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ABSTRACT

The electronic Hamiltonian contains only pairwise interactions, allowing the energy of an

electronic system to be expressed in terms of the two-electron reduced-density-matrix (2-

RDM) in lieu of the many-electron wavefunction. The variable space for the exact N -electron

wavefunction scales exponentially with the size of the system, while the 2-RDM is polynomial

in scale. By using the 2-RDM as the primary variable in electronic structure calculations,

it may be possible to obtain very accurate energies at a much more favorable scaling than

wavefunction methods. In this thesis, we will use two existing 2-RDM methods to treat

electronic systems. First, we will apply the active-space variational 2-RDM method, which

directly minimizes the energy with respect to the 2-RDM, to a cadmium telluride polymer

that was recently used to greatly enhance the conductivity of CdTe quantum dots. We find

that this polymer is very highly correlated despite a deceptively simple structure. We will

then turn to the parametric 2-RDM method (p2-RDM), which parameterizes the 2-RDM in

terms of a truncated configuration interaction ansatz, but which includes additional flexibility

in order to be size-extensive. We apply p2-RDM to the study of the olympicene molecule,

which features both fully aromatic and diradical isomers. The parametric 2-RDM method

predicts that all isomers are stable to dissociation, in contrast to coupled cluster methods

which do not predict stable diradical states. We then present analytical nuclear gradients for

p2-RDM, which greatly decrease the number of calculations required to perform geometry

optimizations. We apply these gradients to the study of trans-polyacetylene, for which p2-

RDM, unlike many wavefunction methods, is able to predict a bond length alternation (BLA)

to within experimental values. Lastly, as a single-reference method, p2-RDM may encounter

numerical difficulties when the reference wavefunction is of particularly poor quality. We

propose a modification to the parameterization that may render the method more generally

robust.
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CHAPTER 1

INTRODUCTION

1.1 Electronic Structure

Quantum mechanics, or the study of matter at very small scale, is governed by the time-

dependent Schrödinger equation

i~
∂

∂t
Ψ(~r, t) = Ĥ(~r, t)Ψ(~r, t) (1.1)

where Ψ is the wavefunction, ~r is the coordinates of all the particles of the system, t is the

time, and Ĥ is the Hamiltonian. This equation states that the time evolution of the system

is governed by the Hamiltonian, which is given by

Ĥ =
N∑
i

− ~2

2mi
∇2 + V (~r, t). (1.2)

The first term in Ĥ is the sum of the kinetic energy of each particle in the system, and

V (~r, t) is potential energy term. If V (~r, t) has no explicit time-dependence, the equation in

Eq. 1.1 reduces to the time-independent Schrödinger equation

Ĥψ(~r) = Eψ(~r) (1.3)

an eigenvalue equation whose solutions ψi are the possible stationary states of the system,

each corresponding to an energy Ei. The wavefunction contains all the information about the

system, from which we may obtain almost any property of interest. In particular, electronic

structure seeks the solution to Eq. 1.3 for systems consisting of positively charged nuclei

and negatively charged electrons. For these systems, if relativistic effects are neglected,

the potential energy term Vij = ±k
|~ri−~rj |

, where k is a constant whose sign is positive if

the charges of the particles i and j have the same sign and negative if they have opposite
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signs. Nuclei are commonly excluded from Eq. 1.3 because their mass is three orders of

magnitude larger than that of electrons; from the point-of-view of the smaller, faster-moving

electrons, the larger nuclei are effectively stationary. This is known as the Born-Oppenheimer

approximation, reducing the search for stationary states to the solution of Eq. 1.3 with the

following electronic Hamiltonian

Ĥ =
N∑
i

− ~2

2mi
∇2 +

N∑
i

M∑
I

−k
|~ri − ~RI |

+
N∑
i<j

k

|~ri − ~rj |
. (1.4)

The first term contains the kinetic energy of the electrons, the second contains the attraction

the electrons and the (frozen) nuclei, and the third term is the electron-electron repulsion.

If the system contains one electron, the Hamiltonian consists only of the first two (one-

body) terms in Eq. 1.4, and the solutions ψ to Eq. 1.3 are a series of orthonormal one-

particle wavefunctions, also known as orbitals. For the hydrogen atom, these form the well-

known hydrogenic orbitals s, p, d, et cetera. Unfortunately, due to the two-body electron-

electron repulsion term, an exact analytical solution to the electronic Schrödinger equation

is impossible for more than one electron, and therefore approximate numerical solutions

to this equation are required. In constructing an approximate wavefunction, one important

consideration is that electrons are indistinguishable particles of half-integer spin, or fermions.

The wavefunction must be antisymmetric to the exchange of two fermions, a property that

can be ensured with the use of Slater determinants. An N -electron Slater determinant has

the form

|Φ〉 =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(1) φ2(1) · · · φN (1)

φ1(2) φ2(2) · · · φN (2)

...
. . .

...

φ1(N) φ2(N) · · · φN (N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.5)

where φi is the ith orthonormal orbital. Exchanging two electrons has the effect of swapping

two rows of the determinant, which flips the sign. No single Slater determinant constitutes
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an exact solution to Eq. 1.3, but it can form a suitable basis in which to express such a

solution.

A simple approximate solution to the electronic Schrödinger equation would be a single

Slater determinant, with orbitals φ chosen so as to minimize the energy. The method for

finding the orbitals φ is known as Hartree-Fock (HF) [1]. It begins by choosing a set of atomic

orbitals (AOs), which are often Gaussian functions. The HF equations are then solved in

an iterative and self-consistent fashion, producing a set of molecular orbitals (MOs) that

are linear combinations of atomic orbitals (LCAOs). The N electrons are placed in the N

orbitals that produce the lowest-energy determinant possible. Within the HF method, the

electron-electron repulsion term in Eq. 1.4 is not treated exactly. Instead, a given electron

interacts with the other N − 1 electrons in an averaged fashion, and thus HF is known as

a ”mean-field” method. Despite being a simple wavefunction guess, HF frequently captures

more than 99% of the total electronic energy. For this reason, many electronic structure

methods use HF as a starting point in calculations; these are known as post-Hartree-Fock

methods.

Once a given one-particle basis of MOs has been determined using HF, many determi-

nants are possible other than the HF determinant |Φ0〉. A linear combination of all possible

combinations of all N electrons placed into all r orbitals would also make a suitable wave-

function ansatz. This is the wavefunction used in full configuration interaction (full CI) [2].

|ψFCI〉 = c0|Φ0〉+
∑
ia

cai |Φ
a
i 〉+

∑
i<j
a<b

cabij |Φ
ab
ij 〉+ . . . (1.6)

where |Φ{q}{p}〉 is the determinant produced by moving electrons out of the occupied orbitals

{p} into the unoccupied orbitals {q}. The energy of this wavefunction is the expectation

value

EFCI = 〈ψFCI |Ĥ|ψFCI〉. (1.7)

3



If the energy EFCI is minimized with respect to the coefficients {c} in Eq. 1.6, the nu-

merically exact solution to the electronic Schrödinger equation within a given AO basis is

obtained. The difference between the full CI energy and the HF energy is known as the cor-

relation energy. In a real system, electrons are attracted to the nucleus but repelled by other

electrons, and therefore electrons move in a correlated fashion in order to avoid one another.

However, the HF wavefunction confines the N electrons into N orbitals, preventing their

coordinated motion. Full CI, in contrast, does account for electron correlation by sampling

among all possible electron configurations. Unfortunately, full CI scales combinatorially as

rCN , which means that for 16 electrons and 32 spin orbitals, there are ∼ 109 possible deter-

minants. This scaling rapidly renders full CI computationally intractable, and it certainly

cannot be performed for systems with more than 18 electrons and 36 spin orbitals.

Much of electronic structure is devoted to developing methods that capture as much of

the correlation energy as possible, while remaining computationally inexpensive enough to

treat larger molecules of chemical interest. One approximation to the exact wavefunction

would be to truncate the wavefunction in Eq. 1.6 after a given excitation order, a method

known as truncated CI [3]. For example, if the wavefunction were truncated at second

order, the method would be configuration interaction with single and double excitations, or

CISD. This approximation is reasonable because doubly excited determinants couple most

strongly to the reference wavefunction, and therefore CISD should capture a large percentage

of the correlation energy. Unfortunately, truncated CI methods are not size-extensive: the

percentage of correlation energy they capture decreases as the system gets larger.

Size-extensive approximations to full CI are also possible, such as Møller-Plesset pertur-

bation theory [4]. Another is coupled-cluster theory [5], which is similar to truncated CI in

that it features a finite number of excitation tensors. However, it approximates higher exci-

tations as a product of lower excitations (e.g. quadruple excitations as a product of double

excitations), allowing it to to be both size extensive and substantially more accurate. The

method has proved highly successful, such that coupled cluster with single and double ex-

4



citations with perturbative triples, CCSD(T), is often called the gold standard of electronic

structure methods [6].

Active-space methods are another form of approximating full CI. In active space CI, a

full CI calculation is performed within a certain number of orbitals, while the other orbitals

remain either doubly occupied or empty. This method can be improved by also allowing

rotations between orbitals, otherwise known as CASSCF [7]. In HF, the MOs are rotated so

as to be optimal for a single determinant, whereas CASSCF rotates the MOs to be optimal

for a linear combination of determinants. A CASSCF wavefunction may also be used as

a reference wavefunction for multireference methods, such as MRCI, perturbation theory

methods like CASPT [8] or MRMP [9], or multireference coupled cluster [10].

Another collection of electronic structure methods seek to approximate the solutions to

the electronic Schrödinger equation not by using the wavefunction, but by using reduced

density matrices. These will be explored in the following section.

1.2 Reduced-Density-Matrix Methods

In second quantization, the electronic Hamiltonian is expressed as

Ĥ =
∑
p<q
r<s

2K
pq
rsa
†
pa
†
qasar (1.8)

where 2K
pq
rs contains the one- and two-electron integrals

2K
pq
rs =

1

N − 1
(δpr〈q|ĥ|s〉+ δqs〈p|ĥ|r〉) + 〈pq|V̂ |rs〉. (1.9)

and the operators a
†
p and ap create and annihilate an electron in the orbital p, respectively.

The creation and annihilation operators obey anticommutation relations in order to satisfy

the antisymmetry requirements for fermions. The energy of a given wavefunction |ψ〉 is given

5



by

E = 〈ψ|Ĥ|ψ〉

=
∑
p<q
r<s

2K
pq
rs 〈ψ|a†pa†qasar|ψ〉.

(1.10)

In lieu of a wavefunction, the energy can also be expressed using a reduced density matrix

(RDM)

2D
pq
rs = 〈ψ|a†pa†qasar|ψ〉 (1.11)

such that Eq. 1.10 can be written as

E = Tr(2K2D). (1.12)

Eq. 1.12 states that the energy can be exactly expressed as a function of the 2-RDM, because

the Hamiltonian only contains one- and two-particle operators. The expression in Eq. 1.11 is

equivalent to integrating the wavefunction over all electrons save two. The 2-RDM, therefore,

only contains information about two electrons, as opposed to the N -electron wavefunction

which holds information about all N . Indeed, the 2-RDM holds r4 elements, as opposed to

the exact wavefunction which contains rCN . The ability to exactly express the energy using

an object much smaller than the N -electron wavefunction has been a tantalizing prospect

for many years [11].

Unfortunately, it was noticed early on that direct minimization of the energy with respect

to the elements of the 2-RDM yields energies that are far too low [12, 13]. This is because,

while every N -electron wavefunction may be contracted onto a 2-RDM using Eq. 1.11, not

every 2-RDM may be derived from an N -electron wavefunction. The set of all possible

2-RDMs is therefore larger than the set of all possible N -electron wavefunctions, causing

energy minimizations with respect to the 2-RDM to be lower bounds to the full CI energy.

This is known as the N -representability problem, and N -representability constraints are

necessary to ensure the 2-RDM resembles as closely as possible a physically realistic N -
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electron wavefunction [11].

The N -electron wavefunction gives the probability of finding N electrons in a given

configuration. The eigenvalues of the 2-RDM, meanwhile, give the probability of finding two

electrons in a given antisymmetric two-electron geminal. An important consideration for the

N -representability of a 2-RDM is that the probability of that geminal being occupied must

lie between 0 and 1: probabilities cannot be negative. This is equivalent to saying that the

2-RDM must be positive semidefinite

2D � 0 (1.13)

or have eigenvalues greater than or equal to zero. Extending these considerations to the

two-hole and one-particle-one-hole matrices Q and G

2Q
ij
kl = 〈ψ|âiâj â

†
l â
†
k|ψ〉 � 0

2G
ij
kl = 〈ψ|â†i âj â

†
l âk|ψ〉 � 0

(1.14)

gives the DQG conditions, defined in Eqs. 1.13 and 1.14, on the variational minimization of

the energy with respect to the 2-RDM [14]. While these conditions do not ensure complete

N -representability, they do greatly reduce the deviation from N -representability. Ener-

gies found using these conditions remain a lower bound to the exact energy, but they are

substantially more accurate than an unconstrained optimization [15, 16]. An active space

formulation of the variational 2-RDM method is utilized in Chapter 2 to study a highly

multireference and computationally demanding CdTe polymer.

Another way of utilizing the 2-RDM in quantum mechanical calculations is the para-

metric 2-RDM method (p2-RDM). In p2-RDM, partial N -representability is enforced by

parameterizing the 2-RDM in terms of an N -representable wavefunction, specifically that of

CISD [17]. The 2-RDM is granted additional flexibility during the optimization in order to

ensure size-extensivity, but the parameterization preserves partial N -representability [17–19].

