with a coarse-grained lock to protect sharing

of the ring table. Unbeknownst to the developers, at scale, the key-range calculation can acquire

72

http://issues.apache.org/jira/browse/CASSANDRA-3831
http://issues.apache.org/jira/browse/CASSANDRA-3881
http://issues.apache.org/jira/browse/CASSANDRA-5456

the lock for a long time, causing flapping to reappear again. The fix clones the ring table for the

key-range calculation, to release the lock early.

Later on (CA-6127 [13]), a similar bug reappeared. In the above cases, the problems appeared

when the cluster grows/shrinks gradually. However, if user bootstrap a large cluster (e.g., 500+

nodes) from scratch (i.e., all nodes do not know each other, with no established key ranges), the

execution traverses a different code path that performs a fresh ring-table/key-range construction

with O(MN2) complexity.

The story continues on (CA-6345, CA-6409, etc.). Fast forward today, Cassandra developers

recently started a new umbrella ticket for discussing “Gossip 2.0,” supposedly scalable to 1000+

nodes [22, 23]. Similar to Cassandra, other large-scale systems are prone to the same problem. So

far, we have collected and analyzed 9 Cassandra, 5 Couchbase, 2 Hadoop, 10 HBase, 13 HDFS, 1

Riak, and 1 Voldemort scalability bugs, all caused user-visible impacts. This manual mining was

arduous because there is no searchable jargon for “scalability bugs”; we might have missed other

bugs.

5.1.2 Observations

From all the bugs we studied, we make several important observations.

• Only appear at extreme scale: This Cassandra bug does not surface in 30-node deployment.

In 128-node cluster, the symptom appears mildly (tens of flaps). From 200-500 nodes, flap-

ping skyrockets from hundreds to thousands of flaps. Testing in small/medium scales is not

sufficient, which is also true for other bugs we studied.

• Scalable in design, but not in practice. Related to the Cassandra bug, the accrual failure

detector/gossiper [88] was interestingly adopted by Cassandra as it is scalable in design

[105]. However, the design proof does not account gossip processing time during bootstrap,

which can be long. To understand the bug, the developers tried to “do the [simple] math”

73

http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-6345
http://issues.apache.org/jira/browse/CASSANDRA-6409

[13] but failed. In practice, the assumption that new gossips are propagated every second is

not met (due to the backlog). The actual implementations overload gossips with many other

purposes (e.g., announcing boot/rebalance changes) beyond their original design sketch.

• Implementation specific and hard to predict. The backlog-induced flapping in Cassandra

was caused specifically by Cassandra’s implementation choice: metadata checkpoint, multi-

map cloning, and its single-threaded implementation. State-update processing time is hard

to predict (ranges from 0.001 to 4 seconds) as it depends on a 2-dimensional input: the

receiving node’s ring table size and the number of new state changes.

• Cascading impacts of “not-so-independent” nodes. In cluster-wide control protocols, dis-

tributed nodes are not necessarily independent; nodes must communicate with each other

to synchronize their views of cluster metadata. As the cluster grows, the cluster metadata

size increases. Thus, unpredictable processing time in individual nodes can create cascading

impacts to the whole cluster.

• Long and difficult large-scale debugging: Some bug reports like CA-6127 generated over 40

back-and-forth discussion comments and took 2 months to fix. It is apparent [13] that there

were many hurdles of deploying and debugging the buggy protocol at real scale. Important

to note is that debugging is not a single iteration; developers must repeatedly instrument the

system (add more logs) and re-run the system at scale to find and fix the bug, which is not

trivial. The scalability bugs we studied took 6 to 157 days to fix (27 on average).

• Not all developers have large test budgets: Another factor of delayed fixes is the lack of

budget for large test clusters. Such luxury tends to be accessible to developers in large

companies, but not to open-source developers. When CA-6127 was submitted by a customer

who had hundreds of nodes, the Cassandra developers did not have an instant access to a test

cluster of the same scale.

74

http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-6127

• Quick fixes and repeated bugs: Bugs are often fixed with quick patches (development pres-

sures), but the new fix might not eradicate the problem completely [159]. For example, for

CA-6127, the patch simply disables failure detection during bootstrap. As the protocol was

not redesigned, the bug still appeared in another workload (e.g., scaling out from 128 to 256

nodes). In the latest Cassandra, the simple fix has been removed and the gossip protocol has

been redesigned. We also found that old fixes can become obsolete in protocol re-designs,

which then can give birth to new scalability bugs. For example, the fix for CA-3831 became

obsolete as “vnodes” was introduced, which then gave rise to a new vnode-related scalabil-

ity bug (CA-3881). A scale-check could have ensured that new fixes remove old scalability

bugs entirely and similar bugs do not re-surface in new designs.

5.2 State of the Art of Large-Scale Emulation

Our observations above accentuate the need for scale-checking distributed system implementations

at real scale, not via simulation nor extrapolation. In this context, we now discuss the state of the

art of large-scale emulation..

DieCast [83], invented for network emulation, can colocate many processes/VMs on a single

machine as if they run individually without contention. The trick is adding “time dilation factor”

(TDF) support [84] into the VMM (e.g., Xen). For example, TDF=5 implies that for every second

of wall-clock time, each emulated VM on the VMM believes that time has advanced by only 200

ms. The most significant drawback of DieCast is that high colocation factor (e.g., TDF=100) is

likely not desirable, for two reasons: prolonged testing time (TDF=100 implies 100x longer run)

and memory overcapacity. DieCast was only evaluated with TDF=10.

Exalt [151] targets I/O-intensive scalability bugs. With a custom data compression, users’ data

is compressed to zero byte on disk (but the size is recorded) while metadata is not compressed.

With this, Exalt can colocate 100 emulated HDFS datanodes on one machine. In its evaluation,

most of the bugs reproduced are in the HDFS namenode which runs alone on one machine. As the

75

http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-3831
http://issues.apache.org/jira/browse/CASSANDRA-3881

authors stated, their approach “may not discover scalability problems that arise at the nodes that

are being emulated [the datanodes]” (Section 4.1 in [151]). Thus, Exalt is not suitable for finding

scalability bugs in CPU-intensive distributed systems.

In summary, we did not find a fast and accurate single-machine approach that can scale-check

CPU-intensive protocols in cloud systems. The scalability bugs could be caused by the scale-

dependent processing time, not network or I/O bottlenecks. As DieCast targets network emulation

via time dilation and Exalt targets storage space emulation via compression.

5.3 SCK

We (along with my colleague, Cesar A. Stuardo) now present the four SCK techniques to achieve

high colocation factor in one machine (Section 5.3.1-5.3.4) and summarize how to use these tech-

niques to scale check the systems (Section 5.3.5).

The enabler of our methods is the fact that SCK is an offline check, which provides us the

liberty to re-architect distributed systems to be scale-checkable offline, but without introducing

performance overhead online. When N is large, every small optimization in SCK will lead to

a multitude of benefits. When the four techniques are combined, SCK can achieve a colocation

factor of around 500 nodes with high result fidelity.

5.3.1 Processing Illusion (PIL)

While I/O and memory bottlenecks are often blamed for many scalability problems [130, 142,

151], scalability bugs also could be caused by cascading impacts of CPU-intensive processing as

the example of Cassandra bugs. To emulate CPU-intensive processing, we introduce processing

illusion (PIL), an approach that replaces an actual processing with sleep(). For example, in the

sample Cassandra bug, we can replace the expensive ring-table update with sleep(t) where t is

an accurate timing of how long the update takes.

The intuition behind PIL is similar to the intuition behind other emulation techniques. For

76

example, Exalt provides an illusion of storage space; their insight was “how data is processed is

not affected by the content of the data being written, but only by its size” [151]. PIL provides an

illusion of compute processing; our insight is that “the key to computation is not the intermediate

results, but rather the execution time and eventual output”.

PIL might sound outrageous in the first place, but it is feasible only if the following concerns

are addressed: How can a function be safely replaced with sleep()without changing the whole

processing semantic? And how to find specific functions that should be replaced with sleep()?

How can we produce the output if the actual compute is skipped? How can we predict the actual

compute time (t) accurately?

PIL-Safe Functions

Our first challenge is to ensure that functions (or code blocks) can be safely replaced with sleep(),

but still retain the cluster-wide behavior and unearth the bug symptoms. We name such functions

as PIL-safe functions. We identify two main characteristics of sleep-safe functions:

1. Memoizable output: a PIL-safe function must have a memoizable (deterministic) output

based on the input of the function.

2. Non-pertinent I/Os: if a function performs disk/network I/Os that are not pertinent to the

correctness of the corresponding protocol, the function is PIL-safe. For example, in the sam-

ple Cassandra bugs, there is a ring-table checkpoint (not shown) needed for fault tolerance

but is irrelevant (never read) during bootstrapping.

Depending on the modularity of the target system, manually finding such target functions can be

challenging, primarily because scale-dependent nested loops can span across multiple functions.

Right now, we rely on developers to identify such that functions, and we leave automatic PIL-

taking function extracting for future work (Chapter 6).

77

Pre-Memoization with Order Determinism

As sleep-safe functions no longer perform the actual computation, the next question to address

is: how do we manufacture the output? We find there are sleep-safe functions with non-pertinent

outputs (Section 5.3.1). For these functions, only time profiling is needed (Section 5.3.1) but not

output recording. However, there are also sleep-safe functions with non-pertinent intermediate

data but with outputs that are needed. For this latter case, we need to manufacture the outputs such

that the global behavior is not altered (e.g., cluster bootstrapping or rebalancing should terminate

successfully). Our solution is pre-memoization: given a sleep-safe function, we identify all the

possible inputs, and for every input, run the function and pre-memoize the output. When SCK

runs, it will use the pre-memoized outputs.

Unfortunately, pre-memoization in the context of large-scale, decentralized, non-deterministic

distributed systems requires an “infinite” time and storage space. The issue is that the state of

each node (the input) depends on the order in which messages arrive (which can be random). As

an example, let’s consider Riak’s bootstrap+rebalance protocol where eventually all nodes own a

similar number of partitions. A node initially has an unbalanced partition table, receives another

partition table from a peer node, then inputs it to a rebalance function, and finally sends the output

to a random node via gossiping. Every node repeats the same process until the cluster is balanced.

In a Riak cluster with N=256 and P 2=64, there are in total 2489 rebalance iterations with a set of

specific inputs in one run. Another run of the protocol will result in a different set of inputs due to

gossip randomness. Our calculation shows that there are (NNP)2 possible inputs.

To address this problem, we pre-memoize with order determinism. Thus, repeated runs of the

same workload in SCK mode will use the same global message ordering (akin to deterministic

record and replay [71]). For example, across different runs, a Riak node now receives gossips from

the same sequence of nodes. With order determinism, pre-memoization and SCK work as follow:

1. We run all nodes on one machine without PIL (more details in Section 5.3.5) and interpose

2. P : the number of key-partitions per node; A key-partition is typically a random integer within 264 keyrange.

78

sleep-safe functions.

2. When sleep-safe functions are executed, we record the inputs and corresponding outputs to

a memoization database (SSD-backed files).

3. During this pre-memoization phase, we record message non-determinism (e.g., gossip send-

receive pairs and their orderings).

4. After pre-memoization completes, we can repeatedly run SCK wherein order determinism

is enforced (e.g., no randomness), sleep-safe functions replaced with PIL, and their outputs

retrieved from the memoization database.

We omit some details above but will summarize the steps again later along with other features

(Section 5.3.5).

With order determinism, the memoization database is kept small as we only record the possible

inputs within one deterministic order. In the 256-node Riak’s case above, the database only needs

to store around 2500 input-output pairs (the number of rebalance iterations observed) in 1.3 GB

of memoized data (and 5.3 GB for the 512-node setup). We also note that while the idea of deter-

ministic systems has been made popular recently, the concept of deterministic distributed systems

is still not practical due to the excessive runtime overhead (e.g., 10x slower [93]). However, in

the context of offline methodology such as SCK, order determinism can be exploited in a fitting

manner.

