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ABSTRACT

The electronic Hamiltonian contains only pairwise interactions, allowing the energy of an
electronic system to be expressed in terms of the two-electron reduced-density-matrix (2-
RDM) in lieu of the many-electron wavefunction. The variable space for the exact N-electron
wavefunction scales exponentially with the size of the system, while the 2-RDM is polynomial
in scale. By using the 2-RDM as the primary variable in electronic structure calculations,
it may be possible to obtain very accurate energies at a much more favorable scaling than
wavefunction methods. In this thesis, we will use two existing 2-RDM methods to treat
electronic systems. First, we will apply the active-space variational 2-RDM method, which
directly minimizes the energy with respect to the 2-RDM, to a cadmium telluride polymer
that was recently used to greatly enhance the conductivity of CdTe quantum dots. We find
that this polymer is very highly correlated despite a deceptively simple structure. We will
then turn to the parametric 2-RDM method (p2-RDM), which parameterizes the 2-RDM in
terms of a truncated configuration interaction ansatz, but which includes additional flexibility
in order to be size-extensive. We apply p2-RDM to the study of the olympicene molecule,
which features both fully aromatic and diradical isomers. The parametric 2-RDM method
predicts that all isomers are stable to dissociation, in contrast to coupled cluster methods
which do not predict stable diradical states. We then present analytical nuclear gradients for
p2-RDM, which greatly decrease the number of calculations required to perform geometry
optimizations. We apply these gradients to the study of trans-polyacetylene, for which p2-
RDM, unlike many wavefunction methods, is able to predict a bond length alternation (BLA)
to within experimental values. Lastly, as a single-reference method, p2-RDM may encounter
numerical difficulties when the reference wavefunction is of particularly poor quality. We
propose a modification to the parameterization that may render the method more generally

robust.
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CHAPTER 1
INTRODUCTION

1.1 Electronic Structure

Quantum mechanics, or the study of matter at very small scale, is governed by the time-
dependent Schrodinger equation

L0 P .
zha\ll(r,t) = H(r, t)V(rt) (1.1)

where VU is the wavefunction, 7 is the coordinates of all the particles of the system, t is the
time, and H is the Hamiltonian. This equation states that the time evolution of the system

is governed by the Hamiltonian, which is given by

FI—%—# V2 + V(7 t) (1.2)
N — 2m; T ‘

The first term in H is the sum of the kinetic energy of each particle in the system, and
V(7,t) is potential energy term. If V(7,¢) has no explicit time-dependence, the equation in

Eq. 1.1 reduces to the time-independent Schrodinger equation

Hy(7) = Ey(7) (1.3)

an eigenvalue equation whose solutions v; are the possible stationary states of the system,
each corresponding to an energy F;. The wavefunction contains all the information about the
system, from which we may obtain almost any property of interest. In particular, electronic
structure seeks the solution to Eq. 1.3 for systems consisting of positively charged nuclei

and negatively charged electrons. For these systems, if relativistic effects are neglected,

the potential energy term V;; = %, where k is a constant whose sign is positive if
iy

the charges of the particles 7 and 7 have the same sign and negative if they have opposite
1



signs. Nuclei are commonly excluded from Eq. 1.3 because their mass is three orders of
magnitude larger than that of electrons; from the point-of-view of the smaller, faster-moving
electrons, the larger nuclei are effectively stationary. This is known as the Born-Oppenheimer
approximation, reducing the search for stationary states to the solution of Eq. 1.3 with the

following electronic Hamiltonian

(1.4)
_ 7-]|

2

- _2h_wv2+zz 7 — Ry ZIT
) ¢ I 1<J L
The first term contains the kinetic energy of the electrons, the second contains the attraction
the electrons and the (frozen) nuclei, and the third term is the electron-electron repulsion.
If the system contains one electron, the Hamiltonian consists only of the first two (one-
body) terms in Eq. 1.4, and the solutions ¢ to Eq. 1.3 are a series of orthonormal one-
particle wavefunctions, also known as orbitals. For the hydrogen atom, these form the well-
known hydrogenic orbitals s, p, d, et cetera. Unfortunately, due to the two-body electron-
electron repulsion term, an exact analytical solution to the electronic Schrodinger equation
is impossible for more than one electron, and therefore approximate numerical solutions
to this equation are required. In constructing an approximate wavefunction, one important
consideration is that electrons are indistinguishable particles of half-integer spin, or fermions.
The wavefunction must be antisymmetric to the exchange of two fermions, a property that
can be ensured with the use of Slater determinants. An N-electron Slater determinant has

the form

o1(1)  ¢2(1) -+ on(1)

2 2) ... 2
@) — $1(2)  ¢2(2) PN (2) (15)

1
Vv N!

1(N) ¢2(N) -+ on(N)

where ¢; is the ith orthonormal orbital. Exchanging two electrons has the effect of swapping

two rows of the determinant, which flips the sign. No single Slater determinant constitutes



an exact solution to Eq. 1.3, but it can form a suitable basis in which to express such a
solution.

A simple approximate solution to the electronic Schrodinger equation would be a single
Slater determinant, with orbitals ¢ chosen so as to minimize the energy. The method for
finding the orbitals ¢ is known as Hartree-Fock (HF) [1]. It begins by choosing a set of atomic
orbitals (AOs), which are often Gaussian functions. The HF equations are then solved in
an iterative and self-consistent fashion, producing a set of molecular orbitals (MOs) that
are linear combinations of atomic orbitals (LCAOs). The N electrons are placed in the N
orbitals that produce the lowest-energy determinant possible. Within the HF method, the
electron-electron repulsion term in Eq. 1.4 is not treated exactly. Instead, a given electron
interacts with the other N — 1 electrons in an averaged fashion, and thus HF is known as
a "mean-field” method. Despite being a simple wavefunction guess, HF frequently captures
more than 99% of the total electronic energy. For this reason, many electronic structure
methods use HF as a starting point in calculations; these are known as post-Hartree-Fock
methods.

Once a given one-particle basis of MOs has been determined using HF, many determi-
nants are possible other than the HF determinant |®). A linear combination of all possible
combinations of all N electrons placed into all r orbitals would also make a suitable wave-

function ansatz. This is the wavefunction used in full configuration interaction (full CI) [2].

[per) = col®o) + > ) + > il |®i) + .. (1.6)
ia 1<j
a<b

(I){Q}

where | {p}> is the determinant produced by moving electrons out of the occupied orbitals
{p} into the unoccupied orbitals {q}. The energy of this wavefunction is the expectation

value

Epcr = (YrorlHlrer). (1.7)



If the energy Epcy is minimized with respect to the coefficients {c} in Eq. 1.6, the nu-
merically exact solution to the electronic Schrodinger equation within a given AO basis is
obtained. The difference between the full CI energy and the HF energy is known as the cor-
relation energy. In a real system, electrons are attracted to the nucleus but repelled by other
electrons, and therefore electrons move in a correlated fashion in order to avoid one another.
However, the HF wavefunction confines the N electrons into N orbitals, preventing their
coordinated motion. Full CI, in contrast, does account for electron correlation by sampling
among all possible electron configurations. Unfortunately, full CI scales combinatorially as
O, which means that for 16 electrons and 32 spin orbitals, there are ~ 109 possible deter-
minants. This scaling rapidly renders full CI computationally intractable, and it certainly
cannot be performed for systems with more than 18 electrons and 36 spin orbitals.

Much of electronic structure is devoted to developing methods that capture as much of
the correlation energy as possible, while remaining computationally inexpensive enough to
treat larger molecules of chemical interest. One approximation to the exact wavefunction
would be to truncate the wavefunction in Eq. 1.6 after a given excitation order, a method
known as truncated CI [3]. For example, if the wavefunction were truncated at second
order, the method would be configuration interaction with single and double excitations, or
CISD. This approximation is reasonable because doubly excited determinants couple most
strongly to the reference wavefunction, and therefore CISD should capture a large percentage
of the correlation energy. Unfortunately, truncated CI methods are not size-extensive: the
percentage of correlation energy they capture decreases as the system gets larger.