Because the majority of this thesis deals heavily with p2-RDM, its derivation is presented

7



more fully in Chapter 3. It is then used to examine the single-reference aromatic isomers

and the diradical multireference isomers of the olympicene molecule in Chapter 4. In Chap-

ter 5, analytical nuclear derivatives are introduced for the p2-RDM method, which greatly

increase the speed of molecular optimizations. Lastly, in Chapter 6, an alteration to the pa-

rameterization is proposed to help p2-RDM treat more difficult and highly multireferenced

systems.
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CHAPTER 2

ORBITALS, OCCUPATION NUMBERS, AND BAND

STRUCTURE OF SHORT ONE-DIMENSIONAL CADMIUM

TELLURIDE POLYMERS

This chapter contains parts of an article that was originally published in the Journal of

Physical Chemistry A. Reproduced with permission from [A. J. S. Valentine, D. V. Talapin,

and D. A. Mazziotti,J. Phys. Chem. A, 121, 3142 (2017)]. Copyright 2017, American

Chemical Society.

2.1 Introduction

Semiconductor nanocrystals, or quantum dots (QDs), have electronic and spectroscopic prop-

erties currently of great interest to the research community [1]. Quantum dots, with their

narrow emission spectra of tunable wavelengths, are natural building blocks for LCD dis-

plays and light-emitting devices [2]. Within the medical community, they have been used as

chemiluminescent sensors [3], with applications such as immunolabeling [4] or protein detec-

tion [5, 6]. QDs have also successfully been employed as field-effect transistors (FETs) [7],

and the combination of their conductive and absorption properties has rendered QDs promis-

ing candidates for next-generation solar cells [8]. More recently, a groundbreaking study by

Dolzhnikov et al. [9] looked to increase the conductivity of a wide array of semiconductor

nanocrystals. They found that by annealing QD films in the presence of soluble inorganic

salts formed from the same material as the QDs (e.g. CdTe QDs in a Na2CdTe2 solution),

Figure 2.1: The CdTe polymer
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they were able to increase dramatically the electron mobility of FETs by up to two orders

of magnitude. Another study [10] found that CdTe QDs capped with Te2− ligands showed

markedly increased carrier mobility and diffusion length. These two studies suggest that the

interface of quantum dots and inorganic materials is an important step forward in QD-based

devices.

It would be useful to have a theoretical understanding of the inorganic materials that have

been used to enhance QD-based FETs. To that end, this paper will examine a novel inorganic

structure that was reported in the Dolzhnikov et al. study [9]: a [CdTe2−2 ]∞ polymer in a

one-dimensional wire motif that had not previously been reported. This paper will offer a

computational study of that polymer, reporting natural-orbital (NO) occupation numbers,

Mulliken populations, charge gaps, and isomer effects as a function of polymer size and

composition. As a conducting polymer, it will likely feature a high density of states near the

HOMO-LUMO gap, with a correspondingly large number of nearly degenerate orbitals; as a

result, the ground state of the polymer is likely highly multi-referenced. A multi-referenced

wavefunction is one that cannot be qualitatively described by a single Slater determinant,

and is common in systems with ground and excited states that are close in energy. Previous

computational studies of small CdTe clusters have reported optimized structures and HOMO-

LUMO gaps using either molecular dynamics simulations [11] or density functional theory

(DFT) [12–16]. However, DFT offers a one-electron picture of electronic structure, which is

inherently uncorrelated, and we expect that the polymer’s nature can only be captured fully

with a two-electron based method.

The variational two-electron reduced density matrix (2-RDM) method has proven to be

a robust alternative to traditional wavefunction methods [17–22]. The variational 2-RDM

method has been successfully applied to extended π-conjugated systems like acene sheets [23]

and firefly luciferin [24], as well as to inorganic complexes such as vanadium oxo 2,6-bis[1,1-

bis(2-pyridyl)ethyl]pyridine [25]. The complex in the latter paper, which featured heavy

atoms and a very large number of electrons, was found to demonstrate ligand noninnocence,
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but this effect could not be captured until a very large (42,40) active space was employed.

The success of the 2-RDM method in handling such large active spaces renders it uniquely

suited to a study of the CdTe polymer, which likewise features heavy atoms and a high

number of electrons.

2.2 Theory

A common method in electronic structure is to posit a wavefunction |Ψ〉 and variationally

minimize its energy

E = 〈Ψ|Ĥ|Ψ〉 (2.1)

in order to find an upper bound to the energy of the true wavefunction. Once a wavefunc-

tion has been found, its two-electron reduced density matrix (2-RDM) may be derived by

integrating over all electrons but two

2D
ij
kl = 〈Ψ|â†i â

†
j âlâk|Ψ〉 (2.2)

where â and â† are the usual annihilation and creation operators. The energy in Eq. 2.1 may

then be rewritten in terms of the 2-RDM by

E = Tr(2K2D) (2.3)

where 2K is the reduced Hamiltonian matrix given by

2K
ij
kl =

1

N − 1
(δik〈j|ĥ|l〉+ δjl〈i|ĥ|k〉) + 〈ij|V̂ |kl〉. (2.4)

Here ĥ and V̂ are the one- and two-electron operators, respectively. It is possibly to minimize

the energy in Eq. 2.3 directly with respect to the elements of the 2-RDM 2D
ij
kl [26–37].

However, this results in an energy that is dramatically too low and is in fact a lower bound
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to the energy of the true wavefunction in a given finite basis set. This is because the set of

all possible 2-RDMs is much larger than the set of all possible wavefunctions; that is to say,

not every 2-RDM corresponds to a physical N -electron wavefunction, or equivalently, not

every 2-RDM is N -representable [29–33].

The constraints necessary to ensure the 2-RDM is N -representable are called p-positivity

conditions [32], of which a subset are the 2-positivity conditions [38]. These state that the

following matrices must have non-negative eigenvalues, or be positive-semidefinite

2D � 0

2Q � 0

2G � 0

(2.5)

where the � symbol means all eigenvalues of the matrices are greater than or equal to 0.

2D, 2Q, and 2G are the particle-particle, hole-hole, and particle-hole 2-RDMs, defined by

2D
ij
kl = 〈Ψ|â†i â

†
j âlâk|Ψ〉

2Q
ij
kl = 〈Ψ|âiâj â

†
l â
†
k|Ψ〉

2G
ij
kl = 〈Ψ|â†i âj â

†
l âk|Ψ〉.

(2.6)

These constraints correspond to the physical intuition that the probabilities of finding two

particles, two holes, or one particle and one hole must all be non-negative. After adding

these constraints to the minimization of the energy in (3), the energy of the resulting 2-

RDM remains a lower bound to the true energy, but the error is greatly decreased.

In the active-space variational 2-RDM method [39, 40], the variational minimization of

the energy is performed only within a subset of the total molecular orbitals of the system,

while the core orbitals remain doubly occupied, in a fashion analogous to complete active

space configuration interaction (CASCI). To further improve the accuracy of the solution,

we can also minimize the energy of the 2-RDM with respect to the molecular orbitals them-
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selves, rendering the method effectively analogous to complete active-space self-consistent

field (CASSCF) [41]. In practice, the algorithm proceeds by minimizing the energy as a

function of the 2-RDM within the active space, mixing the active and inactive orbitals by

one-electron unitary transformations to lower the energy further, and repeating until the

energy of the 2-RDM converges.

2.3 Applications

The active-space variational 2-RDM method is used to investigate the [CdTe2−2 ]n polymer.

Occupation numbers, natural orbitals, and band gaps are reported for n from 1 to 4. For

the largest polymer, occupation numbers and Mulliken charges are presented for its oxidized

and reduced states. Occupation numbers are also given for other, more symmetric forms of

the polymer, capped with either a Cd2+ or Te4−2 unit.

2.3.1 Methodology

All calculations were performed in the 3-21G split valence basis set [42]. The active-space

variational two-electron reduced density matrix method was used to calculate ground-state

energies and natural-orbital occupation numbers of various forms of the [CdTe2−2 ]n polymer.

The active space consisted of the 5sp orbitals for each Cd and Te atom, with the sole

exception of the tetramer calculations, which excluded the 5s orbitals of Te due to excessive

computational costs. All core orbitals were taken to be frozen; that is, the orbital rotation

mentioned above was not performed for any of the doubly occupied orbitals. Generation of

the molecular orbitals from Hartree-Fock calculations as well as evaluation of one- and two-

electron integrals were performed using the GAMESS electronic structure package [43]. The

oxidized and reduced forms of the polymer, which are doublets, were treated by calculating

the ground state of the molecule together with a single hydrogen atom placed at infinite

separation [21]. In all calculations, Cd was taken to be in a 2+ oxidation state and Te in a
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2− oxidation state for the purpose of electron counts. Bond lengths and bond angles of the

polymer were taken from Ref. [9]. The polymer used in Ref. [9] as a conducting filler between

quantum dots was anionic, with a −2 charge per monomer unit. This charge allowed the

polymer to be dissolved in solution, but the additional electrostatic repulsion from the extra

electrons renders the polymer highly unstable in the gas phase; for that reason, total energies

of the molecule are not reported here.

2.3.2 Results

The molecular orbital (MO) diagram for the CdTe2−2 monomer, obtained from Hartree-

Fock in the 3-21G basis, is plotted in Fig. 2.2. It is readily apparent that the occupied

4d-shell orbitals on the cadmium are much lower in energy than the other valence orbitals.

In practice, when these orbitals are included in the active space, they contribute minimally

to the electronic structure and largely remain doubly occupied. This is consistent with other

results in the literature, and it has been argued [44] that although d10 group elements are

found in the d-block of the periodic table, due to their completely filled d-shell, they do not

behave as transition metals. The primary valence shell in CdTe2−2 consists of the 5s and

5p orbitals on both the cadmium and tellurium atoms, which is the active space employed

in nearly all of the calculations. The 5s orbitals on Te are also very low in energy and mix

minimally with the remainder of the active space; these orbitals are excluded from the active

space in the case of the largest polymer studied, the tetramer. The next set of unoccupied

MOs, arising from the 6s and 6p orbitals on the cadmium atom, do not qualitatively change

the electronic structure when included in the active space. It is interesting to note that

even this relatively modest (12o,16e) active space per monomer unit is computationally

unfeasible for analogous MCSCF methods for the dimer, and CASSCF would require ∼ 1024

determinants in order to treat the tetramer in this active space.

Natural-orbital (NO) occupation numbers of the polymer for lengths from n = 1 to n = 4

may be found in Table 2.1. Relatively little multireference electron correlation was found
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Figure 2.2: Qualitative molecular orbital diagram for the CdTe2−2 monomer, obtained from
Hartree-Fock in a 3-21G basis set. The primary valence shell is composed of 5s and 5p
orbitals from both Cd and Te.
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Table 2.1: Natural-orbital occupation numbers for the [CdTe22−2 ]n polymer for n from 1
to 4. In a perfectly uncorrelated molecule, the occupation of all orbitals up to the HONO
would be 1 and all other orbitals would be zero. Multireference correlation increases as the
polymer lengthens.

Orbital 1-mer 2-mer 3-mer 4-mer
HONO-2 0.9776 0.9610 0.9180 0.8869
HONO-1 0.9544 0.9588 0.9125 0.8131

HONO 0.9505 0.6148 0.6861 0.8042
LUNO 0.1070 0.5402 0.6795 0.7665

LUNO+1 0.0208 0.0237 0.0288 0.0291
LUNO+2 0.0202 0.0231 0.0278 0.0255

in the CdTe2−2 monomer, as measured by the population of the lowest-unoccupied natural

orbital (LUNO) and above. In contrast, once the Cd2Te4−4 dimer has been formed, we see

an almost even population of the highest-occupied natural orbital (HONO) and the LUNO,

with the dimer being a near diradical. Further increasing the size of the polymer to the

trimer and tetramer continues to fill the HONO and LUNO evenly. Once the size of the

tetramer is reached, we see remarkably even filling of the HONO, LUNO, and several other

more-occupied orbitals, while the LUNO+1 and lower-occupied orbitals continue to remain

energetically unfavorable. This fairly unusual filling pattern is indicative of very strong

multireference correlation effects.

Select NOs from Table 2.1 are plotted in Fig. 2.3. The HONO and LUNO for both the

monomer and dimer are qualitatively similar, with one orbital on each end of the molecule.

However, while the populations of the HONO and LUNO are very different on the monomer,

the spatial separation of these orbitals in the dimer allows them to become energetically

competitive and hence, relatively equally filled. As the molecule expands to the trimer, the

frontier orbitals located at either end of the molecule continue to fill, while two additional

occupied NOs begin to have significant deviations in their populations from 1. Finally, in the

tetramer we observe even more orbitals becoming significantly correlated. However, unlike

the smaller molecules, the terminating NOs have now filled to the point where the majority

of the active electron correlation is occurring in the interior of the polymer, with four frontier
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Figure 2.3: The density contours of natural orbitals are plotted for each n-mer with n from 1
to 4, where the arrow is in the direction of polymer growth. More orbitals have occupations
differing substantially from 1 or 0 as the polymer grows in length.

NOs centered on the internal tellurium atoms. It may be observed that the tetramer is the

first instance of a completely internal Cd2Te4−4 unit, and therefore might be the first case

which qualitatively represents the formation of a polymer. In such a polymer, we would

expect the internal structure to dominate the edge effects of the molecule, which is what we

begin to observe here.