Time Profiling

As sleep-safe functions are replaced with sleep(t), we need to accurately predict the actual com-

pute time (t). There are two different approaches we take, depending on the target protocols.

1. The first approach is to profile compute time in situ with the pre-memoization phase (in-situ

time profiling). That is, for each input observed during pre-memoization, we also record how

long the processing takes.

79

2. Another approach is to profile compute time with an offline time profiling, which is feasible

for functions with non-pertinent outputs (Section 5.3.1), which do not need pre-memoized

outputs.

With offline time profiling, we simply profile the expensive function exclusively by itself with

the possible input space. If faster profiling is needed, we can sample the input space. For example,

in the sample Cassandra bug, the expensive function depends on a 2-dimensional input (#commit

states and current ring table size), each ranges from 1 to N . With N2 profiles, the profiling time

can take more than one day without sampling when N is large (e.g., 512 nodes). When SCK runs,

given an input, we normalize t based on the sampled profile.

We now address two further questions. First, is time profiling necessary? In other words, is

static prediction sufficient (e.g., extrapolation based on a for-loop timing)? In our case, static

prediction is hard to achieve; nested loops can span across multiple functions with many if-else

conditions. For example, state-update processing in the sample Cassandra bug can range from

0.001 to 4 seconds depending on the multi-dimensional input (Section 5.1.2).

Second, is it obvious from the profiled time that a scalability bug will appear, hence obviating

the need for SCK? As suggested earlier, every implementation is unique (Section 5.1.2). In the

sample Cassandra bug for example, if Cassandra processes gossips in a multi-threaded manner,

long processing time would not lead to the scalability bug. In fact, patches for scalability bugs do

not always remove the expensive computation. Scalability bugs are not merely about the expensive

functions, but rather their potential cascading impacts, hence it is essential to run SCK in addition

to time profiling. We want to emphasize that our profiling approach is not the same as extrapolation,

which tends to stop profiling at a certain scale (e.g., 100 nodes) and extrapolates the behavior for

larger scales. Our profiling and SCK phases run at real scales.

Overall, PIL significantly removes processing contention and reduces CPU utilization. Inter-

estingly, as we colocate more nodes, before we hit 100% CPU utilization, we hit other major

colocation bottlenecks such as memory exhaustion and process/thread context-switching delays.

80

For this reason, we re-architect our target systems to make them scale-checkable with the next

three optimization techniques (Section 5.3.2-Section 5.3.4).

5.3.2 Single-Process Cluster (SPC)

Many distributed systems today are implemented in managed languages (e.g., Java, Erlang) whose

runtimes consume non-negligible memory overhead. Java and Erlang VMs for example use around

70 and 64 MB of memory per process respectively. As we target 3-digit colocation factor, this

memory overhead becomes an unnecessary limitation. Furthermore, a managed-language VM can

contain advanced services. For example, Erlang VM contains a DNS service which sends heartbeat

messages to other connected VMs. As hundreds of Erlang VMs (one for each Riak node) run on

one machine, the heartbeat messages cause a “network” overflow that disconnects Erlang VMs.

To address this, we create Single-Process Cluster (SPC) support wherein the whole cluster

runs as threads in a single process. Surprisingly, our target systems do not have this simple sup-

port; there is no scalability check in the unit tests (mainly feature correctness tests). Thus, we

need to slightly re-design the code to support SPC (e.g., adding arrays of per-node global data

structures, removing static-synchronized functions that lock the whole cluster). As all nodes run

in one process, user-kernel switching to send messages becomes unnecessary. Thus, we create a

shim layer in our target systems to bypass OS network calls when they run in SCK mode.

5.3.3 Global Event Driven Arch. (GEDA)

With SPC, a node still runs multiple daemon threads (gossiper, failure detector, etc.). With high

colocation factor, there are more than one thousand threads that cause severe context switching and

long queuing delays. Because of this overhead, we noticed that events become late (e.g., gossips

are not sent every second) even though CPU utilization has not reached 100%.

To address this, we leverage the staged event-driven architecture (SEDA) [153] common in

distributed system implementations. With SEDA, each service/stage in each node exclusively has

81

an event queue and a handler thread. In SCK mode, we convert SEDA to global-event driven

architecture (GEDA). That is, for every stage, there is only one queue and one handler for the

whole cluster.

As an example, let’s consider a periodic gossip service. With 500-node colocation, there are

500 gossip threads in SPC, each sending a gossip every second. With GEDA, we only have a few

threads (matched with the number of available cores). These global handler threads are shared

among all the nodes for sending gossips. Here, unless a high CPU utilization is reached (e.g.,

90%), GEDA guarantees no late event. As another example, for gossip processing, there is only

one global gossip-receiving queue shared among all nodes. Overall, GEDA removes thread context

switching and queuing delays that should have never existed in the first place and does so without

changing the processing logic, as if the nodes run exclusively on independent machines.

5.3.4 Memory Footprint Reduction (MFR)

Finally, to achieve a high colocation factor, we must perform memory footprint reduction (MFR)

to prevent out-of-memory exceptions that originate from system-specific root causes.

First, relevant services in the target protocol can “over-allocate” memory. For example, in

Riak’s bootstrap+rebalance protocol, each node creates N×P partition services although at the

end only retain P partitions and never use (remove) the other (N−1)×P partitions (as reclaimed

by other nodes). Worse, each partition service is an Erlang process (1.3 MB of memory over-

head); colocating 30 nodes (N=30 with default P=64) will directly consume 75 GB of memory

(30×30×64×1.3 MB) from the start. In SCK, we must modify Riak to remove this unoptimized

memory usage.

Second, some libraries can cause high memory footprints. For example, Voldemort nodes use

Java NIO [?] which is fast but contains buffers and connection metadata that take up memory

space. In SCK, we address this with network bypass from SPC (Section 5.3.2).

The lesson learned here is that modern distributed systems are implemented without scale-

82

checkability in mind. In our target systems, we must address the specific memory issues above;

other systems can potentially face other root causes. This system-specific memory optimization is

crucial in SCK; as we colocate hundreds of nodes, a small memory footprint reduction per node

will bring orders of magnitude reduction globally.

5.3.5 Putting It All Together

Integration steps: We now summarize how our four SCK techniques can be integrated to a target

system.

(1) We first reduce memory footprints with SPC (Section 5.3.2) and MFR (Section 5.3.4) to

avoid out-of-memory exceptions. We then modify the target system with GEDA (Section 5.3.3) to

remove excessive thread context switching.

(2) Next, before running SCK with PIL, we must find all PIL-safe functions (Section 5.3.1

and interpose them to record the inputs, outputs, processing time, and non-deterministic events

(Section 5.3.1, Section 5.3.1).

(3a) After the preparation, if the target protocol exhibits non-pertinent outputs, we can simply

perform offline time profiling without pre-memoization (Section 5.3.1).

(3b) Otherwise, we execute the pre-memoization step (Section 5.3.1). For example, if we want

to scale-check an N-node deployment, we record pre-memoized data and in-situ profiled time with

colocation factor of N .

(4) Finally, we begin scale-checking the target protocol with all the features enabled, including

PIL. This scale-check phase will use the recorded output and time profiles and run in deterministic

order.

Note that all these features are only enabled in SCK mode. In online deployment, the system

runs normally as if without any changes and modification overhead.

Debugging efficiency: We now emphasize how SCK eases scale-checking and large-scale debug-

ging efforts.

83

Cassandra Riak Voldemort

System 95757 18250 63485

Unit Tests 18891 1341 15820

(a) + SCK-able 2874 217 800

(b) + sck (tool) 2308 429 613

Total changes (%) 5% 4% 2%

Table 5.1: Integration (LOC). The table quantifies our efforts in integrating SCK. Riak’s

integration is smaller due to the conciseness of Erlang. Voldemort’s integration does not include

PIL for the old bug we reproduced

First, the only step that consumes time is the time profiling and pre-memoization phase (step

3).3 This is because nodes compete for CPU resources (PIL is still disabled). However, this is only

a one-time overhead.

Second and most importantly, developers can repeatedly re-run the scale-check phase (step

4) as many times as needed (tens/hundreds of iterations) until the bug’s root cause is found. In

this phase, the target protocol runs in a similar duration and behavior as if all the nodes run on

independent machines.

Finally, developers can quickly apply and test new fixes. Some fixes can be tested by only

re-running the last phase; for example, fixes such as changing the failure detector Φ threshold

(for CA-6127), caching slow methods (CA-3831), changing lock management (CA-5456), and

enabling parallel processing (VO-1212). However, if the fixes involve a complete redesign (e.g.,

optimized gossip processing in CA-3881, decentralized to centralized rebalancing in RI-3926), the

integration and profiling/pre-memoization steps (2 and 3) must be repeated.

5.4 Implementation and Integration

We integrate our SCK methodology to three popular distributed key-value stores: Cassandra [105],

Riak [28], and Voldemort [27]. The implementation of SCK involves two parts: (a) changes

to make the target system “SCK-able” on one machine and (b) the sck tool itself (specifically:

3. Ranges 1-34 hours for 100-500 nodes.

84

http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-3831
http://issues.apache.org/jira/browse/CASSANDRA-5456
https://groups.google.com/forum/#!msg/project-voldemort/3vrZfZgQp2Y/Uqt8NgJHg4AJ
http://issues.apache.org/jira/browse/CASSANDRA-3881
http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-April/003926.html

sck.cass, sck.vold, and sck.riak).4 Part (a) involves the integration of SPC, MFR, and GEDA,

as well as PIL interpositioning points. Part (b) is the code for pre-memoization, time profiling, and

other sck setups. Table 5.1 quantifies the integration efforts.

Generality: We show the generality of SCK with two major efforts. First, we picked three sys-

tems and scale-checked various control-path protocols within them, for a total of 5 protocols: 3

Cassandra (bootstrap, scale-out, decommission), 1 Riak (bootstrap+rebalance), and 1 Voldemort

(rebalancing) protocols. A protocol can be built on top of other protocols (e.g., bootstrap on gossip

and failure detection protocols).

Second, we migrated SCK to a total of 9 old and new releases: 5 Cassandra (v0.8.9, v1.1.10,

v1.2.0, v1.2.9, v2.2.5), 2 Riak (v0.14.2, v2.1.3), and 2 Voldemort (v0.90.1, v1.10.21). This effort

is also important to show how SCK can find old and new bugs.

Simplicity: Table 5.1 shows SCK requires thousands of LOC, which we believe is a justified

cost for supporting scale-checkability. We want to emphasize that this is a one-time cost; sub-

sequent migrations are fast. Our first complete integration to Cassandra (v1.2.9) took almost a

year; we needed to learn from scratch about Cassandra and its scalability bugs and also design

SCK. However, after SCK techniques were solid, migration to other versions (Cassandra-v0.8.9,

v1.1.10, v2.2.5) only took 1 week each. Next, our first integration to Riak (v0.14.2) only took

4 weeks (although Riak was completely new to us). A subsequent migration (Riak-v2.1.3) only

took 4 days. The efforts for Voldemort is also similar. Overall, we expect SCK integration can be

done more seamlessly with today’s DevOps practice [111], where developers are testers and testers

are developers.

4. As an analogy, part (b) is similar to specific fscks (e.g., fsck.ext3, fsck.xfs) while part (a) is similar to

how file system code is modified to make fsck fast [90, 122].

85

0 50 100 150 200 250 300 350 400 450 500

(d) Voldemort

(c) Riak

(b) Cass-2

(a) Cass-1

#Nodes

Figure 5.2: Maximum colocation factor.