Size-extensive approximations to full CI are also possible, such as Mgller-Plesset pertur-
bation theory [4]. Another is coupled-cluster theory [5], which is similar to truncated CI in
that it features a finite number of excitation tensors. However, it approximates higher exci-
tations as a product of lower excitations (e.g. quadruple excitations as a product of double
excitations), allowing it to to be both size extensive and substantially more accurate. The

method has proved highly successful, such that coupled cluster with single and double ex-



citations with perturbative triples, CCSD(T), is often called the gold standard of electronic
structure methods [6].

Active-space methods are another form of approximating full CI. In active space CI, a
full CI calculation is performed within a certain number of orbitals, while the other orbitals
remain either doubly occupied or empty. This method can be improved by also allowing
rotations between orbitals, otherwise known as CASSCF [7]. In HF, the MOs are rotated so
as to be optimal for a single determinant, whereas CASSCF rotates the MOs to be optimal
for a linear combination of determinants. A CASSCF wavefunction may also be used as
a reference wavefunction for multireference methods, such as MRCI, perturbation theory
methods like CASPT [8] or MRMP [9], or multireference coupled cluster [10].

Another collection of electronic structure methods seek to approximate the solutions to
the electronic Schrédinger equation not by using the wavefunction, but by using reduced

density matrices. These will be explored in the following section.

1.2 Reduced-Density-Matrix Methods

In second quantization, the electronic Hamiltonian is expressed as

H= Zszga;a$a3ar (1.8)

p<q
r<s

where 2KP? contains the one- and two-electron integrals

Qqu _ 1

rs = m(épr<qm|5> + 5q5<p|il|7‘>) + <pQ|V|TS>~ (1’9>

and the operators a;; and ay create and annihilate an electron in the orbital p, respectively.
The creation and annihilation operators obey anticommutation relations in order to satisfy

the antisymmetry requirements for fermions. The energy of a given wavefunction [¢)) is given



E = (y|H|¢)
= 3 2KP lafadasarld).

p<q
r<s

(1.10)

In lieu of a wavefunction, the energy can also be expressed using a reduced density matrix
(RDM)
2DP = (Ylapadasarld) (1.11)

such that Eq. 1.10 can be written as
_ 272
E =Tr(*K*D). (1.12)

Eq. 1.12 states that the energy can be exactly expressed as a function of the 2-RDM, because
the Hamiltonian only contains one- and two-particle operators. The expression in Eq. 1.11 is
equivalent to integrating the wavefunction over all electrons save two. The 2-RDM, therefore,
only contains information about two electrons, as opposed to the N-electron wavefunction
which holds information about all N. Indeed, the 2-RDM holds 7* elements, as opposed to
the exact wavefunction which contains »Cpy. The ability to exactly express the energy using
an object much smaller than the N-electron wavefunction has been a tantalizing prospect
for many years [11].

Unfortunately, it was noticed early on that direct minimization of the energy with respect
to the elements of the 2-RDM yields energies that are far too low [12, 13]. This is because,
while every N-electron wavefunction may be contracted onto a 2-RDM using Eq. 1.11, not
every 2-RDM may be derived from an N-electron wavefunction. The set of all possible
2-RDMs is therefore larger than the set of all possible N-electron wavefunctions, causing
energy minimizations with respect to the 2-RDM to be lower bounds to the full CI energy.
This is known as the N-representability problem, and N-representability constraints are

necessary to ensure the 2-RDM resembles as closely as possible a physically realistic N-



electron wavefunction [11].

The N-electron wavefunction gives the probability of finding N electrons in a given
configuration. The eigenvalues of the 2-RDM, meanwhile, give the probability of finding two
electrons in a given antisymmetric two-electron geminal. An important consideration for the
N-representability of a 2-RDM is that the probability of that geminal being occupied must
lie between 0 and 1: probabilities cannot be negative. This is equivalent to saying that the
2-RDM must be positive semidefinite

2D =0 (1.13)

or have eigenvalues greater than or equal to zero. Extending these considerations to the

two-hole and one-particle-one-hole matrices ) and G

2QU = (|agaja)allv) = 0

§ (1.14)
2GY = (ylalajalag|v) = 0

gives the DQG conditions, defined in Egs. 1.13 and 1.14, on the variational minimization of
the energy with respect to the 2-RDM [14]. While these conditions do not ensure complete
N-representability, they do greatly reduce the deviation from N-representability. FEner-
gies found using these conditions remain a lower bound to the exact energy, but they are
substantially more accurate than an unconstrained optimization [15, 16]. An active space
formulation of the variational 2-RDM method is utilized in Chapter 2 to study a highly
multireference and computationally demanding CdTe polymer.

Another way of utilizing the 2-RDM in quantum mechanical calculations is the para-
metric 2-RDM method (p2-RDM). In p2-RDM, partial N-representability is enforced by
parameterizing the 2-RDM in terms of an N-representable wavefunction, specifically that of
CISD [17]. The 2-RDM is granted additional flexibility during the optimization in order to
ensure size-extensivity, but the parameterization preserves partial N-representability [17-19].

Because the majority of this thesis deals heavily with p2-RDM, its derivation is presented



more fully in Chapter 3. It is then used to examine the single-reference aromatic isomers
and the diradical multireference isomers of the olympicene molecule in Chapter 4. In Chap-
ter 5, analytical nuclear derivatives are introduced for the p2-RDM method, which greatly
increase the speed of molecular optimizations. Lastly, in Chapter 6, an alteration to the pa-
rameterization is proposed to help p2-RDM treat more difficult and highly multireferenced

systems.
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CHAPTER 2
ORBITALS, OCCUPATION NUMBERS, AND BAND
STRUCTURE OF SHORT ONE-DIMENSIONAL CADMIUM
TELLURIDE POLYMERS

This chapter contains parts of an article that was originally published in the Journal of
Physical Chemistry A. Reproduced with permission from [A. J. S. Valentine, D. V. Talapin,
and D. A. Mazziotti,J. Phys. Chem. A, 121, 3142 (2017)]. Copyright 2017, American

Chemical Society.

2.1 Introduction

Semiconductor nanocrystals, or quantum dots (QDs), have electronic and spectroscopic prop-
erties currently of great interest to the research community [1]. Quantum dots, with their
narrow emission spectra of tunable wavelengths, are natural building blocks for LCD dis-
plays and light-emitting devices [2]. Within the medical community, they have been used as
chemiluminescent sensors [3], with applications such as immunolabeling [4] or protein detec-
tion [5, 6]. QDs have also successfully been employed as field-effect transistors (FETSs) [7],
and the combination of their conductive and absorption properties has rendered QDs promis-
ing candidates for next-generation solar cells [8]. More recently, a groundbreaking study by
Dolzhnikov et al. [9] looked to increase the conductivity of a wide array of semiconductor
nanocrystals. They found that by annealing QD films in the presence of soluble inorganic

salts formed from the same material as the QDs (e.g. CdTe QDs in a NagCdTes solution),

Figure 2.1: The CdTe polymer
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they were able to increase dramatically the electron mobility of FETs by up to two orders
of magnitude. Another study [10] found that CdTe QDs capped with Te?~ ligands showed
markedly increased carrier mobility and diffusion length. These two studies suggest that the
interface of quantum dots and inorganic materials is an important step forward in QD-based
devices.

It would be useful to have a theoretical understanding of the inorganic materials that have
been used to enhance QD-based FETs. To that end, this paper will examine a novel inorganic
structure that was reported in the Dolzhnikov et al. study [9]: a [CdTe%_]oo polymer in a
one-dimensional wire motif that had not previously been reported. This paper will offer a
computational study of that polymer, reporting natural-orbital (NO) occupation numbers,
Mulliken populations, charge gaps, and isomer effects as a function of polymer size and
composition. As a conducting polymer, it will likely feature a high density of states near the
HOMO-LUMO gap, with a correspondingly large number of nearly degenerate orbitals; as a
result, the ground state of the polymer is likely highly multi-referenced. A multi-referenced
wavefunction is one that cannot be qualitatively described by a single Slater determinant,
and is common in systems with ground and excited states that are close in energy. Previous
computational studies of small CdTe clusters have reported optimized structures and HOMO-
LUMO gaps using either molecular dynamics simulations [11] or density functional theory
(DFT) [12-16]. However, DFT offers a one-electron picture of electronic structure, which is
inherently uncorrelated, and we expect that the polymer’s nature can only be captured fully
with a two-electron based method.

