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Abstract

Foreign currency sovereign bond spreads tend to be higher than historical sovereign credit
losses, and cross-country spread correlations are larger than their macro-economic coun-
terparts. Foreign currency sovereign debt exhibits positive and time-varying risk premia,
and standard linear asset pricing models using US-based factors cannot be rejected. The
term structure of sovereign credit spreads is upward sloping, and inverts when either (a) the
country’s fundamentals are bad or (b) measures of US equity or credit market stress are
high. T develop a quantitative and tractable continuous-time model of endogenous sovereign
default in order to account for these stylized facts. My framework leads to semi-closed form
expressions for certain key macro-economic and asset pricing moments of interest, help-
ing disentangle which of the model features influences credit spreads, expected returns and
cross-country correlations. Standard pricing kernels used to explain properties of US equity
returns can be nested into my quantitative framework in order to test the hypothesis that
US-based bond investors are marginal in sovereign debt markets. I show how to leverage my
model to study the early 1980’s Latin American debt crisis, during which high short term US

interest rates and floating rate dollar-denominated debt led to a wave of sovereign defaults.
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Chapter 1

Continuous Time Theory of

Endogenous Sovereign Defaults

1.1 Introduction

Driven by low real interest rates, high commodity prices and easy credit, Latin American
external debt grew significantly in the 1970s. The Volcker shock, combined with debt con-
tracts indexed to US short term rates, contributed to the subsequent debt crisis and the “lost
decade” suffered by many Latin American countries in the 1980s. A quarter of a century
later, in the fall 2008, the US subprime crisis morphed into a global financial crisis, leading
to a shut down of emerging economies’ access to international credit markets and a violent
widening of their sovereign spreads. Those two episodes highlight the central importance
of the supply of capital for sovereign debt dynamics. However, a large component of the
international macroeconomic literature on sovereign credit risk uses economic models where
external creditors are risk-neutral, assuming away any possible link between investors’ at-
tributes and government financing and default decisions!. The modeling hypothesis of this

line of research stems from its main focus on macroeconomic quantities (such as the current

1. Two notable exceptions are [9] and [34].



account balance and the debt-to-GDP ratio) as opposed to prices, and from the difficulty of
adding one or several dimensions to already complex models of endogenous default. Sepa-
rately, the fixed income asset pricing literature on sovereign debt takes seriously investors’
risk attributes when explaining properties of sovereign credit spreads and returns, but it
does so at the expense of modeling the underlying asset cash-flows and their dynamic prop-
erties. Indeed, its primary objective is to use bond and credit derivatives’ market prices in
order to estimate hazard rate of default processes, without having the need to relate them
to economic fundamentals.

My paper bridges the gap between these two seemingly disconnected literatures by of-
fering a new model of endogenous sovereign default where the supply of capital takes on a
prominent role, as supported by known stylized facts as well as new evidence I document in
my empirical work. Thanks to its reduced dimensionality, the proposed framework remains
tractable and allows me to obtain semi-closed form expressions for several macroeconomic
and asset pricing moments of interest, helping disentangle which features of the model are
essential to generate specific moments of the data. In addition, it facilitates the estimation
and testing of the model, and an in-depth analysis of the government financing and default
policies. It can then be used to answer numerous questions: how much of sovereign govern-
ments’ financing costs can be attributed to bond investors’ risk characteristics, and how much
to country-specific macroeconomic risks? Are sovereign debt return co-movements mostly
due to correlated fundamentals, or the fact that a common bond buyer base is marginal in
sovereign bond markets? Can supply-side shocks to capital markets rationalize the mag-
nitude of current account reversals observed in the context of “sudden-stops” suffered by
emerging market economies in Latin America in the early 1980s, or in South East Asia in
the late 1990s?

In the empirical section of my paper, I infer market-implied (sometimes called “risk-
neutral”) default intensities from sovereign credit-default swap (“CDS”) premia, and then

compute returns on CDS contracts. Leveraging my constructed data-set, I document three



sets of empirical facts that are the counterparts to known properties of foreign currency
sovereign bond prices and returns. Those facts will not only guide the construction of my
model but also will be used for estimation and testing.

First, I provide evidence that investors in sovereign debt markets do not behave risk-
neutrally. To do so, I show that market-implied default intensities are significantly larger
than historical default frequencies, and that sovereign CDS’ expected excess returns are
positive. Together, these empirical properties of sovereign debt spreads and returns illustrate
the two sides of the same coin: creditors require compensation for being exposed to a risk
(the sovereign default risk) that co-moves with their pricing kernel. While these stylized facts
have already been investigated by [10] and [9] in the context of foreign currency sovereign
bonds, I contribute to the empirical debate by showing that this property of sovereign credit
prices and returns also holds for CDS contracts.

Second, the data supports not only that sovereign debt investors are risk-averse, but also
that their pricing of risk is time-varying and relates to measures of US credit and equity mar-
ket risks. Indeed, the difference between market-implied and historical default intensities is
time-varying and cannot be explained by time-varying country-specific macroeconomic risk
factors. This stylized fact has been documented previously by [36] and [43], who analyzed
local and global factors that explain movements in sovereign CDS premia. Using my con-
structed CDS return data, I then perform standard linear asset pricing tests, using US equity
market returns, and I fail to reject the hypothesis that a linear stochastic discount factor
can price my set of excess returns. This exercise lends support to the analysis performed by
[9] in the context of sovereign bond returns. Finally, I show that cross-country CDS return
correlations are significantly larger than their macroeconomic counterparts, suggesting that
a common bond buyer base is marginal in foreign currency sovereign debt markets.

While these facts, taken together, help us understand the required characteristics of
a sovereign investors’ pricing kernel, they are silent on the type of mechanism leading to

sovereign defaults, and how supply side factors may impact a sovereign government’s bor-



rowing and default decisions. I speak to this question by illustrating a third set of facts,
related to the term structure of market-implied default intensities and returns. First, I show
that the term structure of default intensities is upward sloping for most countries, but it
flattens and inverts if either (i) a country’s fundamentals deteriorate, or (ii) measures of US
credit or equity market stress are high. Second, I show that holding period excess returns
are increasing with the maturity of the CDS contract — this latter fact being documented by
[10] in the context of foreign currency sovereign bonds. Both properties of the term structure
of spreads and returns are consistent with a “first hitting time” model, where a sovereign
default is triggered by some — possibly endogenous — mean-reverting fundamental variable
exceeding a certain threshold that depends on aggregate financial market conditions.

What might this macroeconomic “fundamental” variable be? In my theoretical setup, it
is the debt-to-GDP ratio. I leverage the canonical sovereign default model of [20], further
enhanced by [6] and [5], and develop a quantitative continuous time model of sovereign
debt issuances and defaults, in which a government uses non-state contingent debt sold
to foreign creditors for the purpose of consumption smoothing and consumption tiltingQ.
The government’s inability to commit to repay its debt leads to default risk. Following
a default, the country suffers an instantaneous discrete drop in output and loses access
to capital markets for an exponentially distributed time period. Using a modeling device
used in [42], the country then re-enters financial markets with a lower debt burden, the
result of an un-modeled renegotiation with its creditors. The sovereign debt-to-GDP ratio
naturally arises as the fundamental state variable — a consequence of the homotheticity of
the government’s objective function and the linearity of output and debt dynamics. I deviate
from the canonical sovereign debt models along several dimensions. Since my focus is on the
supply of capital and its impact on sovereign bond prices and returns, I introduce investors,

whose preferences and equilibrium consumption lead to a pricing kernel that features regime-

2. As is typically the case in the international macroeconomic literature, the sovereign government will
be more impatient than its creditors, providing an incentive to borrow in order to consume early.



dependent risk free rates and risk prices, in the spirit of [13]. Those regimes act as a second
— exogenous and discrete — state variable that describes the international capital market
environment.

My modeling ingredients lead to sovereign spreads that are greater than model-implied
historical credit losses, as I document in the empirical part of the paper. For a panel
of emerging market countries, I can then estimate the proportion of the average credit
spread that can be attributed to (a) pure default risk and (b) the risk premium charged by
international investors. I find that approximately 30% of sovereign governments’ financing
costs (over and above the risk-free rate) is attributable to required compensation paid to
investors for taking on risks that are correlated with their marginal utilities. In the model,
spread volatilities stem not only from output shocks, but also from stochastic discount factor
(“SDF”) shocks, and are thus close to spread volatilities in the data, a moment notoriously
difficult to match with standard models ([3]). For the same reason, cross-country sovereign
spread correlations are larger than cross-country output correlations. By turning on and off
those SDF shocks, I can then infer the proportion of such cross-country spread correlation
that relates to correlated fundamentals, and the proportion that relates to pricing by a
common stochastic discount factor.

In my model, the sovereign default decision features an optimal debt-to-GDP default
boundary that depends on the specific pricing kernel regime. Consistent with the data, this
characteristic of my model leads to upward sloping term structures of spreads and default
intensities for countries whose economic fundamentals are not too bad and in environments
where risk-prices are not too high. Transitions from a “good regime” (where prices of risk
are low for example) to a “bad regime” (with higher prices of risk) might cause the sovereign
to “jump-to-default”. Even if the sovereign government does not jump to default, it adjusts
downwards its financing policy, switching from running a current account deficit to a current
account surplus, and endogenously creating a sudden stop. For most of my countries of

focus, a jump from the most benign capital market environment to the worst environment



leads to current account adjustments of 3% to 5% of GDP, potentially explaining up to
half the adjustments observed in the data for the 1980s’ Latin American debt crisis or the
1997 Asian tiger crisis. SDF regime transitions are also associated with inversions of the
term structure of credit spreads, another feature of the data. When looking across multiple
countries, transitions from “good regimes” to “bad regimes” lead to sudden increases in
sovereign spreads as well as correlated defaults, arguably a feature of several sovereign debt
crisis. The jump-to-default risk induced by SDF shocks also leads to high short term credit
spreads, another stylized fact I document in the empirical section of my paper.

The continuous time framework I use has several key advantages over discrete time models
that have been the workhorse of the sovereign default literature. First and foremost, it
allows me to characterize fully the equilibrium of my model in the particular case where
the government is risk-neutral. I provide closed-form solutions for the country’s welfare, the
debt price, the optimal default boundary of the government, and compute the magnitude of
the current account reversal incurred upon an increase in the risk free rate or the price of
risk. Outside the knife-edge risk-neutral case, the continuous time framework facilitates the
transition from physical probabilities (under which the government optimizes) to risk-neutral
probabilities (under which creditors price the debt issued). It allows for semi-closed form
expressions of macro and asset pricing moments of interest, providing greater insight into
the specific impact of the model assumptions on endogenous quantities of focus. My model
features only two state variables — the debt-to-GDP ratio of the country being considered (a
continuous variable), and the SDF regime (a discrete variable). This low dimensionality of
the state space makes the framework more tractable than alternative models that have been

studied in the literature®. It permits an estimation of the key parameters of the model using

3. Other articles focused on sovereign spreads and returns include [9], which feature 4 state variables,
and [3], which feature 5 state variables; in order to find an equilibrium in such models, not only does the
researcher have to find a global solution to the value function of the government (a function of all the state
variables), but he also has to find the bond price schedule, which depends on both (i) the state variables and
(ii) the amount of bonds that the government considers issuing. As will be clear in this paper, in continuous
time the bond price schedule is no longer a function of the amount of bonds issued “in the next period”.



a panel of countries, and gives me the ability to test whether pricing kernels used to explain
properties of US equity returns can also explain properties of emerging market sovereign
bond returns. In my numerical applications, I test the pricing kernel featured in [33] and
show that that the level of risk-prices implied by such SDF is too low to fully account for
the expected excess return observed in the data for many emerging market economies.

I finally highlight the flexibility of my framework by testing two new ideas. First, I
focus on the contractual structure of sovereign debt and study the spill-over effects of US
monetary policy on a government that issues debt whose coupon rate is indexed to US short-
term rates. While foreign currency sovereign bonds are nowadays mainly issued in fixed rate
form, Latin American countries used floating rate debt in the 1970’s and early 80’s, since the
funding came in the form of loans from US commercial banks. Given that my model features
time-varying risk-free rates, I can investigate the impact of US monetary policy on sovereign
default risk. In this paper, I show that a simple mechanism may have been at play both (a)
in the late 1970s, as Latin American economies took advantage of low US short term rates
to significantly increase their external sovereign debt and run current account deficits, and
(b) in the early 1980s’, as the US monetary authorities increased short term rates to fight
domestic inflation, increasing the debt servicing costs for Latin American governments and
ultimately triggering the defaults of Mexico and multiple other sovereign issuers after 1982.
In my model, in a low US short rate environment, floating rate sovereign issuers run current
account deficits. When short term interest rates increase, a combination of lower debt prices
and a higher marginal cost of debt issuances make governments adjust their current account
balance by up to 15%, consistent in magnitude with what was observed empirically in 1982
in Mexico and other Latin American economies.

In a second application, I no longer assume a small open endowment economy but in-
stead introduce a simple “A-K” production technology with investment adjustment costs
and capital quality shocks, as in [11]. Sovereign debt is not only useful for consumption

smoothing and consumption tilting, but also to build the domestic capital stock via in-



vestments. Thanks to the flexibility of my framework, the state space remains unchanged,
with only one additional control variable — investments — added for the small open econ-
omy. In this modified environment, I show that two separate sources of debt overhang can
lead to under-investments: (a) after a sequence of bad capital quality shocks suffered in the
country’s production sector, or (b) after an SDF regime change from a mild capital market
environment to one with higher risk-prices. This enhanced model thus leads to a negative
correlation between sovereign spreads and investments, as observed in the data by [40] or
[53]. It also provides a simple micro-foundation for the output dynamics used in [4], [5] and
many other articles in the quantitative sovereign default literature, where log-output growth
is a mean-reverting variable. Finally, the debt overhang channel leads to an amplification
of the capital quality shocks, and thus to more volatile credit spreads and a wider ergodic
debt-to-GDP distribution, getting this class of models closer to the data.

This paper is organized as follows. The first part of the paper focuses on some empirical
facts of sovereign CDS premia and returns. I then develop a continuous time version of the
canonical model of sovereign borrowing and default, and enhance it by introducing a Markov
switching model of the stochastic discount factor used to price sovereign bonds. I estimate

the model and perform a variety of exercises to illustrate the tractability of the framework.

1.2 Stylized Facts

In this section, I summarize key stylized facts on foreign currency sovereign credit spreads
and returns. Many of these empirical observations have been highlighted in the past in con-
nection with research focused on foreign currency sovereign bonds. In the online appendix, I
revisit those facts by looking at a different set of credit instruments: credit default swap con-
tracts referencing emerging market sovereign governments. My empirical analysis supports
the existing evidence on sovereign credit spreads and returns, and adds new observations

missed by previous studies. I will use my empirical work to guide my model estimation and



validation.

(1)

Hard currency sovereign credit spreads are higher than historical credit losses. This
fact is inconsistent with an assumption of investors’ risk-neutrality. It also means that
holding-period expected excess returns on foreign currency sovereign debt are positive.
This aspect of the data is highlighted by multiple studies, including for example [9] and
[2]. T add supporting evidence in my online appendix, by showing that (i) hazard rates
of default implied by the price of CDS contracts are materially higher than historical

default rates, and (ii) CDS expected excess returns are positive.

The differential between sovereign credit spreads and conditional expected credit losses
is time-varying, and is positively correlated with measures of US credit or equity market
risk. This fact is highlighted by [2] for example, who regress the level of sovereign bond
spreads onto the VIX index. It is also tightly related to a second observation: holding-
period excess returns on sovereign bonds are higher for countries with higher US equity
market beta. [9] document this fact by looking at returns on sovereign bonds in the
EMBI index, and running standard cross-sectional and time-series tests of the CAPM.
In the online appendix, I obtain similar results by using CDS returns as opposed to
sovereign bond returns. I also emphasize that CDS provide a “cleaner” measure of
expected excess returns earned on sovereign credit exposures than bonds — the latter not
only being exposed to sovereign credit risk, but also to the term structure of US interest
rates?. A third observation, made for example by [35], is tightly connected to the other
two: there is a strong factor structure in the level of sovereign spreads, as supported by
a principal component analysis of the time series of CDS premia for multiple countries.

In addition, the first principal component in this decomposition is highly correlated with

4. Most foreign currency sovereign bonds issued by small open economies nowadays are fixed rate bonds

denominated in USD. Researchers looking at time-series data on sovereign bonds rely on the EMBI index,
compiled by JPMorgan, which provides, on a daily basis, an average price and average spread for a basket of
eligible obligations issued by each country included in the index. JPMorgan unfortunately does not provide
security-specific prices, making it difficult to extract excess returns attributable purely to sovereign default
risk.



US equity market returns. These three observations suggests the presence of US-based

marginal investors in foreign currency sovereign credit markets.

Short term market-implied hazard rates of defaults are non-zero, leading to a rejection
of any model under which, at least at short horizons, defaults can be ruled out in some
portions of the state space. An example of such model is one where default occurs
exclusively when a continuous process hits a barrier — a so-called “first-hitting-time”
model. This fact appears to be new in the sovereign default literature, and echos a similar
observation made by the corporate finance literature in connection with corporate credit

spreads.

In time series, sovereign credit spreads are (a) negatively related to GDP growth, (b)
positively related to debt-to-GDP ratios, and (c¢) negatively related to measures of US
credit or equity market risk. (a) is documented by [40] or [53], who however highlight
that the relationship is weak. (b) is highlighted in several studies, including [3]. I provide

new empirical evidence supporting (b) and (c) by looking at CDS contracts.

The term structure of sovereign credit spreads is upward-sloping, except for countries
whose credit spreads are high, for which the term structure is either flat or downward
sloping. The upward sloping term structure of spreads is highlighted by [43], who focus
on CDS contracts referencing Mexico, Turkey and South Korea. The flattening and
potential inversion of the term structure of credit spreads is briefly noticed in [10] and
[7]. I provide additional supporting evidence for this feature of the data by focusing
on CDS for a panel of 27 emerging market economies. This fact is consistent with a

“first-hitting-time” model of sovereign default.

The term structure of sovereign credit spreads “flattens” at times when international
investors’ risk prices are high. This feature of the data is different from fact (5), which
relates movements of the slope of spreads to the level of spreads for a given country,

whereas fact (6) relates movements of the slope of spreads to measures of US equity or
10



credit market risks for example. This fact appears to be new in the sovereign default
literature, and is also consistent with a “first-hitting-time” model, in which the default
barrier depends on international financial market conditions. I document it in the online
appendix and test whether my model generates this behavior of the term structure of

spreads.

(7) Holding-period expected excess returns on foreign currency sovereign debt increase with
the time-to-maturity of the credit instrument; in addition, most of the excess return
differential between short term bonds and longer term bonds is earned in “crisis” periods
— defined by [10] as a period when the level of credit spreads for the countries of interest
are greater than the previous quarterly average plus 300bps. I will provide additional
evidence supporting this result in the online appendix, by focusing on CDS as opposed
to bonds. I will also emphasize that this excess return is actually earned during periods
of high risk prices — which can be interpreted as periods during which international debt
investors are more risk-averse than usual. This fact is consistent with a sovereign debt

“risk exposure” that is increasing with the maturity of the debt instrument.

(8) Holding-period excess returns on sovereign bonds are higher for countries with worse
credit ratings. [9] document this fact by looking at returns on sovereign bonds in the
EMBI index, and I provide additional evidence by looking at CDS returns. Whereas [9]
argue that they would need a new source of exogenous country heterogeneity in order
to account for fact (8), I will argue in the paper that such fact arises because the “risk

exposure” of sovereign credit instruments is higher after a country has been hit by a

sequence of bad fundamental shocks.

In the next sections I leverage the canonical framework of [20], [6] and [5] in order to
build a continuous time model of sovereign defaults where international capital markets take
on a prominent role. I will then confront the resulting model to the stylized facts discussed

above.
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1.3 A Continuous Time Sovereign Default Model

While I focus my empirical and quantitative analyses on the credit risk of different sovereign
governments, the theoretical section of this paper only deals with a single government “n”.
For simplicity, I abstract from interactions that different countries may have (such as cross-
border trade flows), except through a common marginal investor in their sovereign debt. I
thus abstract from the identity of the government in my notation. Country n is endowed with
real output Y; per unit of time, which evolves according to a Markov modulated geometric
Brownian motion:
dYy

Y pisydt + oy - dBy (1.1)

My notation will use bold letters for vectors. {Bg}>0 is an Nj-dimensional standard Brown-
ian motion on the underlying probability space (2, F,P). I use multi-dimensional Brownian
shocks to be able to discuss how idiosyncratic, regional and global shocks affect spread and
return properties of sovereign debt. {st}¢>0, taking values in {1,..., Ns}, is a discrete state

Markov process with a generator matrix A = (Aij) that is assumed to be conser-

1<i,j<Ns
vative (in other words Z;El A;; = 0 for all i). I will assume that {st};>( is recurrent,
thus admitting a unique stationary distribution 7 (an Ng X 1 real-valued positive vector)
that solves m’A = 0, and whose elements sum to 1. I will note Nt(i’j ) the Poisson counting
process for transitions from state i to state j. I will refer to P as the physical probability
measure, and note F; the o-algebra generated by the Brownian motion Bt and the discrete
state Markov process s¢.

The Markov state sy is not essential for modeling the country’s output dynamics — in
most of the quantitative applications of this model, I will in fact assume that the expected
GDP growth rate and the GDP growth volatility do not depend on the regime s¢. It could

also be argued that the length of the GDP growth time series of the countries of interest is

too limited to detect such regime shifts in the data®. Instead, the discrete regime s; will be

5. For most countries of interest, I have yearly GDP growth data since 1970 — in other words, approxi-
mately 40 data-points. Estimating a Markov-switching output model with 2 Markov states for example would

12



the key variable describing the state of the creditors’ stochastic discount factor, as will be
discussed in section 1.3.1. T keep the flexibility to model a country’s output dynamics as a
Markov modulated geometric Brownian motion for two reasons. First, it allows me to deal
with time-varying output growth volatility, a phenomenon empirically relevant for certain
countries, as [46] suggests when focusing on Greece, Italy, Spain and Portugal. Second,
I argue in section A.1.2that this stochastic growth model enables me to approximate the
output process used by [5] and many other articles in the international macroeconomic
literatureS. Lastly, I show in section 1.8 that a mean-reverting output growth rate can be
obtained endogenously by introducing capital accumulation and a simple “AK” production

technology. The government objective is to maximize the life-time utility function:

+00
J—E /t 5 (Cs, Js) ds| F (12)

The notation E denotes expectations under the measure P. The aggregator ¢ takes the

following form:

0 (C,J) = 51 iy o (1.3)

“r \(a-n=
This preference specification is a generalization of the standard time-separable iso-elastic
preferences to a non-time-separable framework, where intertemporal substitution can be
decoupled from risk-aversion. § is the government rate of time preference, 1/p is the inter-

temporal elasticity of substitution, while « is the risk aversion coefficient. The standard

iso-elastic time-separable preference specification corresponds to the parameter restriction

require estimating 2 expected growth rates, 2 growth volatilites, and 2 transition probabilities, leading to
point estimates likely to have large standard errors.

6. Other articles that use this output process include, amongst others, [9], [3], [4]. In those articles, log
output has a unit root, and output growth is a stationary and mean-reverting process. Viewed differently,
the martingale decomposition of log output (see [21]) features (a) a time trend, (b) a martingale component
with constant volatility and (c) a stationary component that is the sum of two Ornstein-Uhlenbeck processes,
one of them fully correlated with the martingale component, while the other is independent.

13



v = p. In such case, the life-time utility of the government takes the more familiar form:

+00 L=y
/ 56—5<8—f>05—d3|ft (1.4)
t

Jy=E
¢ 1—~

If the government does not have any financial contracts at its disposal, its life-time utility is

equal to:

Jsy (Vi) = Kg ¥ 7 (1.5)

Equation 1.5 as well as the N constants { K };<y, are determined in section A.1.3. In order
for equation 1.5 to be well defined, I need to impose a parameter restriction that will be

assumed going forward.