5.5 Evaluation

We now evaluate our SCK integration to Cassandra, Riak, and Voldemort. Our evaluation answers

the following questions. Section 5.5.1: What is the maximum colocation factor achieved? Section

5.5.2: How accurate is SCK compared to real deployments? Section 5.5.3: Can SCK find old

scalability bugs? Section 5.5.4: Can SCK reveal new bugs?

We use the Nome cluster; each machine has 16-core AMD Opteron(tm) 8454 processors with

32-GB DRAM [25]. To measure SCK accuracy (Section 5.5.2), we compare it with real deploy-

ments of 32, 64, 128, 256, and 512 nodes, deployed on at most 128 Nome machines. 5

5.5.1 Colocation Factor

We first show the maximum colocation factor SCK can achieve as each feature is added one at a

time on top of the other. To recap, the features are: processing illusion (PIL; Section 5.3.1), single-

process cluster (SPC; Section 5.3.2), global event driven architecture (GEDA; Section 5.3.3), and

memory footprint reduction (MFR; Section 5.3.4). The results are based on a 16-core Nome ma-

chine [25].

Maximum colocation factor (MaxCF): A maximum colocation factor is reached when the target

5. Our target protocols only make at most 2 busy cores per node, which justifies why we run 8 nodes per one

16-core machine for the real deployment.

86

system’s behavior in SCK mode starts to deviate from the real deployment behavior. Deviation

happens when one or more of the following bottlenecks are reached: (1) high average CPU utiliza-

tion (>90%), (2) memory exhaustion (nodes receive out-of-memory exceptions and crash), and

(3) high event “lateness”; queuing delays from thread context switching can make events late to

be processed, although CPU utilization is not high. We instrument our target systems to measure

event lateness of relevant events (e.g., gossip sending, gossip processing, and failure detection

events). For example, if gossips should be sent every 1 second, but they are sent every 1.5 second

on average, then the lateness is 50%. We use 10% as the maximum acceptable event lateness.

Note that the residual limiting bottlenecks above come from the main logic of the target protocols,

which cannot be removed with general methods.

Results and observations: Figure 5.2 shows different sequences of integration to our three target

systems and the resulting maximum colocation factors. We discuss four important findings from

this figure.

First, when multiple techniques are combined, they collectively achieve a high colocation fac-

tor (up to 512 nodes for the three systems respectively). For example, in Figure 5.2a, with just

adding SPC+GEDA to Cassandra, MaxCF only reaches 136. But with SPC+GEDA+PIL, MaxCF

significantly jumps to 512. When we increase the colocation factor (+100 nodes) beyond the max-

imum, we hit the residual bottlenecks mentioned before; at this point, we do not test MaxCF with

small increments (e.g., +1 node) as pre-memoization and profiling (step 3 in Section 5.3.5) takes

time. The bug in Voldemort’s rebalancing protocol (VO-1212) involve sequential operations (no

parallel CPU-intensive computations), hence GEDA and PIL are not necessary.

Second, distributed systems of the same type (e.g., P2P key-value stores) are implemented

in uniquely different ways. Thus, integrations to different systems face different sequences of

bottleneck. To show this, we tried different integration sequences. For example, for reproducing

CA-6127 in Cassandra (Figure 5.2a), our integration sequence is: +SPC, +GEDA, and +PIL (as

we continuously hit CPU contention). For RI-3926 (Figure 5.2c), we began with MFR as we hit

87

https://groups.google.com/forum/#!msg/project-voldemort/3vrZfZgQp2Y/Uqt8NgJHg4AJ
http://issues.apache.org/jira/browse/CASSANDRA-6127
http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-April/003926.html

a memory bottleneck first in Riak (the excessive Erlang processes; Section 5.3.4). For VO-1212

(Figure 5.2d), we began with SPC to reduce Java VM memory overhead in Voldemort.

Third, not all features get the chance to show their benefits as the fundamental bottlenecks are

reached. For example, for Cassandra CA-6127 (Figures 5.2a-b), MFR is unnecessary as we will

hit CPU contention in >512 nodes. For Riak RI-3926 (Figure 5.2c), GEDA is not needed as we

will hit a memory bottleneck in >512 nodes, and similarly for Voldemort VO-1212 (Figure 5.2d).

Fourth, an SCK technique can hit a different bottleneck before showing its full potential. For

example, for Cassandra, we tried two different integration sequences (Figure 5.2a-b). With Naive

Packing6, we initially hit a MaxCF of 48 nodes due to CPU contention. At this point, there

are two choices: add SPC+GEDA (to reduce process/thread context switching) or PIL (to reduce

expensive processing). In Figure 5.2b, we tried +PIL first and we found that it does not help much

as process/thread queuing delays are still the bottleneck. Similarly, in Figure 5.2a, SPC+GEDA

also can only reach a certain maximum. This again highlights that it is the combination of the

techniques that make SCK powerful.

So far, SCK is limited by the single machine’s resources. To increase colocation factor, a

higher-end machine can be used. SCK can also be extended to run on multiple machines (a future

work).

5.5.2 Accuracy

Next, we provide a detailed accuracy evaluation of SCK. Due to space constraints, this section

only focuses on one bug (CA-6127 [13]) while the next section briefly discuss other bugs we

reproduced.

Figure 5.3a-d presents the internal metrics within Cassandra failure detection protocol that we

measured for every pair of nodes. That is, the algorithm runs on every node A for every peer B.

Figure 5.4a-d compare in detail the accuracy of SCK compared to real deployments. For example,

6. All nodes run as processes on one machine without modification.

88

https://groups.google.com/forum/#!msg/project-voldemort/3vrZfZgQp2Y/Uqt8NgJHg4AJ
http://issues.apache.org/jira/browse/CASSANDRA-6127
http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-April/003926.html
https://groups.google.com/forum/#!msg/project-voldemort/3vrZfZgQp2Y/Uqt8NgJHg4AJ
http://issues.apache.org/jira/browse/CASSANDRA-6127

a) #flaps = f(Φ > 8)

b) Φ = f(TavgGossip, TlastGossip)

TavgGossip = avg. of last 1000 TlastGossip

c) TlastGossip = f(#hops, TgossipExec)

#hops = log(N) on average

TgossipExec = TstateUpdate (if new state changes)

d) TstateUpdate = f(SizeringTable, SizenewStates)

SizeringTable ≤ N×P and SizenewStates ≤ N

Figure 5.3: Cassandra internal metrics. Above are the metrics we measured within the Cassan-

dra bootstrap protocol for measuring SCK accuracy (Figure 5.4). “f” represents “a function of”

(i.e., an arbitrary function).

x=512 implies the comparison of 512-node colocation in SCK versus a real deployment of 512

nodes. Note that for CA-6127, we only need time profiling with offline sampling (Section 5.3.1)

and no pre-memoized data (Section 5.3.1). We use pre-memoization to reproduce Riak RI-3926

(next section).

Figure 5.4a shows the total number of flaps (alive-to-dead transitions) observed in the whole

cluster during bootstrapping. As shown, SCK closely mimics real deployment scenarios. Most

importantly here, a significant #flaps does not appear until 256-node deployment, hence mini-

cluster extrapolation techniques will not work (Section 5.2). Figure 5.3a defines that #flaps depends

on Φ [88]. Every node A maintains a Φ value for a peer node B (a total of N×(N−1) variables to

monitor). If Φ >8 for B, A will declare B dead (a flap).

Figure 5.4b shows the maximum Φ values observed for every peer node. For example, for the

512-node setup, the whisker plots show the distribution of the maximum Φ values observed for

each of the 512 nodes. As shown, the larger the cluster, more Φ values exceeds the threshold value

of 8, hence the flapping. Figure 5.3b points that Φ depends on the average inter-arrival time of

when new gossips about B arrives at A (TavgGossip) and the time since A heard the last gossip

about B (TlastGossip); the “last gossip” is the last version number received (Section 5.1.1). The

89

http://issues.apache.org/jira/browse/CASSANDRA-6127
http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-April/003926.html

 0

 10

 20

 30

 32 64 128 256 512

Cluster size (#nodes)

(a) #Flaps (x1000)

Real
SCk

Real +Fix
SCk +Fix

 0

 10

 20

 30

 40

32 64 128 256 512

Cluster size (#nodes)

(b) Max Phi for each node

Real
SCk+PIL

 0

 10

 20

 30

 40

32 64 128 256 512

Cluster size (#nodes)

(c) T-lastGossip every A-B pair (sec)

Real
SCk+PIL

1e0

1e1

1e2

1e3

1e4

32 64 128 256 512

Cluster size (#nodes)

(d) Update process time (ms)

Figure 5.4: Accuracy in reproducing CA-6127. The figures represent the metrics presented

in Figure 5.3, measured in real deployment (“Real”) and SCK with different cluster sizes (32, 64,

128, 256, and 512). Figure title represents the y-axis.

point is that TlastGossip should not be much higher than TavgGossip.

Figure 5.4c shows the whisker plots of gossip inter-arrival times (TlastGossip) that we collected

for every A-B pair. For example, for the 512-node setup, the whisker plots represent the distribution

of around 41 million gossip inter-arrival times; this large number is because a message contains

gossips of many peer nodes. The figure shows that in larger clusters, new gossips do not arrive

as fast as in smaller clusters, especially at high percentiles. Figure 5.3c shows that TlastGossip

depends on how far B’s new gossips propagate through other nodes to A (#hops) and the gossip

processing time in each hop (TgossipExec). The #hops is stable at log(N) on average in SCK and

real deployment (not shown). The latter (TgossipExec) is essentially state-update processing time

(TstateUpdate) whenever there are state changes, which is the culprit.

90

http://issues.apache.org/jira/browse/CASSANDRA-6127

Bug# Surface Protocol Metric

CA-6127 [13] N≥256 Bootstrap #flaps

CA-3831[10] ≥256 Decommission #flaps

CA-3881[11] ≥64 Add new nodes #flaps

CA-5456[12] ≥256 Add new nodes #flaps

RI-3926 [14] ≥128 Boot+rebalance TComplete

VO-1212 [15] ≥128 Rebalance TComplete

Table 5.2: Reproduced bugs. “Surface” implies the number of nodes needed for the bug

symptom to surface. “c” stands for Cassandra, “r” for Riak, and “v” for Voldemort.

Figure 5.4d (in log scale) shows the whisker plots of state-update processing time (TstateUpdate);

in the 512-node setup, we measured around 25,000 state-update invocations. The figure shows

that at high percentiles, TstateUpdate is scale-dependent. As explained in Figure 5.3d (and Section

5.1.1), TstateUpdate complicatedly depends on a scale-dependent 2-dimensional input (SizeringTable

and SizenewStates); a node’s SizeringTable depends on how many nodes it knows, including the

partition arrangement (≤N×P) and SizenewStates (≤N) increases as cluster size increases. Note

that the TstateUpdate in SCK comes from the sampling-based time profiling (Section 5.3.1), which

is relatively accurate as the figure shows.

We conclude that SCK mimics similar behaviors as in real deployments and is accurate for

reproducing scalability bugs. As an additional note, we have applied the bug patch in both SCK

and real deployment modes; Figure 5.4a shows #flaps is always zero in both modes.

5.5.3 Bugs Reproduced

Table 5.2 lists all the 7 bugs we have reproduced (4 Cassandra, 1 Riak, and 1 Voldemort bugs). We

chose these 7 bugs (among the 41 bugs we studied) because the reports contain more detailed de-

scriptions about the bugs, the affected protocols, the affected code version numbers, configuration

setups, and the patches. Table 5.2 also shows the number of nodes needed for the bug symptoms

to surface and the quantifiable metrics of the symptoms. Our first target system was Cassandra,

hence the more bugs reproduced compared to Riak and Voldemort; the latter two were added for

stronger proof of concept. Figure 5.5 shows the accuracy of SCK in reproducing the 6 bugs using

91

http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-3831
http://issues.apache.org/jira/browse/CASSANDRA-3881
http://issues.apache.org/jira/browse/CASSANDRA-5456
http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-April/003926.html
https://groups.google.com/forum/#!msg/project-voldemort/3vrZfZgQp2Y/Uqt8NgJHg4AJ

the metrics shown in Table 5.2. All Cassandra bugs have been described in Section 5.1.1 so we

now briefly discuss the other two bugs in Voldemort and Riak.