The variational two-electron reduced density matrix (2-RDM) method has proven to be
a robust alternative to traditional wavefunction methods [17-22]. The variational 2-RDM
method has been successfully applied to extended m-conjugated systems like acene sheets [23]
and firefly luciferin [24], as well as to inorganic complexes such as vanadium oxo 2,6-bis[1,1-
bis(2-pyridyl)ethyl]pyridine [25]. The complex in the latter paper, which featured heavy

atoms and a very large number of electrons, was found to demonstrate ligand noninnocence,
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but this effect could not be captured until a very large (42,40) active space was employed.
The success of the 2-RDM method in handling such large active spaces renders it uniquely
suited to a study of the CdTe polymer, which likewise features heavy atoms and a high

number of electrons.

2.2 Theory

A common method in electronic structure is to posit a wavefunction |¥) and variationally

minimize its energy

E = (U|H|D) (2.1)

in order to find an upper bound to the energy of the true wavefunction. Once a wavefunc-
tion has been found, its two-electron reduced density matrix (2-RDM) may be derived by

integrating over all electrons but two
9 ~ij At AT A A
Dy = (wlalalaay|v) (2.2)

where @ and a' are the usual annihilation and creation operators. The energy in Eq. 2.1 may

then be rewritten in terms of the 2-RDM by
E =Tr(2K?D) (2.3)
where 2K is the reduced Hamiltonian matrix given by

. 1 I . o
2K = 5 OlilhlL) + 85 (ilhlk) + i3]V |KD). (2:4)

Here h and V are the one- and two-electron operators, respectively. It is possibly to minimize
the energy in Eq. 2.3 directly with respect to the elements of the 2-RDM 2D;€jl- [26-37].

However, this results in an energy that is dramatically too low and is in fact a lower bound
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to the energy of the true wavefunction in a given finite basis set. This is because the set of
all possible 2-RDMs is much larger than the set of all possible wavefunctions; that is to say,
not every 2-RDM corresponds to a physical N-electron wavefunction, or equivalently, not
every 2-RDM is N-representable [29-33].

The constraints necessary to ensure the 2-RDM is N-representable are called p-positivity
conditions [32], of which a subset are the 2-positivity conditions [38]. These state that the

following matrices must have non-negative eigenvalues, or be positive-semidefinite

D=0
20 =0 (2.5)

20 =0

where the > symbol means all eigenvalues of the matrices are greater than or equal to 0.
2D, 2@Q), and 2G are the particle-particle, hole-hole, and particle-hole 2-RDMs, defined by
2D} = (Wlalataa|v)

2QY = (W|azajalal [v) (2.6)

2GY = (Wlalaza)ay|v).

These constraints correspond to the physical intuition that the probabilities of finding two
particles, two holes, or one particle and one hole must all be non-negative. After adding
these constraints to the minimization of the energy in (3), the energy of the resulting 2-
RDM remains a lower bound to the true energy, but the error is greatly decreased.

In the active-space variational 2-RDM method [39, 40], the variational minimization of
the energy is performed only within a subset of the total molecular orbitals of the system,
while the core orbitals remain doubly occupied, in a fashion analogous to complete active
space configuration interaction (CASCI). To further improve the accuracy of the solution,

we can also minimize the energy of the 2-RDM with respect to the molecular orbitals them-
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selves, rendering the method effectively analogous to complete active-space self-consistent
field (CASSCF) [41]. In practice, the algorithm proceeds by minimizing the energy as a
function of the 2-RDM within the active space, mixing the active and inactive orbitals by
one-electron unitary transformations to lower the energy further, and repeating until the

energy of the 2-RDM converges.

2.3 Applications

The active-space variational 2-RDM method is used to investigate the [CdTe%_]n polymer.
Occupation numbers, natural orbitals, and band gaps are reported for n from 1 to 4. For
the largest polymer, occupation numbers and Mulliken charges are presented for its oxidized
and reduced states. Occupation numbers are also given for other, more symmetric forms of

the polymer, capped with either a Cd%t or Te%* unit.

2.3.1 Methodology

All calculations were performed in the 3-21G split valence basis set [42]. The active-space
variational two-electron reduced density matrix method was used to calculate ground-state
energies and natural-orbital occupation numbers of various forms of the [CdTe%_]n polymer.
The active space consisted of the 5sp orbitals for each Cd and Te atom, with the sole
exception of the tetramer calculations, which excluded the 5s orbitals of Te due to excessive
computational costs. All core orbitals were taken to be frozen; that is, the orbital rotation
mentioned above was not performed for any of the doubly occupied orbitals. Generation of
the molecular orbitals from Hartree-Fock calculations as well as evaluation of one- and two-
electron integrals were performed using the GAMESS electronic structure package [43]. The
oxidized and reduced forms of the polymer, which are doublets, were treated by calculating
the ground state of the molecule together with a single hydrogen atom placed at infinite

separation [21]. In all calculations, Cd was taken to be in a 2+ oxidation state and Te in a
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2— oxidation state for the purpose of electron counts. Bond lengths and bond angles of the
polymer were taken from Ref. [9]. The polymer used in Ref. [9] as a conducting filler between
quantum dots was anionic, with a —2 charge per monomer unit. This charge allowed the
polymer to be dissolved in solution, but the additional electrostatic repulsion from the extra
electrons renders the polymer highly unstable in the gas phase; for that reason, total energies

of the molecule are not reported here.

2.8.2 Results

The molecular orbital (MO) diagram for the CdTe%_ monomer, obtained from Hartree-
Fock in the 3-21G basis, is plotted in Fig. 2.2. It is readily apparent that the occupied
4d-shell orbitals on the cadmium are much lower in energy than the other valence orbitals.
In practice, when these orbitals are included in the active space, they contribute minimally
to the electronic structure and largely remain doubly occupied. This is consistent with other

qto group elements are

results in the literature, and it has been argued [44] that although
found in the d-block of the periodic table, due to their completely filled d-shell, they do not
behave as transition metals. The primary valence shell in CdTeg_ consists of the 5s and
5p orbitals on both the cadmium and tellurium atoms, which is the active space employed
in nearly all of the calculations. The 5s orbitals on Te are also very low in energy and mix
minimally with the remainder of the active space; these orbitals are excluded from the active
space in the case of the largest polymer studied, the tetramer. The next set of unoccupied
MOs, arising from the 6s and 6p orbitals on the cadmium atom, do not qualitatively change
the electronic structure when included in the active space. It is interesting to note that
even this relatively modest (120,16e) active space per monomer unit is computationally
unfeasible for analogous MCSCF methods for the dimer, and CASSCF would require ~ 1024
determinants in order to treat the tetramer in this active space.

Natural-orbital (NO) occupation numbers of the polymer for lengths from n =1 ton = 4

may be found in Table 2.1. Relatively little multireference electron correlation was found
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Figure 2.2: Qualitative molecular orbital diagram for the CdTeg_ monomer, obtained from
Hartree-Fock in a 3-21G basis set. The primary valence shell is composed of 5s and 5p
orbitals from both Cd and Te.
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Table 2.1: Natural-orbital occupation numbers for the [CdTe2%_]n polymer for n from 1
to 4. In a perfectly uncorrelated molecule, the occupation of all orbitals up to the HONO
would be 1 and all other orbitals would be zero. Multireference correlation increases as the
polymer lengthens.