To explore further the electron correlation of the CdTe polymer, we analyze calculations

in which the polymer is either oxidized or reduced by one electron. Additionally, because

different forms of the polymer could be found in solution depending on how it is cleft, iso-

mers of the polymer were examined that were capped with either Cd2+ or Te4−2 . The NO
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occupation numbers for these two cases are presented in Fig. 2.4 for the longest molecule

studied. In Fig. 2.4(a), it may be seen that adding an extra electron uniformly increased the

population of the occupied orbitals and the LUNO, effectively decreasing the correlation in

the system, while removing an electron substantially lowered the populations of a large num-

ber of occupied orbitals, greatly increasing the degree of multireference correlation. As with

all of the examples in Table 2.1, the populations of the LUNO+1 orbital and above remain

negligible regardless of electron number. Similarly, in Fig. 2.4(b), capping the polymer with

Te4−2 dramatically quenched the static correlation in the system, yielding a molecule that is

almost entirely single-reference. In contrast, capping with Cd2+ greatly increased the static

correlation, with substantial electron populations of both the LUNO and LUNO+1 orbitals,

while LUNO+2 and above remain unfilled. The striking similarity between these two plots

may be explained by the nature of the two caps. Te4−2 contributes 8 completely filled or-

bitals to the active space, thereby increasing the relative electron filling of the system, while

Cd2+ contributes 4 unfilled orbitals to the active space, decreasing the relative filling. The

fact that the LUNO+1 (or LUNO+2 in the case of the cadmium-capped molecule) orbital

and less-filled orbitals never receive any substantial filling strongly suggests the formation

of a band structure, where the orbitals of the conduction band are substantially higher in

energy than those of the valence band. This suggests that the polymer is a semiconductor

whose valence band is nearly, but not fully filled. The fundamental charge gap, defined as

the difference between the ionization energy and the electron affinity, was also evaluated for

each species. This quantity steadily decreases with polymer length from 100.3 kcal/mol in

the monomer to 78.3 in the dimer, 67.4 in the trimer, and lastly to 55.9 in the tetramer. This

decreasing charge gap suggests that the polymer becomes an increasingly good conductor

as it grows in length. Finally, Mulliken populations for the three oxidation states of the

tetramer are plotted in Fig. 2.5, showing the distribution of the additional anionic charge

across the molecule. In all three cases, the internal cadmium atoms remain largely neutral,

with the additional electrons distributed across the terminating atoms and the internal tel-
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Figure 2.4: Natural-orbital occupation numbers near the HONO-LUNO gap in the Cd4Te8−8
tetramer for (a) its oxidized, reference, and reduced states, and (b) the polymer capped with
Cd2+, the reference polymer, and the polymer capped with Te4−2 . Increasing the number
of electrons decreases the static correlation in the molecule, while decreasing the number
of electrons increases it. Similarly, capping the polymer with the electron-rich Te4−2 group

decreases the static correlation, and capping with the electron-deficient Cd2+ cation greatly
increases it.

lurium atoms; the electron added or removed from the system is largely delocalized over

these atoms.

2.4 Discussion and Conclusion

In this paper, we presented the first computational study of the newly synthesized one-

dimensional CdTe polymer. Natural-orbital occupation numbers show that the polymer is

strongly correlated, and that its strong electron correlation increases as the polymer grows in

size. However, this static correlation presents itself in an unusual fashion, with nearly even

electron fillings of several of the HONOs and the LUNO, while the LUNO+1 and less-filled
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Figure 2.5: Mulliken charges of the Cd4Te8−8 tetramer. The locations of the −7 charge of the
oxidized species, the −8 charge of the reference species, and the −9 charge of the reduced
species are plotted by atom in the polymer. The Mulliken charges have been multiplied by
−1 for aesthetic reasons. Anionic charge accumulates on the ends of the molecule and on
the internal Te atoms.

orbitals remain unoccupied even in the longest polymer. This suggests that there are several

degenerate orbitals grouped together near the HONO-LUNO gap, forming a band, while

the other LUNOs remain significantly higher in energy and are therefore inaccessible to the

ground state. This is further supported by changing the number of electrons: reducing the

polymer does not half-fill an unoccupied orbital, but rather fills the grouped orbitals nearly

evenly, while oxidizing the polymer evenly decreases their occupation. In similar fashion,

capping the polymer with an additional atom or atoms increases the number of orbitals

above and below the HONO-LUNO gap, but the electron-rich Te4−2 group yields a valence

band that is relatively more filled, while the electron-deficient Cd2+ cap gives a valence

band that is relatively less filled. Taking these results together, it seems very likely that the

CdTe polymer possesses an almost (but not completely) filled valence band and an unfilled

conduction band. Relatedly, the fundamental charge gap, defined as the difference between

the ionization energy and electron affinity, decreases with polymer length, suggesting that it

becomes an increasingly good conductor.
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The relative electron filling of the polymer will assuredly impact its solubility and reac-

tivity, and as this study has shown, it will also greatly impact the electronic structure of the

molecule and the degree of strong electron correlation it contains. Consequently, it seems

possible, by oxidation, reduction, or doping, to tune any potential QD fillers to have the ideal

balance of chemical and electronic properties in order to boost maximally the conductivity

of QD films. Good QD fillers will also likely be strongly correlated materials, in order to

maximize the density of states near the HOMO-LUMO gap and facilitate the free flow of

electrons through the molecule. The interaction of QDs and inorganic materials is an excit-

ing new development in the field of inorganic chemistry, with the promise of yielding new

QD-based devices, such as next-generation solar cells, with ever greater power and efficiency.
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CHAPTER 3

THE PARAMETRIC TWO-ELECTRON

REDUCED-DENSITY-MATRIX METHOD

3.1 Introduction

In Chapter 1, it was observed that the energy of a system may be expressed using the

two-electron reduced-density matrix (2-RDM).

E = Tr(2K2D) (3.1)

where 2K is the reduced Hamiltonian matrix and 2D is the 2-RDM, which may be obtained

from the N -electron wavefunction |Ψ〉 by

2D
pq
rs = 〈Ψ|a†pa†qasar|Ψ〉. (3.2)

Here a† and a are creation and annihilation operators, respectively. It would be advanta-

geous to be able to evaluate the 2-RDM directly without first requiring the full N -electron

wavefunction. However, it is difficult to directly determine the 2-RDM while also constrain-

ing it to correspond to a physically realistic N -electron wavefunction, which is known as an

N -representable 2-RDM [1–3]. One approach is to directly minimize the energy in Eq. 3.1

while constraining the eigenvalues of various RDMs to be non-negative, which are known

as p-positivity conditions [4–9]. A very different approach is to enforce N -representability

by directly parameterizing the 2-RDM in terms of an N -electron wavefunction, such as the

wavefunction from a truncated configuration interaction method. The derivation of such a

method is the subject of this chapter.
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3.2 From Configuration Interaction to a 2-RDM

The wavefunction ansatz for configuration interaction with double excitations (CID) [10, 11]

is given by

|ΨCID〉 = T0|Φ0〉+
∑
i<j
a<b

2T abij |Φ
ab
ij 〉 (3.3)

where |Φabij 〉 is the Slater determinant formed by exciting two electrons out of the occupied

orbitals i and j into the orbitals a and b. Orbitals that are occupied in the reference wave-

function are denoted by the letters (i, j, k, l), unoccupied orbitals are denoted by (a, b, c, d),

and generic orbitals are given the letters (p, q, r, s). The wavefunction is normalized, such

that

T0 =

√√√√1−
∑
i<j
a<b

( 2T abij )2. (3.4)

When the energy E = 〈Ψ|H|Ψ〉 is minimized with respect to the coefficients 2T , the CID

energy is obtained.

It is possible to directly contract the wavefunction in Eq. 3.3 onto a 2-RDM using the

relation in Eq. 3.2. To illustrate how this occurs, consider the case where (p, q, r, s) in Eq. 3.2

are equal to (a, b, c, d), i.e. all four orbitals are unoccupied in the reference. This is the 2Dab
cd

element of the 2-RDM, given by

2Dab
cd = 〈ΨCID|a

†
aa
†
badac|ΨCID〉. (3.5)

This expectation value can only be non-zero for terms on the left where the orbitals a and

b are occupied, and terms on the right where the orbitals c and d are occupied. This means

that only excited determinants contribute to this term. In addition, the holes i and j in

terms on the left must match up with holes k and l in terms on the right. As a result, this

27



element of the 2-RDM can be expressed in terms of 2T amplitudes by

2Dab
cd =

∑
i<j

2T abij
2T cdij . (3.6)

There are various classes of terms within 2D
pq
rs , depending on the number of orbitals that

are occupied or virtual within the reference. The remainder of this chapter will closely follow

the presentation of parametric 2-RDM methods given in Ref. [12]. The complete list of all

terms are as follows

2D
ij
kl = 42I

ij
kl + 4(1∆i

k ∧
1I
j
l ) + 2∆

ij
kl (3.7)

2Dia
jb = 1Iij

1∆a
b + 2∆ia

jb (3.8)

2Dab
cd = 2∆ab

cd (3.9)

2Dab
ij = 2∆ab

ij (3.10)

where 1I
p
q is the one-particle identity matrix, 2I

pq
rs is the two-particle identity matrix ex-

pressed as a Grassman wedge product of one-particle matrices

2I
pq
rs = 1I

p
r ∧ 1I

q
s

= 1I
p
r
1I
q
s − 1I

p
s
1I
q
r

(3.11)

and the assorted 1∆
p
q and 2∆

pq
rs terms are given in terms of 2T

2∆
ij
kl =

∑
a<b

2T abij
2T abkl (3.12)

2∆ia
jb = −

∑
kc

2T acjk
2T bcik (3.13)

2∆ab
cd =

∑
i<j

2T abij
2T cdij . (3.14)
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1∆i
j = −

∑
a<b

∑
k

2T abik
2T abjk (3.15)

1∆a
b =

∑
i<j

∑
c

2T acij
2T bcij . (3.16)

The final 2∆ term is the only one featuring the coefficient of the reference

2∆ab
ij = 2T abij T0

= 2T abij

√√√√1−
∑
k<l
c<d

( 2T cdkl )2. (3.17)

Now that the 2-RDM has been parameterized in this fashion, direct minimization of the

energy E = Tr(2K2D) with respect to the coefficients 2T will also yield the CID ground state

energy. In this instance, the 2-RDM is exactly N -representable because it was contracted

directly from the N -electron wavefunction in Eq. 3.3. However, the energies obtained from

CID suffer from a lack of size-extensivity, which the following section will attempt to address.

3.3 Size-Extensivity of the Parametric 2-RDM Method

The CID parameterization in the previous chapter is not size-extensive [13]. A size-extensive

method gives a correlation energy that scales linearly with the size of the system, but the

expression for 2∆ab
ij used in Eq. 3.17 does not do so. Whenever {i, j} ∩ {k, l} = ∅ and

{a, b} ∩ {c, d} = ∅, 2∆ab
ij contains unconnected terms which scale quadratically with system

size. The parameterization could be rendered size-extensive by the insertion of a topological

factor f into Eq. 3.17

2∆ab
ij = 2T abij

√√√√1−
∑
k<l
c<d

fabcdijkl ( 2T cdkl )2 (3.18)

with the requirement that fabcdijkl = 0 whenever {i, j, a, b} ∩ {k, l, c, d} = ∅. This is known

as the parametric 2-RDM method (p2-RDM) [12, 14, 15]. If f were equal to 1 in all cases,

this method would be exactly equivalent to CID, which would be N -representable but not
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size-extensive. If f were set to 0 in call cases, it would be equivalent to CEPA(0) [16–

18], which is size-extensive but deviates greatly from N -representability. There may be a

parameterization somewhere between two methods that is approximately N -representable

and also approximately size-extensive.

Kollmar [14] noted that the 2-positivity conditions DQG could be imposed in order to

enforce approximate N -representability. These state that the following matrices must all

have non-negative eigenvalues

2D � 0

2Q � 0

2G � 0

(3.19)

where 2D, 2Q, and 2G are the two-particle, two-hole, and one-particle-one-hole RDMs,

respectively

2D
pq
rs = 〈Ψ|a†pa†qasar|Ψ〉

2Q
pq
rs = 〈Ψ|apaqa†sa†r|Ψ〉

2G
pq
rs = 〈Ψ|a†paqa†sar|Ψ〉.

(3.20)

The 2Q and 2G matrices can be directly expressed in terms of 2D, such that the DQG

conditions can be fullfilled solely by imposing constraints on 2D. Rather than directly

impose DQG conditions on the optimization of the energy, the topological factor f could be

chosen so as to partially fulfill the conditions implicitly. The 2-positivity conditions imply a

weaker set of restrictions known as Cauchy-Schwarz inequalities, given as

(2Dab
ij )2 ≤ 2D

ij
ij
2Dab

ab

(2Qabij )2 ≤ 2Q
ij
ij
2Qabab

(3.21)
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for 2D and 2Q, respectively. For 2G, there are four inequalities

(2G
jb
ia)2 ≤ 2Giaia

2G
jb
jb

(2G
aj
ib )2 ≤ 2Gibib

2G
aj
aj

(2Gbija)2 ≤ 2G
ja
ja

2Gbibi

(2Gaijb)
2 ≤ 2G

jb
jb
2Gaiai.

(3.22)

The Cauchy-Schwarz are necessary conditions for any matrix to be positive semidefinite,

and are sufficient in the special case of 2x2 matrices. Substituting the expressions from

Equations 3.7-3.10 into the inequalities in Eq. 3.21 and equating the connected portions give

the following parameterizations

2∆ab
ij = 2T abij (1 + 1∆i

i + 1∆
j
j + 2∆

ij
ij)

1/2 (3.23)

2∆ab
ij = 2T abij (1− 1∆a

a + 1∆b
b + 2∆ab

ab)
1/2 (3.24)

which are known as the D and Q functionals [12], respectively. Repeating the same process

for the 2G inequalities gives

2∆ab
ij = 2T abij (1 + 1∆

j
j −

1∆b
b −

2∆
jb
jb)

1/2

2∆ab
ij = 2T abij (1 + 1∆

j
j −

1∆a
a − 2∆

ja
ja)1/2

2∆ab
ij = 2T abij (1 + 1∆i

i −
1∆b

b −
2∆ib

ib)
1/2

2∆ab
ij = 2T abij (1 + 1∆i

i −
1∆a

a − 2∆ia
ia)1/2.