Figure 5.5d: In VO-1212 [15], Voldemort’s rebalancing was not optimized for large clusters; it

led to more stealer-donor partition transitions as the cluster size grows (128+ nodes). To fix this,

the developers completely changed the stealer-donor partition transition algorithm.

Figure 5.5e: In RI-3926 [14], Riak bootstrapping employed a complex 3-stage rebalancing al-

gorithm (claim-target, claim-hole, full-rebalance) that each node runs to eventually converge and

achieve a perfect balance of the ring. Each node runs this CPU-intensive algorithm on every boot-

strap gossip received. The larger the cluster, the longer time perfect balance is achieved (observed

in 128+ nodes). For Riak, we profile the rebalancing time along with pre-memoization (with order

determinism; Section 5.3.1-5.3.1). Figure 5.5f (similar to Figure 5.4d) compares the execution

time of the rebalance function invocations in SCK and real deployments. The figure shows that

SCK’s PIL exhibits a high accuracy.

We make several remarks from this experience. First, if SCK had existed in the first place, it

might have prevented the Cassandra bugs; they all involve the same protocols (gossip, rebalance,

and failure detector) and create the same symptom (high #flaps). These bugs highlight that code

evolution can introduce new bugs in the same protocols. In this context, SCK is highly useful.

Second, reproducing scalability bugs is relatively easy as we achieve a high colocation factor.

Unlike non-deterministic bugs which require complex timing reordering to reproduce [81, 107],

symptoms of scalability bugs are “deterministically scale-dependent.” Third, different systems of

the same type (e.g., key-value store) implement similar protocols. The generality of SCK methods

in scale-checking the protocols above can be useful to many other distributed key-value stores.

5.5.4 New Bugs

We also scale-checked the latest stable versions of Cassandra (v2.2.5), Riak (v2.1.3), and Volde-

mort (v1.10.21). In Cassandra, SCK shows that cluster-wide flapping resurfaces again but only

92

https://groups.google.com/forum/#!msg/project-voldemort/3vrZfZgQp2Y/Uqt8NgJHg4AJ
http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-April/003926.html

 0

 100

 200

 300

 32 64 128 256

(a) #Flaps (x1000) in
 Cassandra Decommission (c3831)

Real
SCk

 0

 10

 20

 30

 40

 32 64 128 256

(b) #Flaps (x1000) in
 Cassandra Scale-Out (c3881)

Real
SCk

 2

 4

 6

 8

 32 64 128 256

(c) #Flaps (x1000) in
 Cassandra Scale-Out (c5456)

Real
SCk

 0

 20

 40

 60

 80

 32 64 128 256

(e) Duration (x1000 sec) of
Voldemort Rebalance (v1212)

Real
SCk

 0

 4

 8

 12

 32 64 128 256

Cluster size (#nodes)

(d) Duration (x1000 sec)
of Riak Bootstrap (r3926)

Real
SCk

1e0

1e1

1e2

1e3

1e4

 1e5

32 64 128 256

Cluster size (#nodes)

(f) Rebalance Process Time (ms)
per Message in Riak (r3926)

Real
SCk

Figure 5.5: Accuracy in reproducing other bugs. The figures represent the bugs described in

Table 5.2. The title represents the y-axis. We cap the y-axis to show the scale at which the bug

symptoms start to appear.

93

observable in 512-node deployment (e.g., decommissioning only one node caused almost 100,000

flaps). We submitted the bug few months back and it is still unresolved (the fix might require new

design). Meanwhile, the developers suggested us to add/remove node one at a time with 2-minute

separation, which means scaling-out/down 100 nodes will take over 3 hours; instant elasticity is not

achievable. For Riak and Voldemort, we found that their latest-stable bootstrap/rebalance protocols

do not exhibit any scalability bug, up to 512 nodes.

5.6 Conclusion

In this chapter, we have presented our observations on scalability bugs that highlight a need of

an attention to combat them. Scalability bugs are latent bugs that are scale-dependent that only

manifest in large scale. We have also presented our pilot work SCK, a methodology to enable

developers to colocate hundreds of nodes on one machine to emulate large-scale deployments;

this helps developers save cost of testing and speed up testing process. We have introduced four

techniques in this chapter:

1. Processing Illusion (PIL) helps reduce CPU contention so CPU-intensive nodes can be more

colocated on one machine.

2. Single Process Cluster (SPC) helps reduce memory consumption and context switching.

3. Global Event Driven Architecture (GEDA) helps reduce the number of threads we need to

run the systems.

4. Memory Footprint Reduction (MFR) helps reduce memory consumption further.

SCK is a pilot work, it still needs a lot of manual efforts from developers to do scale check, but

we hope that this work can raise awareness from system community to pay attention to this new

class of bugs in cloud-scale distributed systems.

94

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, we aim to strengthen dependability of cloud-scale distributed systems by ad-

dressing two new types of bugs in cloud systems, distributed concurrency bugs (DC bugs) and

scalability bugs. We have performed bug studied to gain insights about the nature of these bugs,

and we have also advanced state of the art of system testing. This chapter concludes this disserta-

tion work and discuss future work in combating DC bugs and scalability bugs.

6.1 Conclusion

6.1.1 Distributed Concurrency Bugs

The first problem we focus in this dissertation is DC bugs. We have conducted in-depth study and

created the largest and most comprehensive of DC bugs named TaxDC. We categorize DC bugs in

three dimensions. The first dimension is triggering which is conditions that makes bugs happens.

We studied timing conditions and found four main timing patterns: order violation, atomicity

violation, fault timing, and reboot timing. We also studied input conditions that are ingredients for

bugs to surface. We found that most DC bugs will surface only systems execute multiple protocols,

and more than 50% of bugs surface in recovery protocols (i.e., the bugs surface only when there

are hardware failures).

The second dimension that we studied is errors and failures. We studied the first errors that

happen immediately after the bugs are triggered. We see half of the bugs have local errors that is

we can see the errors by observing only triggering node, but half of them have global errors that

require us to observe the whole systems to notice the errors. Moreover, we looked into failure

symptom induced by DC bugs and found that the bugs can lead to severe failures like system

downtime, operation failures, data loss/corruption/inconsistencies, and performance degradation.

Lastly, the third dimension that we studied is fixes that are how developers fix the DC bugs. We

95

saw two main strategies to fix the bugs that are fixing the timing and fixing the handling. For timing

fixes, developers can do it globally or locally (global synchronization or local synchronization).

For handling fixes, developers change the logic of message handling or fault handling such that the

systems still behave correctly.

Other than the bug study, we have introduced semantic-aware model checking (SAMC) that is

a white-box approach to model check the systems. SAMC prunes out some executions because

it knows that those executions are redundant with previous executions it already tested by using

semantic knowledge of target systems. We show a strong case that SAMC can elegantly address

state-space-explosion problem. We have introduced four novel semantic-aware reduction policies,

and built SAMPRO and integrated it to three systems including Hadoop MapReduce, Cassandra

and ZooKeeper. On average, SAMC can find bugs 49x faster than other states of the art.

6.1.2 Scalability Bugs

The second problem we focus in this dissertation is scalability bugs. Scalability bugs are bugs that

specific to cloud systems and we found there is not much attention paid on them. We observed that

scalability bugs are scale dependent and only surface at extreme scale (e.g., hundreds of nodes).

We noticed that although the systems are designed to be scalable, but actual implementations

can introduces the bugs. We also saw that not all developers can afford large clusters to check

scalability of their code, and make bugs linger until the systems are deployed on large scale.

Our observations highlight the need for scale checking that check the implementation of the

systems. Hence, we have introduced SCK, a scale-checking methodology to allow developers colo-

cate hundreds nodes on a single machine to check their systems. We introduced four techniques

to mitigate resource contentions issue (i.e., CPU, memory, and threads) regarding to colocating

several nodes in one machine. We adopted SCK to three systems including Cassandra, Riak, and

Voldemort, and were able to reproduce six old scalability bugs with high accuracy.

96

6.2 Future Work

We now discuss our research impact and future research revenues in combating DC bugs and scal-

ability bugs. Regarding DC-bug combating, although many high-level directions can be adopted

from work on LC bugs, there are many interesting challenges and opportunities unique to DC bugs.

For scalability bugs, our pilot work just targets a subset of scalability bugs, there are many classes

of scalability bugs that we have not touched yet.

6.2.1 Distributed Concurrency Bugs

Fault Paths and Multi-Protocol Interactions

Individual protocols tend to be robust in general. Only 18 DC bugs occur in individual protocols

without any input fault condition; only 8 of them are in foreground protocols. On the other hand,

a large majority of DC bugs happen due to concurrent executions of multiple protocols and/or

different fault timings (Finding #2). This has a tremendous implication to input testing: all types of

verification, testing, and analysis approaches must consider fault injections and multiple protocols

as input conditions. Although recent work has paid attention to this [77, 100, 161], we emphasize

that all forms of faults (Section 3.2.6) must be exercised.

Distributed Systems Model Checkers

Assuming the necessary input conditions are exercised, the next question is: can we test differ-

ent event re-orderings to hit the triggering timing (Section 3.3.1)? This is the job of distributed

system model checkers (dmck), which are gaining popularity recently [81, 103, 143, 157]. Dmck

works by intercepting distributed events and permuting their ordering. The more events included,

the more scalability issues will arise due to state-space explosion. To date, no dmck completely

controls the timings of all necessary events that might contribute to the triggering timing (Finding

#1). MaceMC [103] only reorders messages and network disconnections. MoDist [81] exercises

97

timeouts and Demeter [81] intercepts messages and local computation but they do not explore dif-

ferent timing of multiple crashes and reboots. Also, none of the above include storage faults or

timing issues [86]. Therefore, continued research on scalable exploration algorithms is needed,

specifically when all the necessary events need to be controlled. This could be helped by DC bugs’

triggering scope characteristics (Finding #3), just like that in LC model checkers [127].

Domain-Specific Specifications

Now, assuming the necessary events are controlled, the next question is: do we have the specifica-

tion to judge the manifestation of a bug? This is a plague for many tools. For example, Demeter

does not find new bugs [81]. Conversations with the authors suggest that their target systems

do not deploy detailed specifications, and thus some bugs are left uncaught. Deploying generic

“textbook” specifications (e.g., “only one leader exists”) does not help as they could lead to false

positives (e.g., ZooKeeper allows two leaders at a single point in time). Many research papers on

specifications only deploy few of them [77, 115, 136]. Developers also bemoan the hard-to-debug

fail-silent problems MR-3634 and prefer to see easier-to-debug fail-stop bugs.

On the positive side, 53% of DC bugs lead to explicit first errors (Finding #4), implying that

sanity checks already in software can be harnessed as specifications (more in Section 6.2.1). On

the other side, compared to single-machine systems, distributed systems are much more capable

of masking errors. Therefore, these error specifications have to be used with caution to avoid false

positives. Furthermore, 47% of DC bugs lead to silent first errors (Finding #4). Many of them

proceed to “silent failures”, such as data loss, node hangs, etc. Even if they become explicit errors

later, these explicit errors could be far away from the initial triggering conditions (e.g., Figure

3.4). In short, no matter how sophisticated the tools are, they are ineffective without accurate

specifications. This motivates the creation or inference of local specifications that can show early

errors or symptoms of DC bugs.