Assumption 1. Let {A;};<n, be the family of constants defined via:

A=+ (p = 1) i — o) (1.6

Then (0, p, 7y, {1 }i<N,> 103 Yi<n,) are such that A; >0 for all i.

The government does not have a full set of Arrow-Debreu securities at its disposal.
Instead, it can only use non-contingent long-term debt contracts, with aggregate face value
Fy and coupon rate k. The incentive for the government to issue debt is two-fold: first, it
enables the government to smooth consumption, and to reduce the welfare losses associated
with consumption volatility. Second, differences between the government’s rate of time
preference and sovereign debt investors’ discount rates will enable the government to “tilt”
consumption into the present.

During each time period (¢, ¢+ dt], a constant fraction mdt of the government’s total debt
amortizes, which the government repays with mFidt units of output. This contract structure
guarantees a constant debt average life of 1/m years, and allows me to carry only one state
variable (F}) as a descriptor of the government’s indebtedness, as opposed to the full history

of past debt issuances. The long-term debt assumption is also essential in my continuous
14



time framework in order to insure that an equilibrium with default can be supported: I show
in section A.1.1 that the continuous sample paths of my output process preclude short term
debt from being supportable in any sovereign default equilibrium. During each time period
(t,t + dt], the government can also decide to issue a dollar face amount Itdt of bonds. This
formulation of an admissible issuance policy prevents “lumpy” debt issuances, and results in

a government face value process Fy that is absolutely continuous:

dFy = (It — mFy)dt (1.7)

Per period flow consumption consists of (a) total per-period output, plus (b) proceeds (in
units of consumption goods) raised from capital markets minus (c) debt interest and principal
repayments due:

Cy =Y+ 1Dy — (k+m) Fy (1.8)

In the above, Dy is the endogenous debt price per unit of face value, and is determined in
equilibrium. My formulation of the debt dynamics as well as the resource constraint for
the government lead to a cumulative consumption process that is absolutely continuous; in
other words, the government does not consume in “lumpy fashion”, but rather always in
“fow” fashion. I can interpret the difference Y; — C% as the trade balance. The government
cannot commit to repay its debt, which is thus credit risky. In other words, the government
will choose a sequence of default times {7}};>; out of the set of sequences of stopping
times’. Default leads to the following consequences. First, output jumps down, from Y;-_ to

Y: = aY;_, with a < 1. Second, the country is locked out of capital markets for a (random)

7. The continuous time setting of this model allows me to abstract from the specific timing assumption
of the government bond auction. In discrete time models, [16], [1] and [3] (for example) all assume that
the bond auction happens before the default decision is made by the government, while [5], [6] and many
other quantitative models of sovereign debt assume that the government makes its default decision before
the bond auction takes place. The former timing convention allows, in discrete time, for the existence of
potentially multiple equilibria, induced by the creditor’s self-fulfilling belief that the government will default
immediately after debt has been issued, leading to a low auction debt price and a rational decision by the
government to default. Those considerations are absent from the continuous time environment.
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time period 7 that is exponentially distributed with parameter A\. Once the country emerges
from financial autarky, it has an outstanding debt balance that is only a fraction of its pre-

default value, according to:

Y,
FT+Te =0 ;:FT&

T—

Fr_ (1.9)

One can think of the parameter 6 as the outcome of a bargaining game between creditors
and the sovereign government, once such government has elected to default. However, for
simplicity and since the strategic interactions between the government in default and its
creditors are not a focus of this paper, I elect to model the outcome of this renegotiation

exogenously®.

1.3.1 Creditors

External creditors purchase the debt issued by the government. I model their marginal
utility process M; (which I will also refer to as the stochastic discount factor, or “SDF”)
as a random walk with two independent components — a diffusion component, and a jump

component. More specifically, My evolves according to:

L—Aﬁ — —rydt —vg, -dBy+ Y ( (st=s5t) —1) (det—’S” —Ast_,stdt> (1.10)
S5t

Conditioned on being in the discrete Markov state i, creditors’ risk free rate r; and the

Np x 1 risk price vector v; are constant. As section A.1.4 or [13] show, this stochastic

discount factor can be obtained for example if creditors have iso-elastic time-separable or

recursive preferences and an equilibrium consumption process that follows a Markov mod-

ulated geometric Brownian motion. This stochastic discount factor can also be obtained in

a general equilibrium environment with a continuum of countries, by re-intrepreting C} as

8. Note that the adjustment factor Yrire in the debt face value post-restructuring is included for tractabil-

ity purposes, since it will lead me to solve nested ordinary differential equations, as opposed to integro-
differential equations. This feature is used in [42].
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spending by government n, Yz as the tax revenues of government n, and introducing a “world
investor” who can diversify away all countries’ idiosyncratic risks, as I show in section A.1.5.
This latter interpretation has the benefit of tying the world interest rate and the world risk
prices to the investor’s preferences and the countries’ endowment growth rates, but would
not add any additional insight to the paper. Finally, as explained in section A.1.4, the jth
coordinate of v; represents the excess return compensation per unit of jth Brownian shock
earned by investors — hence why I refer to v; as the vector of risk prices in state ¢. Similarly,
(6U(i’j )— 1) is the jump-risk premium earned by investors per unit of jump risk, in connection
with shifts from SDF state i to SDF state j.

My formulation of the stochastic discount factor implicitly assumes that government
n’s sovereign debt component of the creditor’s portfolio is negligible, and that government
n’s sovereign debt cash-flows do not alter the equilibrium consumption of creditors. This
assumption seems reasonable: according to the World Bank, the aggregate external debt of
emerging market countries was approximately $1tn in 2014; while economically large, this
quantity is small compared to the $19tn market capitalization of stocks traded on the NYSE,
the $7tn market capitalization of stocks traded on the Nasdaq, and the $35tn size of the US
bond market.

Given my assumed investor pricing kernel, any JF;4¢-measurable amount Ay received
at time t 4 s will be valued by investors by weighting such future cash-flow by the investors’
future marginal utility, and taking expectations. One can also use a standard tool of the
financial economics literature, and instead discount this future cashflow Asyg at the risk-free
rate, while distorting the probability distribution of such future cashflow via the following

change in measure:

Mt+s
My

Price; (A¢+s) = E

At+s|ft1 =E [67 Jorevudu g, | 7y

~

[E is the risk-neutral expectation operator. It implicitly defines the risk-neutral measure Q,

17



under which Bt = Bt + fg Vs, du is a standard N, dimensional Brownian motion, and
under which {s¢};>¢ is a discrete state Markov process with generator matrix A, whose (,7)
element is Aij = e”(ivj)Aij, for i # 9.

Since most of the elements of the model have been introduced, I conclude this section by
introducing two parameter restrictions. The first restriction guarantees that the risk-neutral

value of a claim to the government’s output be finite.

Assumption 2. ({r;i}i<n,, {Viti<n,, {miti<n,. {oiti<n,) jointly satisfy the following pa-
rameter restriction:

ri+vi-o;—pu; >0 Vie{l, .. Ng} (1.11)

The second restriction insures that the government is impatient enough to front-load
consumption in equilibrium. To be specific, when the government has neither debt nor
assets outstanding, I need the government’s financing policy to be such that it wants to
borrow, instead of save. While I do not provide an explicit restriction on the deep model
parameters in order to satisfy such condition, I verify ex-post after solving the model that
it is the case. Intuitively, this parameter restriction should insure that the rate of time-
preference ¢ of the government is sufficiently greater than the level of interest rates at which

the government can finance itself via debt issuances.

1.3.2 Debt Valuation, Government Problem and Equilibrium

In this section, I focus on a Markovian setting and define admissible issuance and default
policies of the government. Any admissible issuance and default policy will give rise to con-
trolled Markov processes for the GDP and the debt face value. I then define the sovereign

debt price and the life-time utility of the government, discuss the stochastic control prob-

9. A is also assumed to be conservative.
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lem of the government, and define a Markov perfect equilibrium. All technical details are
relegated to the appendix, in section A.1.6.

The payoff-relevant variables for the sovereign government and creditors are s¢, Y3 and
F;. The state space will be {1,..., Ng} x R2, or a subset thereof. An admissible issuance
policy I will be a set of Ny functions I;(Y, F') that satisfy a particular integrability condition,
and an admissible default policy 7 will be a sequence of increasing stopping times {7y} 1>
that can be written as first hitting times of a particular subset of the state space. I will also
note {767 i }k>1 the sequence of capital markets’ re-entry delays, in other words the sequence
of independent exponentially distributed time lengths spent by the country in autarky. I will
note Z the set of admissible issuance policies, and T the set of admissible default policies.

For any given admissible default policy 7 € T, there is an associated controlled output
process Y(T), which follows (1.1) at all times except when a default occurs, at which point
Y (T) suffers a downward jump. For any given admissible issuance policy I € Z, and default
policy T € T, there is an associated controlled debt face value process F (I ’T), which follows
(1.7) at all times except when a default occurs, at which point the aggregate debt face value
stays unchanged, until reset at a lower level according to (1.9).

Creditors price the sovereign debt rationally. If they anticipate that the government will
follow admissible policy (I,7) € Z x T, they will value one unit of debt of a government

currently performing under its contractual obligations as follows:

A~ - T
Dy (Y, Fi (I, 7)) = BV U e Jotrsut gy )t
0

T T

e 5 sutm)du . (Y(r) ). (I,T))] (1.12)

The stopping time 7 in the equation above refers to the first element of the sequence of

default times 7. The superscript notation next to the expectation operator denotes the
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conditioning on the initial state. DZ‘-Z (+,+; (I, 7)) is the debt price in default, which satisfies:

~ Te F(I’T)
DY (V. Fi (7)) = BF |em it rode e, (D T ()| (1)

The stopping time 7. in (1.13) refers to the first capital markets’ re-entry delay of the
sequence {7, j.}1>1. | use a notation that makes the dependence of the debt price functions
on the anticipated issuance and default policies explicit. Equation 1.12 and 1.13 can be
interpreted as follows: creditors receive cash-flows k + m per unit of time on a debt balance
that amortizes exponentially at rate m. Following a default, creditors receive no cash-flows
for the exponentially distributed random time 7., following which their claim face value
suffers a haircut. The expectations are taken under the risk-neutral measure Q.

I then focus on the government life-time utility. Given a debt price schedule D :=
{D;(-,-) }i<n, that the government faces, and given admissible issuance and default policies
(I,7) used by the government (where (I,7) might not necessarily be consistent with the
debt prices D), there is a controlled flow consumption process C’t(I’T;D) , which satisfies (1.8)
when the government is performing, and which is equal to output whenever the government

is in default. This leads to the following government life-time utility:

5 F D) =5 [T () (v T (i) a1

In the time-separable preference case, the life-time utility takes the more familiar form:

(I,7;D)

(et )

. 00

J; (Y, F;(I,7); D) = EbY:F / §e 0t tl dt (1.15)
0 —7

In both cases, the expectations are taken under the physical probability measure P. The

government takes as given the family of debt price functions D and DY and chooses its
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issuance and default policies in order to solve the following problem:

ViY,F;D):= sup J;(Y,F;(I,7); D) (1.16)
(I,7)eIxT

When choosing its issuance policy, the government takes into account the debt price schedule
and the impact that such schedule has on flow consumption, via the resource constraint.

Consistent with [37], I then define a Markov perfect equilibrium as follows.

Definition 3. A Markov perfect equilibrium is a set of Markovian issuance and default

policies (I*,7*) € T x T such that for any initial state (i,Y, F),

(I*,7*) = arg (Lglg%xTJi (Y, F;(I,7); D (-, (I*,7%)))

For a given equilibrium (I'*, 7*), I will note Vi, (Y%, F}) the government’s equilibrium value
function when performing, and Vs‘i (Yr—, Fr—) the government’s equilibrium value function
at default time 7, when the pre-default output is equal to Yr_ and the pre-default debt
face value is equal to Fr—. The following set of lemmas will help narrow down the class of

Markov perfect equilibria I will be focusing on.

Lemma 4. If for each state i < Ng, the debt price schedule D;(-,-) is homogeneous of degree
zero and decreasing in F', then the life-time utility V; (-, -; D) is strictly increasing in' Y and
strictly decreasing in F'. In such case, the optimal issuance policy is homogeneous of degree
one and the optimal government default policy is a state-dependent barrier policy, in other
words there exists a set of positive cutoffs {Z;};<n, such that 71 = inf{t > 7. +70 . Fy >
T, Yi} (with 9 = 7.0 = 0). Finally, the life-time utilities V; (-,-; D) are homogeneous of

degree 1 — .

The proof of this lemma is detailed in section A.1.7. I then focus on the debt price

schedule for specific types of issuance and default policies.
21



Lemma 5. If I € T is a homogeneous of degree 1 Markov issuance policy, and if T € T 1is
a barrier default policy, the debt price functions D; (-,-) are homogeneous of degree zero and

decreasing in F.

The proof can be found in section A.1.8. As discussed in the next section, by restricting
the set of equilibria of focus, lemma 4 and lemma 5 will enable me to reduce the dimension-

ality of the state space and deal with only one continuous and one discrete state variables.

1.3.3 Equilibrium Debt Value

Using the previous observations, I look for an equilibrium of the model for which z; := F}/Y};
(the debt-to-output ratio) and sy are the unique state variables, and for which the government
follows a barrier policy: it defaults when the debt-to-output ratio z; is at or above a state-
dependent threshold Zs,. In other words, the sovereign’s first time of default is 7 := inf{t >
0 : x¢ > Zs,}. The government issuance policy can be re-written I} = vg,(x¢)Y, where
ts;(x¢) represents the rate of debt issuance per unit of output, for a given debt-to-output
ratio and when the discrete Markov state is s;. ¢ > 0 means that the government is either
decumulating net foreign assets (when z < 0) or borrowing (when z > 0), whereas ¢ < 0
means that the government is buying back outstanding debt. The dynamic evolution of the
controlled stochastic process x4 (under the measure P) when the government is performing

under its debt obligations is as follows:
) ()~ (o) 7)o

The debt-to-GDP ratio increases with the issuance rate ¢; and with the It6 term ]astlzxt,
and decreases thanks to GDP growth pg,x¢ and debt amortizations ma;. Under the risk-
neutral measure Q, following Girsanov’s theorem, the drift of x+ must be adjusted upward
by vs, - os,2¢. Creditors take the government issuance policy ¢ and the government default

policy as given when pricing a unit of sovereign debt. Finally, I will postulate (and verify)
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Figure 1.1: Debt-to-GDP ratio x¢

that in equilibrium, ¢;(0) > 0 for all states i < Ng. This means that when the government
has neither financial assets nor financial liabilities, it finds it optimal to borrow and front-
load consumption in all states ¢ < Ng. This also means that once the state x; enters the
interval (0, max; z;), it never leaves such interval, since the diffusion term in the stochastic
differential equation for x; vanishes and the drift term is strictly positive. I thus restrict the
focus of my analysis to the state space {1, ..., Ny} x (0, max; z;).

A random realization of the state variables z; and s; is illustrated in figure 1.1. Defaults
occur at times 71 and 7. The length of time spent in autarky after the ith default is Teis
after which the aggregate debt face amount is reset at a fraction of its pre-default value.

With an abuse of notation, I use D; (z; (¢, 7)) (resp. D;i (x;(¢,T))) to denote the debt
value (resp. the debt value in default) per dollar of face-value when the debt-to-output ratio
is x and the SDF regime is i. I will also omit the dependence of the debt price function on

the government policies (¢, 7) whenever possible. When s; is in state ¢ and when z € [0, Z;),
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the government is indebted, and the price D; (+; (¢, 7)) of defaultable sovereign debt verifies:

D;(z) = i { / " e Jotratm)du vy 4 o= o (rsutm)dupd (5 ) (1.17)
0

Using Feynman-Kac, it is immediate to show that D, is twice differentiable and satisfies the
following HJB equation for x € (0, z;):
N

(ri +m)Dix) =k +m+ LY Dy(w) + 3 Ay Dj(a) (1.18)
j=1

(¢)

For ease of notation, I have introduced the infinitesimal operator ﬁz as follows:

2 x Ng boundary conditions are required in order to solve this set of Ng nested second order

ordinary differential equations. They are as follows, for 1 <i < Ng:

D;(z;) = DX(z;) (1.19)

Ns
(ri +m) Di(0) = ki +m +1;(0)D}(0) + Y Aj;D;(0) (1.20)
j=1

For each state i, the first boundary condition is a value matching condition, which says
that the debt price at the default boundary = = Z; is equal to the price of a claim on the
defaulted debt, Df(@) (which will be calculated later on). The second boundary condition
is a Robin boundary condition; it relates the value of the function D; at the origin to its first
derivative at the origin. It can be obtained by simply taking a limit of the HJB equation
satisfied by D; at x = 0. I need to compute the debt price in default Dld(m), for x > z; and
1 <i < Ng. Assume that at time of default 7, the state is s; = i. When the country exits

f}* = Oxr—. Note that it is
T

financial autarky, its debt-to-GDP ratio is equal to }ZZT—J;@ =40
T1TTe
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possible that - > Zs_ when the sovereign defaults. This happens upon the occurrence of
a “jump-to-default”, in other words a situation where the discrete SDF state jumps from

Sr— =7 to sy =1 and when ¥; < v,_ < zj. Thus, I have the following for x > z;:

Ny Te F
Df(a:) =E' {exp <—/0 rstﬂdu) %DSHT@ (Ox)

section A.1.9 establishes the following formula for the defaulted debt price:
D%z) = M=~ D(6) (1.21)

In equation 1.21, D%(x) is the Ng x 1 vector with it element Dld(ac), and the Ng x Ng matrix
= :=diag; (r; +v; o5 + A — ;) — A is well defined thanks to assumption 2. Finally, note
that this equation is valid for each coordinate i for x > ;.

I end this section by discussing two different aspects of the model. First, the existence
of a discrete number of SDF regimes leads to two types of defaults: defaults following a
sequence of bad GDP shocks, as well as defaults induced by jumps in the SDF state, from
a state of low risk prices to a state of higher risk prices. Both types are illustrated in figure
1.1. In this example, a default occurs at 71, after a sequence of bad GDP shocks that cause
the debt-to-GDP ratio to breach the optimal default boundary that the government has set
in such SDF regime. In the same figure, a default occurs at 7o, triggered by a jump in
the SDF state. At such time, an SDF regime shift occurs, from sn,— = 3 to sp, = 2, and
the debt-to-GDP ratio satisfies 3 > xr,— > Z9. In other words, before the SDF jump,
the debt-to-GDP ratio of the sovereign is below the optimal default boundary, but as the
SDF regime shifts, the debt-to-GDP ratio is suddenly greater than the new optimal default
boundary, causing the sovereign to immediately default. Since the SDF I use will price the
sovereign debt of multiple countries, SDF regime shifts induce correlated defaults amongst
sovereign governments. Note that jump-to-default risk exists even if the GDP growth rate

and GDP growth volatility are not regime-dependent — so long as the SDF exhibits different
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risk prices in different regimes.

Second, note that when x “\, 0, the government debt balance is negligible compared to
output. However, the price of any infinitesimally small unit of debt is actually not equal to the
risk-free debt price, since the debt price needs to factor in the dilution risk of the government,
whose optimal issuance policy will dictate to issue debt to front-load consumption. This
observation is in stark contrast with what happens in structural corporate credit risk models
(see for example [31] or [32]) — in those models, the firm can commit to a financing policy
(typically, maintaining the debt face value constant), but cannot commit to a default policy,
leading to a debt price that is equal to the risk-free debt price when the level of fundamentals

becomes arbitrarily large compared to the debt face value.

1.3.4 Equilibrium Debt Issuance and Default Policies

Now consider the government’s problem, as described in section 1.3.2. As a reminder, the
government takes the debt price schedule D(-) as given when solving its optimization prob-

lem. Thanks to lemma 4, the government value function in state ¢ can be written as follows:
Vi(Y, F) o= vi(z)Y1 7 (1.22)

In the above, the function v; will be positive when v € (0, 1), and negative when v > 1.
Since V; is decreasing in F', I also have the sign restriction vg(x) < 0. An appropriate
change-in-measure described in section A.1.10 shows that the HJB equation associated with
the government problem, in the continuation region [0, Z;), is the following:

N

1 —

TZAZ‘%‘(I) = Ajjuj(z) =
=1

w0 5(1 +1;D;(z) — (K + T{z)x)l_p (1= 7)vi(x)] = Lo
L - P
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(¢)

In the above, I have used the differential operator £; defined as follows:

o = [Li - (Mi +m— 7!0¢|2> x} 8% + %laﬂzx

2 0%
ox?

The optimal state-contingent issuance policy ¢; is then given by:

)

i {1 : (D) = (s m)) =P (1= 2)i()] 7 4ol

2

This yields the (necessary and sufficient, given the strict concavity of the expression in

brackets w.r.t. ¢;) first order condition:

>

el

Di(w)dei(x) 7 [(1 = 7)vi(x)] =7 = —vj(2) (1.24)

In the above, I have introduced the consumption-to-GDP ratio ¢; := C'/Y when the discrete

Markov state is i. Focusing on (1.24), I notice that the left-hand side is the product of (a)

=
the marginal utility of consumption dc¢;(x)” [(1 — v)v;(2)] =7 and (b) the debt price, while
the right-hand side is the marginal cost of taking on one extra unit of debt. The optimal

Markov issuance policy function ¢;(x) is given by:

p=y \ 1/p
oy D;(x) [(1 = y)vi(@)] T .t —
vi(2) D) ) + (k+m)z —1 (1.25)

The expression is well defined since I showed previously that ’UZ/~ () < 0. The dependence
of the issuance policy on the model parameters or on the debt price schedule (which the
government takes as given) are ambiguous, since those issuance parameters will also have a
feedback effect on the felicity function and its derivative. I can however perform a “partial
equilibrium” analysis of the debt price schedule in the unit elasticity of substitution case, i.e.
when p = 1. In such case, ¢;(x) is an increasing function of D;(x) whenever the sovereign

output Y; is greater than the total debt service owed (k + m)Fy, which will always be the
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case in equilibrium (in other words in equilibrium, the sovereign will have defaulted before
the sovereign output falls low enough that new debt issuances are required to service the
existing debt). For the case where the elasticity of substitution is different from 1, I verify
numerically that this comparative static result still holds: when the debt price schedule is
more beneficial to the sovereign, the latter takes advantage of it through additional issuances.
For a given set of default thresholds {Z;};<n,, 2 X Ns additional boundary conditions
are needed do solve the system of Ng equations 1.23. The first set of conditions relates to
value matching at the default boundary z;. Let V;.d(Y, F') be the government value function in
default, if the pre-default output level is Y and the pre-default debt face value if F'. I show in
section A.1.11 that Vid(Y, F)= vzd(iz) (aY)'™7, which leads to the following value-matching

condition:
vi () = o' () (1.26)

vzd(i) solves a system of non-linear equations discussed in section A.1.11. I also have a set

of Ng Robin boundary conditions, linking the value function at the origin to its derivative,

_ .- L (0 — ) (0)] T
L4 (0) = 3 A0 = s OPOD L ZIWOLT o) .om
j=1

I finally focus on the optimal default policy. Since it is always an option for the government
to default, I must have V;(Y, F') — V;d(Y, F) > 0 for all states (Y, F). This leads to a set of

Ng smooth-pasting conditions:
o (77) = o 77 (v) (3) (1.28)

section A.1.11 establishes more formally this optimality condition and shows how (vf)’ (Z;)
can be expressed as a function of vzd(izz) and v;(0z;). 1 conclude this section by two propo-

sitions. First, I establish a standard verification theorem for the government value function.
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I then discuss the existence of a Markov perfect equilibrium, subject to the existence of a

solution to a set of ordinary differential equations.