(3.25)

Kollmar averaged the four 2G equalities in order to derive a functional known as the K

functional [14]. Mazziotti, meanwhile, chose to use the 2D and 2Q equalities to derive a

functional that preserved particle-hole symmetry, known as the M functional [12]. Each of

the functionals discussed here may be characterized by the value of fabcdijkl for the number of

orbitals no shared between (i, j) and (k, l), and the number of orbitals nv shared between
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Table 3.1: Various functionals fabcdijkl , defined for classes of no/nv, where no is the number

of orbitals shared between (i, j) and (k, l), and nv is the number shared between (a, b) and
(c, d).

Topological factor fabcdijkl
Method 0/0 1/0 2/0 0/1 0/2 1/1 2/1 1/2 2/2

CID 1 1 1 1 1 1 1 1 1
CEPA(0) 0 0 0 0 0 0 0 0 0

D 0 1 1 0 0 1 1 1 1
Q 0 0 0 1 1 1 1 1 1
K 0 1/2 1 1/2 1 3/4 1 1 1
M 0 0 1 0 1 1 1 1 1

(a, b) and (c, d). The functionals are given in terms of no and nv in Table 3.1.

3.4 Incorporating Single Excitations

Regardless of functional, the parametric 2-RDM method may be improved by adding single

excitations to the parameterization. Where before we started with the wavefunction from

CID, we now begin with a wavefunction from configuration interaction with single and double

excitations, or CISD

|ΨCISD〉 = T0|Φ0〉+
∑
ia

1T ai |Φ
a
i 〉+

∑
i<j
a<b

2T abij |Φ
ab
ij 〉. (3.26)

The same procedure for contracting this wavefunction onto a 2-RDM is performed, as before,

giving the following terms for the 2-RDM

2D
ij
kl = 42I

ij
kl + 4(1∆i

k ∧
1I
j
l ) + 2∆

ij
kl (3.27)

2Dia
jb = 1Iij

1∆a
b −

1T bi
1T aj + 2∆ia

jb (3.28)

2Dia
jk = 1Iij

1∆a
k −

1Iik
1∆a

j + 2∆ia
jk (3.29)

2Dia
bc = 2∆ia

bc (3.30)
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2Dab
cd = 2∆ab

cd (3.31)

2Dab
ij = 2∆ab

ij . (3.32)

The 1∆ and 2∆ terms are

2∆
ij
kl =

∑
a<b

2T abij
2T abkl (3.33)

2∆ia
jb = −

∑
kc

2T acjk
2T bcik (3.34)

2∆ia
jk =

∑
b

2T abjk
1T bi (3.35)

2∆ia
bc =

∑
j

2T bcij
1T aj (3.36)

2∆ab
cd =

∑
i<j

2T abij
2T cdij . (3.37)

1∆i
j = −

∑
a<b

∑
k

2T abik
2T abjk −

∑
a

1T ai
1T aj (3.38)

1∆a
b =

∑
i<j

∑
c

2T acij
2T bcij −

∑
i

1T ai
1T bi (3.39)

and now there are two terms that contain the reference coefficient T0 and require topological

factors to restore size-extensivity.

2∆ab
ij = 2T abij T0

= 2T abij

√√√√1−
∑
k<l
c<d

fabcdijkl ( 2T cdkl )2 −
∑
kc

fabcijk (1T ck)2 (3.40)

1∆a
i = 1T ai T0 +

∑
jb

2T abij
1T bj

= 1T ai

√√√√1−
∑
k<l
c<d

fcdakli ( 2T cdkl )2 −
∑
jb

fabij (1T bj )2

+
∑
jb

2T abij
1T bj .

(3.41)
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In the M parameterization [12], fabcdijkl is the same as before, equal to 1 if (i, j, a, b) and

(k, l, c, d) share at least two indices and zero otherwise. In a similar fashion, fabcijk is set to 1

if (k, c) shares at least one index with (i, j, a, b), and fabij is set to 1 if i = j or a = b; both

factors are zero otherwise.

3.5 Concluding Remarks

The parametric 2-RDM method [12, 14, 15] is a single reference method that, like all such

methods, relies upon the quality of the reference in order to provide accurate energetic

predictions. It has a computational scaling that is comparable to that of coupled cluster with

single and double excitations (CCSD) [19]. When the reference wavefunction is reasonably

accurate and the K parameterization is used, it yields energies that are comparable to those

of CCSD [14, 20–22]. By incorporating single excitations and by using the more flexible and

accurate M parameterization, energies from p2-RDM typically fall [12, 23, 24] between those

predicted by CCSD and the more accurate CCSD(T) [25]. However, the true strength of

the method lies in the flexibility contained with the parameterization. When the reference

wavefunction is of very poor quality, p2-RDM frequently outperforms [26, 27] the much

more expensive CCSD(T); unlike coupled cluster methods, p2-RDM is remarkably adept at

correcting the underlying reference in order to detect substantial multireference character.

In the coming chapters, this ability to give accurate energies for both strongly and weakly

correlated systems will be demonstrated, and extensions will be proposed to the method in

order to make it more efficient and robust.

3.6 References

[1] A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).

[2] A. J. Coleman and V. I. Yukalov, Reduced Density Matrices: Coulson’s Challenge

(Springer-Verlag, New York, 2000).

34



[3] R. H. Tredgold, Phys. Rev. 105, 1421 (1957).

[4] R. Erdahl, Rep. Math. Phys. 15, 147 (1979).

[5] R. Erdahl and B. Jin, On Calculating Approximate and Exact Density Matrices

(Springer US, Boston, MA, 2000), pp. 57–84.

[6] D. A. Mazziotti and R. M. Erdahl, Phys. Rev. A 63, 042113 (2001).

[7] D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004).

[8] M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda, K. Nakata, and K. Fujisawa, J. Chem.

Phys. 114, 8282 (2001).

[9] G. Gidofalvi and D. A. Mazziotti, J. Chem. Phys. 126, 024105 (2007).

[10] I. Shavitt, The Method of Configuration Interaction (Springer US, Boston, MA, 1977),

pp. 189–275.

[11] C. D. Sherrill and H. F. Schaefer III (Academic Press, 1999), vol. 34 of Advances in

Quantum Chemistry, pp. 143 – 269.

[12] D. A. Mazziotti, Phys. Rev. A. 81, 062515 (2010).

[13] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced

Electronic Structure Theory (Dover, New York, 1996).

[14] C. Kollmar, J. Chem. Phys. 125, 084108 (2006).

[15] D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008).

[16] F. Wennmohs and F. Neese, Chem. Phys. 343, 217 (2008).

[17] R. Ahlrichs, Comput. Phys. Commun. 17, 31 (1979).

[18] W. Meyer, J. Chem. Phys. 58, 1017 (1973).

35



[19] I. Shavitt and R. J. Bartlett, Many-body methods in chemistry and physics: MBPT and

coupled-cluster theory (Cambridge university press, 2009).

[20] A. E. DePrince III and D. A. Mazziotti, Phys. Rev. A 76, 042501 (2007).

[21] A. E. DePrince III, E. Kamarchik, and D. A. Mazziotti, J. Chem. Phys. 128, 234103

(2008).

[22] A. E. DePrince III and D. A. Mazziotti, J. Chem. Phys. 130, 164109 (2009).

[23] C. A. Schwerdtfeger, A. E. DePrince III, and D. A. Mazziotti, J. Chem. Phys. 134,

174102 (2011).

[24] E. P. Hoy, C. A. Schwerdtfeger, and D. A. Mazziotti, Mol. Phys. 110, 765 (2012).

[25] J. Rezac and P. Hobza, J. Chem. Theory Comput. 9, 2151 (2013).

[26] A. M. Sand, C. A. Schwerdtfeger, and D. A. Mazziotti, J. Chem. Phys. 136, 034112

(2012).

[27] A. J. S. Valentine and D. A. Mazziotti, J. Phys. Chem. A 117, 9746 (2013).

36



CHAPTER 4

THEORETICAL PREDICTION OF THE STRUCTURES AND

ENERGIES OF OLYMPICENE AND ITS ISOMERS

This chapter contains parts of an article that was originally published in the Journal of

Physical Chemistry A. Reproduced with permission from [A. J. S. Valentine and D. A.

Mazziotti,J. Phys. Chem. A, 117, 9746 (2013)]. Copyright 2013, American Chemical

Society.

4.1 Introduction

The olympicene molecule, a five-ringed polyaromatic hydrocarbon (PAH), was recently syn-

thesized [1]. PAHs have long been studied in astrophysics [2], and they are now used as

molecular semiconductors [3]. Olympicene, or 6H -benzo[cd ]pyrene, is related to a class of

PAHs known as acenes and two-dimensional acene sheets, which represent finite approxi-

mations to graphene [4]. Of these, the linear pentacene molecule, which commonly serves

as a semiconductor in field-effect transistors [5, 6], is the least compact five-ringed struc-

ture, while olympicene represents the most compact five-ringed structure (Fig. 4.1). As with

all acenes, olympicene has delocalized orbitals extending over the entire π-bond network.

However, unlike other acenes, olympicene is neither fully aromatic nor fully planar due to

the central -CH2- group. The two hydrogen atoms extend above and below the carbon

Figure 4.1: 6H -benzo[cd ]pyrene, also known as olympicene.
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plane, and the central carbon’s sp3-hybridization precludes its participation in the π-bond

network. Acenes have previously been studied in linear [7, 8] and two-dimensional configura-

tions. Hachmann et al. showed that polyradical character increases as a function of system

size in linear acenes [9], and Pelzer et al. demonstrated a similar trend in two-dimensional

acene sheets [10], while also discovering greater electron correlation in linear geometries than

in nonlinear geometries.

A similar four-ringed structure, benzo[c]phenanthrene, has been known for many years [11].

Lacking the central -CH2- group, the carbon structure of benzo[c]phenanthrene is non-planar

due to steric repulsion between hydrogen atoms. In contrast, olympicene’s carbon network

is indeed planar. One of the out-of-plane -H functional groups in olympicene may migrate

about the molecule via π-bond rearrangement, moving from the central carbon to a site

located two carbons away. Instead of passing through a single transition state during this

migration, the hydrogen moves along the C-C bonds, passing through two transition states

and a diradical intermediate state centered above the intermediate carbon. This diradical

intermediate is weakly bound, non-aromatic, and strongly correlated.

Two-electron reduced density matrix (2-RDM) methods have proven to be computa-

tionally efficient in treating strongly correlated systems [12–16]. While the active-space

variational 2-RDM method was previously used to study nonlinear acene sheets [10], in this

paper we use the parametric 2-RDM method [17] due to its success in treating multireference

scenarios such as bond-breaking and transition-state geometries [18–20]. Olympicene was

only recently synthesized, and these calculations provide predictions of its energy and prop-

erties, along with those of its isomers. We demonstrate that there exists a stable structure

of olympicene, and we examine olympicene, its isomers, and the transition states connecting

them. In addition, we provide information about the spin and band gaps in olympicene and

compare them to those of pentacene.

38



4.2 Theory

4.2.1 Parametric 2-RDM method

In variational 2-RDM methods the ground-state energy is expressed as

E = Tr(2K 2D), (4.1)

where 2K is the two-electron reduced Hamiltonian matrix which is the reduced Hamiltonian

operator in a finite orbital basis set [21]. In the parametric formulation [17–20, 22–31] the

second- and higher-order parts of the 2-RDM with respect to a mean-field reference are

parameterized in terms of the first-order part of 2-RDM 2T . It is convenient to express the

2-RDM in terms of its cumulant expansion [32–35]

2D = 2 1D ∧ 1D + 2∆ (4.2)

where 2∆, 1D, and ∧ denote the cumulant (or connected) 2-RDM, the 1-RDM, and the

Grassmann wedge product [21, 36]. The second- and higher-order parts of the cumulant

2-RDM and the 1-RDM can be expressed as functionals of the 2-RDM’s first-order part [22]

2∆ ≈ 2T + 2∆(2)[2T ] (4.3)

1D ≈ 1D(0) + 1D(2)[2T ]. (4.4)

With a Hartree-Fock reference wavefunction the only nonzero piece of the first-order 2-RDM

is 2T abij , which is equivalent to the two-electron excitation matrix, where i and j denote

occupied spin orbitals and a and b denote unoccupied (virtual) spin orbitals.

Contraction relations from the cumulant expansions of the 3- and 4-RDMs [35] yield the

second-order cumulant 2-RDM and the second-order 1-RDM as functionals of the 2-RDM’s
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first-order part 2T [22]:

2∆
ij
kl = +

∑
a<b

2T abij
2T abkl (4.5)

2∆cd
ab = +

∑
i<j

2T abij
2T cdij (4.6)

2∆ia
jb = −

∑
c,k

2T acjk
2T bcik (4.7)

and

(1D(2))ij = −
∑
a<b
k

2T abjk
2T abik (4.8)

(1D(2))ab = +
∑
i<j
c

2T acij
2T bcij . (4.9)

Single excitations can also be explicitly included in the functionals [17, 18, 22].