Orbital 1-mer 2-mer 3-mer 4-mer
HONO-2 0.9776 0.9610 0.9180 0.8869
HONO-1 0.9544 0.9588 0.9125 0.8131

HONO 0.9505 0.6148 0.6861 0.8042

LUNO 0.1070 0.5402 0.6795 0.7665
LUNO-+1 0.0208 0.0237 0.0288 0.0291
LUNO-+2 0.0202 0.0231 0.0278 0.0255

in the CdTeg_ monomer, as measured by the population of the lowest-unoccupied natural
orbital (LUNO) and above. In contrast, once the CdQTei_ dimer has been formed, we see
an almost even population of the highest-occupied natural orbital (HONO) and the LUNO,
with the dimer being a near diradical. Further increasing the size of the polymer to the
trimer and tetramer continues to fill the HONO and LUNO evenly. Once the size of the
tetramer is reached, we see remarkably even filling of the HONO, LUNO, and several other
more-occupied orbitals, while the LUNO-+1 and lower-occupied orbitals continue to remain
energetically unfavorable. This fairly unusual filling pattern is indicative of very strong
multireference correlation effects.

Select NOs from Table 2.1 are plotted in Fig. 2.3. The HONO and LUNO for both the
monomer and dimer are qualitatively similar, with one orbital on each end of the molecule.
However, while the populations of the HONO and LUNO are very different on the monomer,
the spatial separation of these orbitals in the dimer allows them to become energetically
competitive and hence, relatively equally filled. As the molecule expands to the trimer, the
frontier orbitals located at either end of the molecule continue to fill, while two additional
occupied NOs begin to have significant deviations in their populations from 1. Finally, in the
tetramer we observe even more orbitals becoming significantly correlated. However, unlike
the smaller molecules, the terminating NOs have now filled to the point where the majority

of the active electron correlation is occurring in the interior of the polymer, with four frontier
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Figure 2.3: The density contours of natural orbitals are plotted for each n-mer with n from 1
to 4, where the arrow is in the direction of polymer growth. More orbitals have occupations
differing substantially from 1 or 0 as the polymer grows in length.

NOs centered on the internal tellurium atoms. It may be observed that the tetramer is the
first instance of a completely internal CdQTei_ unit, and therefore might be the first case
which qualitatively represents the formation of a polymer. In such a polymer, we would
expect the internal structure to dominate the edge effects of the molecule, which is what we
begin to observe here.

To explore further the electron correlation of the CdTe polymer, we analyze calculations
in which the polymer is either oxidized or reduced by one electron. Additionally, because
different forms of the polymer could be found in solution depending on how it is cleft, iso-

mers of the polymer were examined that were capped with either Cd2* or Te%f. The NO
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occupation numbers for these two cases are presented in Fig. 2.4 for the longest molecule
studied. In Fig. 2.4(a), it may be seen that adding an extra electron uniformly increased the
population of the occupied orbitals and the LUNO, effectively decreasing the correlation in
the system, while removing an electron substantially lowered the populations of a large num-
ber of occupied orbitals, greatly increasing the degree of multireference correlation. As with
all of the examples in Table 2.1, the populations of the LUNO+-1 orbital and above remain
negligible regardless of electron number. Similarly, in Fig. 2.4(b), capping the polymer with
Te;l_ dramatically quenched the static correlation in the system, yielding a molecule that is
almost entirely single-reference. In contrast, capping with Cd%t greatly increased the static
correlation, with substantial electron populations of both the LUNO and LUNO-1 orbitals,
while LUNO+2 and above remain unfilled. The striking similarity between these two plots
may be explained by the nature of the two caps. Te%f contributes 8 completely filled or-
bitals to the active space, thereby increasing the relative electron filling of the system, while
Cd2T contributes 4 unfilled orbitals to the active space, decreasing the relative filling. The
fact that the LUNO+1 (or LUNO+2 in the case of the cadmium-capped molecule) orbital
and less-filled orbitals never receive any substantial filling strongly suggests the formation
of a band structure, where the orbitals of the conduction band are substantially higher in
energy than those of the valence band. This suggests that the polymer is a semiconductor
whose valence band is nearly, but not fully filled. The fundamental charge gap, defined as
the difference between the ionization energy and the electron affinity, was also evaluated for
each species. This quantity steadily decreases with polymer length from 100.3 kcal/mol in
the monomer to 78.3 in the dimer, 67.4 in the trimer, and lastly to 55.9 in the tetramer. This
decreasing charge gap suggests that the polymer becomes an increasingly good conductor
as it grows in length. Finally, Mulliken populations for the three oxidation states of the
tetramer are plotted in Fig. 2.5, showing the distribution of the additional anionic charge
across the molecule. In all three cases, the internal cadmium atoms remain largely neutral,

with the additional electrons distributed across the terminating atoms and the internal tel-
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Figure 2.4: Natural-orbital occupation numbers near the HONO-LUNO gap in the Cd4Te§_
tetramer for (a) its oxidized, reference, and reduced states, and (b) the polymer capped with
Cd2t, the reference polymer, and the polymer capped with Teg_. Increasing the number
of electrons decreases the static correlation in the molecule, while decreasing the number
of electrons increases it. Similarly, capping the polymer with the electron-rich Te%_ group

decreases the static correlation, and capping with the electron-deficient Cd2t cation greatly
increases it.

lurium atoms; the electron added or removed from the system is largely delocalized over

these atoms.

2.4 Discussion and Conclusion

In this paper, we presented the first computational study of the newly synthesized one-
dimensional CdTe polymer. Natural-orbital occupation numbers show that the polymer is
strongly correlated, and that its strong electron correlation increases as the polymer grows in

size. However, this static correlation presents itself in an unusual fashion, with nearly even

electron fillings of several of the HONOs and the LUNO, while the LUNO+1 and less-filled
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Figure 2.5: Mulliken charges of the Cd4Te§_ tetramer. The locations of the —7 charge of the
oxidized species, the —8 charge of the reference species, and the —9 charge of the reduced
species are plotted by atom in the polymer. The Mulliken charges have been multiplied by
—1 for aesthetic reasons. Anionic charge accumulates on the ends of the molecule and on
the internal Te atoms.

orbitals remain unoccupied even in the longest polymer. This suggests that there are several
degenerate orbitals grouped together near the HONO-LUNO gap, forming a band, while
the other LUNOs remain significantly higher in energy and are therefore inaccessible to the
ground state. This is further supported by changing the number of electrons: reducing the
polymer does not half-fill an unoccupied orbital, but rather fills the grouped orbitals nearly
evenly, while oxidizing the polymer evenly decreases their occupation. In similar fashion,
capping the polymer with an additional atom or atoms increases the number of orbitals
above and below the HONO-LUNO gap, but the electron-rich Teg_ group yields a valence
band that is relatively more filled, while the electron-deficient Cd®t cap gives a valence
band that is relatively less filled. Taking these results together, it seems very likely that the
CdTe polymer possesses an almost (but not completely) filled valence band and an unfilled
conduction band. Relatedly, the fundamental charge gap, defined as the difference between
the ionization energy and electron affinity, decreases with polymer length, suggesting that it

becomes an increasingly good conductor.
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The relative electron filling of the polymer will assuredly impact its solubility and reac-
tivity, and as this study has shown, it will also greatly impact the electronic structure of the
molecule and the degree of strong electron correlation it contains. Consequently, it seems
possible, by oxidation, reduction, or doping, to tune any potential QD fillers to have the ideal
balance of chemical and electronic properties in order to boost maximally the conductivity
of QD films. Good QD fillers will also likely be strongly correlated materials, in order to
maximize the density of states near the HOMO-LUMO gap and facilitate the free flow of
electrons through the molecule. The interaction of QDs and inorganic materials is an excit-
ing new development in the field of inorganic chemistry, with the promise of yielding new

QD-based devices, such as next-generation solar cells, with ever greater power and efficiency.
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CHAPTER 3
THE PARAMETRIC TWO-ELECTRON
REDUCED-DENSITY-MATRIX METHOD

3.1 Introduction

In Chapter 1, it was observed that the energy of a system may be expressed using the

two-electron reduced-density matrix (2-RDM).
E =Tr(2K?D) (3.1)

where 2K is the reduced Hamiltonian matrix and 2D is the 2-RDM, which may be obtained

from the N-electron wavefunction |¥) by
2Dk = (|abalasa, | D). (3.2)