Proposition 6. For any family of decreasing functions D; : RT — [O,D:f ] , assume that

there exists a family of functions v; (+; D) € cl (R+) N C2 (R+ \ {a’:z}), which satisfies for

1 <4< Ng:
1_ Ng
0 = max Sup —1—A v; (z; D) +ZAszj z; D)
7=1
—p =
+5(1+bz‘Di(I)—(ﬁ+m)1$)_p (1 = 7)vi (& D) + LWy, (2;D)|

ol 71} (x; D) —v; (x; D),

where v® (x; D) satisfies (using the Ny x Ng matriz T = %:—Zdiagi (A;) + A —A):
d 0 =

To(a; D) = Xv(6: D) = —— [(1 — D)}

Then for any state i < Ng and any v € RT, v;(x; ) > Ji(1,z; (¢, 7); D) for any (¢, 7) €

J;
L : T =LA, wdu, .
IXT that satisfy limy_—y 4 o infe /0 I= ( > 0. Let the family of thresholds

- Ne ..
{Ziti<i<n, € (RT)7* satisfy:

1-p\ \ L
(vd>/ (T;) = \0 (T + 5 pdmgj ([(1 — 7)1}?(@)] _M>> vl(é’fi)

Let (¢*,7*) be defined as follows:

—\ 1/p
v (z; D) = Dzl(ac) 0Dj(z) [(1_;; '(Yx)f}zlgf;@ D)|= +(k+m)x —1

‘b
2

(D) :=inf{t > 0: 2y > Ty, }
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Then vi(x; D) = J;(1,z; (¢*,7*); D) is the value function.

This proposition, proven in section A.1.12, provides for a characterization of the optimal
issuance and default policies given a decreasing debt price schedule D. It does not establish

the existence of an equilibrium, which is achieved in the next proposition.

Proposition 7. Assume that there exists a set of functions {v;(-)}i<n,, {Di(") }i<n,, and
a set of positive thresholds {T;};<pn, such that the system of nested ordinary differential
equations (1.18), (1.23) subject to value-matching boundary conditions (1.19), (1.20), (1.26)
and (1.27) are satisfied, where ;(+) satisfies (1.25) and each threshold T; satisfies the smooth

pasting condition (1.28). Then a Markov perfect equilibrium ezists.

Proving the existence of a Markov perfect equilibrium without relying on the (strong)
assumptions of proposition 7 is beyond the scope of this paper, and I leave this proof for
future research. I provide in section A.1.13 a discussion of the potential route to pursue to
establish such result. I also show in section 1.4, for the particular case where p = v = 0, that
a Markov perfect equilibrium exists, and it is unique in the class of “smooth” equilibria (i.e.

equilibria in which the debt face value process is restricted to being absolutely continuous).

1.3.5 Asset Pricing Moments

In this section, I discuss the implications of my model for the long term sovereign bond
spread, as well as excess returns earned by international investors on such bond. I also show
how to compute CDS premia and the excess return on these contracts.

Long Term Sovereign Debt Spreads

The sovereign bond spread ¢;(z) is the constant margin over the risk-free benchmark that

is needed to discount the long-term sovereign bond’s cash flow stream assuming away any
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default risk. In other words, the credit spread must verify:
. o0 t
Dj(z) := B { / e~ Jorsutai(@)tmydu o m)dt] (1.29)
0
The credit spread ¢;(z) is the unique positive solution to the following equation:

D;(z) = (m + k) [(diagj (rj +<i(z) +m) — A>_1 1}

7

Using I[t0’s lemma, credit spread innovations under P take the following form:

ds¢ — B [det| Ft] = —<5,_(x1)xi0s,_ - dBy

+ 3 (o) — s (1) (dN(St—S/) - ASt_S/dt> (1.30)

What happens upon the occurrence of a GDP shock? section A.1.15 establishes that gZ( <0
in any state i. Thus, good GDP shocks translate into decreases in sovereign bond spreads.
In other words, credit spreads are counter-cyclical in this model — a sequence of good GDP
shocks will on average lead to lower spreads, consistent with empirical fact (4).

I can then leverage (1.30) to compute the instantaneous sovereign bond spread volatility:

S

2
o = \/Iglo'st— |2§§t— (1) + Z Ag, s (gs’ (1) = S5 (ft)) (1.31)

In a model without SDF regime shifts, sovereign spread volatilities are purely driven by
the macroeconomic fundamentals of a country (in the context of this model, the debt-to-
GDP ratio x). Instead, SDF regime shifts in my model induce an additional component to
sovereign spread volatilities. A separate testable implication emerges from (1.31): spread
volatilies tend to be higher when the sovereign government is close to its endogenous default
boundary. Indeed, I show in the appendix that under mild conditions, the function xglf (x)

is increasing, meaning that the component of sovereign spread volatility stemming from
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Brownian shocks increases as the sovereign government approaches its default cutoff. Both
predictions will be tested as part of my model validation.

Equation 1.30 also illustrates the crucial importance of the different SDF regimes for
cross-sectional spread correlations: absent those regime shifts, pairwise local spread correla-
tion between two different sovereign governments would only stem from output correlation,
which is at odds with fact (2). If I index by “a” and “b” two countries, the instantaneous
spread correlation between those countries takes the following form:

§(/l73t7 §évst_$a7t$b,t0'a,st_ "Ob,ss_

corry (§a7t7 §b,t) - oo
a,t

S
Ot

Zs’ Ast_s’ (ga,s’ - g@,St—) (gb,s’ - §b7st,>

+
S S
Ua,ta-b,t

In the formula above, for all states i < Ng, the function g(’w. is evaluated at x4t and the
function gl’)’ ; 1s evaluated at z ;. When the SDF state jumps from a low risk price level s to
a high risk price level s, if both countries’ output processes are positively correlated with
the risk price vector in all discrete Markov states, spreads for both country “a” and country
“b” jump up, meaning that (qms/ - ga’st_> (gb75/ - gbﬁt_) > 0. The same reasoning holds
upon a jump from a high risk price state to a low risk price state. Thus, the second term
in my formula for spread correlations above is positive: spread correlations are induced by
SDF regime shifts. This gives my model the potential for being consistent with fact (2) —

but only to the extend my countries of interest have output processes whose correlation with

the vector of risk prices have the same sign.

Long Term Sovereign Debt Returns

I then compute sovereign debt excess returns. Debt excess returns over the time period
(t,t + dt] include capital gains dD;, coupon payments kdt and principal repayments mdt,

while the opportunity cost is 75,dt and reinvestment costs are equal mdt. Thus, excess
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returns (under the physical measure PP) are equal to:

D
dRS : = d t+(g+m)dt—(rst+m)dt
t

Using It6’s lemma and the HJB equation satisfied by the family of debt values {D;(-)}i< .,

I obtain expected excess returns (per unit of time) and return volatilities that are equal to:

xtD/ (5(775) D (x '
E [dRS|Fy) = — #E:ct)yst o5+ > Ay DSS—E%; —1 (e“(St’S) - 1) dt (1.32)
t s/ t
2/ 2 2
xs Dy, (x4 Du(x
var [dR§| Fy] = %wst\?dt +3 Ay ( Dj Exg - 1) dt (1.33)
St t

Thus, sovereign bond investors are compensated for taking Brownian risk (the first term on
the right hand-side of (1.32)), as well as for taking regime jump risk (the second term on
the right hand-side of (1.32)). The expected excess return can be read as (minus) the local
covariance between (a) sovereign debt returns and (b) the creditors’ pricing kernel. This
risk compensation is similar to a standard two-factor asset pricing compensation. Indeed,
I can interpret % as the market beta of sovereign debt w.r.t. the shock By, while

Vg, - O, is the sovereign output claim’s risk premium earned in connection with such shock.

Similarly, the jump compensation (the second term in (1.32)) can be re-written:

Dy(x)
v(st,s’) _ > Py Dsyz)  ~
> M (¢ : (Pst ! Py
S Pst

output claim’s premium for jump risk market beta of sovereign debt w.r.t. jump risk

In the above, P; is the price of a claim to the output of country 7. Using the vector notation,
P = [diagi (ri +v; o5 — ;) — Al 1. Alternatively, one can interpret those formulas
using the terminology of [24] or [25]: in such case, the expected excess return in (1.32) is the

sum-product of (time-varying) risk prices (vg, for the Brownian shocks and (ev(s’sl) — 1>
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—l‘tht (CL‘t)

for jump risks) and (time-varying) risk exposures (D—(xt)
st

<1D)::; — 1) for jumps).

Equation 1.32 highlights the crucial role of the local covariance between risk prices and the

os, for Brownian shocks and

GDP process for the determination of expected excess returns. When I tie the investor’s SDF
to US consumption growth and US consumption volatility (as in section A.1.4), risk prices
are equal to the product of (i) US investors’ risk-aversion times (ii) US consumption growth
volatility. But US output and consumption growth exhibit only mild levels of correlation
with emerging market economies’ output growth, as documented in table “Country-Specific
Macro Moments” in the online appendix. One might then ask how this model might explain
the high level of expected excess returns earned on emerging market sovereign risks. Even
if the risk price vector vg, is not (locally) correlated with the country’s output process,
expected excess returns can be positive when risk prices are time-varying and co-move with
sovereign debt prices. For this latter effect to “bite”, the pricing kernel must feature jumps
(i.e. some of the {v(i,j)}1<; j<n, must be non-zero); the introduction of different SDF
regimes only does not suffice in order to produce large model-implied expected excess returns
when vg, - 05, < 0 in all states.

Note also that the risk exposure to Brownian shocks (and the corresponding sovereign
debt market beta) depends on the elasticity %&(;) of the bond price function. It turns out
that in all my numerical computations, the debt price function D;(+) is a concave function,
which means that the sovereign debt’s risk exposure to Brownian shocks is increasing in
x. This leads to another implication of the model: sovereign expected excess returns are
increasing in the debt-to-GDP ratio, consistent with fact (8). This implication was also
indirectly tested by [9] when sorting sovereign debt portfolios by (a) rating and (b) “market
betas”, if one interprets the rating as a noisy measure of the debt-to-GDP ratio. But while
[9] argue in the model section of their paper that they would need to introduce two sources
of heterogeneity in order to recreate their empirical observation, I argue that this is not

necessary: not only different countries may have different business cycle correlations with
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foreign investors’ risk prices, but also countries may have different risk exposures.

To conclude this section on long term debt returns, the properties of sovereign bond
return volatilities and cross-country correlations should be identical to those of sovereign
spread volatilies and cross-country sovereign spread correlations since realized bond returns
between t and ¢ + dt are (approximately) proportional to spread changes during that time

period.

Credit Default Swap Premia and Returns

To conclude this section, I define ¢;(z,T"), the credit default swap premium for a 7" maturity
contract. Conceptually, such premium should, at the time the trade is executed, compensate
the writer of protection for expected losses to be suffered on the contract. Mathematically,
Gi(x,T) is defined as follows:

N 7. [T sud d

T2 [1{7—<T}6 fO Tsu@U 1 9x (O7 1-— DST(xT—)>:| LZ(:C’ T)

Gz, T) = =
i fi [f()T/\T o fg rs“dudt] Pi(z,T)

L;(x,T) is the risk-neutral expected credit loss, while P;(x,T) is the risk-neutral present-
value of CDS premia. Both expected losses and expected CDS premia can be calculated using
the Feynman-Kac formula, by solving a set of partial differential equations with boundary
conditions discussed in section A.1.16. section A.1.16 also provides formula for computing
expected excess returns and conditional return volatilities of CDS contracts of different
maturities. I can then test whether the model-implied term structure of spreads is consistent
with facts (5) and (6), and whether the term structure of expected excess returns is consistent
with fact (8).

My model with multiple SDF regimes (inducing multiple default boundaries, one per
regime) is particularly convenient in analyzing short term CDS premia, and confronting
them with the data. Indeed, when the CDS contract maturity is arbitrarily small (i.e. when

T — 0), default risk only stems from the risk of regime shifts. Under the assumption that
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the discrete SDF states are ordered (i.e. under the assumption that 71 < ... <y, ), I then

have the following lemma, characterizing short term CDS premia.

Lemma 8. When the contract maturity T becomes arbitrarily small, the sovereign CDS

premium converges to the following limit:

0 if v <min; T; ori =1
lim ¢;j(z,T) =
T—0

ZZ 1A ( D;l(x)) otherwise

lemma 8 shows that premium compensation for writers of short term sovereign CDS only
comes from SDF jump risk, as opposed to output volatility risk. In other words, a model that
does not feature multiple discrete SDF regimes would not feature high short-term market-

implied hazard rates, and would thus be inconsistent with stylized fact (3).

1.3.6 Macro Moments

One distinguishing feature of emerging market economies is the fact that the ratio of (a)
consumption growth volatility over (b) output growth volatility is substantially greater than
one (see for example [40] or [4]). In my model, as established in section A.1.17, this ratio

takes the following expression:

stdev[%‘}"t]: (1 51, (a:t> mt‘zz Sh( §_1>2 (1.34)

stdev [d?}:t |]-'t] Cs (%) Csy

This ratio will thus crucially depend on how the consumption-to-output ratio ¢;(+) varies with
the debt-to-GDP ratio. As will be seen, as the debt-to-GDP ratio nears the default boundary,
the government will adjust its issuance policy downwards, meaning that the consumption-
to-output ratio ¢;(-) will be a decreasing function of x. This leads to a consumption growth

volatility that will be greater than output growth volatility. Note also that such volatility is
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exacerbated by SDF regime shifts.

1.4 A Useful Benchmark: Risk-Neutral Goverment

The model presented above will need to be solved numerically, but there is one particular
parameter configuration where closed-form solutions are available: the case where the gov-
ernment is risk-neutral. Leveraging an insight from [17], I develop in section A.1.18 the
solution for this problem in the case where p = v = 0. This benchmark is useful to provide

some intuition on the mechanics of the model.

Proposition 9. Assume that the government is risk-neutral, i.e. that v = p = 0. Assume
that the risk-free rate in all SDF states is strictly less than the government’s rate of time
preference, i.e. r; < & for all i < Ng. Assume also that the GDP process is not regime-
specific, in other words assume that for all state i < Ng, u; = p and o; = o. In such case,
there exists an equilibrium where the life-time government value function V;(Y, F'), the debt
price schedule D;(Y, F) and the optimal default cutoff Z; are independent of the SDF state,

and have the following expressions:

ab )\

_(Kk+m L=5350 ) /o6t
D(z) = (5+m> o o i () (1.35)
—H

o(z) = 6 1 1 -« (g

3
e

7 §<5+m) i (1.37)
E—1\Kk+m 1_5—f§éu

In the above, € > 1 is a constant that only depends on the model parameters o, u, o, m, and

not on the level of interest rates or the prices of risk. The scaled optimal financing policy
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ti(z) is SDF state-dependent and has the following expression:

3
5o | (155525 o6
ti(z) = <—> —1|z—v; oz (1.38)
¢-1 1- 54?5&/1 v

The financing policy 1;(+) is a strictly decreasing function of x if § +m > ]0']2 —(m-+u), and
15 otherwise hump-shaped. Conditional expected excess returns on the long-term bond have

the following expression:

-1
E [dRﬂ./_"t] = agf)\g v; -o (1.39)
(1_5+>\—u> (@)5*1 1
1— af\ T
+A—p

The equilibrium above is the unique Markov perfect equilibrium featuring an absolutely con-

tinuous debt face value process.

The first — and seemingly surprising — result of proposition 9 is that the (output-normalized)
welfare value of a government without any debt outstanding (i.e. v(0)) is exactly equal to
the autarky welfare 6/(0 — p). In other words, the fact that the risk-neutral government has
the option to take on debt financed by creditors with a discount rate that is strictly less than
the rate of time preference of the government is not welfare-improving for such government.
Similarly, when the government is indebted, the welfare of the government can be expressed
as the sum of (a) the welfare of a debt-free government that suffers a downward GDP drop
of (1 — a) % each time the state variable x; hits the boundary z, minus (b) the aggregate
value of sovereign debt, computed as if creditors were risk-neutral with a discount rate ¢.

Importantly, neither the risk-free rates {r; };<n,, nor the price of risk {7 };<, influence the
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welfare value v(z):

Y l—« x\§
VY, F)=6|— [1-[——2% (;) — FD(Y,F)
0 — H 1 — _aff) x
O+A—p
value of “credit—;irsky’7 endowment aggregate debt value |

This result is tightly related to the conjecture made in [15], and formally proven by [47] and
[22], who show that a monopolist with constant marginal costs selling a durable good to
a continuum of consumers will actually behave competitively, in the continuous-time limit,
and not extract any monopoly rent. The argument, in the context of the sovereign default
model with a risk-neutral government, works as follows: without commitment, no matter
how many bonds the government sold in the past, the government will sell more bonds if
there are marginal gains from doing so (in other words if those bonds can be sold at an
implied interest rate strictly less than 9§, i.e. if dD(Y, F) > —0pV(Y, F)). But investors
perfectly anticipate this behavior and thus price the bonds at an implied interest rate of §,
therefore stripping away any potential welfare gain that the government may extract from
facing financiers that discount cash flows at a rate strictly less than ¢.

Note that this result is purely due to the continuous-time nature of my model; as high-
lighted by [47] and as (unreported) computations illustrate, the discrete time counterpart to
this model would yield strictly positive welfare gains for the risk-neutral government. Having
a non-zero time period during which the government can commit not to issue bonds is crucial
in obtaining such result. Similarly, in the case of a risk-averse government, the result above
will no longer hold: the concavity in the flow payoff function will be such that the govern-
ment will extract welfare gains from issuing bonds to investors whose implied interest rate is
lower than the government’s rate of time preference. The country’s welfare, sovereign bond
prices and default boundaries will again depend on the level of risk-free rates and prices of
risk: since the government dislikes high levels of consumption volatility, its financing policy

will not fully adjust to keep sovereign bond prices unchanged; instead, the adjustment will

39



be partial. This result is analogous to what is showed theoretically in [28] in the context
of the durable goods monopoly problem: rents can be extracted by the monopolist if its
marginal production costs are increasing.

As a consequence of proposition 9, changes in the supply-side of capital lead the gov-
ernment to adjust its financing policy in such a way that sovereign bond prices and welfare
remain unchanged: with higher risk-free rates or higher prices of risk!?, the higher financing
costs borne by the government are exactly compensated by a lower pace of debt issuances.
This translates into an upward adjustment of the country’s current account and trade bal-
ances, causing an endogenous sudden stop. In the context of an increase in the price of risk,
the magnitude of the current account reversal is high when the debt-to-GDP ratio of the
country is high. The financing policy of the government is also interesting to study since it
highlights the fact that when bond investors are risk-neutral (i.e. when the price of risk is
identically zero), the issuance policy of the government is always positive: it is never efficient
for the government to buy back debt. This result echos an insight from [12] who show, in
the context of a one-period model of sovereign default with a risk-neutral government and
risk-neutral lenders, that it is never welfare-improving for a country to buy back its own
debt. This result breaks down in the presence of risk-averse lenders, whose price of risk
has a positive correlation with the country’s endowment process: in such case, equation 1.38
shows that there are parameter configurations where, for high debt-to-GDP ratios, the coun-
try does find it optimal to buy back its own debt. For this to be the case, the parameters of

the model need to satisfy the following condition:

ang (1-651) o
<
S+ A—pu—ab\ 06—y

o -V

In other words, if either the price of risk |v;| is sufficiently high, or the GDP drop upon

default 1—q« is sufficiently severe, or the risk-free rate r; is sufficiently close to the government

10. This discussion assumes that the price of risk is positively correlated with the GDP process in all SDF
states (i.e. v; -0 > 0).
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discount rate 9, it is sometimes optimal for the government to buy back debt. The key to this
result is the fact that the probability measure under which investors discount cash-flows (the
“risk-neutral” measure) is different from the probability measure (the “physical” measure)
under which the government optimizes. A different interpretation of this result can be put as
follows: persistent differences in beliefs about the growth rate of the country’s endowment
(where investors would be more “pessimistic” than the government) would also lead the
government to buy back debt when the debt-to-GDP ratio of the country is high.

Finally, the expected excess return earned on sovereign bonds is increasing in the debt-to-
GDP ratio, confirming the ability of the model to replicate — at least qualitatively — empirical
fact (8). In environments with constant risk-free rates, while an increase in the price of risk
induces a sudden stop, sovereign bond prices remain unchanged, leading to sovereign credit
spreads that are not reacting to these worse capital market conditions. Finally, the closed-

form expressions of proposition 9 allow me to derive the following comparative static results.

Corollary 10. The default boundary x is decreasing in the impatience parameter d, decreas-
ing in the coupon rate Kk, increasing in the GDP haircut post default 1 — «, increasing in the

haircut parameter 0, decreasing in the expected autarky time 1/\.

One particular comparative static result worth highlighting is the fact that the default
boundary (as well as the country’s welfare) is decreasing in the coupon rate . This will
have its importance when I analyze the Latin American debt crisis of the early 1980s —
at that time, most of the sovereign debt contracted by these small open economies was
structured with variable coupons indexed to US short term rates. As will be seen in section
1.7, the increase in short term rates creates a current account reversal that is magnified by

the contractual structure of sovereign debt at the time.
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1.5 Applications

1.5.1 Numerical Illustration and Comparative Static Results

Before estimating my model for a set of countries of interest, I first provide some comparative
static analysis, in order to gain some intuition about the role of certain model parameters.
To facilitate this investigation, I shut down for now the multiple SDF regimes, and analyze
the effect of certain model parameters in an environment where there is only one SDF regime.
I solve the model numerically using a Markov chain approximation method, as described in

details in section A.3.

Calibration
Parameter Value Description
1/p 0.5 IES
0 5 Risk aversion
0 0.2 Rate of time preference
1 0.035 GDP growth rate
lo| 0.04 GDP growth volatility
-« 0.04 GDP % fall at default
/A 5 Capital markets’ exclusion (years)
0 0.50 Debt-to-GDP upon autarky exit
r 0.05 Creditors’ risk free rate
4 0.625 Creditors’ market price of risk
corr(v,o) 0.50 Business cycle-risk price correlation
1/m 7 Debt average life (years)
K 0.05 Debt coupon rate

Table 1.1: Calibration Parameters

Table 1.1 highlights the base case parameters I use for this comparative static analysis. I
select model parameters that are meant to represent the “average” emerging market economy
of the dataset studied in the online appendix. More specifically, the table “Country-Specific
Macro Moments” in the online appendix, constructed using data from the World Bank,
shows that the average real GDP growth rate for the countries in my dataset is 3.5% p.a.,

and the average real GDP growth volatility is 4.1% p.a., leading to the parameters p and o
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in Table 1.1. In the same online appendix, the table “Bond Issuance Average Maturities”
shows summary statistics for a dataset of foreign currency sovereign bonds I collected from
Bloomberg!!; according to such table, the average original maturity date of sovereign bonds
issued by my sample of 27 emerging market countries is 13.8 years. Since a country consis-
tently rolling over 13.8-year original maturity bonds has a debt average life of 6.9 years, I pick
1/m = 7 years. I select jointly the default punishment parameter 1 — « and the rate of time
preference ¢ to approximately match two moments of the data: the average debt-to-GDP
ratio (equal to 50% for the set of countries of focus, as indicated in the “Country-Specific
Macro Moments” table in the online appendix), and the average 5yr CDS premium (equal
to 395bps for the set of countries of focus, as indicated in “Country-Specific Debt Price Mo-
ments” table in the online appendix). This procedure yields a permanent output drop upon
default of 1 — a = 4%12, and sovereign rate of time preference § = 20%. According to [52],
it takes 4.7 years post-default for a country to regain access to capital markets, leading me
to pick 1/\ = 5 years. [8] find a mean creditor haircut following a sovereign default of ap-
proximately 40%. Since my model assumes that the face value of debt at exit from financial
autarky is equal to 8Y; .. /Y, _ times the face value of debt pre-default, the model-implied

face value haircut is equal to:

ab )\
o)

I thus pick 6 = 0.50, leading to a model-implied average creditor haircut of 42%. I choose an

1 — 0aE [e(“_%az)%} =1-

inter-temporal elasticity of substitution equal to 1/p = 0.5 that is consistent with the inter-

11. For all countries in the data-base I construct, I download all bonds listed on Bloomberg and issued by
such country. T only keep in my data-base foreign currency bonds denominated in either EUR, GBP, USD,
JPY or DEM. I also exclude bonds whose original notional amount is less than USD 100mm, whose original
term is less than 1 year or greater than 50 years, or bonds with non-fixed coupon rates. The list of remaining
bonds is available upon request.