98

http://issues.apache.org/jira/browse/MAPREDUCE-3634

Bug Detection Tools

We now discuss bug detection tools, which are unfortunately rare for DC bugs, although very

popular for LC bugs [40, 67, 92, 119, 127, 138]. Bug detection tools look for bugs that match

specific patterns. They cannot provide bug-free proof, but can be efficient in discovering bugs

when guided by the right patterns. Our study provides guidance and patterns that can be exploited

by future DC bug detection.

Generic detection framework. Finding #1 implies that detecting DC bugs, particularly message-

timing DC bugs, should focus on two key tasks: (1) obtaining timing specifications, including or-

der and atomicity specifications among messages and computation; and (2) detecting violations to

these specifications through dynamic or static analysis.

Invariant-guided detection. Likely program invariants can be learned from program behaviors,

and used as specifications in bug detection [64, 65, 119]. The key challenge is to design simple

and suitable invariant templates. For example, “function F1 should always follow F2” is a useful

template for API-related semantic bugs [64]; “the atomicity of accesses a1 and a2 should never

be violated” is effective for LC bugs [119]. Finding #1 about triggering timing and Finding #4

about error patterns provide empirical evidence that these templates can be effective for DC bugs:

“message bc should arrive at C before message ac (ca) arrives (leaves)”; “message ab should never

arrive in the middle of event e on node B”; and “message ab should always be replied”.

Misconception-guided bug detection. Knowing programmers’ misconceptions can help bug

detectors focus on specifications likely to be violated. LC bug researchers have leveraged mis-

conceptions such as “two near-by reads of the same variable should return the same value” [119]

and “a condition checked to be true should remain true when used” [134]. Finding #6 reveals that

common misconceptions, such as “a single hop is faster than double hops”, “local computation is

faster than remote computation”, “atomic blocks cannot be broken” can help DC bug detection.

99

Error-guided bug detection. Finding #4 shows that many DC bugs lead to explicit local/global

errors, which implies that timing specifications for many DC bugs can be inferred backward based

on explicit errors. For example, program analysis may reveal that a state-machine exception e will

arise whenever C receives message ac before bc, which provides a timing specification (ac arrives

before bc) whose violation leads to a local error; or, the analysis may reveal that exception e arises

whenever node B receives a message cb from node C and C only sends cb when ac arrives at C

before bc, which provides a timing specification whose violation leads to a wrong-message global

error; and so on.

Software testing. Testing takes a quarter of all software development resources, and is crucial

in exposing bugs before code release. Although many testing techniques have been proposed for

LC bugs [43, 132, 139], there have been few for DC bugs [140]. Finding #2 implies that test input

design has to consider faults, concurrent protocols, and background protocols. Finding #3 implies

that pairwise testing, which targets every pair of message ordering, every pair of protocol inter-

action, and so on, will work much more effectively than all combination testing, which exercises

all possible total orders and interactions of all messages and all protocols. For example, a large

number of DC bugs (Figure 3.3d-f) can be found with inputs of at most two protocols, crashes and

reboots.

Failure Diagnosis

Given failure symptoms, distributed systems developers have to reason about many nodes to figure

out the triggering and root cause of a failure. Our study provides guidance to this challenging

process of failure diagnosis.

Slicing/dependence analysis. Identifying which instructions can affect the outcome of an in-

struction i is a widely used debugging technique for deterministic sequential bugs. However, it

cannot scale to the whole distributed systems, and hence is rarely used. Finding #3 indicates that

100

most DC bugs have deterministic error propagation; Finding #4 shows that many DC bugs have

their errors propagate through missing or wrong messages. Therefore, per-node dependence anal-

ysis that can quickly identify whether the generation of a local error depends on any incoming

messages would help DC bug failure diagnosis to get closer and closer to where the triggering

events happen.

Error logging. Error logging is crucial in failure diagnosis. If the first error of a DC bug is an

explicit local error, the error log can help developers quickly identify the triggering node and focus

their diagnosis on one node. Finding #4 unfortunately shows that only 23% of DC bugs lead to

explicit local errors. This finding motivates future tool to help make more DC bugs lead to explicit

local errors.

Statistical debugging. Comparing success-run traces with failure-run traces can help identify

failure predictors for semantic bugs [110] and concurrency bugs [97] in single-machine software.

The key design question is what type of program properties should be compared between failure

and success runs. For example, branch outcomes are compared for diagnosing semantic bugs

but not for LC bugs. Finding #1 and #3 about triggering timing conditions provide guidance for

applying this approach for DC bugs. We can collect all message sending/arrival time at runtime,

and then find rare event orderings that lead to failures by contrasting them with common “healthy”

orderings (e.g., Figure 3.1b happens 99.99% of the time while Figure 3.1a happens 0.01% of the

time). Of course, there are challenges. Finding #2 and #3 show that many DC bugs come from the

interactions of many protocols. Thus, it is not sufficient to only log a chain of messages originated

from the same request, a common practice in request logging [52]. Furthermore, some DC bugs are

triggered by message-computation ordering. Therefore, logging messages alone is not sufficient.

Record and Replay. Debugging LC concurrency bugs with record and deterministic replay is

a popular approach [133, 149]. However, such an approach has not permeated practices in dis-

101

tributed systems debugging. A ZooKeeper developer pointed us to a fresh DC bug that causes a

whole-cluster outage but has not been fixed for months because the deployment logs do not record

enough information to replay the bug (ZK-2172). There has been 9 back-and-forth log changes

and attachments with 72 discussion comments between the bug submitter and the developers. More

studies are needed to understand the gap between record-replay challenges in practice and the cur-

rent state of the art [72, 116].

Failure Prevention and Fixing

Runtime Prevention. The manifestation of concurrency bugs can sometimes be prevented by in-

jecting delays at runtime. This technique has been successfully deployed to prevent LC bugs based

on their timing conditions [102, 120, 164]. Finding #1 shows that many DC bugs are triggered by

untimely messages and hence can potentially be prevented this way. For example, none of the bugs

shown in Figure 3.1a–h would happen if we delay a message arrival/sending or local computation.

Of course, different from LC bugs, some of these delays have to rely on a network interposition

layer; similar with LC bugs, some delays may lead to hangs, and hence cannot be adopted.

Bug Fixing. Recent work automatically fixes LC bugs by inserting lock/unlock or signal/wait to

prohibit buggy timing [98, 114, 152]. Finding #5 shows that the same philosophy is promising

for 30% of studied DC bugs. Our study shows that this approach has to be tweaked to focus

on using global messages (e.g., ACKs) or local operation re-ordering, instead of lock or signal,

to fix DC bugs. Finding #5 indicates that 40% of those DC bugs are fixed by shifting message

handlers, ignoring messages, and canceling computation, without adding new computation logic.

This presents a unique opportunity for developing new and more aggressive fixing techniques.

102

http://issues.apache.org/jira/browse/ZOOKEEPER-2172

HB-9095:

1. RS successfully OPENED region R,

2. RS notifies ZK that region R is OPENED,

3. ZK continues region R state msg to Master,

4. Master starts processing OPENED msg,

5. Meanwhile RS CLOSED region R (asked by Client),

6. RS notifies ZK that region R is CLOSED,

7. Master asks ZK to delete znode for region R, concurrently racing with step 6!,

8. ZK deletes region R’s znode,

9. Master never assigns region R to any RS. R becomes an orphan!

Figure 6.1: Race of HBase’s messages to ZooKeeper.

Distributed Transactions

In the middle of our study, we ask ourselves: if DC bugs can be theoretically solved by distributed

transactions, why doesn’t such technique eliminate DC bugs in practice? Our answers are: first, the

actual implementations of theoretically-proven distributed transactions are not always correct (as

also alluded in other work [44, 129]). For example, new DC bugs continue to surface in complex

distributed transactions such as ZooKeeper’s ZAB and Cassandra’s Paxos as they are continuously

modified. Second, distributed transactions are only a subset of a full complete system. A prime

example is the use of ZooKeeper in HBase for coordinating and sharing states between HBase

masters and region servers. Although ZooKeeper provides linearization of updates, HBase must

handle its concurrent operations to ZooKeeper, for example, step 6 and 7 in Figure 6.1; there

are many other similar examples.Put simply, there are many protocols that do not use distributed

transactions, instead they use domain-specific finite state machines, which should be tested more

heavily.

Another approach to eliminate non-deterministic bugs in distributed protocols is by building

deterministic distributed systems. However, the technique is still in its infancy, at least in terms of

103

http://issues.apache.org/jira/browse/HBASE-9095

the impact to performance (e.g., an order of magnitude of overhead [93]).

Verifiable Frameworks

Recently there is a growing work on new programming language frameworks for building veri-

fiable distributed systems [60, 87, 154], but they typically focus on the main protocols and not

the full system including the background protocols. One major challenge is that just for the basic

read and write protocols, the length of the proofs can reach thousands of lines of code, potentially

larger than the protocol implementation. Unfortunately, our study shows that the complex interac-

tion between foreground and background protocols can lead to DC bugs. Therefore, for complete

real-world systems, verification of the entire set of the protocols is needed.

6.2.2 Scalability Bugs

SCK is an initial effort to combat scalability bugs. It focuses on scale-dependent CPU/processing

time. However, there are other scaling problems that lead to I/O and memory contentions [78,

130, 142], usually caused by the scale of load [39, 82] or data size [128]. SCK cannot reproduce

such issues on one machine as we do not address memory and IO emulation. Moreover, we find

that some bugs are caused by scale of failures [78] (e.g., a great number of machines fails at the

same time) and these bugs are hard to catch during testing process because failures in cloud-scale

distributed systems can be very complex. We believe there are many open problems to solve in

this new research area. We will discuss some possible research directions here.

Program Analysis

Another approach to scale check systems on just one machine is program analysis. There is a pre-

vious work adopting static analysis to check if software is scalable on multicore processors [54].

However, cloud-scale distributed systems are different from multicore software, and the analysis

104

for multicore software is not applicable for cloud systems. In this dissertation, we show that scal-

ability bugs in cloud distributed systems are caused from scale-dependent CPU/processing time.

Building a program analysis that covers all paths and understands the cascading impacts without

false positives is challenging. Not all scale-dependent loops imply buggy code. For example, in

Cassandra gossip protocol, if Cassandra processes gossips in a multi-threaded manner, the long

processing time might not cascade to failures.

However, building program analysis to point out potential buggy functions is still useful. It

can reduce manual efforts in order to identify PIL-safe and offending functions which makes SCK

more automatic.

In-Production Checking

If scale checking on one machine is hard and checking on real scale is expensive, can we piggyback

scale checking on production cluster? The idea of this in-production checking is that we already

have ready-to-check environment (i.e., large scale setup and big data stored in clusters), we should

be able to test critical scenarios such as machine decommissions, a surge of requests, and datacenter

failures. Scalability bugs in these critical scenarios are unlikely to be covered in offline testing,

but are possible to be detected in production systems, however, in-production checking remains a

“controversial” idea, mainly because of the soundness of the checking process. No service provider

would like to report to their clients “an in-production checking that we scheduled has caused an

outage/data loss/performance disruption.” The risk is too high. An initial idea of in-production

checking is proposed [106] and discussed, but there is still no formal research on this topic.

6.3 Closing Words

Cloud-scale distributed systems are the leading actors in the age of cloud computing. The depend-

ability of cloud services mainly rely on these distributed systems. This dissertation addresses an

essential question of cloud dependability: “how can we make cloud-scale distributed systems more

105

dependable?” Our work focuses on two unsolved problems, distributed concurrency bugs and

scalability bugs. These two types of bugs are novel and unique to cloud-scale environment, and we

found not many works addressing them. We address these two types of bugs by conducting formal

studies to understand the nature of the bugs and advancing state of the art of system checking. We

hope this dissertation brings new insights on combating distributed concurrency bugs and draws

more attentions for scalability bugs. However, there are still many new classes of cloud-unique

bugs waiting for system community to address in the future.