While this parameterization of the 2-RDM is notN -representable, a subset ofN -representability

conditions, known as two-positivity conditions [37–43], can be employed to restore approxi-

mate N -representability [17, 22, 31]. The class of cumulant elements 2∆ab
ij is redefined from

2T abij to

2∆ab
ij = 2T abij

√√√√1−
∑
k<l
c<d

fabcdijkl ( 2T cdkl )2 (4.10)

where the values of fabcdijkl are chosen with Cauchy-Schwarz relations from two-positivity

conditions [17, 22, 31]. Further details are available in previous work [17, 22].

4.3 Applications

The parametric 2-RDM method with the M parameterization is used to investigate the

olympicene molecule, its isomers, and its spin and band gaps. Similar calculations of the

pentacene molecule are performed as a comparison. The results from the parametric 2-RDM
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method are compared with those of conventional wavefunction methods.

4.3.1 Methodology

All calculations were performed in the Dunning-Hay (DH) double-zeta basis set. Geometries

of all structures were found using 2nd-order Moeller-Plesset perturbation theory (MP2) in

the GAMESS electronic structure package [44]. Transition states between nearest isomers

were found via saddlepoint search and reaction pathways were confirmed by intrinsic reac-

tion coordinate (IRC) calculations with MP2. Once structures were determined, their total

energies were calculated using Hartree-Fock (HF), coupled cluster with single and double

excitations (CCSD) [45], and completely renormalized coupled cluster (CR-CC(2,3)) [45, 46]

in GAMESS, and the M parameterized 2-RDM (2-RDM) method [20]. All isomers and tran-

sition states of olympicene were calculated as spin-singlets. The energy of the C-H bond

dissociation asymptote, benzo[cd ]pyrene radical C19H11 and a hydrogen atom, was found

by calculating the energy of the benzo[cd ]pyrene radical in all four methods and adding the

energy of a single hydrogen at infinite separation. Occupation numbers of all structures

were obtained from 2-RDM and CCSD calculations. Spin and band gaps in olympicene and

pentacene were obtained by calculating the total energies of their triplet, cation, and anion

states at the same geometries as their respective ground states; that is, all transitions were

taken to be vertical.

4.3.2 Results

The geometry of the most stable form of olympicene was successfully optimized. With the 2-

RDM method, this structure is lower in energy than the C-H bond dissociation asymptote by

67.4 kilocalories per mole (kcal/mol). Of all isomers that were examined, this C2v-symmetric

structure is the lowest in energy by 5.7 kcal/mol. (Geometry optimization of this isomer

was performed with and without C2v symmetry.) It is also the most stable structure with

respect to isomerization, as it is lower in energy than its transition state by 73.8 kcal/mol,
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while the next most stable structure is lower in energy than its lowest transition state by 67.7

kcal/mol. Olympicene is a strongly correlated molecule with a 0.84 difference in the HONO

and LUNO occupation numbers, although it is less strongly correlated than pentacene, which

has a 0.70 difference in the HONO and LUNO occupation numbers.

Eleven symmetry-unique isomers were studied (Fig. 4.2), along with twelve transition

states linking nearest isomers together via hydrogen migration. Of these, the six odd-

numbered isomers are fully aromatic, while the five even-numbered isomers are diradicals.

Ground-state energies of all 23 structures and the dissociated state, relative to the ground

state of olympicene, are provided in Table 4.1 from HF, CCSD, CR-CC(2,3), and 2-RDM.

Across all isomers and transition states, the 2-RDM method predicts the lowest relative en-

ergies of all methods, followed by CR-CC(2,3), CCSD, and finally HF. The relative energies

of the aromatic isomers are largely consistent across all methods, as the four methods differ

by approximately 3-17 kcal/mol. Results are less consistent for the transition states, where

they differ by approximately 18-25 kcal/mol. Lastly, the most variable predictions are those

for the highly correlated diradical isomers, where the results differ by approximately 37-44

kcal/mol. In general, the difference between the predictions of 2-RDM and CR-CC(2,3) is on

the order of that between CCSD and CR-CC(2,3). This difference is most pronounced in the

diradical states, where the 2-RDM method predicts relative energies that are approximately

8-11 kcal/mol lower than those of CR-CC(2,3), which are themselves lower than those of

CCSD by approximately 8-11 kcal/mol. The stabilization of the diradical isomers from the

2-RDM method is qualitatively significant because it causes them to be lower in energy

by 2-20 kcal/mol than hydrogen dissociation from olympicene. Unlike the diradical-isomer

energies, the dissociation energies of olympicene are consistent across all methods, differing

only by 1-2 kcal/mol.

The relative energies obtained from the 2-RDM method are represented in Fig. 4.3. Here

we see that the aromatic isomers form deep minima on the potential energy surface, while

the diradical isomers are unsurprisingly much higher in energy. The diradicals could be
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Figure 4.2: Olympicene, its isomers, and the benzo[cd ]pyrene radical.
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Table 4.1: Ground-state energies [kilocalories per mole (kcal/mol)], relative to the ground
state of olympicene, of all isomers, transition states, and the benzo[cd ]pyrene radical plus
hydrogen (Rad+H) dissociation asymptote are presented from HF, CCSD, CR-CC(2,3), and
parametric 2-RDM methods in the Dunning-Hay basis. The notation x→y represents the
transition state between structures x and y.

Isomer energies relative to the ground state (kcal/mol)
Structure HF CCSD CR-CC(2,3) 2-RDM

1 0.000 0.000 0.000 0.000
1→2 98.964 82.410 76.698 73.758

2 105.621 81.048 71.384 62.185
2→3 102.640 86.838 81.589 78.869

3 10.017 7.828 7.445 6.796
3→4 93.727 79.927 75.114 73.249

4 89.820 70.799 61.394 50.390
4→5 94.865 80.699 75.771 73.318

5 8.450 6.482 6.229 5.660
5→6 101.505 86.462 81.197 78.572

6 102.858 82.824 73.969 65.241
6→7 109.321 94.241 88.594 86.414

7 24.607 20.316 20.013 17.680
7→8 98.280 85.544 80.519 78.000

8 85.470 68.670 57.620 47.297
8→9 100.752 86.629 82.077 80.225

9 37.943 27.442 26.950 24.521
9→10 105.256 91.487 87.069 85.642

10 101.773 81.820 72.870 64.415
10→11 107.350 94.126 89.963 89.130

11 47.949 35.053 34.674 30.554
2→11 109.184 95.819 91.558 90.504
6→11 106.764 94.191 90.060 89.285

Rad+H 68.154 69.432 68.019 67.399
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Figure 4.3: Isomer and transition-state energies relative to the ground state, calculated from
the parametric 2-RDM method in the Dunning-Hay basis. The isomer labels are defined in
Fig. 4.2.

thought of as shallow intermediates on the reaction pathway, existing briefly as a π-bond

breaks during the migration of a hydrogen from one aromatic isomer to another. We also

see a general trend of increasing energy and decreasing stability among aromatic isomers as

the hydrogen migrates around and then into the molecule. This trend may be explained by

Clar’s sextet rule, which states that ringed aromatic structures with more disjoint π-sextets

are more stable and lower in energy than those with fewer sextets. The isomers in Fig. 4.2

are shown in their Clar form, where isomers 1, 3, and 5 can form two π-sextets, while isomers

7, 9, and 11 may only form one. In general, the aromaticity becomes increasingly restricted

as the hydrogen moves around the molecule, changing from four aromatic rings in an arch-

shape in structure 1 to only two aromatic rings in structure 11, with energy increasing as

the aromaticity is restricted further.

From the occupation numbers provided in Table 4.1, we can see that the 2-RDM method

successfully predicts near-diradical character in the non-aromatic isomers, with differences

in HONO and LUNO occupation numbers of approximately 0.1-0.25. In contrast, CCSD

45



Table 4.2: Occupation numbers of the highest-occupied (HONO) and lowest-unoccupied
(LUNO) natural orbitals of all isomers and transition states are presented from CCSD and
the parametric 2-RDM methods in the Dunning-Hay basis.

Natural-orbital occupation numbers
CCSD 2-RDM

Structure nHONO nLUNO nHONO nLUNO
1 0.9451 0.0503 0.9196 0.0748

1→2 0.9178 0.0765 0.8044 0.1854
2 0.8679 0.1268 0.5919 0.3985

2→3 0.9236 0.0708 0.8216 0.1670
3 0.9391 0.0570 0.9029 0.0923

3→4 0.9269 0.0657 0.8443 0.1411
4 0.8674 0.1272 0.5518 0.4398

4→5 0.9259 0.0664 0.8314 0.1541
5 0.9401 0.0563 0.9070 0.0885

5→6 0.9273 0.0647 0.8198 0.1680
6 0.8928 0.1010 0.6181 0.3721

6→7 0.9297 0.0641 0.8342 0.1517
7 0.9328 0.0635 0.8806 0.1146

7→8 0.9294 0.0625 0.8279 0.1582
8 0.8691 0.1262 0.5584 0.4357

8→9 0.9310 0.0629 0.8522 0.1352
9 0.9370 0.0595 0.8961 0.1000

9→10 0.9372 0.0529 0.8581 0.1235
10 0.8997 0.0927 0.5955 0.3912

10→11 0.9375 0.0538 0.8799 0.1020
11 0.9337 0.0632 0.8761 0.1200

2→11 0.9367 0.0569 0.8751 0.1129
6→11 0.9374 0.0561 0.8797 0.1079

captures much less of the multi-reference character of these diradicals, with HONO-LUNO

occupation-number gaps ranging from approximately 0.75 to 0.8. In general, the 2-RDM

method captures more of the multireference correlation than does CCSD in all structures.

In addition, the 2-RDM method predicts a general trend of decreasing HONO-LUNO gaps

among aromatic isomers as the aromaticity is restricted, supporting the trend of increasing

energy observed in Fig. 4.3. Conversely, CCSD predicts no substantial change in occupation

numbers as aromaticity is restricted, again suggesting that the 2-RDM method is better

suited to treat the multireference character of this molecule.
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The energies of all isomers and transition states, relative to the C-H bond dissociation

asymptote, are plotted in Fig. 4.4 from 2-RDM and CCSD. Predictions for the relative

energies of aromatic isomers are largely consistent between the two methods, while 2-RDM

predicts slightly lower energies for the transition states than does CCSD. The greatest differ-

ence occurs in the non-aromatic isomers, where 2-RDM predicts that all five such isomers are

lower in energy than the dissociation asymptote. In contrast, only one stable non-aromatic

isomer is predicted by CCSD. Incorporating the triples corrections from CR-CC(2,3) brings

the energies of the diradical states closer to those from 2-RDM, although three of those iso-

mers are still predicted to be higher in energy than the dissociation asymptote. While CR-

CC(2,3) generally captures more dynamic correlation energy than does the 2-RDM method,

the reduced density matrix approach captures significantly more static correlation energy.

In the case of the diradical states, the increased static correlation from the 2-RDM method

is sufficient to predict substantially different results for the stability of olympicene’s isomers.

Barrier energies with respect to hydrogen migration are presented in Table 4.3 from

CCSD, CR-CC(2,3), and 2-RDM. Among the aromatic isomers (the first half of the table),

the 2-RDM method most often predicts the smallest barrier heights, and always yields lower

barriers than does CCSD. In contrast, the 2-RDM method predicts higher barriers than

CCSD and CR-CC(2,3) for every diradical isomer (the second half of the table). This di-

chotomy is a result of the multireference character captured by the 2-RDM method. As

shown above, polyradical character of the molecule increases from aromatic isomers to tran-

sition states to diradical isomers, and the increased static correlation leads 2-RDM to lower

the energies of more correlated states relative to less correlated states. This has the ultimate

effect of lowering the barriers for the aromatic isomers and greatly stabilizing the diradical

isomers. Similar results have been observed in recent parametric 2-RDM calculations on the

stability of oxywater [29] and the rotational barrier separating cis and trans diazene [20].

To investigate olympicene’s potential utility in technology, we computed the spin and

band gaps of olympicene from all four methods shown in Table 4.4 with those of pen-
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Figure 4.4: Isomer and transition state energies relative to the benzo[cd ]pyrene radical and
a hydrogen atom, obtained from CCSD and the parametric 2-RDM method in the Dunning-
Hay basis set. The 2-RDM method predicts relative diradical energies that are approximately
8-11 kcal/mol lower than those of CR-CC(2,3), which are themselves lower than those of
CCSD by approximately 8-11 kcal/mol. The stabilization of the diradical isomers from the
2-RDM method is qualitatively significant because it causes them to be lower in energy than
the dissociation products by 2-20 kcal/mol.
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Table 4.3: Barrier energies [kilocalories per mole (kcal/mol)] with respect to hydrogen migra-
tion for each isomer are presented here from CCSD, CR-CC(2,3), and the parametric 2-RDM
methods in the Dunning-Hay basis set. The transition x→y signifies the height, relative to
x, of the barrier separating x and y. Transitions are ordered from largest to smallest barrier
height.