12. Note that estimates of output drops following a sovereign default vary vastly across the empirical liter-
ature: [27] for example calculate the cost of Argentina’s sovereign default to correspond to 9.4% permanent
reduction in output; [5] use a (transitory) cost of default of 2% of output in their model, citing evidence
from [45], who calculates an 8% decline in international trade following a sovereign default.
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3 and a risk-aversion parameter 4 = 5 that is consistent

national business cycle literaturel!
with the asset pricing literature. Risk-free rates are set at 5% p.a., and I pick a sovereign
debt coupon rate of 5%, which means that (a) the risk-free value of government debt is 1,
and (b) the sovereign debt always trades at a discount to par. The magnitude of the risk
price v is set at the ergodic mean risk price of [33] (the pricing kernel I will use later on
when incorporating multiple SDF states). In a model with one risk price state (and therefore
no SDF jumps), |v| corresponds to the highest Sharpe ratio attainable by any asset priced
by international investors (see [23])!14. To start with, I assume a correlation between the
creditors’ risk price and the government’s output process of 50%, and will discuss how this
correlation affects equilibrium outcomes in section 11 (of course in this simple model, vary-
ing this correlation and keeping risk prices constant is equivalent to keeping this correlation
constant and varying risk prices). In all the figures I will be discussing, I plot in dotted
lines the ergodic distribution of the state variable z; in order to focus my attention on the
sub-interval of the state space where I expect to see most of my model-implied observations.
This ergodic distribution is obtained via integrating a set of Kolmogorov forward equations,

as section A.1.14 reveals. In the case of a unique SDF regime, the ergodic distribution admits

the following semi-closed form expression:

Lemma 11. In the absence of multiple SDF' states, the ergodic distibution f takes the fol-

lowing form:

fl) = fe% exp [fxt Mi%z ((m+ p)s —u(s)) ds] |U2‘§t2 dt if x € [0,07)

ff exp [f; MLQSZ ((m+ u)s — u(s)) ds] |02\§t2dt if v € (0%, )

The constant G is pinned down by the condition fo‘f flz)de =1 where T'(x) is

1
I ESVE(K

13. [3], [5], [6] all use an IES of 0.5.

14. Note that this 62.5% maximal Sharpe ratio is slightly higher than the unconditional Sharpe ratio of
40% obtained for US equities — computed using an historical average of US equity market excess returns of
6%, and a yearly volatility of 15%.
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the expected default time conditional on the initial debt-to-GDP ratio being equal to x.

Base Case Calibration Equilibrium

Target/
Moment Notation Value Historial Value
default boundary T 56%
mean debt-to-GDP E [x4] 52% 50%
stdev debt-to-GDP stdev [x] 3% 24%
consumption-output vol ratio  vol (Cy) /vol (V%) 1.94
default rate (1/X\+T(6z)) " 2.8% p.a.
bond spread E [¢(x¢)] 365 bps p.a.
5y CDS spread E [¢(x¢,5)] 414 bps p.a. 407 bps p.a.
5y-1y CDS slope E [¢(x¢,5) — s(z¢,1)] 60 bps p.a. 72bps p.a.
bond excess return E [dRﬂ 164 bps p.a.
bond return volatility stdev [de] 525 bps p.a.
5y CDS excess return E [dR;B} 230 bps p.a. 508 bps p.a.
5y CDS return volatility stdev [deﬁw 732 bps p.a.

Table 1.2: Base Case Calibration Results

In Table 1.2, I display the key model-implied moments of interest, as well as the target
and historical values for the “average” of my 27 countries in the online appendix. The
base case calibration results in an optimal debt-to-GDP default boundary z = 56%, an
ergodic mean debt-to-GDP ratio of 52% and an ergodic debt-to-GDP distribution standard
deviation of 3.0%. In figure 1.2, I plot the issuance policy ¢ and the resulting trade balance.
The issuance policy is a decreasing function of the debt-to-GDP ratio, positive but reaching
levels close to zero at the default boundary. It is important to keep in mind that these
represent gross issuances, before taking into account any debt amortization. In figure 1.2a,
the dotted blue line represents the locus of points (,u +m— |a|2) x, i.e. the required value
of «(z) such that the drift rate of z is zero. It is immediate to notice that the debt-to-
GDP ratio is a mean-reverting variable — its drift rate is going to be positive for values of
x on the left of the intersection of the solid and dotted blue lines and negative on the right

side of such intersection. The resulting trade balance (as a fraction of GDP) is equal to
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Figure 1.2: Government Financing Policy and the Trade Balance
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1 —c(x) = (k+ m)x — o(z)D(z). It is negative for low debt-to-GDP levels and positive
otherwise. Thus, consistent with the overwhelming data for emerging market economies, the
trade balance in this model is countercyclical.

Since the consumption-to-output ratio ¢(z) is a decreasing function of the debt-to-GDP
ratio, using equation 1.34 it is immediate to see that the model generates a consumption
growth volatility that is greater than output growth volatility, an empirical regularity of
the data. For the parameters selected, 1 obtain an ergodic consumption growth vol to
output growth vol ratio of 1.94, which is in line with several emerging market economies, as
documented in [4]15. Note also that consumption growth and output growth are perfectly
correlated (at least locally) in a model with one SDF regime, which is obviously counter-
factual — the model featuring multiple SDF regimes breaks this result.

I plot the sovereign bond price and the sovereign spread in figure 1.3. The ergodic mean

credit spread of the exponentially amortizing bond is equal to 365bps p.a., and the ergodic

15. They find a ratio of 1.38 for Argentina, 2.01 for Brazil, 2.39 for Ecuador, 1.70 for Malaysia, 1.24 for
Mexico, 0.92 for Peru, 0.62 for the Philippines, 1.61 for South Africa, 1.09 for Thailand and 1.09 for Turkey.
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Figure 1.3: Government Bond Prices and Spreads
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credit spread volatility is equal to 132bps p.a. This ergodic mean credit spread volatility is
higher than what is obtained by [3] and the difference stems from the much lower average
maturity of sovereign debt (2 years) this latter article assumes, compared to the 7-year
average life debt in the data for my countries of interest.

Focusing on figure 1.3, bond prices decrease with the debt-to-GDP ratio, while bond
spreads increase. Even at low debt-to-GDP ratios (i.e. lower than the ergodic debt-to-
GDP mean), sovereign spreads are far from negligible. When the sovereign has no debt
outstanding, sovereign spreads are strictly positive — a simple manipulation of equation 1.20
shows that the sovereign spread at x = 0 verifies:

1(0)D'(0)

o)

This equation highlights the role of future debt issuances (and the implicit dilution risk
associated with those future debt issuances): at low debt-to-GDP ratios, creditors perfectly
anticipate that the government will be issuing large amounts of debt (since the government
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Figure 1.4: Credit Default Swap Premia
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is impatient), leading them to price bonds at a discount that reflects such dilution risk.

I then focus on credit default swap premia ¢(z,7"). While the government uses 7-year
bonds to smooth and front-load consumption, my model allows me to compute the premium
¢(x,T) of CDS contracts at any time-horizon T, as discussed in section 1.3.5. The numerical
procedure to solve the relevant PDEs is described in details at the end of section A.3. I plot
CDS premia in figure 1.4a for 1-year, 3-year and 5-year contracts, and I plot in figure 1.4b
the 5y-1y slope. CDS premia for short-dated contracts are close to zero when the debt-to-

GDP ratio is far away from the mean ergodic debt-to-GDP ratio, highlighting the fact that
at such low debt-to-GDP levels, the sovereign slowly increases its indebtedness, such that
1-yr credit instruments are almost risk-free. The 5-year CDS premium ¢(z,5) resembles the
credit spread of the exponentially amortizing bond ¢(z) used by the government to finance
itself, since the average life of this bond is 7 years. Lastly, the term structure of credit
spreads becomes inverted as the sovereign approaches its default boundary. This property

of my model ends up being a very general property of default models that are structured
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Figure 1.5: Expected Excess Returns and Bond Price Elasticity
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as “first-hitting-time” models, where the state is mean-reverting and has continuous sample
paths. This feature of the model also fits with stylized fact (5).

I plot in figure 1.5 the bond expected returns and the bond price elasticity. Expected
excess returns are non-zero, since I have used a pricing kernel that co-moves with the coun-
try’s output process: the unconditional expected excess return is equal to 1.64% p.a., while
the unconditional return volatility is equal to 5.25% p.a. Expected excess returns increase
with the debt-to-GDP ratio, since the bond price function’s elasticity increases with the
state variable x — this is the model counterpart to fact (8) in the data. I plot the bond price
elasticity %;()x) in order to get a better understanding of the magnitude of the sovereign
bond’s US equity market beta — this will help me understand whether my model stands a
chance at generating the magnitude of expected excess returns observed in the data. In the
one-state SDF model, conditional expected excess returns are equal to %;gx)a -v. The

risk prices will be time-varying in the full model, but will on average be equal to 62.5%.

Most of my countries of interest have GDP volatilities of the order of 4%, meaning that at
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best, an emerging market output’s risk premium is equal to o - v ~ 2.4%. In this one-state
SDF model, the bond price elasticity has an ergodic average equal to 1.33. Thus, at best (in
other words when corr (v, ) = 1), the ergodic mean excess return will be equal to 3.3% —
high, but not quite sufficient to reach the unconditional expected excess returns in the data
for certain countries such as Brazil or Hungary for example.

I end this section by focusing on the historical measure. When the country emerges
from financial autarky, it has a debt-to-GDP ratio 6z = 28.5%, and it takes such country
on average 24 years to default on its debt, once it has exited from autarky. The sovereign
default frequency under the physical measure is thus equal to 2.8% p.a. — slightly higher
than the unconditional estimate of 2% cited in multiple studies, but this measure is of
course extremely difficult to estimate accurately in the data given the low frequency nature
of sovereign defaults!®.

After having investigated some of the key outputs of the model in the base case parametriza-
tion, I now study the impact of the model parameters on various endogenous quantities of
interest. This comparative static analysis will be used in my estimation in order to provide

identification for a subset of parameters of my model.

Comparative Statics

Table A.1 is a summary of the comparative statics with respect to several parameters of the
model. These comparative statics are performed starting from the base case parametriza-
tion of Table 1.1. In the table, I compute the elasticity of the moment of interest w.r.t. the
parameter of interest; blue numbers correspond to positive elasticities, red numbers corre-

spond to negative elasticities. As an example, if one focus on the ergodic debt-to-GDP mean

16. It is also worthwhile noting that this historical default frequency is high due to the assumption that
the loss severity suffered by bond investors in connection with a sovereign default is not 100%. In the
discrete time literature on sovereign defaults, barring a few exceptions, most papers assume that creditors’
loss severity upon a sovereign default is 100%. In the case of creditors’ risk-neutrality, this automatically
causes the level of credit spreads to be close to the level of historical default intensities; if instead a recovery
R is realized by creditors, the historical default intensity would be approximately 1/(1— R) times the average
sovereign credit spread.
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and the variation of such mean w.r.t. the impatience parameter §, the elasticity is equal

m(;ll;}i[gt] = —0.56, meaning that a 10% increase in the value of the parameter 0 leads to

to
5.2% decrease in the ergodic mean debt-to-GDP ratio. These elasticities are closely related
to the covariance matrix of parameter estimates that will be calculated as part of my model
estimation.

The GDP drop upon default 1 — « has a significant impact on government behavior —
specifically on the debt-to-GDP ratio at default, its ergodic mean and standard deviation.
An increase in the default punishment incentivizes the government to support higher levels
of debt in equilibrium, a result already known in the literature using discrete time models.
The magnitude of the sensitivities are not surprising: my output process being a geometric
Brownian motion, any downward GDP drop is a permanent shock that is translated into
large welfare losses. Since the default boundary increases with the magnitude of the GDP
drop post-default, the government issuance policy adjusts upwards, via an almost-parallel
shift.

As the government becomes more impatient (i.e. as 0 increases), it tends to front-load
consumption when it is not significantly indebted. The impatient government thus has a
debt issuance policy with a steeper slope than the patient government, and the optimal
default boundary is lower for the former than for the latter. With an impatient government,
creditors take into account the dilution risk and price the debt more punitively than in the
situation where the government is patient, which leads to higher credit spreads, and a much
steeper byr-1yr spread slope. The long-run mean spread volatility is higher, which leads to
significantly higher risk-premia.

My framework allows me to investigate the separate roles of risk-aversion and inter-
temporal elasticity of substitution in the government’s decision problem — an analysis that the
international macroeconomic literature has not focused on so far. An increase in risk-aversion
tends to decrease the debt issuance rate, due to a greater precautionary savings motive.

It also increases the incentive to default, since welfare costs of business cycle fluctuations
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increase with the level of risk-aversion, and since consumption volatility is greater than
output volatility in this class of models. Thus, the equilibrium default boundary is lower
with a more risk-averse government.

Increases in GDP volatility decrease the equilibrium debt-to-GDP default boundary.
Once again, this is due to the increase in the incentive to default, since welfare costs of
business cycle fluctuations increase with the GDP volatility, and since consumption volatil-
ity is greater than output volatility. The mean bond spread increases significantly, since if
one keeps the government financing policy unchanged, a greater GDP volatility increases
the default barrier hitting probabilities (of course there will be an equilibrium response by
the government, which will reduce its debt issuances). A greater GDP volatility increases
bond spread volatilities, and as expected the sovereign bond risk-premium is materially
higher. More surprisingly, a greater GDP volatility does not lead to a meaningfully wider
debt-to-GDP distribution, as illustrated by the low sensitivity of stdev [x¢] to |or|. This is
disappointing since it suggests that stochastic volatility will not rescue one fundamental
weakness of this class of models: the fact that the model-implied ergodic debt-to-GDP dis-
tribution is a lot thinner than the one observed in the data — the latter being computed and

displayed in table “Country-Specific Macro Moments” in the online appendix.

Breaking Down Governments’ Cost of Financing

In order to better understand the impact that SDF regime shifts will have on equilibrium
outcomes, I look at the comparative static w.r.t. v in more details. Higher risk prices in-
crease sovereign spreads, lower government bond prices, leading the government to adjust
its issuance policy downwards. Higher creditors’ risk prices also cause the sovereign govern-
ment to default at lower debt-to-GDP levels — although the adjustment is relatively small.
This mechanism leads, in a multi-SDF-regime version of my model, to jump-to-default risk,
induced by risk prices jumping from one level to another (higher) level. When comparing

credit spreads for v = 0 to credit spreads with strictly positive risk prices, one might want to
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Figure 1.6: Credit Spread Decomposition

interpret the spread differential between those two parameter configurations as the “spread
premium” that a sovereign government is paying to its creditors above and beyond what
would be actuarially fair. This is not exactly the case since the government endogenously
reacts to those higher risk prices by altering its issuance and default policies.

I thus look at the following credit spread decomposition: starting from the equilibrium

without risk-pricing, I first adjust risk prices to || = 0.625 (and under the assumption that

v-o
Vo]

= 0.50) and re-compute sovereign debt prices and spreads, keeping the government’s
issuance policy constant. I then adjust the government’s issuance policy to reflect such
government’s “best response” to this new debt price schedule. I will use this decomposition
in section 1.6 in order to compute the cost borne by governments when issuing bonds to risk-
averse (US-based) investors. As discussed, this cost cannot be computed by simply evaluating
the average excess return paid to creditors for taking on sovereign credit risk, given the fact
that sovereign issuance policies depend on investors’ risk attributes; a counterfactual analysis
is required to decompose this sovereign financing cost.

The result of such decomposition is illustrated in figure 1.6: the credit spread function
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plotted in red is the spread under the intermediate step where risk prices are set to 0.625
but where the government issuance policy has not reacted yet. figure 1.6 shows that positive
risk prices alone act as a powerful force to push credit spreads wider. Indeed, when |v| is
increased from zero to |v| = 0.625 (and the issuance policy is not adjusted), the drift rate of
the state variable 2 increases by o -v ~ 0.5x0.04 x0.625 x 0.5 = 0.625% per annum (using
the ergodic debt-to-GDP ratio for z; and the assumed 50% correlation between risk prices
and GDP), and the credit spread is wider by 233bps p.a. on average (this can be seen in the
plot by the upward shift from the curve v = 0 to the curve v = 0.625%). But the government
responds by adjusting its issuance policy downwards, defaulting at a lower debt-to-GDP
burden, and the resulting credit spreads ends up wider by “only” 101bps p.a. on average
(using the ergodic distribution with risk-pricing). In other words, in this simple calibration,
101/360 =~ 28% of total financing cost of the government is attributable to investors’ risk
aversion. For my panel of countries of interest, as will be seen shortly, this cost will turn out

to be very close to 30%.

1.6 Structural Estimation

1.6.1 Procedure

I select a subset of N = 8 countries out of the set of 27 countries discussed in the online
appendix and for which I have the longest time-series data available. My subset consists
of Brazil, Bulgaria, Hungary, Indonesia, Mexico, Philippines, South Africa and Turkey. My
model with SDF regime shifts has a large number of parameters to determine. I am going
to impose restrictions on those parameters as follows. First, I will use a pricing kernel
specification widely used in the asset pricing literature to rationalize properties of US equity
market returns: the pricing kernel of [33], originally built to explain (amongst other things)
the value premium. This SDF features a constant risk-free rate (2% per annum), and risk
prices that follow an AR(1) process. Section A.4 provides a detailed description of the
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properties of this SDF, as well as the method I use to transform the original continuous-
state specification of [33] into a discrete state continuous-time Markov process {vs,}i>0,
using a numerical procedure based on matching conditional and unconditional moments of
the original model and the approximating model. This gives me the risk free rates {r;};<n,,
risk prices {v;}i<n,, the matrix of intensities A as well as the SDF jumps {v(4,7)}; j<n,-
I choose a number of states Ng = 5 in order to be able to solve for a single equilibrium of
my model in a few minutes of computing time. My risk prices {v;};<x, are equally spaced
between 0% and 150%, with an ergodic mean of 62.5%.

The remaining parameters to estimate are country-specific. For simplicity and due to the
small number of GDP data points available, I will assume that for each country of interest,
expected consumption growth, consumption growth volatility and the correlation between
the country’s output process and the SDF risk price do not change with SDF regime shifts, in
o™y, o,

other words for each country n, pu?* = ", o™ = o™ and —4 =47
yn, by = KRy, 04 J o3 llvil o lvsl

for any pair of SDF
states 7, 7. I will also assume that the sovereign government has time-separable preferences,
in other words I will assume that 7" = p" for each country n. A few other parameters
are calibrated using a-priori evidence. I will leverage the average original maturity of bonds
issued by each country (as documented in the “Bond Issuance Average Maturities” table
in the online appendix) in order to calibrate the debt parameter m' for country nl7. The
expected time spent in financial autarky 1/A and the parameter 6 governing the debt-to-GDP
post-autarky are kept at their values in table 1.1 and are thus not country-dependent. For
each country n, my estimation will then pin down the GDP growth p”, GDP volatility |o

"
?

the preference parameter v = p', the correlation between GDP and the risk price vector

vo™
o™

the GDP drop upon default 1 — o' and the rate of impatience 0". The following

6 moments will be used in my estimation. First, the first difference mean and standard

deviation of log output will provide information on x" and |e™|. Unconditional expected

17. A country consistently rolling over T-year original maturity bonds has a debt average life of T'/2 years;
for such country I thus use A =2/T.
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excess returns on 5y CDS contracts will then provide information on the correlation between
country n’s output and risk prices. Finally, the level of 5y CDS premia, the mean debt-to-
GDP ratio and the term structure slope (i.e. the difference between 5y CDS and ly CDS
spreads) will jointly provide information on 1 — o', " and 7.

My simulated method of moment estimation follows closely [30]. I note H = % Zthl hy
the px 1 vector of target moments in the data, and H;(©) = % Zthl h ({2} <N, st; ©) the
corresponding p X 1 vector of moments generated by the kM simulation of my model. I use
K = 1000 simulations, and note H(©) = % Zszl H;.(©) the sample average of moments
generated by my model across the K simulations. For each simulation, I use an identical

seed and generate 2T years of data, burn-in the first T years, keeping only the simulated

data for the last T" years. I minimize the criterion function:
O = arg min (H —H(©) W (H —H(O))

. . . -1 . . . .
I use the diagonal matrix W = (dlagi (H 22)) as my weighting matrix, to penalize propor-
tional deviations of the model-implied moments from their data counterparts. I compute the

asymptotic covariance matrix of my estimator as follows:

N 1\ (OH oM\ oM . OH (OH OH\
Ol==|1+= ||z W=— —WOW = | == W—=
covar (6) T< +K> (a@ 8@) 26 26 (a@ a@>
In the above,  is a consistent estimator of the long run covariance matrix of the moment

conditions Q =327 K [(ht —E[hg]) (ht—j — E [ht_j})l]. Since my moments of focus are

j=—o0

computed using different data sets, over different time periods and with different frequencies
of data available, computing a consistent estimator of  (using [41] for example) is difficult.

Thus, instead, I compute an estimator of {2 using the null of my model:

1 K

QO) =2 > (Hy () —H(9)) (Hy, (0) —H (9))
k=1
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Under the null hypothesis, Q(@) is a consistent estimator of (2.

1.6.2 Results — the Case of Brazil

In table A.2 and table A.3, I first display the parameter estimates, then the target and model-
implied moments, and finally additional moments that were not targeted in my estimation.
I display in figure 1.7, 1.8 and 1.9 the equilibrium outcome for Brazil. In the highest risk
price state, Brazil defaults at a debt-to-GDP ratio of 34.8%, whereas in the lowest risk price
state, it defaults at a debt-to-GDP ratio of 36.3%, illustrating the relatively small impact of
risk prices on optimal default boundaries.

figure 1.7 highlights the endogenous response of Brazil’s financing policy, trade and cur-
rent account balance to changes in international financial market conditions. Upon an in-
crease in the price of risk, its bonds trade at steeper discounts, inducing Brazil to reduce its
debt issuances. Jumps from the lowest risk price state to the highest risk price state lead to
a large adjustment to the current account and trade balances of approximately 4% of GDP.
Thus, increases in international risk prices constitute an endogenous mechanism for gener-
ating sudden stops. Across my model economies, the adjustment in the trade and current
account balances varies beween 3% and 5%. While this is not sufficient to explain the full
adjustments observed in South East Asia post 1997 in connection with the Asian Tiger crisis
(as illustrated in figure A.4), those adjustments are nonetheless material. The mechanism
used to generate endogenous sudden stops in this paper thus differs from the more standard
channel that has been investigated in the past by the international macroeconomics litera-
ture — occasionally-binding borrowing constraints in RBC models, such as those featured in
[38] or [39], and which depress investment and output when the small open economy suffers
a sequence of bad fundamental shocks and bounces against such constraint.