106

REFERENCES

[1] http://ucare.cs.uchicago.edu/projects/cbs/.

[2] Adobe Creative Cloud Adoption Grows to 9 Million Paid Members. http://

prodesigntools.com/creative-cloud-one-million-paid-members.html.

[3] Apache Cassandra. https://en.wikipedia.org/wiki/Apache_Cassandra.

[4] Apache Cassandra. http://cassandra.apache.org.

[5] Apache Hadoop. http://hadoop.apache.org.

[6] Apache HBase. http://hbase.apache.org.

[7] Apache ZooKeeper. http://zookeeper.apache.org.

[8] AWS Customer Success. https://aws.amazon.com/solutions/case-studies/.

[9] Big data storage: Hadoop storage basics. http://www.computerweekly.com/feature/

Big-data-storage-Hadoop-storage-basics.

[10] BUG: CASSANDRA-3831: scaling to large clusters in GossipStage impossible due to cal-

culatePendingRanges. https://issues.apache.org/jira/browse/CASSANDRA-3831.

[11] BUG: CASSANDRA-3881: reduce computational complexity of processing topology

changes. https://issues.apache.org/jira/browse/CASSANDRA-3881.

[12] BUG: CASSANDRA-5456: Large number of bootstrapping nodes cause gossip to stop

working. https://issues.apache.org/jira/browse/CASSANDRA-5456.

[13] BUG: CASSANDRA-6127: vnodes don’t scale to hundreds of nodes. https://issues.

apache.org/jira/browse/CASSANDRA-6127.

[14] BUG: RIAK: Large ring creation size. http://lists.basho.com/pipermail/riak-

users_lists.basho.com/2011-April/003895.html.

[15] BUG: VOLDEMORT: Number of partitions. https://groups.google.com/forum/#!

msg/project-voldemort/3vrZfZgQp2Y/Uqt8NgJHg4AJ.

[16] Database Scalability: Vertical Scaling vs Horizontal Scaling. http://www.vcloudnews.

com/database-scalability-vertical-scaling-vs-horizontal-scaling/.

[17] Dropbox. https://www.dropbox.com/.

[18] Gmail. https://www.google.com/gmail/about.

[19] Gmail Now Has More Than 1B Monthly Active Users. https://techcrunch.com/2016/

02/01/gmail-now-has-more-than-1b-monthly-active-users/.

107

http://ucare.cs.uchicago.edu/projects/cbs/
http://prodesigntools.com/creative-cloud-one-million-paid-members.html
http://prodesigntools.com/creative-cloud-one-million-paid-members.html
https://en.wikipedia.org/wiki/Apache_Cassandra
http://cassandra.apache.org
http://hadoop.apache.org
http://hbase.apache.org
http://zookeeper.apache.org
https://aws.amazon.com/solutions/case-studies/
http://www.computerweekly.com/feature/Big-data-storage-Hadoop-storage-basics
http://www.computerweekly.com/feature/Big-data-storage-Hadoop-storage-basics
https://issues.apache.org/jira/browse/CASSANDRA-3831
https://issues.apache.org/jira/browse/CASSANDRA-3881
https://issues.apache.org/jira/browse/CASSANDRA-5456
https://issues.apache.org/jira/browse/CASSANDRA-6127
https://issues.apache.org/jira/browse/CASSANDRA-6127
http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-April/003895.html
http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-April/003895.html
https://groups.google.com/forum/#!msg/project-voldemort/3vrZfZgQp2Y/Uqt8NgJHg4AJ
https://groups.google.com/forum/#!msg/project-voldemort/3vrZfZgQp2Y/Uqt8NgJHg4AJ
http://www.vcloudnews.com/database-scalability-vertical-scaling-vs-horizontal-scaling/
http://www.vcloudnews.com/database-scalability-vertical-scaling-vs-horizontal-scaling/
https://www.dropbox.com/
https://www.google.com/gmail/about
https://techcrunch.com/2016/02/01/gmail-now-has-more-than-1b-monthly-active-users/
https://techcrunch.com/2016/02/01/gmail-now-has-more-than-1b-monthly-active-users/

[20] Google Drive. https://www.google.com/intl/en/drive/.

[21] Google Drive claims one million paying customers, er, organizations. http://fortune.

com/2015/09/21/google-drive-1m-paid-users/.

[22] Gossip 2.0. https://issues.apache.org/jira/browse/CASSANDRA-12345.

[23] Gossip 2.0. http://mail-archives.apache.org/mod_mbox/cassandra-dev/

201609.mbox/%3CCAHjqPuJMkfZwp9DDX45PNBNhkoGXsPW4TFT6Zxv%2BTTz_Pg3Y%2Bg

%40mail.gmail.com%3E.

[24] iCloud. https://www.icloud.com/.

[25] NMC PRObE Nome Nodes. https://www.nmc-probe.org/wiki/Nome:Nodes.

[26] Number of registered Dropbox users from April 2011 to March 2016 (in mil-

lions). https://www.statista.com/statistics/261820/number-of-registered-

dropbox-users/.

[27] Project Voldemort. http://www.project-voldemort.com/voldemort/.

[28] Riak. http://basho.com/products/riak-kv.

[29] Siri. https://www.apple.com/ios/siri/.

[30] Taking astronomy to the cloud. https://www.inthefieldstories.net/taking-

astronomy-to-the-cloud/.

[31] The Top 20 Valuable Facebook Statistics - Updated May 2017. https://zephoria.com/

top-15-valuable-facebook-statistics/.

[32] Twenty-One Experts Define Cloud Computing. http://cloudcomputing.sys-con.com/

node/612375/print.

[33] What is cloud computing? https://www.ibm.com/cloud-computing/learn-more/

what-is-cloud-computing/.

[34] What Is Cloud Computing? http://www.pcmag.com/article2/0,2817,2372163,00.

asp.

[35] Running Netflix on Cassandra in the Cloud. https://www.youtube.com/watch?

v=97VBdgIgcCU, 2013.

[36] Why the world’s largest Hadoop installation may soon become the norm. http://www.

techrepublic.com/article/why-the-worlds-largest-hadoop-installation-

may-soon-become-the-norm/, 2014.

[37] Daniel Abadi. Data Management in the Cloud: Limitations and Opportunities. IEEE Data

Engineering Bulletin, 32(1):3–12, March 2009.

108

https://www.google.com/intl/en/drive/
http://fortune.com/2015/09/21/google-drive-1m-paid-users/
http://fortune.com/2015/09/21/google-drive-1m-paid-users/
https://issues.apache.org/jira/browse/CASSANDRA-12345
http://mail-archives.apache.org/mod_mbox/cassandra-dev/201609.mbox/%3CCAHjqPuJMkfZwp9DDX45PNBNhkoGXsPW4TFT6Zxv%2BTTz_Pg3Y%2Bg%40mail.gmail.com%3E
http://mail-archives.apache.org/mod_mbox/cassandra-dev/201609.mbox/%3CCAHjqPuJMkfZwp9DDX45PNBNhkoGXsPW4TFT6Zxv%2BTTz_Pg3Y%2Bg%40mail.gmail.com%3E
http://mail-archives.apache.org/mod_mbox/cassandra-dev/201609.mbox/%3CCAHjqPuJMkfZwp9DDX45PNBNhkoGXsPW4TFT6Zxv%2BTTz_Pg3Y%2Bg%40mail.gmail.com%3E
https://www.icloud.com/
https://www.nmc-probe.org/wiki/Nome:Nodes
https://www.statista.com/statistics/261820/number-of-registered-dropbox-users/
https://www.statista.com/statistics/261820/number-of-registered-dropbox-users/
http://www.project-voldemort.com/voldemort/
http://basho.com/products/riak-kv
https://www.apple.com/ios/siri/
https://www.inthefieldstories.net/taking-astronomy-to-the-cloud/
https://www.inthefieldstories.net/taking-astronomy-to-the-cloud/
https://zephoria.com/top-15-valuable-facebook-statistics/
https://zephoria.com/top-15-valuable-facebook-statistics/
http://cloudcomputing.sys-con.com/node/612375/print
http://cloudcomputing.sys-con.com/node/612375/print
https://www.ibm.com/cloud-computing/learn-more/what-is-cloud-computing/
https://www.ibm.com/cloud-computing/learn-more/what-is-cloud-computing/
http://www.pcmag.com/article2/0,2817,2372163,00.asp
http://www.pcmag.com/article2/0,2817,2372163,00.asp
https://www.youtube.com/watch?v=97VBdgIgcCU
https://www.youtube.com/watch?v=97VBdgIgcCU
http://www.techrepublic.com/article/why-the-worlds-largest-hadoop-installation-may-soon-become-the-norm/
http://www.techrepublic.com/article/why-the-worlds-largest-hadoop-installation-may-soon-become-the-norm/
http://www.techrepublic.com/article/why-the-worlds-largest-hadoop-installation-may-soon-become-the-norm/

[38] Radu Banabic and George Candea. Fast black-box testing of system recovery code. In

Proceedings of the 2012 EuroSys Conference (EuroSys), 2012.

[39] Peter Bodik, Armando Fox, Michael Franklin, Michael Jordan, and David Patterson. Char-

acterizing, Modeling, and Generating Workload Spikes for Stateful Services. In Proceedings

of the 1st ACM Symposium on Cloud Computing (SoCC), 2010.

[40] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. PACER: Proportional

Detection of Data Races. In PLDI, 2010.

[41] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. Parallel Symbolic Exe-

cution for Automated Real-World Software Testing. In Proceedings of the 2011 EuroSys

Conference (EuroSys), 2011.

[42] J. R. Burch, E. M. Clarke, K L. McMillan, D L. Dill, and L J. Hwang. Symbolic model

checking: 1020 states and beyond. Information and Computation, 98(2):142–170, June

1992.

[43] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Nagarakatte. A

Randomized Scheduler with Probabilistic Guarantees of Finding Bugs. In ASPLOS, 2010.

[44] Mike Burrows. The Chubby lock service for loosely-coupled distributed systems. In Pro-

ceedings of the 7th Symposium on Operating Systems Design and Implementation (OSDI),

2006.

[45] Rajkumar Buyya, Srikumar Venugopal Chee Shin Yeo and, James Broberg, and Ivona

Brandic. Cloud Computing and Emerging IT Platforms: Vision, Hype, and Reality for

Delivering Computing As the 5th Utility. In Future Generation Computer Systems, 2009.

[46] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted and Automatic

Generation of High-Coverage Tests for Complex Systems Programs. In Proceedings of the

8th Symposium on Operating Systems Design and Implementation (OSDI), 2008.

[47] Alexandru Calotoiu, Torsten Hoefler, Marius Poke, and Felix Wolf. Using Automated Per-

formance Modeling to Find Scalability Bugs in Complex Codes. In Proceedings of Inter-

national Conference on High Performance Computing, Networking, Storage and Analysis

(SC), 2013.

[48] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,

Michael Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A

Distributed Storage System for Structured Data. In Proceedings of the 7th Symposium on

Operating Systems Design and Implementation (OSDI), 2006.

[49] John Chapin, Mendel Rosenblum, Scott Devine, Tirthankar Lahiri, Dan Teodosiu, and

Anoop Gupta. Hive: Fault Containment for Shared-Memory Multiprocessors. In Proceed-

ings of the 15th ACM Symposium on Operating Systems Principles (SOSP), 1995.

109

[50] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E: a platform for in-

vivo multi-path analysis of software systems. In Proceedings of the 16th International

Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), 2011.

[51] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. An Em-

pirical Study of Operating System Errors. In Proceedings of the 18th ACM Symposium on

Operating Systems Principles (SOSP), 2001.