Barrier energies (kcal/mol) Barrier energies (kcal/mol)
Transition CCSD CR-CC(2,3) 2-RDM Transition CCSD CR-CC(2,3) 2-RDM

1→2 82.410 76.698 73.758 8→7 16.874 22.898 30.703
5→6 79.980 74.969 72.912 2→11 14.771 20.173 23.319
3→2 79.010 74.144 72.072 10→11 12.306 17.093 24.715
7→6 73.925 68.580 68.733 6→11 11.367 16.091 24.045
5→4 74.217 69.542 67.658 4→5 9.900 14.376 22.928
3→4 72.098 67.668 66.452 4→3 9.128 13.719 22.858
9→10 64.045 60.119 61.121 10→9 9.666 14.199 21.227
7→8 65.228 60.505 60.320 6→7 11.417 14.625 21.173
11→2 60.766 56.884 59.950 2→3 5.791 10.205 16.684
11→10 59.073 55.289 58.576 6→5 3.638 7.229 13.331
9→8 59.187 55.127 55.704 2→1 1.362 5.313 11.574
8→9 17.959 24.457 32.927

tacene given as a reference. All methods predict a significantly larger singlet-triplet gap in

olympicene than in pentacene. Only the 2-RDM method predicts a plausibly stable triplet

state in olympicene, which is approximately 14 kcal/mol lower in energy than the dissoci-

ation asymptote. All methods likewise predict a larger ionization energy (IE) and a lower

electron affinity (EA) in olympicene than in pentacene, yielding a much greater fundamen-

tal gap (IE-EA) for olympicene. This implies that olympicene is potentially a less suitable

conductor than pentacene.

4.4 Discussion and Conclusion

The olympicene molecule, a modification of pentacene, was recently synthesized [1]. Similar

to pentacene, olympicene is a five-ringed polyaromatic hydrocarbon. While pentacene is

the least compact five-ringed structure possible, olympicene is the most compact possible

structure. Unlike pentacene, olympicene has two hydrogen atoms extending above and below

the plane, and thus numerous isomers of olympicene are possible. We find that several stable
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Table 4.4: Spin and band gaps (kcal/mol) in olympicene and pentacene, as well as the
C-H bond dissociation energy of olympicene, are presented here from Hartree-Fock (HF),
CCSD, CR-CC(2,3), and the parametric 2-RDM methods in the Dunning-Hay basis. The
singlet-triplet gap is the difference in energies between the triplet and singlet states of each
molecule. The fundamental band gap IE-EA is the difference between the ionization energy
IE=Ecation-E0 and the electron affinity EA=E0-Eanion, where E0 is the energy of the ground
state.

Energy gaps (kcal/mol)
Molecule Energy Gap HF CCSD CR-CC(2,3) 2-RDM

Olympicene Singlet-Triplet 77.747 70.920 68.013 53.234
IE 155.154 163.336 161.247 162.057
EA -26.984 -19.223 -17.462 -18.837

IE-EA 182.138 182.560 178.709 180.894
Dissociation 68.154 69.432 68.019 67.399

Pentacene Singlet-Triplet 22.175 28.417 28.498 25.215
IE 128.932 142.232 141.279 145.450
EA 7.630 9.777 10.329 5.756

IE-EA 121.302 132.455 130.951 139.695

isomers of olympicene exist, and that its most stable isomer is the C2v-symmetric structure.

Pentacene’s success as a organic semiconductor suggests that olympicene might likewise

possess useful electronic properties. Calculations reveal that olympicene has less strong

correlation than pentacene, which is consistent with previous results showing linear acenes

to be more strongly correlated than nonlinear acenes [10].

We find that the isomers of olympicene may be divided into two categories: aromatic

and diradical. Olympicene may isomerize between these different structures as one of the

out-of-plane hydrogen atoms migrates around the molecule. A π-bond breaks during this

isomerization, giving diradical isomers that are intermediates along the reaction pathway. We

find that these diradicals are unsurprisingly much higher in energy than the aromatic isomers,

and the parametric 2-RDM method is able to capture most of their diradical character, as

confirmed by natural occupation numbers. In addition, aromaticity becomes increasingly

restricted during the hydrogen migration, with a corresponding increase in energy and in

polyradical character. Despite the higher energies of the diradical isomers, however, the

parametric 2-RDM method indicates that they are 2-20 kcal/mol more stable than C-H
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bond dissociation asymptote, which raises the possibility of their synthesis.

Several important chemical properties, such as polyradical character and energy gaps,

can only be fully captured with accurate treatments of strong correlation. The analysis of

olympicene’s many isomers, with their varying degrees of radical character, therefore requires

electronic structure methods with a robust ability to treat medium and strong electron

correlation, both static and dynamic. Unlike the traditional single-reference wavefunction

methods we employed, the parametric 2-RDM method [17] was able to capture a substantial

portion of the polyradical character of olympicene and its isomers, despite being constructed

from a single slater determinant. Likewise, 2-RDM was able to observe diradical character in

the non-aromatic isomers of olympicene, while coupled-cluster methods predicted almost no

such behavior. Finally, only the 2-RDM method predicts stable forms of all five non-aromatic

(diradical) isomers studied, all at a lower computational cost than CCSD or CR-CC(2,3).

The calculations with olympicene demonstrate the applicability of the parametric 2-RDM

method to a broad range of electron correlation problems in chemistry and physics.
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CHAPTER 5

ANALYTICAL NUCLEAR DERIVATIVES FOR THE

PARAMETRIC TWO-ELECTRON

REDUCED-DENSITY-MATRIX METHOD

5.1 Introduction

In quantum chemistry, the electronic Schrödinger equation is solved in order to find the

electronic energy, typically using the many-electron wavefunction as the primary variable.

However, because the Hamiltonian contains only pairwise interactions between particles,

it was observed by Coleman in 1951 that the energy may equally be expressed using the

two-electron reduced density matrix (2-RDM) [1]. The set of all possible 2-RDMs is much

larger than the set of all N -electron wavefunctions, and thus direct minimization of the

energy with respect to the 2-RDM yields energies that are much too low. Constraints or

N-representability conditions are required for the 2-RDM to represent a physically realistic

N -electron density matrix [2]. There are currently several categories of 2-RDM methods,

with differing mechanisms for enforcing approximate N-representability. The contracted

Schrödinger equation [3–5] or its anti-Hermitian part [6] are root-finding algorithms that

begin with an initial wavefunction guess. The variational 2-RDM method [7–9] directly min-

imizes the energy with respect to the 2-RDM while enforcing necessary N -representability

conditions. Lastly, the parametric 2-RDM (p2-RDM) method [10, 11] features a parameteri-

zation, derived from configuration interaction (CI) methods [12], that preserves approximate

N -representability. Parametric 2-RDM has proven particularly adept at treating strongly

correlated systems where multireference correlation plays an important role, such as transi-

tion states [13, 14] or bond-dissociation pathways [15, 16].

Geometry optimization is the process of finding the minimum-energy structure of a

molecule. This minimization can be performed efficiently using quasi-Newton methods,
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provided that the exact nuclear gradient is known at each geometry step. The gradient may

be found numerically, but this requires at least two complete electronic structure calcula-

tions for each of the 3N -6 nuclear degrees of freedom, making the evaluation very costly. If

the gradient can be found analytically, only one electronic structure calculation is required

per geometry step, greatly accelerating the optimization [17]. For this reason, analytical

gradients have been implemented for many quantum chemical methods, including coupled

cluster [18], configuration interaction [19], density functional theory [20], and density-matrix

renormalization group [21] methods. It was observed [22] early on that analytical gradients

are also possible for the parametric 2-RDM method. Initial attempts to implement such

gradients for p2-RDM used numerical gradients of electron integrals in the molecular orbital

(MO) basis [22, 23]. However, MOs can easily change in either phase or energetic ordering,

even for very slight nuclear perturbations, and therefore these gradients proved insufficiently

stable to be of general practical use. Geometry optimizations for p2-RDM have since fea-

tured numerical nuclear gradients [13, 16, 24], limiting the size of systems that could be

treated. In this work, we will for the first time present full analytical nuclear gradients for

p2-RDM, and will discuss both their efficacy and implementation.

5.2 Theory

5.2.1 Parametric 2-RDM method

The wavefunction ansatz for configuration interaction with double excitations (CID) is given

by

|Ψ〉 = T0|Φ0〉+
∑
i<j
a<b

2T abij |Φ
ab
ij 〉 (5.1)

where |Φ0〉 is the reference wavefunction (typically obtained from Hartree-Fock) and |Φabij 〉

is the Slater determinant where two electrons have been excited from the occupied orbitals i

and j into the virtual orbitals a and b. The Latin letters {i, j, k, l} in this work will refer to
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orbitals that are occupied in the reference, the letters {a, b, c, d} will refer to virtual orbitals,

and the letters {p, q, r, s} will refer to any generic orbitals. Direct minimization of the energy

E = 〈Ψ|H|Ψ〉 (5.2)

with respect to the coefficients T0 and {2T abij } will yield the CID wavefunction, provided

that the wavefunction is normalized, or

T0 =

√√√√1−
∑
i<j
a<b

( 2T abij )2. (5.3)

This method may equivalently be represented using two-electron reduced density matrices

(2-RDM) by directly contracting the wavefunction ansatz in Eq. 5.1 onto a 2-RDM using

Wick’s Theorem [10–12]. The exact expression for 2D
pq
rs depends on the number of orbitals

in {p, q, r, s} that are occupied and virtual, respectively. The fully unoccupied portion of the

2-RDM, for example, may be expressed in terms of {2T abij } as

2Dcd
ab =

∑
i<j

2T abij
2T cdij . (5.4)

Expressions for other portions of the 2-RDM may be found in previous work [25]. When the

energy of the CID 2-RDM

E = Tr(2K2D) (5.5)

is minimized with respect to the same variables, an identical energy to CID is obtained, where

2K is the two-electron reduced Hamiltonian matrix. The variational condition satisfied by

this minimization is given by

∂E

∂2T abij
= 0∀i,j,a,b. (5.6)

It is well known that truncated CI methods such as CID are not size-extensive. A
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correlated method is size extensive if its correlation energy increases linearly with the size of

a molecule. This lack of size extensivity arises from a single class of 2-RDM elements

2Dab
ij = T0

2T abij (5.7)

due to the normalization condition in Eq. 5.3 containing unconnected terms [10–12]. The

density matrix formulation of CID may be rendered size extensive by the insertion of a

topological factor fabcdijkl into the normalization condition, converting the expression in Eq. 5.4

to

2Dab
ij = 2T abij

√√√√1−
∑
k<l
c<d

fabcdijkl ( 2T cdkl )2 (5.8)

If f is set to 1 for all values of {ijklabcd}, the CID method is recovered, whereas if it is set to

zero, the method is equivalent to the coupled-electron pair approximation (CEPA) [26, 27].

Several choices of f have been proposed, both in the context of extensions to CEPA and the

parametric 2-RDM method (our work). The p2-RDM family of methods is distinct from the

earlier CEPA methods in that it employs a specific, more accurate class of functions, derived

from N -representability conditions on the 2-RDM [10]. One of the most accurate functionals

is the M parameterization, wherein f is equal to 1 if {klcd} share at least two indices with

{ijab}, and 0 otherwise [10, 25].

5.2.2 Nuclear Derivatives

Differentiating the energy in Eq. 5.5 with respect to some nuclear perturbation R yields two

terms

dE

dR
= Tr(

d2K

dR
2D) + Tr(2K

d2D

dR
) (5.9)

which will be treated individually in the following sections.
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Nuclear Derivatives of the 2-RDM

The second term in Eq. 5.9 may be expressed as

Tr(2K
d2D

dR
) =

∑
pqrs

2K
pq
rs (

d2D

dR
)rspq. (5.10)

Because the 2-RDM is a function only of {2T abij }, its derivative may be expressed using the

chain rule

Tr(2K
d2D

dR
) =

∑
pqrs

2K
pq
rs

∑
i<j
a<b

∂2D
pq
rs

∂2T abij

d2T abij
dR

. (5.11)

Rearranging the order of summation gives

Tr(2K
d2D

dR
) =

∑
i<j
a<b

d2T abij
dR

∑
pqrs

2K
pq
rs
∂2D

pq
rs

∂2T abij
. (5.12)

However, examining the term within the second summation, we observe that

∑
pqrs

2K
pq
rs
∂2D

pq
rs

∂2T abij
=

∂E

∂2T abij
(5.13)

which, as per the variational condition in Eq. 5.6, is 0 for all {i, j, a, b}. Consequently, the

first derivative of the 2-RDM does not contribute to the first derivative of the energy, which

is generally true for any method which employs a variational condition. The nuclear gradient

therefore depends only on 2D and the derivative of 2K.

Nuclear Derivatives of the Reduced Hamiltonian Matrix

The nuclear first derivative of the energy for the parametric 2-RDM method depends only

on the derivative of the reduced Hamiltonian matrix 2K. This matrix contains the one- and

two-electron integrals, which are given in the basis of molecular orbitals (MOs). MOs are
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themselves linear combinations of atomic orbitals (AOs), defined as

|φi〉 =
∑
iµ

C
†
iµ|χµ〉 (5.14)

where C is the MO coefficient matrix and the Greek letters {µ, ν} denote AOs. The reduced

Hamiltonian matrix in the MO basis may be transformed from 2K in the AO basis by

2
MOK

pq
rs = (C

†
pαC

†
qβ) 2

AOK
αβ
γδ (CγrCδs). (5.15)

The derivative of this matrix, then, will depend on the derivatives of both the bare AO

integrals and the MO expansion coefficients C. The former may be obtained directly from

any software package that evaluates electron integrals, while the latter must be solved for.