Here a' and a are creation and annihilation operators, respectively. It would be advanta-
geous to be able to evaluate the 2-RDM directly without first requiring the full N-electron
wavefunction. However, it is difficult to directly determine the 2-RDM while also constrain-
ing it to correspond to a physically realistic N-electron wavefunction, which is known as an
N-representable 2-RDM [1-3]. One approach is to directly minimize the energy in Eq. 3.1
while constraining the eigenvalues of various RDMs to be non-negative, which are known
as p-positivity conditions [4-9]. A very different approach is to enforce N-representability
by directly parameterizing the 2-RDM in terms of an N-electron wavefunction, such as the
wavefunction from a truncated configuration interaction method. The derivation of such a

method is the subject of this chapter.
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3.2 From Configuration Interaction to a 2-RDM

The wavefunction ansatz for configuration interaction with double excitations (CID) [10, 11]
is given by
2rpab
Werp) = Tol®o) + > T ® (3.3)
1<J
a<b
where ]Q)?}’) is the Slater determinant formed by exciting two electrons out of the occupied
orbitals ¢ and j into the orbitals a and b. Orbitals that are occupied in the reference wave-
function are denoted by the letters (i, 7, k, [), unoccupied orbitals are denoted by (a, b, ¢, d),

and generic orbitals are given the letters (p,q,r,s). The wavefunction is normalized, such

that

To= |1-) (2132 (3.4)
i<j
a<b
When the energy E = (¥|H|¥) is minimized with respect to the coefficients 2T, the CID
energy is obtained.

It is possible to directly contract the wavefunction in Eq. 3.3 onto a 2-RDM using the
relation in Eq. 3.2. To illustrate how this occurs, consider the case where (p, ¢, r, s) in Eq. 3.2
are equal to (a,b,c,d), i.e. all four orbitals are unoccupied in the reference. This is the 2Dgg
element of the 2-RDM, given by

2pih = (‘Ifcwlaaabadacl‘l’mm (3.5)
This expectation value can only be non-zero for terms on the left where the orbitals a and
b are occupied, and terms on the right where the orbitals ¢ and d are occupied. This means
that only excited determinants contribute to this term. In addition, the holes ¢ and j in

terms on the left must match up with holes k£ and [ in terms on the right. As a result, this
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element of the 2-RDM can be expressed in terms of 2T amplitudes by

2 2
Db =" 2rabred, (3.6)
1<j

There are various classes of terms within 2DF?, depending on the number of orbitals that
are occupied or virtual within the reference. The remainder of this chapter will closely follow
the presentation of parametric 2-RDM methods given in Ref. [12]. The complete list of all

terms are as follows

2Dl = 2211 1 4" AL AT ) 4201 (3.7)
2 % _ 1I§1Ag + 2A§% (3.8)
2pab — 20 (3:9)

QD%b _ ZA%b (3.10)

where llp is the one-particle identity matrix, 277 is the two-particle identity matrix ex-

pressed as a Grassman wedge product of one-particle matrices

2l =1 At

(3.11)
=t
and the assorted 1A‘Z and 2AP? terms are given in terms of 27

2aY, =" b (3.12)

a<b
Al = Z 2T, (3.13)

2mmab2ed

AL = " 2rabrred (3.14)

1<J
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TG = =N rrarred (3.15)

a<b k

IAp =3 T (3.16)

i<j c

The final 2A term is the only one featuring the coefficient of the reference

2Aab TabTO
2rmab 3.17
SRS e 1
k<l
c<d

Now that the 2-RDM has been parameterized in this fashion, direct minimization of the
energy F = Tr(2K 2D) with respect to the coefficients 27" will also yield the CID ground state
energy. In this instance, the 2-RDM is exactly N-representable because it was contracted
directly from the N-electron wavefunction in Eq. 3.3. However, the energies obtained from

CID suffer from a lack of size-extensivity, which the following section will attempt to address.

3.3 Size-Extensivity of the Parametric 2-RDM Method

The CID parameterization in the previous chapter is not size-extensive [13]. A size-extensive
method gives a correlation energy that scales linearly with the size of the system, but the
expression for QA?;-’ used in Eq. 3.17 does not do so. Whenever {i,5} N {k,l} = 0 and
{a,b} N {e,d} =0, 2A%b contains unconnected terms which scale quadratically with system
size. The parameterization could be rendered size-extensive by the insertion of a topological

factor f into Eq. 3.17

2 aab _ 27ab
AR =2T8 | 1= febed( 2T (3.18)
k<l
c<d
with the requirement that f%l;cl = 0 whenever {4, j,a,b} N {k,l,c,d} = 0. This is known
as the parametric 2-RDM method (p2-RDM) [12, 14, 15]. If f were equal to 1 in all cases,

this method would be exactly equivalent to CID, which would be N-representable but not
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size-extensive. If f were set to 0 in call cases, it would be equivalent to CEPA(0) [16-
18], which is size-extensive but deviates greatly from N-representability. There may be a
parameterization somewhere between two methods that is approximately N-representable
and also approximately size-extensive.

Kollmar [14] noted that the 2-positivity conditions DQG could be imposed in order to
enforce approximate N-representability. These state that the following matrices must all

have non-negative eigenvalues

D=0
2@ =0 (3.19)
2= 0

where 2D, 2Q, and 2G are the two-particle, two-hole, and one-particle-one-hole RDMs,

respectively

2phi — <\Il|a;[9a:5a3ar|\ll>

2QM = (\Iflapaqalalllm (3.20)

2GPT — (lllla;;aqalar\qf).
The 2Q and 2G matrices can be directly expressed in terms of 2D, such that the DQG
conditions can be fullfilled solely by imposing constraints on 2D. Rather than directly
impose DQG conditions on the optimization of the energy, the topological factor f could be

chosen so as to partially fulfill the conditions implicitly. The 2-positivity conditions imply a

weaker set of restrictions known as Cauchy-Schwarz inequalities, given as

2 Hyab\2 2 172 nab
("D55)” < Dij Dap

- (3.21)
(CQi? <*Q*Qu
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for 2D and 2Q, respectively. For 2G, there are four inequalities

b\2 b
(QGga) 2Gla2G§b

<2G ) G’LbQGCL]_

& v (3.22)
(6 <Gl
(2 b) 2G3b2Gal

j .

The Cauchy-Schwarz are necessary conditions for any matrix to be positive semidefinite,

and are sufficient in the special case of 2x2 matrices.

Substituting the expressions from

Equations 3.7-3.10 into the inequalities in Eq. 3.21 and equating the connected portions give

the following parameterizations
2 Aab 2ab 1A
A% = Z% (1+ A+

2Agjb -

LAJ o 2A10\1/2
Aj+ Aij) (3.23)

27801 — 1AL 4 1AD 4 2A%)1/2 (3.24)

which are known as the D and @ functionals [12], respectively. Repeating the same process

for the 2@ inequalities gives

2Aab

2Agb —

2Aab

2Aab

2Tab(1+ A 1A2_2A§2)1/2
2ab 1AJ _1aa _2aJay1/2
TE(L+ 1AL~ TAY 2000
Y R (3.25)
2Tab(1+1Al_ AII;_2A§2)1/2
2Tab(1 —l—lAl . lAg . QAZ:Z)I/Q'

Kollmar averaged the four 2G equalities in order to derive a functional known as the K

functional [14]. Mazziotti, meanwhile, chose to use the 2D and 2@ equalities to derive a

functional that preserved particle-hole symmetry, known as the M functional [12]. Each of

the functionals discussed here may be characterized by the value of f “de for the number of

orbitals n, shared between (i,7) and (k,l), and the number of orbitals n, shared between
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Table 3.1: Various functionals fal;fld, defined for classes of n,/n,, where n, is the number

of orbitals shared between (3, j) and (k,1), and ny is the number shared between (a,b) and

(¢,d).