[52] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F. Wenisch. The Mys-

tery Machine: End-to-end Performance Analysis of Large-scale Internet Services. In Pro-

ceedings of the 11th Symposium on Operating Systems Design and Implementation (OSDI),

2014.

[53] Edmund M. Clarke, E. Allen Emerson, Somesh Jha, and A. Prasad Sistla. Symmetry reduc-

tions in model checking. In 10th International Conference on Computer Aided Verification

(CAV), 1998.

[54] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T. Morris, , and Eddie

Kohler. The Scalable Commutativity Rule: Designing Scalable Software for Multicore

Processors. In Proceedings of the 24th ACM Symposium on Operating Systems Principles

(SOSP), 2013.

[55] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.

Benchmarking Cloud Serving Systems with YCSB. In Proceedings of the 1st ACM Sympo-

sium on Cloud Computing (SoCC), 2010.

[56] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Fur-

man, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson

Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,

David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito,

Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s

Globally-Distributed Database. In Proceedings of the 10th Symposium on Operating Sys-

tems Design and Implementation (OSDI), 2012.

[57] Heming Cui, Gang Hu Columbia, Jingyue Wu, and Junfeng Yang. Verifying Systems Rules

Using Rule-Directed Symbolic Execution. In Proceedings of the 18th International Confer-

ence on Architectural Support for Programming Languages and Operating Systems (ASP-

LOS), 2013.

[58] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large

Clusters. In Proceedings of the 6th Symposium on Operating Systems Design and Imple-

mentation (OSDI), 2004.

[59] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash

Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vo-

110

gels. Dynamo: Amazon’s Highly Available Key-value Store. In Proceedings of 21st ACM

SIGOPS symposium on Operating systems principles (SOSP), 2007.

[60] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and Damien

Zufferey. P: Safe Asynchronous Event-Driven Programming. In Proceedings of the

ACM SIGPLAN 2013 Conference on Programming Language Design and Implementation

(PLDI), 2013.

[61] Thanh Do. Towards Reliable Cloud Systems. Doctoral Dissertation, University of

Wisconsin-Madison (UMI 3632947), 2014.

[62] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-anake, and

Haryadi S. Gunawi. Limplock: Understanding the Impact of Limpware on Scale-Out Cloud

Systems. In Proceedings of the 4th ACM Symposium on Cloud Computing (SoCC), 2013.

[63] E. Allen Emerson, Somesh Jha, and Doron Peled. Combining Partial Order and Symmetry

Reductions. In The 3rd International Workshop on Tools and Algorithms for Construction

and Analysis of Systems (TACAS), 1997.

[64] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. Bugs as

Deviant Behavior: A General Approach to Inferring Errors in Systems Code. In SOSP,

2001.

[65] Michael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin. Quickly De-

tecting Relevant Program Invariants. In ICSE, 2000.

[66] Loek Essers. Cloud Failures Cost More Than $70 Million Since 2007, Researchers Estimate.

http://www.pcworld.com, 2012.

[67] Cormac Flanagan and Stephen N. Freund. FastTrack: Efficient and Precise Dynamic Race

Detection. In PLDI, 2009.

[68] Cormac Flanagan and Patrice Godefroid. Dynamic Partial-Order Reduction for Model

Checking Software. In Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL), 2005.

[69] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Rodrigues. A Study of the Internal

and External Effects of Concurrency Bugs. In DSN, 2010.

[70] Ian Foster, Young Zhao, Ioan Raicu, and Shiyong Lu. Cloud Computing and Grid Comput-

ing 360-Degree Compared. In 2008 Grid Computing Environments Workshop, 2008.

[71] Dennis Geels, Gautam Altekar, Petros Maniatis, Timothy Roscoe, and Ion Stoica. Friday:

Global Comprehension for Distributed Replay. In Proceedings of the 4th Symposium on

Networked Systems Design and Implementation (NSDI), 2007.

111

http://www.pcworld.com

[72] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. Replay Debugging for Dis-

tributed Applications. In Proceedings of the USENIX Annual Technical Conference (ATC),

2006.

[73] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System. In

Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP), 2003.

[74] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems: An

Approach to the State-Explosion Problem. volume 1032, 1996.

[75] Rachid Guerraoui and Maysam Yabandeh. Model Checking a Networked System Without

the Network. In Proceedings of the 8th Symposium on Networked Systems Design and

Implementation (NSDI), 2011.

[76] Haryadi S. Gunawi, Thanh Do, Joseph M. Hellerstein, Ion Stoica, Dhruba Borthakur, and

Jesse Robbins. Failure as a Service (FaaS): A Cloud Service for Large-Scale, Online Failure

Drills. UC Berkeley Technical Report UCB/EECS-2011-87.

[77] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M. Hellerstein, Andrea C.

Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Koushik Sen, and Dhruba Borthakur. FATE and

DESTINI: A Framework for Cloud Recovery Testing. In Proceedings of the 8th Symposium

on Networked Systems Design and Implementation (NSDI), 2011.

[78] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-anake,

Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F. Lukman, Vin-

centius Martin, and Anang D. Satria. What Bugs Live in the Cloud? A Study of 3000+

Issues in Cloud Systems. In Proceedings of the 5th ACM Symposium on Cloud Computing

(SoCC), 2014.

[79] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung Laksono, Anang D. Satria,

Jeffry Adityatama, and Kurnia J. Eliazar. Why Does the Cloud Stop Computing? Lessons

from Hundreds of Service Outages. In Proceedings of the 7th ACM Symposium on Cloud

Computing (SoCC), 2016.

[80] Haryadi S. Gunawi, Cindy Rubio-Gonzalez, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-

Dusseau, and Ben Liblit. EIO: Error Handling is Occasionally Correct. In Proceedings of

the 6th USENIX Symposium on File and Storage Technologies (FAST), 2008.

[81] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Junfeng Yang, and Lintao Zhang. Practi-

cal Software Model Checking via Dynamic Interface Reduction. In Proceedings of the 23rd

ACM Symposium on Operating Systems Principles (SOSP), 2011.

[82] Zhenyu Guo, Sean McDirmid, Mao Yang, Li Zhuang, Pu Zhang, Yingwei Luo, Tom Bergan,

Madan Musuvathi, Zheng Zhang, and Lidong Zhou. Failure Recovery: When the Cure Is

Worse Than the Disease. In The 14th Workshop on Hot Topics in Operating Systems (HotOS

XIV), 2013.

112

[83] Diwaker Gupta, Kashi Venkatesh Vishwanath, and Amin Vahdat. DieCast: Testing Dis-

tributed Systems with an Accurate Scale Model. In Proceedings of the 5th Symposium on

Networked Systems Design and Implementation (NSDI), 2008.

[84] Diwaker Gupta, Kenmeth Yocum, Marvin McNett, Alex C. Snoeren, Amin Vahdat, and

Geoffrey M. Voelker. To Infinity and Beyond: Time-Warped Network Emulation. In Pro-

ceedings of the 3rd Symposium on Networked Systems Design and Implementation (NSDI),

2006.

[85] James Hamilton. On Designing and Deploying Internet-Scale Services. In Proceedings of

the 21st Large Installation System Administration Conference (LISA), 2007.

[86] Mingzhe Hao, Gokul Soundararajan, Deepak Kenchammana-Hosekote, Andrew A. Chien,

and Haryadi S. Gunawi. The Tail at Store: A Revelation from Millions of Hours of Disk

and SSD Deployments. In Proceedings of the 14th USENIX Symposium on File and Storage

Technologies (FAST), 2016.

[87] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L.

Roberts, Srinath Setty, and Brian Zill. IronFleet: Proving Practical Distributed Systems

Correct. In Proceedings of the 25th ACM Symposium on Operating Systems Principles

(SOSP), 2015.

[88] Naohiro Hayashibara, Xavier Defago, Rami Yared, and Takuya Katayama. The Phi Accrual

Failure Detector. In The 23rd Symposium on Reliable Distributed Systems (SRDS), 2004.

[89] Brian Hayes. Cloud Computing. In Communications of the ACM, 2008.

[90] Val Henson, Arjan van de Ven, Amit Gud, and Zach Brown. Chunkfs: Using divide-and-

conquer to improve file system reliability and repair. In IEEE 2nd Workshop on Hot Topics

in System Dependability (HotDep), 2006.

[91] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph,

Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A Platform for Fine-Grained Resource

Sharing in the Data Center. In Proceedings of the 8th Symposium on Networked Systems

Design and Implementation (NSDI), 2011.

[92] Chun-Hung Hsiao, Cristiano L. Pereira, Jie Yu, Gilles A. Pokam, Satish Narayanasamy,

Peter M. Chen, Ziyun Kong, and Jason Flinn. Race Detection for Event-Driven Mobile

Applications. In PLDI, 2014.

[93] Nicholas Hunt, Tom Bergan, Luis Ceze, and Steven D. Gribble. DDOS: Taming Nonde-

terminism in Distributed Systems. In Proceedings of the 18th International Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

2013.

[94] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. ZooKeeper: Wait-

free coordination for Internet-scale systems. In Proceedings of the 2010 USENIX Annual

Technical Conference (ATC), 2010.

113

[95] Nicholas Jalbert, Cristiano Pereira, Gilles Pokam, and Koushik Sen. Radbench: A concur-

rency bug benchmark suite. In The 3rd USENIX Workshop on Hot Topics in Parallelism

(HOTPAR), 2011.

[96] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. Understanding

and Detecting Real-World Performance Bugs. In Proceedings of the ACM SIGPLAN 2012

Conference on Programming Language Design and Implementation (PLDI), 2012.

[97] Guoliang Jin, Aditya Thakur, Ben Liblit, and Shan Lu. Instrumentation and Sampling Strate-

gies for Cooperative Concurrency Bug Isolation. In OOPSLA, 2010.

[98] Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu. Automated

Concurrency-Bug Fixing. In OSDI, 2012.

[99] Pallavi Joshi, Malay Ganai, Gogul Balakrishnan, Aarti Gupta, and Nadia Papakonstantinou.

SETSUDO : Perturbation-based Testing Framework for Scalable Distributed Systems. In

Conference on Timely Results in Operating Systems (TRIOS), 2013.

[100] Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen. PREFAIL: A Programmable Tool for

Multiple-Failure Injection. In Proceedings of the 26th Annual ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2011.

[101] Xiaoen Ju, Livio Soares, Kang G. Shin, Kyung Dong Ryu, and Dilma Da Silva. On Fault

Resilience of OpenStack. In Proceedings of the 4th ACM Symposium on Cloud Computing

(SoCC), 2013.

[102] Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George Candea. Deadlock Immunity:

Enabling Systems To Defend Against Deadlocks. In OSDI, 2008.

[103] Charles Killian, James W. Anderson, Ranjit Jhala, and Amin Vahdat. Life, Death, and the

Critical Transition: Finding Liveness Bugs in Systems Code. In Proceedings of the 4th

Symposium on Networked Systems Design and Implementation (NSDI), 2007.

[104] Ignacio Laguna, Dong H. Ahn, Bronis R. de Supinski, Todd Gamblin, Gregory L. Lee, Mar-

tin Schulz, Saurabh Bagchi, Milind Kulkarni, Bowen Zhou, Zhezhe Chen, and Feng Qin.

Debugging High-Performance Computing Applications at Massive Scales. Communications

of the ACM (CACM), 58(9), September 2015.

[105] Avinash Lakshman and Prashant Malik. Cassandra - A Decentralized Structured Storage

System. In The 3rd ACM SIGOPS International Workshop on Large Scale Distributed Sys-

tems and Middleware (LADIS), 2009.

[106] Tanakorn Leesatapornwongsa and Haryadi S. Gunawi. The Case for Drill-Ready Cloud

Computing. In Proceedings of the 5th ACM Symposium on Cloud Computing (SoCC), 2014.