Expressing dC
dR in terms of the initial expansion coefficients

dCµi
dR

=
∑
j

UijC
†
jµ (5.16)

the total derivative of 2K can be written as

d2Kkl
ij

dR
=
∑
αβγδ

C
†
iαC
†
jβ

d2K
γδ
αβ

dR
CγkCδl +

∑
mαβγδ

[
UmiC

†
iαC
†
jβ

2K
γδ
αβCγkCδl + 3 other terms

]
(5.17)

where there are four terms in the second summation because there is a derivative for each

of the four C coefficients. In general, the MO coefficients C are coupled to the other wave-

function parameters, making the process of determining U non-trivial. If one uses canonical

HF MOs, however, U may be found by solving the coupled-perturbed Hartree-Fock (CPHF)

equations [28]. In the case of restricted Hartree-Fock (RHF) references for singlet states, U
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has the following expression

Uij =
1

εj − εi

virt∑
k

d.o.∑
l

AklijUkl +Bij

 (5.18)

where

Aklij = 42V klij −
2V

jl
ik −

2V
jk
il (5.19)

Bij =
∂Fij
∂R
−
∂Sij
∂R

εj −
∑
kl

∂Skl
∂R

(22V klij − V
jl
ik ) (5.20)

Here F is the Fock matrix, S the overlap matrix in the MO basis, {εi} the Hartree-Fock MO

energies, and d.o. means a summation over doubly-occupied MOs. Equation 5.18 may be

solved iteratively to find U , at a computational cost comparable to a single HF calculation.

This process must be performed for each nuclear degree of freedom (DOF). As seen in

Eq. 5.18, the derivative matrix 2
AOK must be rotated into the MO basis for each DOF,

which scales as r6, where r is the number of MOs. Analytical gradients may be rendered

computationally cheaper still by implementing the Z-vector method [29], an alternative way

of solving the CPHF equations that instead involves rotating 2D into the AO basis, reducing

the number of orbital rotations from 3N to 1 for each geometry step. For a more detailed

discussion of the CPHF equations and the more efficient Z-vector method of solving them,

see Ref. [30].

5.3 Applications

Analytical gradients are implemented for the parametric 2-RDM method. Benchmark cal-

culations to test their efficacy are presented. These gradients are then applied to the opti-

mization of trans-polyacetylene chains.
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5.3.1 Methodology

The parametric 2-RDM method was used to find the optimized geometries of a suite of

molecules in a series of basis sets. Hartree-Fock and the p2-RDM method were implemented

by the authors in C++. Atomic orbital integrals and their derivatives were obtained from

the LIBINT package of the Valeev group [31]. Energy gradients were evaluated using the Z-

vector method [29]. Energy minimization, during either single-point p2-RDM calculations or

geometry optimizations, was performed using L-BFGS [32], implemented with the ALGLIB

package [33]. Core orbitals (that is, all occupied MOs not in the valence shell) were frozen

during all p2-RDM calculations. Geometry optimizations were carried out in Cartesian

coordinates; where necessary, the relevant nuclear degrees of freedom were frozen for the

atom nearest the molecular center of mass to prevent translation of the molecule.

5.3.2 Results

To highlight the benefits of using analytical rather than numerical nuclear gradients, we

performed a series of geometry optimizations for a variety of small molecules and basis

sets [34], presented in Table 5.1. It is readily apparent that analytical gradients substantially

reduce the CPU times of geometry optimizations in nearly every instance. This increase in

computational efficiency is possible because numerical gradients require two full p2-RDM

single-point calculations for each nuclear degree of freedom (DOF), whereas the analytical

gradients require only a single single-point calculation per geometry step. Consequently, the

gap between the two methods grows as the number of nuclear DOF increases; even NH3,

which has only 5 unfrozen DOF, sees a runtime reduction of almost 7 hours in the cc-pVQZ

basis. In the one instance where the numerical gradients are faster, CO in the cc-pVDZ

basis, there is only a single nuclear DOF, and the electronic DOF are so few that both

methods finish almost immediately. Analytical gradients will yield greater benefits for larger

molecular systems, allowing the p2-RDM method to treat molecular geometries that were

previously inaccessible.
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Table 5.1: A comparison of CPU times for geometry optimizations using either analytical or
numerical gradients from the parametric 2-RDM method. The number of unfrozen nuclear
degrees of freedom (nuc. DOF) are given in parentheses for each species. Results are
presented in three basis sets for each molecule, with the number of molecular orbitals (MOs)
given. CO, H2O, and CH4 were given the point group C2v, while NH3 was examined in the
Cs point group. The runtimes for geometry optimizations are greatly decreased by using
analytical gradients.

Molecule (Nuc. DOF) Basis MOs Time: Numerical (s) Time: Analytical (s)
CO (1) cc-pVDZ 28 2.5 5.2

cc-pVTZ 60 41.5 29.4
cc-pVQZ 110 872 668

H2O (2) cc-pVDZ 24 2.9 1.7
cc-pVTZ 58 65.0 40.4
cc-pVQZ 115 2031 1080

CH4 (4) cc-pVDZ 34 5.8 3.1
cc-pVTZ 86 604 166
cc-pVQZ 175 12467 3626

NH3 (5) cc-pVDZ 29 12.6 7.1
cc-pVTZ 72 1745 329
cc-pVQZ 145 34917 9906

As a further demonstration of the abilities of analytical gradients, the parametric 2-RDM

method was used to optimize the geometries of trans-polyacetylene (PA), H[C2H2]NH, for

N of 2, 4, 6, and 8. The bond length alternation (BLA) of this species, defined as the

difference in length between adjacent double and single bonds, is notoriously difficult for

theoretical methods to predict accurately [35]. Experiment suggests that the BLA in the

infinite polymer limit lies between 0.08 and 0.09 Å [36, 37], while theoretical studies have

suggested values ranging from 0.05 to 0.12 Å [21, 35, 38, 39]. Even among coupled cluster

methods, CCSD(T) accurately predicts a BLA around 0.085 Åin the infinite limit, while

CCSD predicts a BLA that is much higher at 0.0995 Å [39]. Part of the difficulty in treating

the polymer theoretically is the fact that multireference correlation increases as a conjugated

π-bond network gets longer, and consequently the relative proportion of static and dynamic

correlation captured by a given method will have a large effect on the BLA predicted for

larger chains.

The BLA obtained from p2-RDM of the central bond of PA chains is plotted in Fig. 5.1,
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along with the results from a number of other methods. As has typically been seen with

p2-RDM, the results most closely resemble those of CCSD(T). CCSD and MP2 both fall

substantially outside the experimental range, while Monte Carlo predicts a BLA in rea-

sonably close agreement to experiment. The extrapolation used in Fig. 5.1 is of the form

Ae−BN + C. A recent work [35] examined various extrapolation schemes: the exponential

fit, Kuhn’s fit [40] (A

√
1 + 2Bcos

(
π

1+N

)
), and a linear combination of the two that would

have 4 parameters. They concluded that the 4 parameter function gave the best fit for the

data, particularly in the case of Monte Carlo. While both the exponential fit (0.080 Å) and

Kuhn’s fit (0.076 Å) gave reasonable values of the BLA for p2-RDM in the infinite limit, the

4 parameter function yields an unphysical prediction of 0.071 Å. However, given that the

BLA from most methods is nearly converged by N = 10 or N = 12, it seems unlikely that

the BLA of p2-RDM would drop an additional 0.011 Å in the infinite limit, and for that

reason the 4 parameter fit is rejected for these data. It is also worth noting that the gap in

BLA between p2-RDM and CCSD(T) widens as the chain lengthens. This is broadly con-

sistent with past results, which have demonstrated that CCSD(T) captures more dynamic

correlation than p2-RDM, while the latter captures more static correlation. It is unsurpris-

ing, therefore, that we see greater differences between the two methods for longer chains,

for which multireference correlation is larger. When the BLA is shorter, single and double

bonds are closer in length, allowing more configurations to contribute to the wavefunction; it

seems that p2-RDM, with its greater tolerance of static correlation, is able to leverage that

fact in order to lower the energy.

5.4 Discussion and Conclusion

In this work, we have for the first time implemented completely analytical nuclear gradients

for the parametric two-electron reduced-density-matrix method. The p2-RDM method scales

as n2h4 + n4h2, where n is the number of particles and h is the number of holes, and

therefore, the single-point p2-RDM calculation is by far the most computationally expensive
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Figure 5.1: Bond length alternation (BLA) for trans-polyacetylene from various methods as
a function of polymer length. Values are presented from p2-RDM, perturbation theory [38],
Monte Carlo [35], and coupled cluster methods [39]. The upper and lower black lines are
experimental values from NMR [36] and X-ray diffraction [37], respectively. Extrapolations
of the data are of the form Ae−BN + C. The parametric 2-RDM method predicts BLAs
that are similar to those of CCSD(T), though closer to the experimental lower bound.
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portion of the calculation. By limiting the number of single-point calculations required,

analytical gradients dramatically decrease the computational cost of geometry optimizations.

Even the small molecules used as benchmarks in this study saw sharp decreases in CPU

times; for molecules with more nuclear degrees of freedom, the computational savings will

be larger still. For example, the N = 6 trans-polyacetylene chain featured above would have

computationally intractable using numerical gradients, and the N = 8 chain would have

been unthinkable. Analytical nuclear gradients will allow us to apply p2-RDM’s uniquely

accurate and balanced treatment of strong electron correlation to systems of a size that were

not previously accessible.
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CHAPTER 6

INCREASING THE STABILITY OF THE PARAMETRIC

TWO-ELECTRON REDUCED-DENSITY-MATRIX METHOD:

A NEW FUNCTIONAL

6.1 Introduction

The parametric two-electron reduced-density-matrix (2-RDM) method has proven to be an

accurate electronic structure method with a desirable computational scaling. One of the most

promising aspects of p2-RDM is its ability to detect substantial multireference correlation

effects, as it is able to correct poor reference wavefunctions much more than comparable single

reference methods. However, in certain cases where the system is particularly multireference

and the reference wavefunction is exceptionally poor, p2-RDM may fail to converge. In

this chapter, I will present a derivation of the method, and using it, I will highlight where

and why this lack of convergence can occur. With this understanding, I will propose a new

parameterization that may resolve the issue. Lastly, I will present calculations on the nitric

oxide dimer (NO)2, a very difficult system for single-reference methods such as p2-RDM to

treat.

6.2 Derivation of Parametric 2-RDM methods

Configuration interaction with double excitations (CID) postulates the following wavefunc-

tion ansatz

|Ψ〉 = T0|Φ0〉+
∑
i<j
a<b

2T abij |Φ
ab
ij 〉. (6.1)

The wavefunction is comprised of the reference Slater determinant |Φ0〉 (often obtained from

Hartree-Fock) and all possible determinants {|Φabij 〉} generated by exciting two electrons out

of the occupied orbitals i and j into the virtual orbitals a and b. Orbitals that are occupied
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in the reference determinant are denoted by the letters {i, j, k, l,m, n, o, p}, orbitals that

are unoccupied are denoted by {a, b, c, d, e, f, g, h}, and arbitrary orbitals are designated as

{p, q, r, s}. The goal of CID is to vary the weights 2T0 and {2T abij } so as to minimize the

electronic energy

E = 〈Ψ|H|Ψ〉. (6.2)

This energy can be broken into two components: the reference energy E0, equal to 〈Φ0|H|Φ0〉,

and the correlation energy Ecorr, defined as the difference between the total electronic energy

in Eq. 6.2 and E0. The correlation energy can be expanded as

Ecorr = ∆E + V0 + Vij

=
∑
i<j
a<b

(2T abij )2∆Eabij +
∑
i<j
a<b

2T0
2T abij

2V abij +
1

2

∑
i<j
a<b

∑
k<l
c<d

2T abij
2T cdkl 〈Φ

ab
ij |H|Φ

cd
kl 〉.

(6.3)

Here ∆Eabij is the difference between the energy of the determinant |Φabij 〉, or 〈Φabij |H|Φ
ab
ij 〉,

and the reference energy E0. The two-electron integral 2V abij is the coupling element between

the determinant |Φabij 〉 and the reference, and 〈Φabij |H|Φ
cd
kl 〉 is the coupling element between

two excited determinants. The first two terms in Eq. 6.3 are usually the most important. If

the reference wavefunction was obtained from Hartree-Fock, which is the method of finding

of the lowest-energy determinant possible, then ∆Eabij will be non-negative for all excited

determinants, and the first term ∆E will strictly be positive. CID is able to lower the

energy, however, by balancing this increase in energy with the coupling V0 between excited

determinants and the reference, which is negative.

The coefficients {2T abij }must be bounded in some fashion: the wavefunction is normalized,

such that

T0 =

√√√√1−
∑
i<j
a<b

( 2T abij )2. (6.4)

If any coefficient {2T abij } increases in magnitude, T0 must decrease, reducing the coupling
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available to the other excited determinants. In effect, the normalization condition provides

a restoring force that prevents amplitudes from increasing indefinitely. This presents a way

of understanding one of the fundamental flaws of CID (and in fact, of any truncated form of

CI): it is not size-consistent. A method if size-consistent if it gives an energy for two non-

interacting molecules that is equal to the sum of the respective energies of each molecule.

CID cannot be size-consistent because an excitation in one molecule reduces T0 for the other

molecule, reducing the coupling of the second molecule and ultimately increasing the energy.

It was observed by Kollmar [1] that size-consistency could be restored by replacing the global

T0 of Eq. 6.4 with a determinant-specific term

2T ab
0,ij =

√
2F abij

=

√√√√1−
∑
k<l
c<d

fabcdijkl ( 2T cdkl )2 (6.5)

where f is called the topological factor. If f is equal to 1 in all cases, Eq. 6.5 is of course

equal to Eq. 6.4, and minimization of the energy would again give the CID result. However,

if f is zero whenever {i, j, a, b} ∩ {k, l, c, d} = 0, for instance when comparing an ampli-

tude 2T
ef
mn on one molecule and another amplitude 2T

gh
op on a second molecule, the method

is size-consistent because excitations on one moiety will not affect excitations on another

non-interacting moiety. The parameterization depends upon the choice of f for different

classes of elements. Kollmar [1] derived the K functional from considerations of partial N -

representability conditions on the two-particle, two-hole, and one-particle-one-hole matrices,

while Mazziotti [2] arrived at a different functional M by imposing particle-hole symmetry

on the derivation. Later, an entire class of functionals F(α, β) were proposed [3], to which

K and M both belong. The various functionals are given in Table 6.1. Whatever the func-

tional, these methods are collectively called parametric two-electron reduced-density-matrix

(2-RDM) methods because the wavefunction in Eq. 6.1 is typically first directly contracted

onto a 2-RDM.
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Table 6.1: Various functionals fabcdijkl , defined for classes of no/nv, where no is the number

of orbitals shared between (i, j) and (k, l), and nv is the number shared between (a, b) and
(c, d).