Figure 1.8 then shows that 5yr CDS levels jump up with transitions from low risk price
states to high risk price states — at the mean of the debt-to-GDP ratio ergodic distribution

for example, 5yr CDS jumps by more than 300bps between the lowest and the highest risk
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Figure 1.7: Brazil — Equilibrium Quantities
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price states. The term structure of credit spreads may invert for two reasons according to
figure 1.8b: either following a sequence of bad fundamental shocks that push Brazil’s debt-
to-GDP ratio closer to the relevant default boundary, or upon an upward shift in risk prices.
This feature of the model is thus consistent with the data, as suggested by facts (5) and (6).

figure 1.9 illustrates aspects of my model that are consistent with facts (7) and (8).
Indeed, one can see that CDS expected excess returns increase with the debt-to-GDP ratio,
which was expected given that the elasticity of the bond price function is increasing in the
debt-to-GDP ratio (this is fact (7)). In addition, longer-term CDS contracts earn higher
excess returns than shorter-term CDS contracts, for a given debt-to-GDP level and a given
risk price level (this is fact (8)). This effect is due to the risk exposure of CDS contracts,
which is increasing in the tenor of such contract.

table A.2 and table A.3 indicate the estimated average bond spread (for the exponentially
amortizing long term bond issued by each small open economy), as well as the average bond

spread that would prevail if investors were instead risk-neutral (in row titled “Bond spread

o8



1000

800

Syr CDS (bps p.a.
y400 (pﬁdoo )

200

) 1000

800

6800

Syr CDS expected excess return (bps p.a
Y 200 P 400 (oBsP

0

Figure 1.8: Brazil — Equilibrium Credit Spreads

0.30 0.32 0.34 0.36

" debt-to-GDP ratio

(a) byr CDS contract premium ¢s(x, 5)

400
1 1 1

1

5yr—_1236rOCDS sIoB)e (bps pé%.g

-400
L

v=0%
v=38%
v=75%

v=113% .7

——————— v =-150%

0.30

0.32 0.34
debt-to-GDP ratio

(b) CDS slope ¢s(x,5) — ¢s(x, 1)

Figure 1.9: Brazil — Equilibrium Credit Returns

— v=0% B

— v=38% N
v=75% / !
v=113% : i
v=150% ,J 1

0.30 0.32 0.34 0.36
debt-to-GDP ratio

(a) byr CDS expected excess return

600 800 )1000
! 1 ]

400
1

5yr—1g65.‘.|35 excess return slope (bps p.a.
1

v=0%
v=38%
v=T75%
v=113%
v=150%

0

(b) byr - 1yr CDS expected excess return differ-

ential

29

T T
0.32 0.34

debt-to-GDP ratio

1
0.36



— RN model”). The difference between those two spreads can thus be viewed as the excess
compensation paid to sovereign debt investors for taking on risks that are correlated with
those investors’ marginal utility process. On average, approximately 30% of the credit spread
paid by sovereign governments above and beyond the risk free rate is attributable to investors’
risk aversion.

As table A.2 and table A.3 indicate, my estimation leads to target model-implied moments
that are relatively close to the data, except for the 5y CDS expected excess return. That
moment turns out to be particularly difficult to hit: indeed, for most small open economies
in my sample, the estimated correlation between the GDP process and the risk price vector
has to be 100%, and model-implied bond and CDS expected excess returns are below those
in the data. High levels of correlations between the risk price vector and the GDP process
of small open economies also lead to counterfactually high cross-country GDP correlations,
another negative consequence. In my model, either risk prices or risk exposures are too low.
Whereas risk exposures are functions of the state variables and depend on the deep model
parameters, risk prices are taken from the SDF of [33], using the observation that the CAPM
is not rejected (meaning that US investors seem to be marginal in sovereign credit markets).
One way to address the issue of low model-implied expected excess returns would be to
add, as part of the estimation, all the SDF parameters. This turns out to be a numerical
challenge, which I plan on tackling in subsequent research.

In addition, the debt-to-GDP ergodic distributions generated by the model have much
smaller variances than in the data, even in the presence of time-varying risk prices. The
small variance of the model-implied debt-to-GDP ergodic distribution is mostly due to the
low volatility (in absolute terms) of GDP shocks suffered by my small open economies of

18

focus One might have conjectured that time-varying risk prices, and thus regime spe-

cific default boundaries, will increase the variance of the ergodic debt-to-GDP distribu-

18. While the GDP volatilities of my small open economies of focus are larger than those of developed
economies, the absolute level of such volatilities has a first order impact on the variance of the ergodic
debt-to-GDP distribution.
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tion. Unfortunately, the optimal default boundaries do not strongly react to the presence of
regime-specific risk prices, since the government adjusts its issuance policy to reflect differ-
ent credit market conditions. Making the sovereign output volatility o time varying would
help slightly, as suggested by some (unreported) experimentation I ran, but would in no
way enable the model-implied distribution variances to match those of the data: as table
“Country-Specific Macro Moments” in the online appendix indicates, the standard deviation
of the empirical ergodic debt-to-GDP distribution for my countries of focus is approximately

25%, which is an order of magnitude larger than those obtained in my model.

1.7 The 1980’s Latin American Debt Crisis

In this section, I illustrate the flexibility of my framework by studying the 1980’s Latin
American debt crisis. For a variety of reasons documented in multiple historical studies (see
for example [18] or [14]) Latin American governments borrowed heavily during the 1970s,
partly as a consequence of an increase in the supply of loans from US banks recycling petro-
dollars, partly to take advantage of historically low real interest rates in the US, and partly
as a consequence of the need to finance large current account deficits following the two oil
price shocks of 1973 and 1979. Latin American sovereign debt increased by an average of
24% per annum between 1970 and 1979, therefore substantially increasing those countries’
debt-to-GDP ratios. The largest sovereign borrowers during that time period were Mexico
and Brazil. The World Bank estimates that two third of that debt was in the form of USD-
denominated, long-term, syndicated bank loans whose interest rate was indexed to LIBOR,
thereby making sovereign governments’ financing costs directly exposed to the US dollar
and US monetary policy. In the early 1980s, the Federal Reserve aggressively increased US
short term rates to fight domestic inflation, causing the US dollar to appreciate against most
currencies, and causing LIBOR rates to skyrocket. In August 1982, as T-bill rates were

approaching 16%, Mexico announced that it could no longer meet its debt service payments;
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by the end of that year, 40 other nations, including Brazil, Venezuela and Argentina, had
defaulted on their sovereign debt.

My model allows me to perform a “lab experiment” on this historical period. Indeed, it is
straightforward to change the debt contract structure that the sovereign government enters
into from fixed rate contracts to floating rate contracts. Thus, let me now assume that the
sovereign issues floating rate debt indexed to the risk free rate rs,, which evolves according
to a discrete state Markov process with generator matrix A. In other words, coupon rates
paid by the government are time varying, and equal to ks, = rs, in state s;. The government

resource constraint (out of financial autarky) becomes:
Cy = Yr + It Dt — (ks +m)Fy

Debt prices and the life-time utility function for the government satisfy second order ordinary
differential equations similar to those presented in section 1.3.4, but appropriately modified
to account for the floating rate nature of sovereign debt. Default optimality is still obtained
by a set of smooth-pasting conditions. It is worthwhile noting that the price of a risk-free
debt instrument that amortizes exponentially and pays a coupon of rg,dt for t € [t + dt] is

equal to:

~

(0.9]
E {/ e fg(rqurm)du(rSt +m)dt|F| =1
0

In other words, the price of risk-free floating rate debt in this set up is always par, and any
credit-risky floating rate instrument (where the coupon paid is equal to the floating rate
benchmark) will trade at a discount to par.

In order to compute US short term real risk-free rates, I proceed as follows. I download
the US one-month T-bill rate from Ken French website; this will be my time series of US
nominal short term risk free rates. I download the consumer price index (CPIAUCSL) from
the Saint Louis Fed website, and compute expected inflation by using the one-month ahead
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inflation forecast generated from a univariate AR(5) of inflation estimated using the previous
10 years of inflation rates. I then subtract my measure of expected inflation from the nominal
rate in order to obtain a measure of real short term interest rates. The US nominal and real
short term interest rates obtained are plotted in figure A.1. I then use the time series of US
short term real rates in order to estimate the generator matrix A, after having discretized the
interest rate process into a 4-state Markov process taking values (0%, 2%, 4%, 6%)19. The
time series of US real short term interest rates as well as the discrete state Markov process
approximation are plotted in figure A.2. On average, s; spends 35% of the time in the 0%
interest rate state, 49% of the time in the 2% interest rate state, 12% of the time in the 4%
interest rate state and 4% of the time in the 6% interest rate state.

For this exercise, I use model parameters as in table 1.1; while I assume that creditors’
short rates are stochastic, I assume no risk-premia, in other words vs = 0 and v(s,s’) =0
for all pair of states s,s’. I then solve numerically the model for two separate contractual
structures of sovereign debt: first, when the coupon rate on the debt is indexed to US risk
free rates (which is the relevant case for Latin American economies in the early 1980’s), and
second, when the coupon rate on the debt is constant and equal to 2% (i.e. approximately
equal to the ergodic risk free rate of 1.7%), in order to understand the importance of the
contractual structure of sovereign debt.

The result of this exercise is striking, as showed in figure 1.10, where I plot the equilibrium
trade balance of my model small open economy when the debt issued has floating coupons
(figure 1.10a) and fixed coupons (figure 1.10b). With floating rate coupons, the debt-to-
GDP default boundaries differ significantly state by state, from 74% in the the lowest US
short-rate state to 70% in the highest US short-rate state. Instead, with fixed coupon
debt, the debt-to-GDP default boundaries are clustered around 74%. In addition, for both

contractual structures, issuance policies depend in a negative way on short rates: for a

19. T restrict the real rate to be weakly positive in my numerical application since the long term bond
issued by the sovereign government is linked to such short rate; negative real interest rates in my model
would lead the small open economy to receive payments from creditors.
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given debt-to-GDP ratio, the lower the interest rate, the higher the issuance rate, leading
to current account adjustments when US short term interest rates increase. However, while
those current account adjustments are relatively small (of the order of 1%) in the case of
fixed coupon debt, they are materially larger when the small open economy issues floating
coupon debt — at the ergodic mean of the debt-to-GDP distribution, a jump from 0% US
interest rates to 6% US interest rates leads to a current account adjustment of approximately
7%. Of course, if the small open economy’s debt-to-GDP ratio is materially above its ergodic
mean at the time of the interest rate increase, the government might be induced to “jump-to-
default”. Lastly, a US interest rate increase is experienced by all small open economies at the
same time, inducing correlated defaults and correlated current account adjustments for those
small open economies that financed themselves using floating coupon debt. The magnitude
of the current account adjustment obtained in the model with floating rate debt corresponds
approximately to those observed during the large expansion of foreign currency sovereign
debt experienced by Latin American economies in the 1970s, as well as following the Volcker
shock post-1982, as shown in figure A.3. The figure shows that the current account balance
for Argentina, Brazil, Colombia, Mexico and Peru was negative and between -1% and -8%
in the late 1970s and early 1980s, but adjusted upwards at the end 1982 by up to 7% for
Mexico. Thus, qualitatively, the mechanism highlighted in this section — a large rise of US
real rates combined with floating coupon sovereign debt — is a plausible explanation for the
behavior of the current account balance of these emerging market economies before and after
the Volcker shock.

To understand in more details the mechanism driving the current account behavior dis-
cussed above, it is worth looking at the financing policy of the government when bonds that

are issued have floating coupons. The optimal Markov issuance policy has the following
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Figure 1.10: Trade Balance 1 — ¢;(x)
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The expression above indicates that for a given debt price schedule D and life-time utility
set of functions v, the issuance rate increases with the coupon rate paid on the debt — this
is a cash-flow effect, due to the fact that in a high interest rate environment, higher debt
servicing costs incentivize the government to issue larger amounts of debt to achieve the
same level of consumption than in a low rate environment.

So how can we explain the fact that the government issues more debt in a low rate
environment, and defaults at a higher debt-to-GDP level? As discussed previously, buyers
of risk-free floating rate debt are not exposed to the level of short rates — in other words, the
interest rate duration of their investment is zero. On the other side, the sovereign government

issuing such floating rate bonds is not indifferent: an increase in short term rates makes the
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country strictly worse off, since its financing cost is higher. Thus, everything else equal, one
would expect a country to default at a lower debt-to-GDP level when short term interest rates
are higher. This means that the price of floating rate sovereign debt should decrease when
short term interest rates jump up, and that credit spreads should be higher — this is effectively
what happens, as illustrated in figure 1.11. Since the credit cost of issuing debt increases
in a high interest rate environment, the sovereign government adjusts it issuance strategy
downwards. In addition, the value function for the government (as a function of the debt-
to-GDP ratio) is steeper in a high interest rate environment: indeed, when the government
has no debt, one would expect the value function of the government to not be very sensitive
to the level of short term rates; instead, when the government is highly indebted, one would
expect the value function to be significantly lower in a high rate environment than in a low
rate environment. In other words, |v; _en(@)] > \v; _o(@)], L.e. the marginal cost of issuing
debt is higher in a high US interest rate environment, pushing further down the issuance
policy of the government, and exacerbating the current account adjustment upon an increase

in US short rates.
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Figure 1.11: Credit Spreads ¢;(z)
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1.8 Endogenous Growth

The model studied so far exhibits countries whose output process is specified exogenously.
The government’s sole motive for taking on debt is a consumption tilting and a smooth-
ing motive. What happens when the government instead borrows from external creditors
in order to finance domestic investments and capital accumulation? This section answers
this question, and emphasizes two sources of debt overhang channels through which highly
indebted sovereign government’s capital investment decisions might be distorted. This en-
hanced model provides a simple micro-foundation to the output process of [4], [5], and many
other articles in the sovereign debt literature, in which output growth is a mean-reverting
variable.

Assume now that the country n has a production technology Y; = aKy, with a > 0,

where Ky is the number of effective units of capital in the small open economy. Assume that
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effective capital evolves according to:
dKy = (Hy — nKy)dt + Ko - dBy (1.40)

Hy represents effective capital investments and 7 is the rate of depreciation of capital. The
effective capital in this economy is hit by capital quality shocks similar to those in standard
continuous time macro models such as [11] or [26]. Capital investments come with adjustment
costs equal to G(Hy, Ky) = g(Hy/Ky)Ky, with g strictly convex, g(0) = ¢/(0) = 0. For
simplicity, I will assume that g(h) = %hZ, where h is the investment rate per unit of effective
capital. Government debt dynamics continue to follow equation 1.7. The government’s

resource constraint can now be written:
Cy+ Hy = aKy + It Dy — (k + m)Fy — G(Hy, Ky) (1.41)

Equation 1.41 simply says that the sum of consumption C} and investment Hy need to be
equal to the sum of output aK; and capital markets net flows I; Dy — (k + m)Fy, net of
investment adjustment costs G(Hy, K¢). If and when the government elects to default, its
(efficiency units of) capital stock suffers a discrete drop, falling from K;_ to K; = aK,_.
The government is also excluded from capital markets for an exponentially distributed time
period, and exits autarky with a debt-to-capital ratio that is # times its debt-to-capital ratio
pre-default.

The strategy of the government now consists in choosing an issuance policy I, an invest-
ment policy H, and a default policy 7 in order to maximize its objective function. The debt
price follows equations 1.12 and 1.13. I look for an equilibrium where the debt-to-capital ra-
tio x¢ := Fy/ K and the SDF regime s; are the state variables of this modified environment.
The details of the equilibrium calculations are displayed in section A.1.19. When the debt-to-
capital ratio of the country is x and when the SDF state is ¢, the debt price is equal to D;(z)
and the life-time utility function for the government is equal to v;(2) K1~7. The optimal debt

68



issuance rate and optimal invesment rate follow Markov policies noted I;( K, F) = Kui;(z)
and H;(K,F) = Khj(x), where (;, h; are now functions of the debt-to-capital ratio x only.

The optimal investment rate can be computed as follows:

hi(x) = % [wi(x) (1 - “"fw) - 1} (1.42)

zv;(r)

This equation highlights immediately the potential debt overhang issue in this small open
economy, as well as the impact of worse international debt market conditions. Indeed, since
the parenthesis on the right hand-side of the equation above is always positive, a low debt
price D;(x) depresses investment. This can happen for two reasons: first, if a sequence of bad
capital quality shocks move the debt-to-capital ratio close to the default boundary; second,
if risk prices in international capital markets are high, depressing sovereign bond prices and
thus investment. In such case, expected output growth h;(z) — 7 is directly impacted.

My numerical illustration uses parameters in table 1.1, and the SDF model of [33]. T
assume that the correlation between the country’s capital quality shocks and the risk price
vector is 100%. T use a depreciation rate n = 7%. My productivity parameter a is calibrated
in order to obtain a capital-to-output ratio K/Y of 3.3. Finally, the parameter 1), which
governs the investment adjustment costs, is calibrated to match a ratio of investment growth
volatility over output growth volatility of 4, consistent with the evidence of [40] for many
emerging economies.

Equilibrium investment and trade balance policies are shown in figure 1.12. The invest-
ment policy is a decreasing function of the debt-to-capital ratio. Thus, a sequence of bad
capital quality shocks leads to lower investments, lower output growth, and higher credit
spreads, key features of the data of emerging market economies, as highlighted for example
by [53] in the context of several Latin American countries. It also leads to an amplification
effect: bad capital quality shocks lead to lower debt prices and lower investments. This

not only depresses the debt-to-capital ratio today, but also in the future given the fact that
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Figure 1.12: Endogenous Growth — Policies
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the investment rate is now lower, and it feeds back into lower debt prices. Spreads in this
model should thus be more volatile than in my original endowment economy, and the ergodic

debt-to-GDP distribution should be wider.

1.9 Conclusion

In this paper, I develop a new modeling framework to study sovereign debt quantities and
prices by leveraging continuous time technology. This tractable approach leads to semi-
closed form expressions for key asset pricing moments of interest, which enables me to
discuss characteristics of the stochastic discount factor that are needed to explain properties
of sovereign spreads, sovereign debt returns and cross-country spread correlations. The
approach I propose reduces significantly the number of state variables typically present in
discrete time sovereign debt models and opens the door to partial model estimation. My
quantitative application shows that this modeling framework has the ability to match many

quantities and price moments of the data, but fails on two dimensions: (i) the model-implied
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dispersion of the debt-to-GDP ergodic distribution remains an order of magnitude smaller
than in the data, and (ii) the magnitude of excess returns on sovereign debt requires very high
levels of correlation between countries’ output processes and SDFs typically used in the asset
pricing literature to explain properties of US equity market returns — if the creditors’ SDF
is associated with US consumption or output dynamics, the empirical correlation between
the US GDP and the GDP of my countries of interest is too low compared to the model
estimates required to rationalize this high level of expected excess returns. My framework can
be extended in multiple directions without adding any complexity or state variable. I show
for example how to layer a linear production technology and study capital accumulation and
the impact of debt overhang on investment decisions. One can also analyze an environment
with exogenously specified sudden stops, by adding discrete SDF states where the sovereign
government is prevented from issuing any debt. Finally, more theoretical work needs to be
done, for example by leveraging viscosity theory and existence results for nested ordinary
differential equations, in order to establish the existence of a Markov perfect equilibrium of

the game between the sovereign government and its creditors.
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Appendix A

Continuous Time Theory of

Endogenous Sovereign Defaults

A.1 Proofs and Detailed Calculations

A.1.1 A Useful Discrete Time Limit

In this section, I study a discrete time counterpart to the continuous-time model developed
in this paper. At will represent a small time interval. I study the limit of a simple sovereign
default model as At — 0, and show heuristically that no short term debt can be supported
in equilibrium at such limit. I focus on a government that has iso-elastic time-separable

preferences with rate of time preference ¢ and risk-aversion ~ as follows:
—siatine
E e —2L At F
z% 1—7 50
1=

Government output follows the discrete time equivalent of a geometric Brownian motion:

Yiyar e
Yint

(i+1)At
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In the above, W(i+1)At is an f(i 1AL measurable binomial random variable that can take

values +0v At or —ov/ At with respective probabilities p,, and pg:

O e WY O /R

==11 X ==
pu 2 + o I pd 2 o

Thus, {W(i 1) At Fi>0 s a sequence of i.i.d. random variables, and I will use wa¢ for simplicity

to denote one of these random variables. When At — 0, I have the following limits:

E [¢“At] = 1+ pAt + o (At)

var [e¥t] = 62 At + o (At)

The government has one-period debt at its disposal. Let B;a; be the stock of debt that the
government has to repay at time iAt. Let D (B(z'+1)Ata Yz’At) be the price of one unit of
debt if the government plans to issue, at date 1At B(i F1)AL units of debt maturing at period

(i + 1)At. The government resource constraint at time iAt is as follows:

CintAt = YintAt — Bipg + D (B(i+1)Ata Yz‘At) Bir1)at

Upon default, GDP suffers a permanent shock of size 1 — a and the government is in au-
tarky forever after. Thus, if the pre-default output value is Yja¢, the value function for the

government in default is equal to V;(Y;aA¢), which satisfies:

(OzY)k7

T At + e AR [V (e¥AtY)]

Va(Y) =

Cuessing that V;(Y) = v;Y177, the constant v, is equal to:

I—y 1—v
6] At o




The latter equality is valid when At — 0. The government problem is as follows:

Vo (B,Y)=max (V. (B,Y),Vy(Y))

Vy (V) = o V=7

1=y
Y+4+ (D(B,Y)B - B At
V. (B,Y) = max & eEY) )

B’ I—v

+e R [V (B, Y') Y]

The bond price verifies D(B',Y) = e "4t Pr (Ve (B,Y') > Vy(Y")|Y'), where r is the in-
terest rate at which lenders discount risk-free cashflows. This formula assumes that upon
default, sovereign creditors recover nothing from their defaulted debt claim. One can show
that for any bond price function that is homogeneous of degree zero and decreasing in B’,
the value function V. is homogeneous of degree 1 — v and the best “default” response by the
government is to follow a linear barrier policy of the form 7 := inf{t : By > zY;} for some en-
dogenously determined constant Z (which depends on the time step At)l. Noting x := B/Y,
and using the homogeneity property of the value function, the government life-time utility
can be written Vo(B,Y) = ve(z)Y1™7, and the government problem can be simplified as

follows:

1—
(1+ & (D@ —2) At
Ve () = max
@ I—7

LoD [e(l—v)wm max (vg, ve (6_““9’?/))”

For simplicity, I assume that the choice set for the debt-to-GDP ratio of the government is

discrete. In other words, I discretize the state space into a grid G o consisting of a countable

1. Of course this statement is assuming the existence of the value function V., which is the fixed point of
a functional equation. Since my discussion on the lack of equilibria with defaultable debt at the limit of my
discrete time economies is only heuristic, I side-step the proof of existence of V.
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number of points x; = ei‘f\/&, for i € N, where I note i, the default index?. In other words,
I assume that at © = w;,, the government strictly prefer defaulting over repaying, while
for ¢ < i,4, the government weakly prefer repaying over defaulting. This model structure
guarantees that the debt-to-GDP ratio stays on the grid Go; at all times, irrespective of the
sequence of GDP shocks and decisions made by the government. In any cutoff equilibrium

with default threshold z = z; ,, the debt price must satisfy:

e TA if i <ig—1
_1,2
D(z;) =< % <1 + M) AL =g —1
0 if i >ig

Now consider the resource constraint for the government if at the beginning of a given
period, x = z;, with ¢ =47 — 1. Since ¢ < i, it is optimal for the government to continue to
perform on its debt obligations. If the government selects a debt-to-GDP ratio x; < z;, the

consumption-to-output ratio, using the resource constraint, is equal to:

L [ io/Ai—rAt  ioVAr _ (J—i)o 1
1 - Jjo r o M ¥ - .
* At <€ ‘ ) VAL o VAL At——>>0 o0

If the government selects a debt-to-GDP ratio z; = z;, the consumption-to-output ratio is

equal to:
1.2 /
1+ L 1 14+ ('u QO' ) At eio’ At—rAt . eiO’\/E — _L +o i S 0
At \ 2 o 2At At ) At—0

Of course if the government selects a debt-to-GDP ratio x; = z;, it obtains no proceeds from
its debt issuance — this decision cannot be optimal. Thus, as At — 0, the only possibility

for government consumption to be positive at all points of the state space x; < x is for the

2. This model structure implicitly assumes that the government is prevented from saving. This can also
be achieved endogenously by using a sufficiently high rate of time preference §.
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default boundary to converge to zero. Note that this conclusion stems from (A) the shape of
the government bond price schedule (at I take At — 0, such debt price schedule converges to
a step function, equal to the risk-free benchmark for = < z and equal to zero at x > &), and
(B) the continuous sample path of geometric Brownian motions. Had the output process

featured jumps, a cutoff equilibrium with strictly positive debt can be supported. 0

A.1.2 Output Process in this Article vs. [5]

The output process in [5] can be recast in continuous time as follows:

Y; = Ty
dInT'y = In g¢dt
dzt = —ky (2t — pz) dt + 0,dBf

dlngs = —kg (Ingr — Inpg) dt + ogdBY

In the above, Btg , Bf are standard Brownian motions assumed to be independent, r;, x4
are positive constants that parametrize the speed of mean reversion of the processes z+ and
In g; respectively. Two approaches can be used to approximate the output process above by
equation 1.1.