[107] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F. Lukman, and

Haryadi S. Gunawi. SAMC: Semantic-Aware Model Checking for Fast Discovery of Deep

114

Bugs in Cloud Systems. In Proceedings of the 11th Symposium on Operating Systems De-

sign and Implementation (OSDI), 2014.

[108] Sihan Li, Hucheng Zhou, Haoxiang Lin, Tian Xiao, Haibo Lin, Wei Lin, and Tao Xie.

A Characteristic Study on Failures of Production Distributed Data-Parallel Programs. In

Proceedings of the 35th International Conference on Software Engineering (ICSE), 2013.

[109] Xin Li, Michael C. Huang, and Kai Shen. An Empirical Study of Memory Hardware Errors

in A Server Farm. In The 3rd Workshop on Hot Topics in System Dependability (HotDep),

2007.

[110] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug Isolation via Remote

Program Sampling. In PLDI, 2003.

[111] Thomas A. Limoncelli and Doug Hughe. LISA ’11 Theme – DevOps: New Challenges,

Proven Values. USENIX ;login: Magazine, 36(4), August 2011.

[112] David Linthicum. Calculating the true cost of cloud outages. http://www.infoworld.

com, 2013.

[113] Haopeng Liu, Guangpu Li, Jeffrey F. Lukman, Jiaxin Li, Shan Lu, Haryadi S. Gunawi,

and Chen Tian. DCatch: Automatically Detecting Distributed Concurrency Bugs in Cloud

Systems. In Proceedings of the 22nd International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), 2017.

[114] Peng Liu, Omer Tripp, and Charles Zhang. Grail: Context-Aware Fixing of Concurrency

Bugs. In FSE, 2014.

[115] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian Tang, Ming Wu,

M. Frans Kaashoek, and Zheng Zhang. D3S: Debugging Deployed Distributed Systems.

In Proceedings of the 5th Symposium on Networked Systems Design and Implementation

(NSDI), 2008.

[116] Xuezheng Liu, Wei Lin, Aimin Pan, and Zheng Zhang. WiDS Checker: Combating Bugs in

Distributed Systems. In Proceedings of the 4th Symposium on Networked Systems Design

and Implementation (NSDI), 2007.

[117] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Shan Lu. A Study

of Linux File System Evolution. In Proceedings of the 11th USENIX Symposium on File

and Storage Technologies (FAST), 2013.

[118] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from Mistakes — A

Comprehensive Study on Real World Concurrency Bug Characteristics. In Proceedings of

the 13th International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2008.

[119] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AVIO: Detecting Atomicity Viola-

tions via Access Interleaving Invariants. In ASPLOS, 2006.

115

http://www.infoworld.com
http://www.infoworld.com

[120] Brandon Lucia and Luis Ceze. Cooperative Empirical Failure Avoidance for Multithreaded

Programs. In ASPLOS, 2013.

[121] Jake Luo, Min Wu, Deepika Gopukumar, , and Yiqing Zhao. Big Data Application in

Biomedical Research and Health Care: A Literature Review. In Biomedical Informatics

Insights, 2016.

[122] Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. ffsck:

The Fast File System Checker. In Proceedings of the 11th USENIX Symposium on File and

Storage Technologies (FAST), 2013.

[123] Paul D. Marinescu, Radu Banabic, and George Candea. An Extensible Technique for High-

Precision Testing of Recovery Code. In Proceedings of the 2010 USENIX Annual Technical

Conference (ATC), 2010.

[124] Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang, and Anand Ghalsasi.

Cloud computing - The business perspective. In Decision Support Systems, 2011.

[125] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt

Tolton, and Theo Vassilakis. Dremel: Interactive Analysis of Web-Scale Datasets. In Pro-

ceedings of the 36th International Conference on Very Large Data Bases (VLDB), 2010.

[126] Maged Michael, Jose E. Moreira, Doron Shiloach, and Robert W. Wisniewski. Scale-up

x Scale-out: A Case Study using Nutch/Lucene. In 2007 IEEE International Parallel and

Distributed Processing Symposium, 2007.

[127] Madanlal Musuvathi and Shaz Qadeer. Iterative Context Bounding for Systematic Testing

of Multithreaded Programs. In PLDI, 2007.

[128] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu, Sanazsadat Alamian, and

Onur Mutlu. Yak: A High-Performance Big-Data-Friendly Garbage Collector. In Pro-

ceedings of the 12th Symposium on Operating Systems Design and Implementation (OSDI),

2016.

[129] Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus Algorithm.

In Proceedings of the 2014 USENIX Annual Technical Conference (ATC), 2014.

[130] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon Chun. Mak-

ing Sense of Performance in Data Analytics Frameworks. In Proceedings of the 12th Sym-

posium on Networked Systems Design and Implementation (NSDI), 2015.

[131] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia Lawall, and Gilles

Muller. Faults in Linux: Ten Years Later. In ASPLOS, 2011.

[132] Soyeon Park, Shan Lu, and Yuanyuan Zhou. CTrigger: Exposing Atomicity Violation Bugs

from Their Finding Places. In ASPLOS, 2009.

116

[133] Gilles Pokam, Klaus Danne, Cristiano Pereira, Rolf Kassa, Tim Kranich, Shiliang Hu, Justin

Gottschlich, Nima Honarmand, Nathan Dautenhahn, Samuel T. King, and Josep Torrellas.

QuickRec: Prototyping an Intel Architecture Extension for Record and Replay of Multi-

threaded Programs. In ISCA, 2013.

[134] Shanxiang Qi, Abdullah A. Muzahid, Wonsun Ahn, and Josep Torrellas. Dynamically De-

tecting and Tolerating IF-Condition Data Races. In HPCA, 2014.

[135] Veselin Raychev, Martin T. Vechev, and Manu Sridharan. Effective race detection for event-

driven programs. In OOPSLA, 2013.

[136] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C. Mogul, Mehul A. Shah, and

Amin Vahdat. Pip: Detecting the Unexpected in Distributed Systems. In Proceedings of the

3rd Symposium on Networked Systems Design and Implementation (NSDI), 2006.

[137] Swarup Kumar Sahoo, John Criswell, and Vikram Adve. An Empirical Study of Reported

Bugs in Server Software with Implications for Automated Bug Diagnosis. In Proceedings

of the 32nd International Conference on Software Engineering (ICSE), 2010.

[138] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson.

Eraser: A Dynamic Data Race Detector for Multithreaded Programs. ACM TOCS, 1997.

[139] Koushik Sen. Race Directed Random Testing of Concurrent Programs. In PLDI, 2008.

[140] Koushik Sen and Gul Agha. Automated Systematic Testing of Open Distributed Programs.

In FSE, 2006.

[141] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The Hadoop

Distributed File System. In Proceedings of the 26th IEEE Symposium on Massive Storage

Systems and Technologies (MSST), 2010.

[142] Konstantin V. Shvachko. HDFS Scalability: The Limits to Growth. USENIX ;login:, 35(2),

April 2010.

[143] Jiri Simsa, Randy Bryant, and Garth Gibson. dBug: Systematic Evaluation of Distributed

Systems. In 5th International Workshop on Systems Software Verification (SSV), 2010.

[144] Jiri Simsa, Randy Bryant, Garth A. Gibson, and Jason Hickey. Scalable Dynamic Partial

Order Reduction. In The 3rd International Conference on Runtime Verification (RV), 2012.

[145] A. Prasad Sistla, Viktor Gyuris, and E. Allen Emerson. SMC: a symmetry-based model

checker for verification of safety and liveness properties. ACM Transactions on Software

Engineering and Methodology, 2010.

[146] Vilas Sridharan and Dean Liberty. A Study of DRAM Failures in the Field. In Proceedings

of International Conference on High Performance Computing, Networking, Storage and

Analysis (SC), 2012.

117

[147] Riza O. Suminto, Agung Laksono, Anang D. Satria, Thanh Do, and Haryadi S. Gunawi.

Towards Pre-Deployment Detection of Performance Failures in Cloud Distributed Systems.

In The 7th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud), 2015.

[148] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar,

Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo

Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. Apache

Hadoop YARN: Yet Another Resource Negotiator. In Proceedings of the 4th ACM Sympo-

sium on Cloud Computing (SoCC), 2013.

[149] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica Ouyang, Peter M. Chen,

Jason Flinn, and Satish Narayanasamy. DoublePlay: Parallelizing Sequential Logging and

Replay. In ASPLOS, 2011.

[150] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune, and

John Wilkes. Large-scale cluster management at Google with Borg. In Proceedings of the

2015 EuroSys Conference (EuroSys), 2015.

[151] Yang Wang, Manos Kapritsos, Lara Schmidt, Lorenzo Alvisi, and Mike Dahlin. Exalt:

Empowering Researchers to Evaluate Large-Scale Storage Systems. In Proceedings of the

11th Symposium on Networked Systems Design and Implementation (NSDI), 2014.

[152] Yin Wang, Terence Kelly, Manjunath Kudlur, Stephane Lafortune, and Scott Mahlke.

Gadara: Dynamic Deadlock Avoidance for Multithreaded Programs. In OSDI, 2008.

[153] Matt Welsh, David Culler, and Eric Brewer. SEDA: An Architecture for Well-Conditioned,

Scalable Internet Services. In Proceedings of the 18th ACM Symposium on Operating Sys-

tems Principles (SOSP), 2001.

[154] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D.

Ernst, and Tom Anderson. Verdi: A framework for formally verifying distributed system

implementations. In Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), 2015.

[155] Tian Xiao, Jiaxing Zhang, Hucheng Zhou, Zhenyu Guo, Sean McDirmid, Wei Lin, Wen-

guang Chen, and Lidong Zhou. Nondeterminism in MapReduce Considered Harmful? An

Empirical Study on Non-commutative Aggregators in MapReduce Programs. In Proceed-

ings of the 36th International Conference on Software Engineering (ICSE), 2014.

[156] Maysam Yabandeh, Nikola Knezevic, Dejan Kostic, and Viktor Kuncak. CrystalBall: Pre-

dicting and Preventing Inconsistencies in Deployed Distributed Systems. In Proceedings of

the 6th Symposium on Networked Systems Design and Implementation (NSDI), 2009.

[157] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang Lin, Mao

Yang, Fan Long, Lintao Zhang, and Lidong Zhou. MODIST: Transparent Model Checking

of Unmodified Distributed Systems. In Proceedings of the 6th Symposium on Networked

Systems Design and Implementation (NSDI), 2009.

118

[158] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasundaram, and

Shankar Pasupathy. An Empirical Study on Configuration Errors in Commercial and Open

Source Systems. In Proceedings of the 23rd ACM Symposium on Operating Systems Prin-

ciples (SOSP), 2011.

[159] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lakshmi Bairavasun-

daram. How do fixes become bugs? In Proceedings of the 19th ACM SIGSOFT interna-

tional symposium on Foundations of software engineering (FSE), 2011.

[160] Jie Yu. A collection of concurrency bugs. https://github.com/jieyu/concurrency-bugs.

[161] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle Zhang,

Pranay U. Jain, and Michael Stumm. Simple Testing Can Prevent Most Critical Failures:

An Analysis of Production Failures in Distributed Data-Intensive Systems. In Proceedings

of the 11th Symposium on Operating Systems Design and Implementation (OSDI), 2014.

[162] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-

Cauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient Distributed Datasets:

A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In Proceedings of the 9th

Symposium on Networked Systems Design and Implementation (NSDI), 2012.

[163] Cristian Zamfir and George Candea. Execution Synthesis: A Technique for Automated

Software Debugging. In Proceedings of the 2010 EuroSys Conference (EuroSys), 2010.

[164] Wei Zhang, Marc de Kruijf, Ang Li, Shan Lu, and Karthikeyan Sankaralingam. ConAir:

Featherweight concurrency bug recovery via single-threaded idempotent execution. In AS-

PLOS, 2013.

119