Topological factor fabcd

Method 0/0 1/0 2/0 0/1 0/2 1/1 2/1 1/2 2/2

coD 1 1 1 1 1 1 1
CEPAO) 0 O 0O 0 0 0 0
D 0 1 1 0 0 1 1

Q o0 o0 o 1 1 1 1

K 0 1/2 1 1/2 1 3/4 1

M 0 0 1 0 1 1 1

(a,b) and (¢, d). The functionals are given in terms of n, and n, in Table 3.1.

3.4 Incorporating Single Excitations

1

0
1
1
1
1

o= = O

Regardless of functional, the parametric 2-RDM method may be improved by adding single

excitations to the parameterization. Where before we started with the wavefunction from

CID, we now begin with a wavefunction from configuration interaction with single and double

excitations, or CISD

Wersp) = Tol®o) +21Ta\¢a +> 2Tt
1<j
a<b

(3.26)

The same procedure for contracting this wavefunction onto a 2-RDM is performed, as before,

giving the following terms for the 2-RDM

2 _ 427t 1At Alg

2 171 161

2 171 1721
Di = 1[IAS —TIIAY ¢

2 i 2 A1
Dje = 2Aj!
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2A§C]l

2 Ala
Ajb

2 Atla
Ajk

(3.27)

(3.28)
(3.29)
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2pab =279 (3.31)

2mab _ 2 aab
Db = 2A%. (3.32)
The A and 2A terms are
2 AL] 2 2
AP = 2T (3.33)
a<b
3b= ZQ T2 (3.34)
2 1
Al = Z ab (3.35)
2 2mbcl
Al — Z e (3.36)
2 2
AL = " 2rabrred (3.37)
1<J
1 2mab2ab 1 1
A= - Y SR - Y 339
a<b k a
I B) DRI S (33
i<j ¢ i

and now there are two terms that contain the reference coefficient Ty and require topological

factors to restore size-extensivity.

QA%b — 2117;(}6710

_ 2mab bd2 d\2 b 1 3.40
=T |1 DS T = D AT (240
k<l
c<d

_1 a . d 2ed\2 b(17b\2

=17 |1 Z fEe T = 3 15 0T) (3.41)
k<l b
c<d

2ablab
+Z T,
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ffjl;fld is the same as before, equal to 1 if (4,7,a,b) and

In the M parameterization [12],
(k,l,¢,d) share at least two indices and zero otherwise. In a similar fashion, f;ﬁc is set to 1
if (k,c) shares at least one index with (i, j, a,b), and ffjb is set to 1 if i = j or a = b; both

factors are zero otherwise.

3.5 Concluding Remarks

The parametric 2-RDM method [12, 14, 15] is a single reference method that, like all such
methods, relies upon the quality of the reference in order to provide accurate energetic
predictions. It has a computational scaling that is comparable to that of coupled cluster with
single and double excitations (CCSD) [19]. When the reference wavefunction is reasonably
accurate and the K parameterization is used, it yields energies that are comparable to those
of CCSD [14, 20-22]. By incorporating single excitations and by using the more flexible and
accurate M parameterization, energies from p2-RDM typically fall [12, 23, 24] between those
predicted by CCSD and the more accurate CCSD(T) [25]. However, the true strength of
the method lies in the flexibility contained with the parameterization. When the reference
wavefunction is of very poor quality, p2-RDM frequently outperforms [26, 27] the much
more expensive CCSD(T); unlike coupled cluster methods, p2-RDM is remarkably adept at
correcting the underlying reference in order to detect substantial multireference character.
In the coming chapters, this ability to give accurate energies for both strongly and weakly
correlated systems will be demonstrated, and extensions will be proposed to the method in

order to make it more efficient and robust.
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CHAPTER 4
THEORETICAL PREDICTION OF THE STRUCTURES AND
ENERGIES OF OLYMPICENE AND ITS ISOMERS

This chapter contains parts of an article that was originally published in the Journal of
Physical Chemistry A. Reproduced with permission from [A. J. S. Valentine and D. A.
Mazziotti,J. Phys. Chem. A, 117, 9746 (2013)]. Copyright 2013, American Chemical

Society.

4.1 Introduction

The olympicene molecule, a five-ringed polyaromatic hydrocarbon (PAH), was recently syn-
thesized [1]. PAHs have long been studied in astrophysics [2], and they are now used as
molecular semiconductors [3]. Olympicene, or 6 H-benzo[cd|pyrene, is related to a class of
PAHs known as acenes and two-dimensional acene sheets, which represent finite approxi-
mations to graphene [4]. Of these, the linear pentacene molecule, which commonly serves
as a semiconductor in field-effect transistors [5, 6], is the least compact five-ringed struc-
ture, while olympicene represents the most compact five-ringed structure (Fig. 4.1). As with
all acenes, olympicene has delocalized orbitals extending over the entire m-bond network.
However, unlike other acenes, olympicene is neither fully aromatic nor fully planar due to

the central -CHo- group. The two hydrogen atoms extend above and below the carbon

Figure 4.1: 6 H-benzo|cd|pyrene, also known as olympicene.
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plane, and the central carbon’s sp3-hybridization precludes its participation in the 7-bond
network. Acenes have previously been studied in linear |7, 8] and two-dimensional configura-
tions. Hachmann et al. showed that polyradical character increases as a function of system
size in linear acenes [9], and Pelzer et al. demonstrated a similar trend in two-dimensional
acene sheets [10], while also discovering greater electron correlation in linear geometries than
in nonlinear geometries.

A similar four-ringed structure, benzo[c|phenanthrene, has been known for many years [11].
Lacking the central -CHo- group, the carbon structure of benzo[c]phenanthrene is non-planar
due to steric repulsion between hydrogen atoms. In contrast, olympicene’s carbon network
is indeed planar. One of the out-of-plane -H functional groups in olympicene may migrate
about the molecule via 7-bond rearrangement, moving from the central carbon to a site
located two carbons away. Instead of passing through a single transition state during this
migration, the hydrogen moves along the C-C bonds, passing through two transition states
and a diradical intermediate state centered above the intermediate carbon. This diradical
intermediate is weakly bound, non-aromatic, and strongly correlated.

Two-electron reduced density matrix (2-RDM) methods have proven to be computa-
tionally efficient in treating strongly correlated systems [12-16]. While the active-space
variational 2-RDM method was previously used to study nonlinear acene sheets [10], in this
paper we use the parametric 2-RDM method [17] due to its success in treating multireference
scenarios such as bond-breaking and transition-state geometries [18-20]. Olympicene was
only recently synthesized, and these calculations provide predictions of its energy and prop-
erties, along with those of its isomers. We demonstrate that there exists a stable structure
of olympicene, and we examine olympicene, its isomers, and the transition states connecting
them. In addition, we provide information about the spin and band gaps in olympicene and

compare them to those of pentacene.
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4.2 Theory

4.2.1 Parametric 2-RDM method

In variational 2-RDM methods the ground-state energy is expressed as
E=Tr(2K%D), (4.1)

where 2K is the two-electron reduced Hamiltonian matrix which is the reduced Hamiltonian
operator in a finite orbital basis set [21]. In the parametric formulation [17-20, 22-31] the
second- and higher-order parts of the 2-RDM with respect to a mean-field reference are
parameterized in terms of the first-order part of 2-RDM 27. It is convenient to express the

2-RDM in terms of its cumulant expansion [32-35]
2p=2'DA'D +2A (4.2)

where 2A, 1D, and A denote the cumulant (or connected) 2-RDM, the 1-RDM, and the
Grassmann wedge product [21, 36]. The second- and higher-order parts of the cumulant

2-RDM and the 1-RDM can be expressed as functionals of the 2-RDM’s first-order part [22]

2N &~ 2T 42A0PT (4.3)

Ip ~ DO 4 1p@ey, (4.4)

With a Hartree-Fock reference wavefunction the only nonzero piece of the first-order 2-RDM
is 2T%b, which is equivalent to the two-electron excitation matrix, where ¢ and j denote
occupied spin orbitals and a and b denote unoccupied (virtual) spin orbitals.