In the first approach, conditional and unconditional moments of consumption growth can
be matched. One can for example match the s-lagged auto-correlation of log consumption
growth R, 4e1(s) for both models. Such auto-correlations are equal to:

—HRg$

Rag(s) =e
Ny 1 Ng 1
£ m (s = Yol 2 [ (), - | (15 BlosP)
2 2
N N
SR (= loil?)” = (S i (i — Sloal?) )

Rapm(s) =
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One can also match the unconditional log consumption growth volatility X,,,4.; for both

models. Such log consumption growth volatilities are equal to:

In the second approach, one can use a procedure introduced by [21] to extract a martingale
component to the logarithm of output for both models, and match separately (a) the volatility
of the martingale component of both models, (b) conditional and unconditional moments of
the stationary component of both models, and (c) the time trend of both models. For the

model of [5], the decomposition of InY; takes the following form:

o 1
dnY; = —gdBtg —d (— Ing; — zt) + In pgdt
kg kg
Loy 1 1
InY; —InYy = / 4By + |—Ingy—=20| — |—Ingt — 2|+ tlnpg
0 Rg kg kg |
martingale component stationarytomponent time trend

Thus, the permanent component to log output is purely driven by (rescaled) shocks to the
state variable In g;, while the state variable z; has a purely transitory role. The long-run
time trend in log-output is equal to Inpugy. When I focus on the output process driven by
equation 1.1 (and assuming, for the purpose of this section, that By is unidimensional), I

can compute small increments in logarithms as follows:
L 9
dInY; = | ps, — §JSt dt + os,d By

In the above, s; is the discrete state Markov chain with generator matrix A and stationary
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density 7. In such case, note that:

1
E[dlnY:|F] = (,ust - 50215) dt

Let kot := fot 05, dBy, and note that for 7 > ¢, E [/{2,7|}}} = Ko, in other words ko is a

martingale. I then compute the long term average of log output growth:

1
Inge :=m- (u—ﬁaz)

[ create the function f (s) := ps — %O’? —Ingeo = (u — %02 — lngoo1> -esy, s isan N x 1

column vector with entry s equal to 1, and all other entries equal to zero, and compute:

> _ 1
BV G A=A (1 5o gt ) e

In the above, A™1 is the generalized inverse of the generator matrix A (since the rows of
the matrix A sum up to zero, A is not invertible). Finally, I introduce the martingale r1 ¢,

defined as follows:

FLt = ZA_l (M - 102 — hlgool) - (e; — esy_) sz(Lsuf’i)

2
t 1
+/ <u— 2 —1ngool> - es, du
0 2

I can then decompose increments in log output growth as follows:

1
dlnY; =d (/ﬂyt + I@'Q’t> N (p, — 50'2 —In gool) . (es]t — est_) dNt(St_’St) + In goodt

t
1
InY; —InYy = / d (HLS + I£275) +A7! (p, — 50'2 - lngoo1> (esg —€sy) + tIngeo
0

~ ~~ o ~~ ~——
martingale component stationary component time trend

Thus, in the case of this article, the martingale component of log output is the sum of a
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Brownian process 1 and a jump process ko ¢, while the stationary component is a pure
jump process. By carefully parameterizing u, o, A, one can approximate the long run trend,
stationary and martingale components in [5] by a stochastic process that follows equation

1.1. 0

A.1.3 No-Debt Life-Time Utility

I note J; (V) the life-time utility value when the government cannot issue debt, when the
level of output is Y and when the Markov state is sy = ¢. I postulate that this life-time
utility can be written .J;(Y) = K;Y'1=7 for some constants {K;}i<n, to be determined. J;

verifies the following HJB equation:
0= (Y1, Js, (Vo)) + A5, (Y1)

For convenience, I have introduced the differential operator A, defined for any stochastic

process {Z;}¢>( (belonging to an appropriate class of stochastic processes) as follows:

E[Z -7
AZ; = tim BT = 2 (A.1)
e—0 €
Injecting my guess function for J;, I obtain the following equation, for ¢ < Ng:
1-— 1
0= 51—7Kiyl—W -1
g (1=K
1 ol
+pi(1 =Y 7 — 51— e PEY T4y A Ky
j=1

Dividing by K;Y1~7 and simplifying, the set of constants K := {K;}i<n, must satisfy:

-

)
)

=

ding(49) = 72| [(1=1)K] = (1= 7) K
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Vector exponentiation in the equation above has to be understood element by element. Under

assumption 1, this set of Ng equations in Ng unknown has a unique solution. 0

A.1.4 Creditors’ Stochastic Discount Factor

The discussion below is substantially similar to the discussion in [13]. Assume a repre-

sentative creditor whose equilibrium consumption C; follows, under the physical measure

P:

dOc,t
Cc t

)

= e, + Oc,sy - dBy

In the above, {s;};>0 follows a discrete state Markov process with generator matrix A =
(Aij)1<ij<N,- Ns is the total number of discrete states. Assume that such creditor ranks

consumption streams according to the utility specification:

+0o0
t

In the above, the aggregator ¥ is assumed to be equal to:

L— e clre
1-— 1—pc

Pe \ (1= 7o) U) =5

U (C,U) =0

I—y
. . . . - . . hs,Y?
The representative creditor’s life-time utility function can be written Uy = %, where

the constants {%;}1<;<, satisfy the set of non-linear equations:

1— Ve, pe—1 1 2 1-— Ye Ns h] 1=
0=0d¢ hi + (1 - ’Vc)ﬂc,i - _76(1 - 78)|ac,i| — dc + E :Aij .
L= pe 2 1= pe = h;
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As [19] shows, the marginal utility process associated with recursive preferences can be

written:

ov ov
M, = exp { / O (Conn2) dz] O (CorUey) (A3)

Applying [t6’s lemma then leads to the following dynamic evolution of M;:

dﬁ]\{f = —Tgdlt — -dB¢ + Z ( (st—,s¢) _ 1) (dNt(St—,St) — Ast_,stdt> (A.4)
StFSt—

In the above, Nt(st_’st) is a Poisson counting process for transitions from state s;— to state

s¢. For each discrete Markov state ¢, the state dependent risk price vector v; is equal to:
Vi =%Oc,i (A.5)

For each discrete Markov state i, the state dependent risk free rate r; is equal to:

N

L= | (P e—1 1 .
ri= by K o - ) ne 1} +ette = 51e(l+70)loel ZlAije“(w) (A.6)
]:

Finally, the SDF relative jump sizes encoded via v(i, j) are equal to:

v(id) = (e =200t () (A7)

Compensations per unit of Brownian risk can be read via the coordinates of the vector vg,,
while jump compensation is encoded via eV(st—5t) 1. Indeed, take any asset whose valuation

V; follows:

avi

‘/t = Hu, tdt + Oyt dB: + Z ( §o(st—,st) _ 1) (dNt(Stf,St) _ Astf,stdt>

StFESt—
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Absence of arbitrage imposes that M;V; be a local martingale, in other words E [d (M;V;)] =

0. Using It6’s lemma leads to the following pricing restriction:

Uyt — Tsy = Oyt - Vsy — Z <€§U(St_’st) - 1) (ev(st_’st) - 1) Ngi st

St?éSt_

For example, a claim to the creditor’s aggregate consumption Ct = Y. ; has a price Pt =

Pe s, (Y;) that solve the following HJB equation:
1 A
riPei(Y) =Y + (pei — Vi - 0c3) Y P (Y) + §|Uc,ilzy2péfi(y) + ) AP ()
j=1

The solution to the system above is of the form P, ;(Y) = F.;Y, for a set of constants

{P.,i}i<n, that are equal to:
_ -1
P, = [dlagi (ri + Vi 0cg— ,uw-) — A} 1 (A.8)

Expected excess returns on this claim thus take the following form:

d (Pe,s,Y:) + Yzdt
PC,St}/;f

E

— rstdt|.Ft] - Vst . a-C,Stdt

A.1.5 A General Equilibrium Interpretation

In this section, I describe how to obtain, in a general equilibrium setting, the stochastic
discount factor My, whose dynamics are given by equation 1.10. For this, I introduce the
subscript “n” for a country’s identity, and assume a continuum of countries of measure 1.
Y;" is re-interpreted as tax collections of country n — imagine for example that country n

has a flow output X;* and a tax rate €, such that ¥;* = " X}'. Suppose country n’s output
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evolves as follows:

X7
Xt

= ps,dt + og, - dBt + 0" d By’

B} is a country-specific Brownian shock that is independent of By, the vector of aggregate
Brownian shocks. Note that all countries need to have the same expected growth rate s,
in all states s;, but not necessarily the same output volatility3. The dynamics for aggregate

world output is thus:

AX; = / dXPdn
= / (s, Xi'dt + X' (05, - dBg + o""dB}")| dn

= Xt (,U/Stdt + Ust . dBt)

The latter equality uses the law of large numbers and leverages the fact that X;' and dB}'
are not correlated. Given that tax revenues of country n are equal to Y;" = ¢"X}', the
government revenue process Y;" follows the same stochastic differential equation as X/

Government n resource constraint is the following:

C}' represents government spending, I} represents government debt issuances (debt is issued
at price D}'), and F}" represents the face value of government debt. We assume for the mo-
ment that €’ is fixed and exogenous, and that the government will only choose its financing
and default policies. Due to institutional frictions, government n’s utility function is not ex-

actly equal to the utility function of its citizens; more specifically, the government maximizes

3. Forcing all countries to have the same expected GDP growth rate also guarantees that countries all
“survive” as t — 400, in other words no country becomes arbitrarily small asymptotically.
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the following objective function (subject to government resource constraint above):

—+00
I =E /t o (C,J7) ds| F

In other words, the government maximizes flow utility over government spending only; more-
over, the government will be more impatient than its citizens: §, the rate of time preference
of the government, will verify > d., where . will be the rate of time preference of the cit-
izens/creditors (to be discussed shortly). Government of country n may elect to default on
its debt. In such case, the government is shut down from capital markets for some exponen-
tially distributed time (parametrized by A), and suffers a temporary drop in tax collection
efficiency: while in autarky, the government only collects Y;" = ae" X" from its citizens,
with a < 1. Upon exit from financial autarky, the government from country n emerges with
a lower debt burden, and recovers its pre-default tax efficiency Y;" = ¢"X}'. Note that the
drop in tax collections suffered by the defaulting government is only temporary, and lasts
the time of the capital market’s exclusion.

Government debt is bought by a “representative world investor” — in other words, a
citizen whose equilibrium consumption process is proportional to world consumption. Let
Dy be the set of indices of countries in default at time ¢, and Df = [0, 1] \ Dy its complement.

Remember that world citizens enjoy flow consumption I'y equal to:

P, = / (1 — )XD + (1 + m)EP — IMDP dn + / (1= ad™) XPdn = X; — Gy
neDy neDy

In the above, (' represents aggregate government spending. Consumption by the “represen-
tative world investor” is simply equal to world output minus taxes paid plus income received
on its government debt portfolio minus investments in government debt. Assume this “rep-

resentative world investor” faces dynamically complete markets, and has preferences over
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consumption I'y and government spending Cy as follows:

+0o0
t

In other words, consumption and government spending are perfect substitutes in the rep-
resentative investor’s preferences. Given those assumptions, the investor’s equilibrium con-
sumption (via market clearing) is equal to I'y + Cy = X¢, and the investor’s marginal utility

is given by equation A.3, meaning that the pricing kernel M; evolves as follows:

th _ St—,S
N = Tt~ vs dBit Y (Vo) — 1) (AN = Ay gyt
Sﬁést_
rs, Vg and the SDF jumps v (s, s’) correspond to those described in section A.1.4. O

A.1.6 Controlled Stochastic Processes Yt(T) and Ft(I’T)

An admissible issuance policy {I; }¢>0 of the government is a progressively measurable process
that is a function of the payoff-relevant variables. In other words, Iy = I, (Y;, Fy), for a set
of measurable functions I := {I;};<,. I will require the function I; to satisfy the standard

integrability condition, for all ¢ > 0, almost surely:

t
E [/ |]5|ds] < 400
0

An admissible default policy is an increasing sequence of stopping times (with respect to F)
noted T = {7} }1,>1, which can be written (for & > 0), 741 = inf{t > 7, + 7.}, : (Y3, F}) €
Og, }, for a finite number of Borel sets {O;};<n,, where {7, j};>1 is a sequence of i.i.d.
exponentially distributed times (with parameter A), and where I have set 79 = 7. o = 0.
For a given admissible default policy 7 € T, define N(g;) = max{k € N: 7. <t} (resp.

Ne(? = max{k € N: 7, + 7,5 < t}) to be the counting process for default events (resp.
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capital markets re-entry events). Let 1&7;) be the default indicator, equal to 1 when the
sovereign government is in default, and zero otherwise:

1(7') —1

dt te Tth,Tth+Te7th)

(7)

Using this notation, the dynamic evolution of the controlled stochastic process Y, ’ can be

expressed as follows:
vy = y?) (,ustdt tos, dBg + (o — 1)dN§;)> (A.9)

Similarly, the dynamic evolution of the controlled stochastic process F' (I7) can be expressed

as follows:

ab{" T = (1 =BT (110 )

t
1
+ | faexp / (Nsu — §‘a'su’2) du+ s, -dBy | — 1 Ft(f’T)dNé;) (A.10)
TNg ¢
The drift term in the dynamic evolution of Ft(I’T) relates to issuances and debt redemptions

when the government is performing under its debt obligations, while the jump term relates
to reductions in the debt face value in connection with a restructuring and re-entry into
capital markets post-default.

Given a debt price schedule D := {D;(-,-)};<n, that the government faces, and given
admissible issuance and default policies (I, 7) used by the government (where (I, 7) might
not necessarily be consistent with the debt prices D), there is a controlled flow consumption

(I,7;D).
process C} :

D) - [y 10y (V7 FE) = e+ )] (12150) +301G)

90



The indicator functions in this expression highlight the fact that the government can smooth
consumption via debt issuances and buy-backs when performing, while it is unable to do so

in default.

A.1.7 Monotonicity of V;

Take a set of debt price functions {D; (-,-)};<n, that are homogeneous of degree zero and
decreasing in F'. I focus my attention on two initial levels of output, YD and Y@ > Y(l),
and show that I must have Vi(Y(l), F;D) < Vi(Y(Q), F; D). First, take any arbitrary policy
(I,7) € ITxT (not necessarily optimal) followed by the government. Following the issuance
policy I and starting in state (Y(2), F) yields strictly higher flow payoffs at each time ¢.
Indeed, {Y;(T)\YO = Y@} is almost surely greater than {Yt(T)|YO = YW1, In addition,
(1D, (Y;f”, oy ’T)) Yo = Y} is almost surely greater than {1, Ds, (Y;‘”, s ”)) Yy =
Y1 since the debt price conditioned on starting in state (Y (2), F) is almost surely greater
than the debt price conditioned on starting in state (Y(l), F') (since I assumed that the debt

I,T;D)|

price is decreasing in the debt face value). Thus, {Ct( Yy = Y@} is almost surely

I’T;D)|YO = Y(l)}, which means that the life-time utility is increasing in

greater than {Ct(
Y, for any arbitrary issuance and default policy. Thus, the supremum over all feasible
issuance and default policies, V; (-, +; D), is also increasing in output Y. The proof for the
monotonicity of V; (-, +; D) in F' is identical, since consumption Ct(I’T;D) is decreasing in the
level of indebtedness F' and since D;(+,-) is decreasing in F'.

I then show that the optimal issuance policy is homogeneous of degree 1 and the optimal
default policy is barrier type. Take an arbitrary (Y, F'), and the related optimal Markov
issuance and default policies (I;’F,T;/,F) = argmax J; (Y, F'; (I, 7); D). Take ¢ > 0, and
focus on starting output and face value levels (€Y, eF"). Consider the policy (Iey,eF, Tey,eF),
such that Iy ,cp = eIi"/,F, and Tey,eF = Ti*f,F' Since (I;‘,’F7 T{,’F) is feasible conditioning

on (Yy, Fy) = (Y, F), since the output dynamics are linear in Y and since the debt face value

dynamics are homogeneous of degree 1 in (Y, F'), it must be the case that (Iey,eF, Tey,eF)
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is feasible conditioning on (Y{, F(y) = (€Y, eF). Thus, I have:
Ji(eY, eF; (IeY,eFa TeY,eF)§ D) < Vj(eY,eF; D)

Then assume for a second that the inequality above is strict. If that was the case, then take
Iy e Toy.ep) = argmaxJ; (€Y, eF; (I, 7); D). Consider the policy (Iy,F, Ty,r), such
that Iy,p = I:Y, /6 and Ty p = T:Y, - Then is it immediate to see that this policy is

feasible conditioned on starting at (Y{, F(y), and it is also immediate to see that:
Ji(Y.Fi(Iy,F, Ty,Fr); D) > Ji(Y, F; (Iy g, Ty, p); D) = Vi(Y, F; D)

This is a contradiction. Thus, the optimal issuance policy is homogeneous of degree 1 in
(Y, F). Since the value function is decreasing in F' and increasing in Y, the default policy

must be a barrier default policy. O

A.1.8 Monotonicity of D;

Let (I,7) € Z x T be admissible issuance and default Markov policies. Assume that I is
homogeneous of degree 1 in (Y, F') and that 7 is barrier. Note I;(Y, F) = ;(F/Y )Y, where
ti(z) = I;(1,x), for each Markov state ¢ < Ng. Given these assumptions, the default policy

can be written:

T=1inf{t > 0: F} > Y;Zs,}

=inf{t > 0: 24 > 7, }
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Using [t6’s lemma, x4 := F}/Y; follows the following stochastic differential equation under

Q:

8 = (LG (o (287)

B <m T ps — |0'St|2 — Vs 0’3,5) xIEL’T)) dt — xl(fm-)a'st - dBy

+ i) (é - 1) aN§?) + 2 (6o — 1) AN}

The debt price is an expected present value of flow payoffs. Since such flow payoffs are
homogeneous of degree zero in (Y, F), and since the default policy is barrier, the debt price
function must be homogeneous of degree zero. With an abuse of notation, I will note
D;(Y,F;(t,7)) = D;j(x;(t,7)). Note then that the debt price cannot be greater than

the price D:f of a risk-free claim to sovereign debt cash-flows, where D"/ verifies:
\ —1
D"l = (k+m) (diagi (r; +m) — A) 1 (A.11)

I then use a result that will be proven in section A.1.9: the fact that the defaulted debt price

must satisfy:
D%(z) = M=~ D(6x)
The matrix Ng x Ng matrix = is equal to diag; (r; + v - 5 + A — ;) — A. T then introduce

the operator T, defined for any Ng x 1 vector f of continuous decreasing functions whose

it" coordinate is f; : (0, max; 7j) — [0, D;f] (Dgf is the price of risk-free debt is state i, see
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equation A.11) as follows. If x > z;, set (T f); () = M« [E_lf(ﬁx)h. If x < z;, then:

()i ) s =B | ["e Beamig e+ 2o et [ g(g0,)] |
0 St

(A.12)

— D/ i {e— Jg (rsy+m)du (Aea [E—l f(exT)} ~pt )} (A.13)

Given assumption 2, given that § < 1 and a < 1, and given that the function f; has an image
in [0, D;f], it must be the case that A« [E_lf()]l < D;f for any state ¢, which means that
the term in brackets in equation A.13 is negative. Thus, (Tf), () is a decreasing function
of x, positive and bounded above by D;f . The Feynman-Kac theorem also provides for the
continuity of the function (Tf); (). Thus, T maps Ns x 1 vectors of continuous bounded
decreasing functions with image in [0, D;f | into itself. For any pair of vectors of functions

f1, f2 whose components are continuous and decreasing on the interval [0, max; Z;], I have:

| (Tf2 = Tf1); (x) = AaE" [e— Jo ot =71 (£ (627) = f1(0r))] \]
< Mal[E7Y] - |2 — Fils
Since Ma||Z71| < 1 (given assumption 2), T is a contraction, and the contraction map-

ping theorem provides for a unique continuous, bounded and decreasing vector of functions

D(-; (¢, 7)) whose it component satisfies the functional equation:

Dy(x) = EH [ / " e Sotrsatmdu gy 4yt 4 Apae— Jo (rsutm)du [E—lp(exT)] }
0 St

The function D; is decreasing as required. 0
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A.1.9 Debt Price at Default

I need to compute the debt price in default Dld(x), for x > z; and 1 < ¢ < Ng. Assume

that at time of default, the state is s; = i. When the country exits financial autarky, its

debt-to-GDP ratio is equal to {;:—j:z = Q}Zz: = Oxr—. It is possible that x; > Zs__ when

4

the sovereign defaults. This happens upon the occurrence of a “jump-to-default”, in other
words a situation where the state jumps from sr— = j to s; =4 and when 7; < z7— < 7.

Thus, I have the following for = > Z;:

A Te F
Dld(x) =FE {exp (—/ T5t+udu) tHTe Dg . (02) Y- =Y, 50 = @}
0 t—

A Te Y;
= ok {exp (—/ rst+udu) %DSHT@ 0z) Y- =Y, 5 = z}
0 t

In other words, in order to compute Dzd(:zt) (for x > ;), I need to solve a system of Ng

equations in Ng unknown {D;-l(x)}lngNS:

N
TjD;l(ZL‘) = (uj —vj-oj) D;l(m) + A (004Dj(«9x) — Df(x)) + Z AjkDg(x)
k=1

If I introduce the Ny x Ny matrix = := diag; (r; + v - 0; + A — j1;) — A, and if I note D%(z)

the Ng x 1 vector with it" element Dzd(x), I obtain:
D%z) = Mo="'D(6x)

Given assumption 2, the quantity above is well defined and finite. Finally, note that this
equation is valid for each coordinate i for x > Z;. Indeed, the model with discrete Markov
states for the SDF generates default waves, via “jumps-to-default” created when the state s¢
jumps from a state s;— = i (for example a state where risk prices are low) to a state sy = j
(for example a state where risk prices are high), and when z; > 2; > Z;. When computing

the full set of functions {D;(+)}1<i<n,, it is thus essential to compute such function on the
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interval [0, max; Z;]|. O

A.1.10 Life-Time Utility HJB Equation

~ 2
Introduce the probability measure Pr(A) = E ) Jo ToudBu—$(1-7)% 5 losu duy 1 for
some arbitrary Borel set A C F;. Under such measure, using Girsanov’s theorem, the

variable x4 evolves as follows:

) <40 [ A7) = (o) 7 sy

+ i) (1 = 1) aNST) + 27 (a6~ 1)dN ]

«

In the above, By :== By + (v—1) fot 0s,du is a standard Np-dimensional Brownian motion

under this equivalent probability measure. Let cgb 73 D) be the consumption-to-output ratio

when the policy used is (¢, 7) and when the debt price schedule is D:
D) _ [1 414Dy, (o) — s mpafe™)] (12170) 4107

The value function V;(Y, F) in state i can be written V;(Y, F) = v;(z)Y1=7:

3 o 1 _ _ (1’7T;D) 1—p
Vi(Y,F)= sup EF / o7 _%St(xt)yf v (¢ ) — —1|dt
(e,7)exT 0 (L = )vsy () 1=
=Y ()

In the above, I defined v;(x) as follows:

D)1
© 1-y (BT DN 1—p
USt(It) t — — 1

(1 =)o ()17

c(1=9) Jo (15— 371050 |2 du gy

v;(z) ;== sup RbYF /

(¢,7)EIXT

=2
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The corresponding HJB equation for v; can thus be written, in the continuation region:
1—~ | s
T, (5 +(p—1) (ui - §7|0i\2)> vi(z) =Y Ajuj(e) =
j=1

(14 1iDi(w) = (1 +m)e)' =7 [(1 = )i ()] 5
SlLlip ) =

1
+ |1 = (m+ s = loil?) 2] vl@) + Slol et (@)

The term in brackets on the right-hand side of the equal sign is concave in ¢;, which leads

to an optimal issuance policy of the form:

P
1

2R

R AT YRR A
() = Al — VA K+ m)x —
= D) e letme

For the particular case p = 1, the guess value function still takes the form V;(Y,F) =

v;(2)Y177, but the HIB equation solved by v; is now:

(mmuwwunuw(mévwzfymwﬁimﬂﬂw

sup [0(1 = 7)vi(x) In (1 +4;Di(z) — (5 + m)z)

1
+ |t = (mo+ s =il 2] @) + Slol et (@)

Optimality of the issuance policy in such case takes the form:

1 {5(1 — Nvi(z)Dj(z)

(@) +(k+m)x — 1}
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Finally, for the particular case v = 1, the guess value function still takes the form V;(Y, F') =

vi(x) + InY, and the HJB equation solved by v; is now:

Optimality of the issuance policy in such case takes the form:

)\ P
ile) = [(— S0) e (1= Up) ) + (e - 1]

A.1.11 Life-Time Utility at Default

Assume that the state at default time 7 is equal to sr. The pre-default output is Y, =Y,

and it falls at the time of default by a factor a. The life-time utility in default consists of

the flow value of receiving Y; until the random time interval 7., at which point a lump sum

value Vrir, (Yr4r,, Fr—) should be added. The debt-to-GDP ratio at the time the country

is exiting from financial autarky is:

F7'+7'e _ 9Y7+Te Fr—

=0z, —
YTJrTe Yr— YT+Te !