Topological factor fabcdijkl
Method 0/0 1/0 2/0 0/1 0/2 1/1 2/1 1/2 2/2

CID 1 1 1 1 1 1 1 1 1
CEPA(0) 0 0 0 0 0 0 0 0 0

K 0 1/2 1 1/2 1 3/4 1 1 1
M 0 0 1 0 1 1 1 1 1

F(α, β) 0 α 1 α 1 β 1 1 1

6.3 Challenges from Strongly Multireference Systems

The parametric 2-RDM method has been seen to provide accurate energies for difficult elec-

tronic structure cases such as bond-breaking [4–6], transition states [7, 8], and diradical

systems [9, 10]. These are all systems for which a restricted Hartree-Fock reference is insuf-

ficient to describe the wavefunction, yet p2-RDM has proven remarkably adept at correcting

the qualitatively poor reference and revealing the true multireference character of the sys-

tem. For example, the restricted HF reference used in Chapter 4 cannot possibly describe

the two unpaired electrons of the diradical isomers of olympicene, yet p2-RDM finds that

these isomers have strong radical character, in contrast to CCSD which finds hardly any

radical character at all. However, when the reference is exceptionally poor, p2-RDM may

on occasion fail to converge. To see why, examine the determinant-specific normalization

in Eq. 6.5. This term can obviously only be real if 2F abij > 0, but we have imposed no

constraints upon 2T to force 2F to be strictly positive. For systems that are mostly single

reference, or well described by a single Slater determinant, the 2T amplitudes are modest

in size and no 2F approaches zero. In contrast, if the system becomes sufficiently multiref-

erence and the reference becomes sufficiently poor, 2T amplitudes may become very large

and some 2F terms may fall below zero, immediately terminating the optimization because

2T ab
0,ij has become imaginary. The effect of the reference on the convergence of p2-RDM can

be subtle, as the method may converge at one geometry for a problematic molecule, yet fail
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to converge at a slightly perturbed geometry. For such molecules, geometry optimizations

are very difficult, because they require sampling many geometric configurations in order to

find the minimum-energy structure. If any one single-point calculation fails to converge, the

entire search algorithm may fail. A mechanism for altering the parameterization in order to

treat these difficult systems would be greatly desirable.

To explore why p2-RDM may fail to converge, consider a strongly multireference system

in which the two determinants |Φefmn〉 and |Φghop 〉, with ∆E
ef
mn and ∆E

gh
op both small and

2V
ef
mn and 2V

gh
op both large, possess the largest amplitudes in the system 2T

ef
mn and 2T

gh
op ,

respectively. Because {m,n, e, f} and {o, p, g, h} are disjoint, neither amplitude appears in

the other determinant’s topological factor, nor does the Hamiltonian directly couple the two

determinants (as it only couples determinants that differ by at most two spin orbitals). As a

result, neither amplitude is directly affected by the other. Consider now a third determinant,

|Φehmp〉, with a large ∆Eehmp and a small 2V ehmp, whose amplitude 2T ehmp is very small. This

determinant shares two indices with each of the first two determinants, whose amplitudes

are therefore included in 2F ehmp. During the p2-RDM optimization, 2F ehmp is the first term

to fall below zero. As 2F ehmp approaches zero during the optimization, we would expect the

following forces to diverge

∂

∂2T
ef
mn

V eh
0,mp =

2T ehmp
2V ehmp

1√
2F ehmp

 2T
ef
mn

∂

∂2T
gh
op

V eh
0,mp =

2T ehmp
2V ehmp

1√
2F ehmp

 2T
gh
op

(6.6)

and restrain the growth of 2T
ef
mn and 2T

gh
op . However, if the product |2V ehmp2T ehmp| is less than,

say, ∼ 10−8 (not an uncommon occurrence) as 2F ehmp approached zero, 2F ehmp would have to

be be greater than zero but less than ∼ 10−16 in order for the forces in Eq. 6.6 to be of

numerical relevance. Clearly, from a computational standpoint, this is too narrow a range

to present a substantial constraint on the magnitude of 2T .
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6.4 A New Functional

One solution to a lack of convergence would be to explicitly enforce constraints on 2T such

that 2F abij is positive for all {i, j, a, b}. However, this would remove one of the most desirable

qualities of the parametric 2-RDM method: as an unconstrained optimization, the method

is substantially faster than other constrained 2-RDM methods such as the variational 2-

RDM method [11]. In addition, 2F abij represents the population of the reference state: if this

quantity falls near zero, the method has clearly failed to capture the qualitative character

of the system. A better approach would seek to alter the parameterization such that no 2F

nears zero at all.

Even though CID is inaccurate even for systems of modest size, it does not suffer from

a lack of convergence because the topological factor f in Eq. 6.5 is 1 for all pairs (i, j, a, b)

and (k, l, c, d), treating every amplitude identically. However, this normalization prevents

the method from being size-consistent. Parametric 2-RDM methods greatly relax the nor-

malization condition by setting f to zero for the majority of pairs in order to restore size

consistency, yielding lower and more accurate energies, but sometimes the remaining implicit

constraints are not strong enough to prevent the optimization from straying into unfeasible

regions. It stands to reason, then, that there must be a point on the spectrum between CID

and parametric 2-RDM methods where the optimization is well-behaved yet the energy is

still reasonably low and approximately size-consistent.

It would be tempting to search for a topological factor within the general F(α, β) family

outlined in Table 6.1, but as the above example is meant to show, it is possible even for

F(α, β) =F(1, 1) (where f = 0 only for totally disjoint pairs) to lead to convergence issues

if a system is sufficiently ill described with a single reference. In that example, 2F ehmp falls

below zero because both 2T
ef
mn and 2T

gh
op are very large, but the method does not explicitly

couple the two amplitudes. However, if f
efgh
mnop were set to 1, the two amplitudes would be

coupled and their magnitudes would be more constrained, possibly preventing 2F ehmp from

falling below zero. This suggests that explicitly coupling more amplitudes by setting f to 1
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for more sets of indices may increase the likelihood of convergence. To that end, we propose

a new functional featuring a set P , containing a number of amplitudes {2T}. The topological

factor fabcdijkl will be equal to 1 if (i, j, a, b) and (k, l, c, d) share at least two indices, as before,

or if there is a 2T
ef
mn contained in P such that (i, j, a, b) and (k, l, c, d) each share at least

two indices with (m,n, e, f). As more amplitudes are added to P , more implicit constraints

will be added to the optimization, rendering the method more stable. Eventually, if enough

amplitudes were included in P , the method would again become equivalent to CID, offering

a systematic way of moving along the spectrum from parametric 2-RDM to CID. Most

importantly, for the vast majority of systems that p2-RDM can already treat accurately,

this parameterization would yield the same solution as the M functional because the set P

would be empty.

The question remains of how to select amplitudes to be included in P . One option would

be to wait until a given 2F abij falls below a threshold, add 2T abij to P , and then restart the

algorithm. This has the advantage of focusing on the largest amplitudes, but it has the

disadvantage of requiring the algorithm to first fail before attempting a correction. This is

problematic because it would be very difficult to compare calculations between two species:

if the optimization is immediately successful for one species, it will have used a different

functional than the second. Instead, we propose adding 2T abij to P in order of smallest ∆Eabij .

Determinants with a smaller ∆E are usually associated with larger amplitudes because their

energetic penalty is smaller, so this choice of addition is also likely to target the largest

amplitudes. Additionally, because the set P can be selected prior to the optimization, it

will be easier to compare calculations of different species by specifying that each calculation

include the same number of amplitudes in P .

6.5 The Nitric Oxide Dimer

In order to demonstrate the effect of this new functional, we examine the NO dimer. The

equilibrium structure of singlet (NO)2 is a C2v-symmetric structure with an unusually long N-
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Table 6.2: Equilibrium N-N bond length of the (NO)2 dimer. Parametric 2-RDM results
were found using the code from Chapter 5, while CCSD and CR-CC(2,3) were calculated
in GAMESS [16–18]. Results from CCSD(T) and 2R-AQCC come from Ref. [19], while
those of MRMP2(18,14) are from Ref. [20]. The p2-RDM bond length closely mirrors that
of CCSD(T), and is substantially more accurate than other single-reference coupled cluster
methods.

Method cc-pVDZ aug-cc-pVDZ cc-pVTZ aug-cc-pVTZ
CCSD 1.984 1.938 1.898 1.811

CR-CC(2,3) 2.154 2.095 2.052 2.028
p2-RDM 2.326 2.203 2.193 2.046

CCSD(T) 2.227 2.164 2.100
2R-AQCC 2.421 2.314 2.314 2.219

MRMP2(18,14) 2.455 2.383 2.385 2.436

N bond of 2.24-2.33 Å [12–15]. This can be viewed as either a highly stretched covalent bond

or a very short range non-covalent interaction between two radical species; either scenario

presents formidable challenges for a single-reference method. The conventional parametric 2-

RDM method fails to converge for this species in certain basis sets and at certain geometries,

making the global optimization of this species difficult. In order to optimize the geometry,

we use the method outlined in Chapter 5, with a P that includes only the lowest-energy

doubly-excited determinant. Even though P contains a single amplitude, p2-RDM now

converges at every geometry and basis sampled. The equilibrium N-N bond length from p2-

RDM, along with those of the single-reference coupled cluster methods CCSD, CR-CC(2,3),

and CCSD(T) and the multireference methods 2R-AQCC and MRMP2(18,14) are plotted

in Table 6.2.

The NO dimer is a somewhat unique molecule in that single-reference methods such

as p2-RDM and CCSD(T) give more accurate bond lengths in small bases. As the basis

set increases in size and becomes more diffuse, the dimer is stabilized in energy at shorter

separations and the equilibrium bond length lessens. It appears that truly multireference

methods such as 2R-AQCC and MRMP2 are required to accurately treat the dimer in the

complete basis limit. As Tobita et al. observe [19], the dication of the NO dimer would be

isoelectronic to two N2 molecules, with four nearly degenerate π∗ orbitals into which the

76



two additional electrons could be placed to make the dimer neutral again. This leads to

many low-lying determinants that contribute strongly to the wavefunction and renders the

molecule very highly multireference. That the equilibrium distance predicted by CCSD is

off by 20% attests to the very poor quality of the reference. A single-reference method may

partially compensate for a qualitatively poor reference by including excitations of high order,

or in the case of p2-RDM, by relaxing constraints on the wavefunction such as normalization

in order to increase the magnitude of double excitations. In this instance, the molecule is

sufficiently multireference as to make convergence difficult for p2-RDM, but by adding only

a single determinant to P , the method converges smoothly throughout the investigation.

Additionally, despite potentially ”corrupting” the method by including a small number of

unconnected terms in Eq. 6.5, p2-RDM continues to predict structures that are more ac-

curate that the comparable CCSD and the more computationally expensive CR-CC(2,3).

This suggests that convergence issues within p2-RDM may be resolved by minimally alter-

ing the parameterization, preserving its important advantages of low computational cost,

approximate size consistency, and flexibility in treating strongly multireference systems.

6.6 Concluding Remarks

The parameterization presented in this chapter is far from the final word on the topic. The

use of a set P to alter the topological factor f is clearly not the only possible solution to

convergence issues for p2-RDM, and even then, it remains an open question what the most

desirable scheme would be for deciding which amplitudes to include within P . However,

this scheme does appear to have several attractive features. It does not add any explicit

constraints to the optimization nor does it alter the polynomial scaling of the method, so it

is computationally efficient. It can be used to smoothly vary from the M parameterization to

CID, allowing one to assess the degree to which the parameterization has been altered. And

the NO dimer example suggests that maybe only very minor tweaks to the parameterization

are required for convergence to be obtained. Above all, this work indicates that other classes
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and forms of parametric 2-RDM methods may yet be found.

The M parameterization of p2-RDM suffers convergence issues only when the reference

is particularly poor: for the NO dimer, a restricted Hartree-Fock wavefunction simply can-

not qualitatively describe two doublet molecules interacting at relatively long range. In

other words, garbage in, garbage out. The next stage in the evolution of p2-RDM meth-

ods may well be the formation of an explicitly multireference formulation, replacing |Φ0〉 in

Eq. 6.1 with a multireference wavefunction (such as from CASSCF) and creating a method

analogous to multireference CISD. With a qualitatively accurate reference, and preserving

the computationally efficient and accurate inclusion of dynamic correlation from p2-RDM,

such a multireference p2-RDM method could push the accuracy and applicability of 2-RDM

methods to a level heretofore unseen. In addition, such a method could offer the possibility

of extending the p2-RDM method to the treatment of excited states. Parametric 2-RDM

methods are currently ill-suited for finding excited states because, among other reasons, it

is unclear what single determinant could serve as the reference |Φ0〉. If an excited reference

from CASSCF were used as |Φ0〉, the single and double excitations from p2-RDM could be

used to stabilize the excited state, producing potentially very accurate excited-state energies.

The field of parametric 2-RDM remains verdant, with many promising avenues for future

developments.
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