Contraction relations from the cumulant expansions of the 3- and 4-RDMs [35] yield the

second-order cumulant 2-RDM and the second-order 1-RDM as functionals of the 2-RDM’s
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first-order part 27" [22]:

215 _ 2rmab 2ab
Ay =+ TR (4.5)
a<b
2 2 2
A = > P AT (4.6)
1<j
2A1 2 2
A= =TT (4.7)
c,k
and
1 2)\? 2 2
(1D ));. = -y T]@,S T (4.8)
a<b
k
1 2 2 2
(\D@he =+ 2wl (4.9)
i<j
C

Single excitations can also be explicitly included in the functionals [17, 18, 22].

While this parameterization of the 2-RDM is not N-representable, a subset of N-representability
conditions, known as two-positivity conditions [37-43], can be employed to restore approxi-
mate N-representability [17, 22, 31]. The class of cumulant elements QAab is redefined from

QT%I’ to

9 nab _ 2ab bed( 27cd)2
A =T 1= ) FECTE (4.10)

k<l
c<d

abed

where the values of f775" are chosen with Cauchy-Schwarz relations from two-positivity

1)

conditions [17, 22, 31]. Further details are available in previous work [17, 22].

4.3 Applications

The parametric 2-RDM method with the M parameterization is used to investigate the
olympicene molecule, its isomers, and its spin and band gaps. Similar calculations of the

pentacene molecule are performed as a comparison. The results from the parametric 2-RDM
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method are compared with those of conventional wavefunction methods.

4.83.1 Methodology

All calculations were performed in the Dunning-Hay (DH) double-zeta basis set. Geometries
of all structures were found using 2nd-order Moeller-Plesset perturbation theory (MP2) in
the GAMESS electronic structure package [44]. Transition states between nearest isomers
were found via saddlepoint search and reaction pathways were confirmed by intrinsic reac-
tion coordinate (IRC) calculations with MP2. Once structures were determined, their total
energies were calculated using Hartree-Fock (HF), coupled cluster with single and double
excitations (CCSD) [45], and completely renormalized coupled cluster (CR-CC(2,3)) [45, 46]
in GAMESS, and the M parameterized 2-RDM (2-RDM) method [20]. All isomers and tran-
sition states of olympicene were calculated as spin-singlets. The energy of the C-H bond
dissociation asymptote, benzo[cd]pyrene radical CigHip and a hydrogen atom, was found
by calculating the energy of the benzo|cd]pyrene radical in all four methods and adding the
energy of a single hydrogen at infinite separation. Occupation numbers of all structures
were obtained from 2-RDM and CCSD calculations. Spin and band gaps in olympicene and
pentacene were obtained by calculating the total energies of their triplet, cation, and anion
states at the same geometries as their respective ground states; that is, all transitions were

taken to be vertical.

4.3.2  Results

The geometry of the most stable form of olympicene was successfully optimized. With the 2-
RDM method, this structure is lower in energy than the C-H bond dissociation asymptote by
67.4 kilocalories per mole (kcal/mol). Of all isomers that were examined, this Co,-symmetric
structure is the lowest in energy by 5.7 kcal/mol. (Geometry optimization of this isomer
was performed with and without Cg, symmetry.) It is also the most stable structure with

respect to isomerization, as it is lower in energy than its transition state by 73.8 kcal/mol,
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while the next most stable structure is lower in energy than its lowest transition state by 67.7
kcal/mol. Olympicene is a strongly correlated molecule with a 0.84 difference in the HONO
and LUNO occupation numbers, although it is less strongly correlated than pentacene, which
has a 0.70 difference in the HONO and LUNO occupation numbers.

Eleven symmetry-unique isomers were studied (Fig. 4.2), along with twelve transition
states linking nearest isomers together via hydrogen migration. Of these, the six odd-
numbered isomers are fully aromatic, while the five even-numbered isomers are diradicals.
Ground-state energies of all 23 structures and the dissociated state, relative to the ground
state of olympicene, are provided in Table 4.1 from HF, CCSD, CR-CC(2,3), and 2-RDM.
Across all isomers and transition states, the 2-RDM method predicts the lowest relative en-
ergies of all methods, followed by CR-CC(2,3), CCSD, and finally HF. The relative energies
of the aromatic isomers are largely consistent across all methods, as the four methods differ
by approximately 3-17 kcal/mol. Results are less consistent for the transition states, where
they differ by approximately 18-25 kcal/mol. Lastly, the most variable predictions are those
for the highly correlated diradical isomers, where the results differ by approximately 37-44
kcal/mol. In general, the difference between the predictions of 2-RDM and CR-CC(2,3) is on
the order of that between CCSD and CR-CC(2,3). This difference is most pronounced in the
diradical states, where the 2-RDM method predicts relative energies that are approximately
8-11 kcal/mol lower than those of CR-CC(2,3), which are themselves lower than those of
CCSD by approximately 8-11 kcal/mol. The stabilization of the diradical isomers from the
2-RDM method is qualitatively significant because it causes them to be lower in energy
by 2-20 kecal/mol than hydrogen dissociation from olympicene. Unlike the diradical-isomer
energies, the dissociation energies of olympicene are consistent across all methods, differing
only by 1-2 kcal /mol.

The relative energies obtained from the 2-RDM method are represented in Fig. 4.3. Here
we see that the aromatic isomers form deep minima on the potential energy surface, while

the diradical isomers are unsurprisingly much higher in energy. The diradicals could be
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Figure 4.2: Olympicene, its isomers, and the benzo[cd|pyrene radical.
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Table 4.1: Ground-state energies [kilocalories per mole (kcal/mol)], relative to the ground
state of olympicene, of all isomers, transition states, and the benzo|cd]pyrene radical plus
hydrogen (Rad+H) dissociation asymptote are presented from HF, CCSD, CR-CC(2,3), and
parametric 2-RDM methods in the Dunning-Hay basis. The notation x—y represents the
transition state between structures x and y.

Isomer energies relative to the ground state (kcal/mol)

Structure HEF CCSD CR-CC(2,3) 2-RDM
1 0.000  0.000 0.000 0.000

1-2  98.964 82.410 76.698 73.758

2 105.621 81.048 71.384 62.185

2—3 102.640 86.838 81.589 78.869

3 10.017  7.828 7.445 6.796

3—4  93.727 79.927 75.114 73.249

4 89.820 70.799 61.394 50.390

4—5  94.865 80.699 75.771 73.318

5 8.450  6.482 6.229 5.660

5—6 101.505 86.462 81.197 78.572

6 102.858 82.824 73.969 65.241

6—7 109.321 94.241 88.594 86.414

7 24.607 20.316 20.013 17.680

7—8  98.280 85.544 80.519 78.000

8 85470 68.670 57.620 47.297

8—9 100.752 86.629 82.077 80.225

9 37943 27.442 26.950 24.521
9—10 105.256 91.487 87.069 85.642
10 101.773 81.820 72.870 64.415
10—11 107.350 94.126 89.963 89.130
11 47.949 35.053 34.674 30.554
2—11 109.184 95.819 91.558 90.504
6—11 106.764 94.191 90.060 89.285
Rad+H  68.154 69.432 68.019 67.399
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Figure 4.3: Isomer and transition-state energies relative to the ground state, calculated from
the parametric 2-RDM method in the Dunning-Hay basis. The isomer labels are defined in
Fig. 4.2.

thought of as shallow intermediates on the reaction pathway, existing briefly as a m-bond
breaks during the migration of a hydrogen from one aromatic isomer to another. We also
see a general trend of increasing energy and decreasing stability among aromatic isomers as
the hydrogen migrates around and then into the molecule. This trend may be explained by
Clar’s sextet rule, which states that ringed aromatic structures with more disjoint m-sextets
are more stable and lower in energy than those with fewer sextets. The isomers in Fig. 4.2
are shown in their Clar form, where isomers 1, 3, and 5 can form two m-sextets, while isomers
7,9, and 11 may only form one. In general, the aromaticity becomes increasingly restricted
as the hydrogen moves around the molecule, changing from four aromatic rings in an arch-
shape in structure 1 to only two aromatic rings in structure 11, with energy increasing as
the aromaticity is restricted further.