Thus the value function at exit from financial autarky can be expressed as vs_, (HxT_)YTlJ:TZ :
I thus look for a function Vd of the form Vd (Y, F) = Ust( 2)(aY)1=7, for a set of functions

{UZ- ()}<i<n, to be determined. For x > Zg,, the function V;f satisfies the recursive
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equation:
0= (V2 Vil) + AV

Plugging in my guess function, the HJB equation becomes:

Ns

0= 61 : ,yvzd(x)(ozY)l v ! — 1|t Z Aij(aY)1_7 (v;l(@ - v?(w))
p = =
(@ =ed@)] ™ =1

i1 = @)Y = (1= )Pl () @Y) '+ MY (b))

If T introduce the Ny X Ng matrix T := %diagi (A;) + AT — A, if T note v(z) the Ng x 1
vector with it row v;(x), and if I note v%(x) the Ng x 1 vector with i*" row vzd(x), I need

to solve the non-linear equation:

= (A.14)

>
=

Ju—y

Tod(z) — \v(fz) = %p (1- ’y)vd(w)]

o=y
In the above [(1 — yv%(x)| "7 is to be understood as an element-by-element power function.

Note that v;i(x) admits the integral representation (this will be useful in connection with my

verification theorem):

. [ t _ Te
o) =5 | [T ALy @) drg T A, ()

Note that for v = p, I can solve equation A.14 explicitly, obtaining:

ve(z) =711 ()«v(@m) + %1)
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In the above, 1 is a Ng x 1 vector of ones. Default optimality can be written V;(Y, F') >

Vid(Y, F), which, stated in terms of the normalized value functions, can be written:

v, () — alfﬂyvgt (x) >0 Vt>0

Applying It6’s lemma to v, (xt) — al_%}gt (x¢), the diffusion term is equal to:

/
—x¢ <U;t($t) _ ol (Ugt) (xt)) os, - dBy

In particular, since v, (Zs,) = ozl_vat (Zs,), the only way for the inequality vs,(z¢) —
041_71122(:6,5) > 0 to be preserved in the presence of Brownian shocks at the default boundary

is for the diffusion term above to be identically zero at such boundary. This leads to the

smooth-pasting optimality condition:

Differentiating the implicit equation defining 'vd(x) w.r.t. z, I obtain the following expression

for (vd>, (7;):

1—p -1
(vd)/ (7i) = M0 (T 1= Zdiagj ([(1 — ()] M)) v (07;)

A.1.12 Verification Theorem

Let {v;};<n, be a family of functions such that for each i, v; € CLRT) N C2(RT\ {z;})

satisfies the assumptions of the theorem. Let (¢, 7) € Z x T be an arbitrary policy, I have
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the following Ito formula:

1y gt b _izags 3
e T o Aty () = vi(a) - / eIl At (1 - 1((1Tz)> 7203, (02)7s, - B
0

)

t 1 /
+/O eilizf Asudt Z (Us’(xz) _U8z7($z)) (dez_,S _Asz_,s’dz>

s'#£s,—
t 1— z
b [ At (LAY O @)+ YD A (o) = e (02)
0 §'#S,—
-7
—1_pAszvsz<xZ) dz

t
+/ e_1 5 Jo Asudu (USZ(:CZ) — Ug,_ (1’27)) dNC(lZ)
O b

b1y gz
+/ e 1-r Jo Asuclu (vsz (z2) — vs,_(22-)) dNé:;)
0
See for example [44]. For the arbitrary control policy (¢, 7), I note cgi’T) (x¢) the resulting
consumption-to-output policy. Using It0’s lemma above, using the variational inequality in

the assumption of the theorem, and using equation A.15:

_ _ (6.7 \1— =

1 t 1 P — 1

e——l_z I Asuduvst(xt) < v;(x) _/ e Zfo A, dz Csz () [1(1 Y)vs, (72)] d
0 -p

i)
2

=2

t 1 /
+/O e*ﬁf Asuh Z (Us’(xz) _USz—($Z>) (dez_,S _Asz_,s’dz>
s'#£s,—

As,d 5
- /0 15 Jo Asedz < - 1&72)) x5 (22)0s, - dBy

The terms on the second and third line above are martingales since v; and vg are bounded.

Thus, taking expectations on both sides of this equality, I obtain:

S
=2

t z (’“77) 1—- _ = )
Eb /Oe VIOA dz Csz (IEZ) ,0[(1 ’Y)USZ(ﬁz)]l vdZ _H’Ez,x e fOA dz (xt)

I—p
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Taking t — 400, using the assumption that limy_, o infe fg %As“duvst <$§L’T); D) <0,
and using the monotone convergence theorem, I then obtain the desired result: v;(x; D) >
Ji (1,x; (¢, 7); D) for any admissible control policy. The proof of the second part of the
theorem relies on steps identical to those described above, except that inequalities are now
replaced by equalities. The uniqueness of v;(+; D) as a solution to re-scaled sequence problem

equation 1.16, shows that v;(x; D) = J; (1, z; (¢*,7%); D). O

A.1.13 Sketch of Equilibrium Existence Proof

I discuss here a possible route to prove that an equilibrium exists in a simpler environment
without discrete SDF states, and where the punishment upon default is financial autarky
forever. Upon a sovereign default, creditors’ recovery value is zero. In this simpler envi-
ronment, the Markov perfect equilibrium features only the debt-to-GDP ratio as a state

variable. Take an arbitrary debt price schedule D : RT™ — [0, ’;fi%] that is continuous and

strictly decreasing on that interval. Given this debt price schedule, construct the sovereign’s
“best response”, in other words construct the value function v(-; D) as well as the optimal
issuance and default policies (*(-; D) and 2*(D). This best response exists: given a debt
price schedule D, the function v(+; D) is simply the optimal life-time utility in a single-agent
optimal control, optimal stopping problem, where the control is the issuance rate ¢ and the
stopping time is the default time 7. Using those issuance and default policies, construct a
new debt price schedule D (-; (¢*(+; D), z*(D))).

I have implicitly constructed a functional map T, which takes a continuous decreasing

function D : RT — [0, ’ﬁi%] and maps it into a continuous decreasing function:

K+m

D (+ (e (5 D),a"(D))) : RT — [0 ]

"r+m

In fact, by studying the sovereign’s behavior when the debt price is constant and equal

K+m

++m > 1 can restrict this functional map to functions defined on the
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interval [0,z"/] (where z'f is the optimal sovereign default boundary when the debt is
priced at its risk-free value by creditors). Indeed, it is straightforward to show that the
default boundary must be decreasing in the debt price schedule — in other words, if for any
x, D1(z) > Do(x), it must be the case that *(D1) > x*(Dy). A Markov perfect equilibrium
of my economy is simply a fixed point of the functional map constructed. Schauder’s fixed
point theorem (appropriate for infinite dimensional spaces) could then be invoked in order
to establish the existence of a fixed point of such functional map. An appropriate space of
functions to use is any subset that is closed, bounded and equicontinuous. Indeed, since
[0, 't | is compact, Arzela-Ascoli’s theorem guarantees that any such subspace of functions
is compact. A good candidate to restrict oneself would be the space of Lipschitz continuous
functions that have the same Lipschitz constant. In order to apply Schauder’s fixed point
theorem, two theoretical hurdles thus have to be overcome. First, one would need to show
that the mapping T is continuous. Second, one would need to show that the mapping T
preserves Lipschitz continuity. Once those two conditions are established, existence of a

Markov perfect equilibrium is straightforward.

A.1.14 Expected Default Times and Ergodic Distribution

I note Tj(z), the risk-natural expected default time conditioned on the debt-to-GDP ratio
being equal to x and the state s = i. Mathematically, the expected default time can be
written Tj(z) := E5® [r]. Using Feynman-Kac, it is immediate to show that Tj(-) solves the

following HJB equation, for = € (0, z;):

N
1
0 =1+ (ti(2) = (m+ s = |oil?) 2) T/ @) + Slosl 2T (@) + > Ay Tyla) - (A16)
j=1
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The 2 x Ny boundary conditions consist in (i) value mathing conditions at the default
boundary and (ii) Robin boundary conditions at z = 0:

Ny
0 =1+ 4;(0)T7(0) + > AyT;(0)
j=1

I then focus on the ergodic measure f; of the state variable under the physical measure P,
conditioned on being in state ¢ and conditioned on the government being performing under
its debt obligations (I emphasize the word measure as opposed to density since f; does not
integrate to 1). For = € (0,7;) and x ¢ {0Z;}1<j<n,, fi solves the following Kolmogorov-

forward equation:

d il
—3 [|0'i|2$2fi($)] +Y Ajifi(x)
=1

2
dx?

N | —

0=~ (@) = (m+pi = loif?) ) fi(a)] +

The equation above is not applicable at the points {07, }1< F<N, (the points of re-entry of the
sovereign following a “smooth” default, i.e. a default such that z_ = Z,_), but the measures

fi are continuous at those points. The following boundary condition holds at x = z;:
fi(zi) =0 (A.17)

This equation can be obtained heuristically by approximating the continuous time process
{z+} by a discrete state Markov chain, and analyzing transitions in and out of the state
x = s, between time ¢ and time t + A;. It is also a standard condition for absorbing
boundaries. I note g; the fraction of time the sovereign is in autarky in SDF state ¢ — note
that such fraction does not depend on the debt-to-GDP ratio at entry into the default state
given the memory-less property of the stochastic process s¢, and given that the autarky time

length is exponentially distributed and independent of the process {s;}. In other words, if
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g:i= ZZN:51 g;, then I have:

g K¢ [7¢] A

9 _ B[S 1 syt _ ((1_ EA) _1> (A.18)

For any Markov state s = ¢, the integral of the ergodic distribution over the state space
[0,Z;), in addition to the expected time spent in autarky g;, need to add up to m;, the

stationary measure of the process s¢:

/Ox@- filz)dx + g; = m; (A.19)

Thus, equations A.17 and A.19 gives me 2 x Ng “boundary” conditions, allowing me to solve
for the Ng Kolmogorov-forward equations, which are second order ordinary differential equa-
tions. However, the constants {g;}1<;<y, in equation A.18 are only determined up to the
constant g, which represents the average percentage of time the sovereign spends in autarky
post-default. I determine the constant g numerically via a Markov chain approximation
method described in section A.3.

Finally, note that in the particular case where there is only one discrete Markov state,
I can derive a pseudo-closed form expression for the stationary measure f. Indeed, in such
case, the ergodic measure f of the state variable under the physical probability measure P
solves the following Kolmogorov-forward equation, valid for x € (0,6z) U (67, T):

d2
)

5 |loPa’ @) (a20)

N[ —

0=~k [0~ (o - ) ) o)

f is continuous at = 6z (the point of re-entry of the sovereign post-autarky). At x = Z,

the ergodic distribution must satisfy the absorbing boundary condition:
f(@)=0
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Equation A.20 can be integrated out as follows. For x € (7, %), | have:
1
0= G+ ((m+ e —i(x) f(a) + 5loPa>f (x) (A.21)

The constant G is the “flow” of the density in the positive direction. Using f(z) =0, I can

integrate equation A.21 to obtain, for x € (0z, z):

ro = [ e[ s (m+ s — () ds|

I also know that the density f is continuous at 6z (even though it is not differentiable at that
point). At 2 = 0, the density must be zero. Indeed, note that in a neighborhood of z = 0,
the stochastic process {z;} behaves similarly to a geometric Brownian motion to which a
constant strictly positive drift ¢(0) has been added, and it is straightforward to show that
the stationary distribution of a geometric Brownian motion which, at x = z, is “reset” to
x = 0z, admits a stationary density with value zero at z = 0. Thus, on [0, 0Z), the density

f takes the following form:

0z
(&) = exp [ | sz (m s s = as| o0

This integration provides for the continuity of f at x = 6z. Finally, the integral of the
ergodic measure over the state space [0, Z], in addition to the expected percentage of time

spent in autarky, need to add up to 1:

g x
/0 f@) e+ 3 T = !

This pins down the unknown constant G. U
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A.1.15 Credit Spreads

[ leverage the equation that the credit spread ¢;(x) satisfies:

Di(z) = (m+ k) {(diagj (rj +i(z) + m) — A>_1 1}

1
Some algebra can show that for any state ¢, I have:

Dj(x)

(k+m) {(diagj (rj +<i(z) +m) — A) - 1]

ie) = -
)
Since the debt price function D; is decreasing in the debt-to-GDP ratio x and since the

denominator in the expression above is positive, gZ( < 0. Some algebra also shows that the

function x¢/(z) can be expressed as follows:

(k+m)x (gl'(x))2 {(diagj (rj +<i(z) +m) — A) - 1] — zD} ()

i

(k+m) {(diagj (rj +<i(z) +m) — A) - 1} ‘

I have showed previously that gg > (. The second term is positive, and the third term is also

positive if the debt price function D; is concave. 0

A.1.16 Credit Default Swap Premia

As specified in the main text, I define the risk-neutral present value of future credit losses

and the risk-neutral present value of future CDS premia as follows:

~

Li(z,T) : = B [1{T<T}e* Jo rsudu ax (0,1 = Ds_(z7))
TAT
/ e Jo TSududt]
0
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The CDS premium is simply the ratio of those two quantities: ¢;(z,T) = é’g’g An

application of Feynman-Kac leads to the following partial differential equations satisfied by

L; and P;, for 1 <1 < Ng:

OL;

N,
(SL’, t) + ﬁiLi(a:, t) + Z Aiij(:c, t)

=1

op, . S

riPi(,t) = 1 = —=(2,t) + LiPi(z, 1) + > AjiPj(a,t)
=1

The boundary conditions are as follows, for ¢ € [0,T):

L;(x,0)=0 Vo < I
Pi(z,0) =0 Vo < I
Li(z,t) = 1 — D¢(x) Vo > 7
Pi(z,t) =0 Ve > 7;

I can then compute the expected excess return and the return volatility on a T-maturity CDS
contract. Imagine that at time ¢, an investor sells protection on the specific sovereign credit,
for $1 dollar notional amount and using a T-maturity contract. At time ¢, no cash-flow is
exchanged, the value of the CDS contract is zero and the premium agreed upon between
the buyer and the seller is equal to <s,(x¢,T) = Ls,(xt,T)/Ps;(x¢, T). At time t + dt, the
protection seller has accrued g, (¢, T')dt of premium income. The value of the “premium
leg” of his CDS contract is now equal to cs, (z¢, T) Ps,, 4, (T¢1a, T — dt) while the value of the
“default leg” of his CDS contract is now equal to Ls,, ,, (¥44q4s, T — dt). In other words, his

excess return (computed based on a $1 notional risky investment) is equal to:

dR;T = Cs¢ (Ita T>dt + Ss¢ (It, T)P8t+dt (mt—i—dtv T — dt) - L3t+dt (xt—l—dlh T — dt)
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This return is viewed as an excess return since the protection seller did not put any money
upfront to enter into his contract. To compute CDS expected excess returns and return

volatilities, I use Ito’s lemma and the relationship dR{ LT = = Gdt + 6t Ps; gy (Tppqr, T — dt) —

L3t+dt (xt—i-dt’ T— dt>:

opP 8P
AR} p = spdt+<t | Ps, + L, Psydt — a;t di — vt ,-dBy + Z _ P dN(St’ s')
oL 8L
- Lst + EStLSt - Wstdt — a dBt + E Lst dN(St’ s')

I then use the relationship between the operators Lg, and L st

0

Lst = L"St + TtVgy * USta_ZE

Using ¢t = Lg, /Ps, and the HJB equation satisfied by Ls, and Ps,, I have:

Py L
AR =Ly S Ay <ev(8t7,8/> _ 1) (P:/ - LSSI ) "
t— t—

S,
dP;, dLs,
— L A T i T Vs, - Og,dt
St PSt LSt St St
P I (51 OP;, dLs,
- ;) i
+L ( g _ S’)(dNSt ) A ,dt>—L T _ os, - dBy
ot 28,: Pst, Lstf t =8 ot PSt Lst %

This leads to the following expression for conditional expected excess returns and conditional

return volatilities:

. OPs, OLs,
79 Ttz
E[dRe ‘7:]:— 22 Vg, - O
t,T' t Pst Lst St St

P L.
(st,8") _ i
+ZASt8< ¢ 1) (Pst Lst) Lg,dt
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P, OLs, \ 2 2
Tt oyt Py L
var [de,TIFt] = dr 00 | og, P+ Ay (—S’ - —5’> L2 dt
S/

P, Lg, P, Ly,

A.1.17 Consumption Growth vs. OQutput Growth Volatility

Let me note p (x¢) the drift rate of x4 in SDF regime i, and o (x¢) its volatility vector:

() o= i) = (i +m = Aloil?) @

oy (xt) = —x0;

Using It0’s lemma, I can compute consumption growth volatility as follows:

dct C{St (ZL‘t) T 1 T 2 C;/t (l’t) 1 2 c;t (.l’t) €T
) /‘LSt (CCt) + 2 |0-St (.I't) | Cst (%) + Mst + |0-3t | + CSt (xt) O'St (ZL’t) ast

Cy sy (¢ 2

, /
+y° (CS’(“) - 1) NS 4 (Cstm)aﬁ(%) + cm) ~dBt

Csy (ZL”t) Csy (l’t)

In other words, conditioned on being in SDF regime s;, the ratio of consumption growth

volatility to output growth volatility has the following simple expression:

dC, 2
var [Tf’}—t} a:tc;t (x¢) 1 cg(xt) 2
_— - = 1 _—— —I— —2 Z Ast S/ - 1
var [% ‘ft] Csy (.Tt) |0-3t| s ’ Csy (xt)

Thus, the ratio of consumption growth volatility to output growth volatility crucially depends
on the elasticity of the consumption function w.r.t. the debt-to-GDP ratio. Moreover,
since the consumption function cg,(-) is decreasing in the debt-to-GDP ratio, it turns out
that consumption growth volatility is greater than output growth volatility. Consumption

volatility is also enhanced by the SDF shocks. It is also immediate to verify that the presence
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of SDF shocks breaks the unit correlation between consumption growth and output growth.

Such correlation is equal to:

acy dY;
Ct’

‘ft]: 1 <1

2
Cs (l‘t) c l(xt)
\/1 + ZS’ AStvs/ <Cst€$t) CL‘tcst(wt)>

COorr |:

A.1.18 Risk-Neutral Government

Assume v = p = 0, and assume that p; = p and o; = o for all i« < Ng. The government is
risk-neutral; its incentive to take on debt is solely due to the fact that it is more impatient
that its creditors: 6 > r;, for all state i < Ng. In any equilibrium with default where the
issuance policy ¢; is finite, the HJB equation for the government life-time utility takes the

following form:

(0 — p)vi(x Z Ajjvj( = max [0 (1 +¢;Di(x) — (k+m)x)

i = G+ m) 2] ef(e) + 5o Pl (2)

This expression is linear in ¢;, meaning that for an equilibrium to exist with a finite smooth
issuance policy, it must be the case that §D;(x) + v} (x) = 0. Reinjecting this condition into
the HJB above leads to:

(65— Wil ZAM )= 6 (1~ (5t m) ) — (- m) (o) + gl (o)

In this HJB equation, the issuance policy and the debt price have disappeared, and neither
constants nor boundary conditions are dependent on the SDF state. Thus, one solution to the

HJB equation is to have v;(x) = v(x) for all state i < Ng. Of course in that case, the default
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boundaries are also SDF state-independent, in other words for all © < Ng, z; = z. Finally,
since 6D;(z) + vl (x) = 0, it is also the case that the debt price is SDF state-independent. v

then solves the following:
1
(6 —p)v(z) =61~ (k+m)x) — (u+m)av'(z) + §|0\2$2v”(fﬂ) (A.22)

In other words, the govermnent life-time utility is identical to its value if it was allowing its
debt to amortize, without ever re-issuing new debt or buying back existing debt. The second

order ordinary differential equation admits the following characteristic polynomial:
1 202 LorYe5—w =0
o2 — (ot Slof? ) €~ (5 - =

Let £ be the positive root of such polynomial (the other root being strictly negative):

1 2Am+p) s - ple?
5._2<1+—) 1+<1+(2(m+u>+’a’2)2> > 1

Since the value function must be finite at x = 0, it takes the following form:

ky is a constant of integration that will be found using boundary conditions. At default,

v(z) = av?(z), where the constant v%(z) satisfies:

6+ do(0z)

d/-
i) = d+A—p

Thus the constant k, solves:

) K+m ad a\ ) K+m
5 T4k — _ 7 £
d—p (5+m)x+v 6+A—u+5+>\—u[5—u (5(5+m>9$—|—/%9}
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The optimal default boundary Z then satisfies the smooth pasting condition:

_ab\ (02)

li=\ _ d\/ [ =
V(@) =l (@) = T

This leads to a value of Z that verifies:

K+m af\ b\
) (1-—2 ) = 1-—=
5((5+mx)( 5+A—u) k”§< 5+/\—,u)

I then deduce the following optimal default boundary z and the constant of integration k,:

The debt price is computed using the equality dD(x) + v'(x) = 0:

k+m  Eky rax\é-1
D(x) = -— |z
(z) o+m  z* (:f)
1_ abA
_[(k+m 1_ S —p (f)f—l
S \d+m 1_3(}3\& T
—H

D is of course a decreasing function of x since £ > 1. This is the condition that [17] uncover
as the necessary and sufficient condition for optimality of a “smooth” financing strategy for
the government. It is then easy to show that:

1 11—«

NS
w0 =0 s e | (B)) e
0+A—p

This formula has a natural interpretation: the life-time utility for the government is equal
to the present value (from the government’s perspective) of its endowment stream, adjusted

for expected welfare losses due to default, minus the aggregate value of sovereign debt. The
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debt price function D must satisfy the HJB equation (from Feynman-Kac):

(ri +m) D(z) = k +m + [Lz-(x) - (M tm—|o?—o- ui) x} D'(z) + %|J|2D//(m) (A.23)

Take equation A.22, differentiate w.r.t. =, and use dD(x) + v/(z) = 0 to obtain:
1
(6 +m) D(z) =k +m — (u tm— |0'|2> 2D (z) + 5lo*D" (@) (A.24)

I can interpret probabilistically this HJB equation: the price of one unit of debt is equal
to the expected discounted net present value of interest and principal repayments on such
debt contract, where the discount rate is d, and where the default time is the first time at
which the debt-to-GDP ratio hits the boundary z, using a probability measure under which
no new debt is ever issued by the government. Subtract equation A.24 from equation A.23,

and simplify to obtain:

(6 —r;))D(x) + o - v;zD'(z)
—D'(x)
A
0y L—3520 ) /5\6! .
=T ) - —1llz—-0- -vx
=552,

Li(x) =

The time-varying interest rates and prices of risk only impact the financing policy of the
government: in periods of high risk-prices or relatively high risk-free rates, the government
adjusts its financing policy downwards. Finally, note that the stochastic differential equation
for x4 takes the following form (in the continuation region):

1 — _af)
o—r; E - 76—1,2-¢
t

_ O\
-1 \1- S+A—p

5_ .
—<€ Tll—i—m—l—,u—|a|2+a«ui)xt)dt—xta'-dBt
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This equation admits a singularity at x = 0, since at that point, the drift rate is unbounded,

except when £ € (1,2]. O

A.1.19 Endogeneous Growth

The dynamic equations for the state variables and the resource constraint are as follows:

dK; = (Hy — nKy)dt + Ko - dBy
dFy = (It — mFy)dt

Cy+ Hy = aKy + It Dy — (k + m)Fy — G(Hy, Ky)

By noting ¢ := It/ K, hy :== Hy/Ky, a natural state variable arises: z; := F}y/Ky, which

evolves according to:
dry = <Lt — <m +hy —n— |a’]2> a;t> dt — x40 - dBy

As usual, the value function, in SDF state i, can be written V;(K, F) = v; (z) K177, The

HJB equation satisfied by v; in the continuation region can be written:

% (5 +(1-p) (n + %7|a|2)> vi(x) jivj(x) -

(a+ ;Di(x) — (5 +m)x — (b + g(hy))) P [(1 — y)vi(z)] T

S
2

max
Lishg L —p

1
i1 = eil@) + [t = (m+ b =0 = 3lo ) 2] vi(@) + SloPa®] (@)
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The (necessary and sufficient) first order conditions for investment and debt issuances are

as follows:
SD(x)ei(x) P [(1 = 7)vi(@)]) 7 = —vl(x) (A.25)
5 (1+¢ (hi(@))) ei@) =P [(1 = i) = (1= y)vs(x) — wol(x) (A.26)

In the above, I have used the optimal consumption-to-capital ratio ¢;(z):
¢i(z) == a+(x)Di(z) — (k + m)z — (hi(z) + g (hi(2)))

The first order condition for optimal investments shows that a marginal unit of output
reinvested has two benefits: first, it increases the capital stock (the term (1 —~)v;(z) on the
right-handside of equation A.26), and second, it moves the debt-to-capital ratio away from
the default boundary (the term —zv)(z) on the right-handside of equation A.26). Taking

the ratio of (A.26) over (A.25), I obtain:

1+ g/ (hi(x)) = 2Dy(x) (1 B Gy 2.6

The equation above can be solved as a function of h;(x), and then reinjected into the first
order condition for the issuance policy ¢;(x). In the case of quadratic adjustment costs, I

have:

1 0D;(x) [(1 — v)vi(x)] =7
D;(z) —vi(z)
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Once the government has elected to default, it is in financial autarky for an exponentially
distributed time period (parametrized by \), following which it exits with a resulting debt-to-

capital ratio that is 6 times its pre-default debt-to-capital ratio. In default, I note VZ'-d(K JF) =
d

v (z)(ak )1=7 the government value function. The HJB solved by vl‘-l is as follows:

N

{1__7 (6 +(1—p) <77 + %7\0‘2)> + A} vl (x) — ZAMU?(%) — v;(07)

1—0p ]

=

j=
(a = (hi + g(h)) ™ [(1 = )of@)] 77+ 11 = o)

0
+ max
hi |[1—p

Thus, in default, the investment rate hf(x) (per unit of capital) and the consumption rate

cgi(x) (per unit of capital) are constant and solve:

5 (144 (h@)) (@) " [0 =ef@)] ™ = 1= o)

E — Zdiagi <A;l($)> + A — A] vd(x) — \v(fz) = :
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A.2 Tables and Plots

Figure A.1: US short term nominal and real interest rates
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Figure A.2: US short term real rates and discrete state Markov process approximation
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Table A.2: Estimation Result (part 1)

Brazil Bulgaria Hungary Colombia
Moment /Parameter Data Model Data Model Data Model Data Model
§ (% p.a.) 10 10 20 10
1—a (%) 1.5 2.5 4.5 1.5
corr (o, vg) (%) 100 95 100 100
vy 2.5 2.5 3.0 3.0
GDP growth rate (% p.a.) 4.2 4.2 1.7 1.7 1.8 1.8 4.2 4.2
GDP vol (% p.a.) 3.8 3.8 4.7 4.7 2.8 2.8 2.0 2.0

Avg. debt-to-GDP (%) 284 340 711 718 938 721 309 352
Avg. 5y CDS (bps p.a.) 391 456 177 183 273 327 261 343
Avg. by CDS xs return 643 306 291 171 834 223 420 175

Avg. by-1y slope 145 81 78 7 130 76 153 51
Stdev. debt-to-GDP (%) 10 2.1 340 3.7 437 45 75 22
vol(In Cy) /vol(In Yy) 2.0 1.8 1.8 2.4 1.9
Bond spread (bps p.a.) 374 173 275 297
Bond spread (RN model) 309 113 156 208
Avg. 1y CDS (bps p.a.) 246 375 99 106 143 252 108 292
Avg. 1y CDS xs return 282 113 198 168

5y CDS return volatility 1,247 627 631 350 520 622 875 640

Table A.3: Estimation Result (part 2)

Mexico Philippines  South Africa Turkey
Moment/Parameter Data Model Data Model Data Model Data Model
§ (% p.a.) 10 15 10 10
1—a (%) 2.0 4.5 1.5 1.5
corr (o¢, vg) (%) 75 100 100 100
0 1.5 2 2.5 2.5
GDP growth rate (% p.a.) 3.9 3.9 4.1 4.1 3.1 3.1 4.4 4.4
GDP vol (% p.a.) 3.5 3.5 3.0 3.0 2.5 2.5 3.8 3.8

Avg. debt-to-GDP (%) 329 56.0 549 53.7 23.0 36.6 352 328
Avg. 5y CDS (bps p.a.) 133 228 241 271 155 195 312 357
Avg. 5y CDS xs return 185 178 391 175 181 128 478 242

Avg. by-ly slope 78 54 139 49 84 34 138 67
Stdev. debt-to-GDP (%) 15.1 2.8 20.2 2.9 65.9 1.9 12.0 1.9
vol(In Ct) /vol(In Y) 1.7 2.3 2.0 1.8
Bond spread (bps p.a.) 206 236 178 310
Bond spread (RN model) 171 199 133 235
Avg. 1y CDS (bps p.a.) 56 174 102 223 71 161 174 290

Avg. 1y CDS xs return
5y CDS return volatility 636 495 759 476 589 295 973 485
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Figure A.3: Current Account Reversal during Latin America Debt Crisis
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Current Account-to-GDP (36)

Figure A.4: Current Account Reversal during Asian Tiger Crisis

15

10

-10

Indonesia
* Malaysia
* Philippines

Vietnam

1994

1996

1998

Year

122

2000

2002



A.3 Numerical Algorithm — Markov Chain Approxi-
mation

I will use a Markov Chain approximation method, as explained in [29]. T select this method
over the more traditional finite difference schemes: indeed, to guarantee convergence of both
methods to the solution of the differential equations of interest, the latter requires using
numerical schemes that are consistent, monotone and stable, and the last two requirements
are not always simple to verify 4 while the former requires the construction of approximating
Markov chains whose transition probabilities need to satisfy consistency properties that are
extremelly simple to verify in practice. I also favor the Markov Chain approximation method
over collocation methods: the latter methods require inverting non-sparse matrices, while the
former involves the inversion of sparse matrices, making my algorithm significantly faster.

I compute the functions {(vs, Ds)}s<, numerically over the compact set [0, maxs Zs],
by determining their values on an equally-spaced grid G}, where h > 0 is my scalar app-
proximation parameter. I will note {7, = kh}o<p<n, the grid points of Gj. 1 start
with a guess equilibrium cutoff Ng x 1 vector :i(l), and a guess issuance policy vector
S = {Lgl’l)(xk)}ongNmOSSSNS. My algorithm has an outer-loop, which updates the
equilibrium default cutoff vector a_r;(i), and an inner loop, which, for a given vector of cutoffs
.’E(i), updates the functions {vgi’j ), Dgi’j ) , Lgi’j )}. In the inner loop, I calculate the functions
vs(-; &™), Dg(-; ™) and 1s(-; ) as follows.

I first describe how to compute {Dgi’j )}s§ N,» given an issuance schedule (7) and a
default policy z(). To simplify notation, I omit the superscript (7, 7) when possible. Given

a set of cutoffs {Zs}4< v, and issuance policies {1s}s<p,, the dynamic evolution of the state

4. I note however that upwinding has been used as a classic tool to implement monotone schemes.
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variables z¢ and s; under Q can be written as follows, for =y € [0, Zs,]:

dry = <L8t(xt) - (m + sy — |‘7'St|2 — Vsy 'USt> xt) dt — 1405, - dBy
= MQ(J}t, St)dt — Tt0gy - dét

R /
dst = Z (s — s )dN;* ="
s'#£sp

In the inner loop, I create a Markov Chain X&n = <:c{é’n, 5(%,71) that approximates the

process {(z¢, st)}¢>0 under Q. I introduce Q{é(m, s) and At(}é(x, s) as follows:

Qb 5) = %orel? + hligy(, )]
h2

Qh(a.s)

At{é(z, s) =

Since p(0, s) > 0 for all discrete SDF state s (in equilibrium the sovereign will be borrowing
when it is not indebted, i.e. ¢t5(0) > 0), infy g Q&(w, s) > 0, which means that At{é(w,s) is

well defined. For all x and all s < Ng, I have:

lim At] (2, s) =0
fim, Atg(@:)

I then define the following transition probabilities:

(AasBi(:5) ($2\Gs|2

Pr (X&nJrl = (x+h,s) |X(%,n = (z, s)) + hmax (0, ug(z, s)))

Qg ) 2
AssAth (z,5) 2 2
oo hoo_ _ere v”los|
Pr (XQ,n—i—l = (z —h,s)|Xg, = (z, S)) = Q(}é(:ﬁ, 9 ( 5 + hmax (0, —ug(z, s)))

A / AssAh 7
H<X@m4=(%4ﬂX&n=0u@):(:f;>(1_6 @uﬁ)

Notice that these transition probabilities are all greater than zero, less than 1, and they add

up to 1. Noting Ax(%)n = w67n+1 — x{@ and As&’n = 8(%7n+1 — s(}@’n, the Markov chain

,n
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created satisfies the local consistency condition:

E*3 [Afb&m_ = MQ(x,s)At&(m,s) (A.27)

var®® |:A$(}é,n- = x2|Gs|2At(f@(Ia s)+o (At(}@(% 3)) (A.28)

E*»* [As(}é’n_ = ZA (s — s AtQ({L’ s) (A.29)

S [Asf@’n_ _ ZA (s — ) Atfy(x,5) + 0 (AtQ( )) (A.30)

cov®? [Ax@n,Ash ’n_ =0 (A.31)

For zg > x5, > 0, the sovereign government is performing and I compute DS’J )(xk) as

follows:

DU () = (4 m) Aty (g, 5) + ¢ TR S by (Xl 5) DG (o)
L)

For zj, > Zs, the sovereign government is in default and I compute Dgz’] )(:ck) as follows:

DY ag) = Mo (271 D0 (0ay))
This is a linear system of Ng x (Nj, + 1) equations in Ng x (/Np, + 1) unknown, which can be
solved easily via a simple matrix inversion. Note that the matrix to be inverted is sparse,
which greatly reduces computing time.

I then describe how to compute vgi’j ) in each discrete Markov state s, given an issuance
schedule ¢(%J ), a debt price schedule D) and a default policy (1. Once again [ omit
the superscript (7,j) when possible. Given a vector of cutoffs Z, an issuance policy ¢ and

a debt price schedule D, the dynamic evolution of the state variables x+ and s; under the

probability measure induced via Pr(A) = E (1) Jo 750 dBu—5(1-7) [y |osul” duq 4| can be
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expressed as follows, for z; € [0, Zs,|:

dry = (LSt(xt> - (m + sy — 7|0'8t|2> xt) dt — 2105y - dBt
= /vb]fn(xh St)dt — Tt0gy - dét

dst = Z (s' — st_)det_’Sl
s/ L5y
By introducing Q%(Ls) and At%(x,s), computed in a similar fashion to Q{é(m,s) and
At{é(m, s), I can construct a new Markov Chain {X]g’n}nzo that approximates the process
{(x, st) }+>0 under the probability measure Pr. The transition probabilities of this Markov
chain will satisfy consistency conditions similar to those of equations A.27, A.28, A.29, A.30
and A.31. For zg > ;. > 0, the sovereign government is performing and I compute vgi’j ) (xp)

as follows:

(i), y_ O B o) 1T A
1) = 12 1+ 15l Dalig) = G m)a) [0 =20 ) At@w,)
+67%A5At§>(zk’5) Z Pr (X |z, )
JJ“]’TD,S’FP7

(i,

For x;, > Z4, the sovereign government is in default and I compute vg )(xk) as follows:

(Ug>(ﬁj)($k)== T ——6——-[(1-—’7)(vd>(id)($k)}l7 + Mol (9

S

Note that the resulting system of Ng x (N}, + 1) equations in Ng X (N + 1) unknown

{vgw ) (z) Yo<k<N,,s<N, is not linear. In order to solve such system, I use a simple procedure:
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starting with a guess {v(&Jm) (z1) Yo<k<n,, | iterate, for xj, < Zs, on the following:

>
2

Ugi’j’m+l)<$k) — L (1 + Ls(xk)DS(xk) — (:‘i + m)xk) [(1 — ’Y)’Ugi’j’m) (xk)] o At[%(xka 3)

1—p
1— h
e A § py (Xplis) v

/
T~
P

i,7,m+1
Caml) (L)
P

/
S~
P

For x}, > s, the iteration becomes:

(v?) (4,9,m+1) (1) = r-1 ) [(1 — ) ('vd> (4,3,m+1) ($k;)] I— n /\v(i’j’m)ka)

S

The iterative procedure is stopped once |[o(B5m ) — 4 (E3m)|| s sufficiently small. Once
v(7) and D) are computed, I can update the issuance policy as follows, in each state s:
(i.9) i, 1
iy, 1= |90 (=20l ()]
— NN
i () S CRORE

+(k +m)xy — 1]

In the above w € (0,1) is a dampening parameter that “smoothes” the transition from
(4,4) (i,j+1) . . . . . 5
Ls "’ 1o Lg and prevents infinite loops between debt price and issuance policy®. The

(

NN
derivative (vsl’j )> (x},) is computed by using a centered finite difference approximation. I
iterate on the inner loop until |[¢(J+1) — 4(0:9)|| . is sufficiently small.

At the conclusion of the inner loop, I have obtained 'v(i)7 D(i), L(i), all assuming a default

policy 20 T then set 2(+1) by checking the smooth pasting condition at Egi) for all discrete

5. For most parameter configurations of interest, the issuance policy is increasing in the debt price sched-
ule, and the debt price is a decreasing function of the issuance schedule. Thus, without dampening, the
algorithm ends up frequently in an infinite loop: a high debt price at the end of iteration j leads to a high
issuance policy in iteration j + 1; such high issuance policy feeds back into a low debt price at iteration j+1,
which leads to a low issuance policy in iteration j + 2, thus creating the infinite loop.
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states s:

1—p -1
@Y (@) = al=720 (T + 51 — zdiagj ([(1 - y)v;?l(:zs)} _H>> v'(0z5)

S

Depending on whether the left handside is greater or less than the right handside, I update
féiJFl) using a binomial search method.

Once the optimal default boundary & and the optimal issuance policy ¢ are known, I
can compute the expected default time and the ergodic density of x. The computation of
the expected default time T'(x) follows the same logic as the computation of the debt price,
except that the Markov transition probabilities are adjusted to reflect the stochastic evolution
of x; and s; under the physical measure P. Finally, the ergodic density of (z¢, s¢) under P
is constructed as follows. First, I find the unitary eigen-vector {p"(zy, $)}0<k<Nj,,1<s<N;
(associated with the eigen-value 1) of the transpose of a Markov matrix whose elements
correspond to transition probabilities in and out of performing states (xy, s) (for z; < Zs),
as well as in and out of default states (xy, s) (for zj, > ming Zs). Once again those transition
probabilities are constructed in an identical way to those described previously. For each

state (xy,s), the ergodic density at such point is approximated by xh (xp, s), computed as

follows:

_ Pl (g, ) Ath(zy, 5)
ij78/ ph(xj, s’)AtﬂI}ﬁ(xj, s

Mz, s)

In order to compute CDS prices, I use a slightly modified procedure. As described
previously, I need to compute the risk-neutral expected loss Lg(z,T) and the risk-neutral

expected present value of CDS premia Pg(x,T'). Introduce the constant € > 0. Q(%(x, s) and
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At(}@ (z, s) are now defined as follows:

Q(x, s) = 2?|os|* + hlug(z, s)| + h/e
h2

Qh.5)

At&(x, s) =

I still have inf; s Q(}é(x,s) > 0, which means that At&(m, s) is well defined. For all z,s, I
have:

lim At (z,s) = 0
fim, Aty

The state space now includes time-to-maturity 7', and the approximating Markov chain
is now the three-dimentional process Xh’n = (m@,n, 5&,71776,71)' Given a starting state

X& n, = (2,58,T), I define the following transition probabilities:

A h
ghssBig(®) (:52|o—5|2
Qg s) 2
Rasify(@.s) <Jr2las|2
2

+ hmax (0, ug(z, s)))

+ hmax (0, —pg(z, s))>

Notice that these transition probabilities are all greater than zero, less than 1, and they add
up to 1. The Markov chain created satisfies local consistency conditions similar to those in

equations A.27, A.28, A.29, A.30 and A.31, in addition to:

E5* [AT&TJ = —At&(m,s)
var®" [AT(&”} =0 (At(}@(z, s))
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The state space grid G}, is three-dimensional, and is of the form:

{(zi, 8, Tj) <i<N, 1 <s<Ns 1<j<Np,

, where the grid points {x;} and the grid points {7} are equally spaced with distance h and
eh respectively. For Z5 > x; > 0 and for T' > T; > 0, I compute Ls(x;,T;) and Ps(z;,T;) on

the grid G}, as follows:

Lg(z;,T;) = e*?"sAt(}é(l’us) Z Pr (X(’@\(xz, s,Tj)) LS(/@ <xé@,T/@>
(v5:78)
Py(ai, T;) = Aty (s, ) + ¢ T80 S py (Xl(i5.T) Py, (4, Th)

S
(st 7)) ’

I note = Nohs the grid point at which the sovereign government defaults optimally in state
s, in other words N, j, ¢ = Zs/h. The boundary conditions at 7" = 0 are Lgs(x;,0) = 0
for i < Nype Ls(7i,0) = (1 = D(z;)) for i > Ny 3, and Ps(x;,0) = 0 for all x;. The
boundary conditions at T" > 0 are Lg(z;,T) = (1 — D(x;)) and Ps(z;,T) = 0 for i >
Ny p,s and for any T This system of linear equations is solved recursively: starting from
{Ls(i,0), Ps(i,0)h1<i<n, ,,s<N,» | can compute {Ls(x;, €h), P(x;, eh) h<i<n, ; s<N, Via

the system of linear equations above, and progress backwards.
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A.4 Continuous State Markov Process Approximation

Several methods have been implemented over the years to approximate continuous state
Markov processes by discrete state Markov chains. Some of these methods are described in
[50], [51], and more recently [49] and [48], when dealing with highly persistent processes.
The methods mentioned above work well with a relatively large number of states. Since
I use a small number of discrete states in my numerical application, I will use an ad-hoc
procedure relying on matching conditional and unconditional moments of the original process
and my approximating process. I use the stochastic discount factor of [33] to illustrate my
procedure. In their article, the pricing kernel features (a) a constant risk-free rate, and (b)
a time-varying price of risk 14 that follows an AR(1) process — the discrete time equivalent

of an Ornstein-Uhlenbeck process:
dvy = —ky (np — D) dt + o, dZy

[33] parameterize v, k,, 0, according to table A.4.

Table A.4: Parameters for [33] Model

Parameter Variable Value (annualized)
Average risk-price v 62.5%
Risk-price volatility oy 24%
Persistence parameter Ky 0.14

In order to approximate the Ornstein-Uhlenbeck process by a discrete state continuous
time Markov process, I first choose a discrete number of risk-prices {v;}1<;<n,, and then
minimize the distance between (i) a set of conditional and unconditional moments of the
Ornstein-Uhlenbeck process and (ii) the same set of conditional and unconditional moments
of my discrete state continuous time Markov process. Table A.5 highlights the set of condi-
tional and unconditional moments I use. This minimization step is usually time consuming
if the number of discrete states is large — in such case, the alternative methods described

at the beginning of this section are more appropriate, as numerically more efficient. But
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since | work with a relatively small number of discrete states, I can afford to go through this
minimization procedure.

Table A.5: Target Moments

Moment [33] Model Discrete State Model
- N,
E [14] v Zizl Vi
2 0'1% Ns 2 Ns _ 2
var [vf] 2y 2o Ty — (i v
E [v44s| Ft] ve S + (1 — 6_”’/8) Zjvzsl <6AS> Y}
St
o2 2 N, A 2 N, A ?
ol L0 R ()2 (S (), n)

My choice of N is driven by computational considerations — I pick Ng = 5 in order
for my numerical algorithm to be able to solve for an equilibrium relatively quickly. This
means that I need to compute Ny x (Ng — 1) = 20 transition intensities <Aij)i7€j' I pick
an equally spaced grid {v;};<y, = (0,0.375,0.75,1.125,1.5). In addition to the mean and
variance of the ergodic distribution of 14, I also match the conditional mean and variance at
2 horizons: 0.25 years, and 2 years. This gives me 22 different moments (20 conditional, and

2 unconditional), for 20 free parameters. My approximation procedure leads to the following

generator matrix:

-—0.1838 0.1637  0.0075  0.0012  0.0113 ]

0.0703 —0.1576  0.034 0.0401  0.0132
A= 100417 0.0904 —0.2505 0.1154 0.003
0.0239 0.002 0.1406 —0.1826  0.016

| 0.0001  0.0001  0.0772  0.1412 —0.21806 |

The resulting ergodic distribution 7r is displayed in figure A.5. The ergodic distribution of my

discrete state process has a mean of 62.5% and a standard deviation of 45%, which correspond
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Figure A.5: Stationary Distribution
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exactly to the moments of the ergodic distribution of the original Ornstein Uhlenbeck process.
The maximum relative error in conditional means is equal to 1.7%, while the maximum
relative error in conditional variances is equal to 7.9%.

Finally, I highlight one particular aspect of the SDF used in this paper: its persistence.
Consistent with many models of the stochastic discount factor, whether long-run risk models,
habit formation models, or more reduced form specifications such as [33], the persistence of
the risk-price process is high — in the particular parametrization of [33], the half-life mean-
reversion speed is In2/k;, ~ 5 years. This feature of asset pricing models has its importance
in the context of my sovereign default framework: since the transition intensities in and out
of a given state are relatively small, the adjustments to the sovereign financing policy will
be larger than if those intensities were higher. This will lead to the relatively large current
account adjustments discussed in the core of my paper. Note that the autocorrelation func-

tion of my discrete state continuous time Markov process approximation takes the following
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Figure A.6: Autocorrelation Function
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One can show that asymptotically, R(s) ~ e~ "% where —x is the largest non-zero (and of

course negative) eigen-value of the matrix A. My numerical procedure leads to k = 0.139,
which is very close to the persistence parameter s, = 0.14 in the original article of [33]. I
display R(s) in figure A.6, and on the same graph I plot the autocorrelation function of the
original Ornstein-Uhlenbeck process, simply equal to e~ "%, As showed in the plot, the two

autocorrelation functions are indistinguishable.
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