From the occupation numbers provided in Table 4.1, we can see that the 2-RDM method
successfully predicts near-diradical character in the non-aromatic isomers, with differences
in HONO and LUNO occupation numbers of approximately 0.1-0.25. In contrast, CCSD
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Table 4.2: Occupation numbers of the highest-occupied (HONO) and lowest-unoccupied
(LUNO) natural orbitals of all isomers and transition states are presented from CCSD and
the parametric 2-RDM methods in the Dunning-Hay basis.

Natural-orbital occupation numbers

CCSD 2-RDM
Structure nHONO MLUNO MHONO MLUNO
1 09451 0.0503 0.9196 0.0748
1—-2 09178 0.0765 0.8044 0.1854
2 0.8679 0.1268 0.5919  0.3985
2—3  0.9236  0.0708 0.8216  0.1670
3 09391 0.0570  0.9029 0.0923
3—4  0.9269 0.0657 0.8443 0.1411
4 0.8674 0.1272  0.5518  0.4398
4—5 09259 0.0664 0.8314 0.1541
5 0.9401 0.0563 0.9070 0.0885
5—6  0.9273 0.0647 0.8198  0.1680
6 0.8928 0.1010 0.6181 0.3721
6—7 0.9297 0.0641 0.8342 0.1517
7 09328 0.0635 0.8806 0.1146
7—8 0.9294 0.0625 0.8279  0.1582
8 0.8691 0.1262 0.5584  0.4357
8—9 0.9310 0.0629 0.8522 0.1352
9 0.9370 0.0595 0.8961 0.1000
9—10 0.9372 0.0529 0.8581 0.1235
10 0.8997 0.0927 0.5955  0.3912
10—11  0.9375 0.05638 0.8799 0.1020
11 09337 0.0632 0.8761 0.1200
2—11 09367 0.0569 0.8751 0.1129
6—11 0.9374 0.0561 0.8797 0.1079

captures much less of the multi-reference character of these diradicals, with HONO-LUNO
occupation-number gaps ranging from approximately 0.75 to 0.8. In general, the 2-RDM
method captures more of the multireference correlation than does CCSD in all structures.
In addition, the 2-RDM method predicts a general trend of decreasing HONO-LUNO gaps
among aromatic isomers as the aromaticity is restricted, supporting the trend of increasing
energy observed in Fig. 4.3. Conversely, CCSD predicts no substantial change in occupation
numbers as aromaticity is restricted, again suggesting that the 2-RDM method is better

suited to treat the multireference character of this molecule.
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The energies of all isomers and transition states, relative to the C-H bond dissociation
asymptote, are plotted in Fig. 4.4 from 2-RDM and CCSD. Predictions for the relative
energies of aromatic isomers are largely consistent between the two methods, while 2-RDM
predicts slightly lower energies for the transition states than does CCSD. The greatest differ-
ence occurs in the non-aromatic isomers, where 2-RDM predicts that all five such isomers are
lower in energy than the dissociation asymptote. In contrast, only one stable non-aromatic
isomer is predicted by CCSD. Incorporating the triples corrections from CR-CC(2,3) brings
the energies of the diradical states closer to those from 2-RDM, although three of those iso-
mers are still predicted to be higher in energy than the dissociation asymptote. While CR-
CC(2,3) generally captures more dynamic correlation energy than does the 2-RDM method,
the reduced density matrix approach captures significantly more static correlation energy.
In the case of the diradical states, the increased static correlation from the 2-RDM method
is sufficient to predict substantially different results for the stability of olympicene’s isomers.

Barrier energies with respect to hydrogen migration are presented in Table 4.3 from
CCSD, CR-CC(2,3), and 2-RDM. Among the aromatic isomers (the first half of the table),
the 2-RDM method most often predicts the smallest barrier heights, and always yields lower
barriers than does CCSD. In contrast, the 2-RDM method predicts higher barriers than
CCSD and CR-CC(2,3) for every diradical isomer (the second half of the table). This di-
chotomy is a result of the multireference character captured by the 2-RDM method. As
shown above, polyradical character of the molecule increases from aromatic isomers to tran-
sition states to diradical isomers, and the increased static correlation leads 2-RDM to lower
the energies of more correlated states relative to less correlated states. This has the ultimate
effect of lowering the barriers for the aromatic isomers and greatly stabilizing the diradical
isomers. Similar results have been observed in recent parametric 2-RDM calculations on the
stability of oxywater [29] and the rotational barrier separating cis and trans diazene [20].

To investigate olympicene’s potential utility in technology, we computed the spin and

band gaps of olympicene from all four methods shown in Table 4.4 with those of pen-
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Figure 4.4: Isomer and transition state energies relative to the benzo|[cd|pyrene radical and
a hydrogen atom, obtained from CCSD and the parametric 2-RDM method in the Dunning-
Hay basis set. The 2-RDM method predicts relative diradical energies that are approximately
8-11 kcal/mol lower than those of CR-CC(2,3), which are themselves lower than those of
CCSD by approximately 8-11 kcal/mol. The stabilization of the diradical isomers from the
2-RDM method is qualitatively significant because it causes them to be lower in energy than
the dissociation products by 2-20 kcal/mol.
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Table 4.3: Barrier energies [kilocalories per mole (kcal/mol)] with respect to hydrogen migra-
tion for each isomer are presented here from CCSD, CR-CC(2,3), and the parametric 2-RDM
methods in the Dunning-Hay basis set. The transition x—y signifies the height, relative to
x, of the barrier separating x and y. Transitions are ordered from largest to smallest barrier
height.

Barrier energies (kcal/mol) Barrier energies (kcal/mol)
Transition CCSD CR-CC(2,3) 2-RDM Transition CCSD CR-CC(2,3) 2-RDM
1—2 82.410 76.698  73.758 8—7 16.874 22.898  30.703
5—6 79.980 74.969 72912 2—11 14.771 20.173  23.319
3—2 79.010 74.144  72.072 10—11 12.306 17.093  24.715
7—6 73.925 68.580  68.733 6—11 11.367 16.091  24.045
5—4 74.217 69.542  67.658 4—5 9.900 14.376  22.928
3—4 72.098 67.668  66.452 4—3 9.128 13.719  22.858
9—10 64.045 60.119  61.121 10—9 9.666 14.199  21.227
7—8 65.228 60.505  60.320 6—7 11.417 14.625  21.173
11-2 60.766 56.884  59.950 2—3 5.791 10.205  16.684
11—=10 59.073 55.289  58.576 6—5 3.638 7.229  13.331
9—8 59.187 55.127  55.704 2—1 1.362 5.313  11.574
8—9 17.959 24.457 32927

tacene given as a reference. All methods predict a significantly larger singlet-triplet gap in
olympicene than in pentacene. Only the 2-RDM method predicts a plausibly stable triplet
state in olympicene, which is approximately 14 kcal/mol lower in energy than the dissoci-
ation asymptote. All methods likewise predict a larger ionization energy (IE) and a lower
electron affinity (EA) in olympicene than in pentacene, yielding a much greater fundamen-
tal gap (IE-EA) for olympicene. This implies that olympicene is potentially a less suitable

conductor than pentacene.

4.4 Discussion and Conclusion

The olympicene molecule, a modification of pentacene, was recently synthesized [1]. Similar
to pentacene, olympicene is a five-ringed polyaromatic hydrocarbon. While pentacene is
the least compact five-ringed structure possible, olympicene is the most compact possible
structure. Unlike pentacene, olympicene has two hydrogen atoms extending above and below

the plane, and thus numerous isomers of olympicene are possible. We find that several stable
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Table 4.4: Spin and band gaps (kcal/mol) in olympicene and pentacene, as well as the
C-H bond dissociation energy of olympicene, are presented here from Hartree-Fock (HF),
CCSD, CR-CC(2,3), and the parametric 2-RDM methods in the Dunning-Hay basis. The
singlet-triplet gap is the difference in energies between the triplet and singlet states of each
molecule. The fundamental band gap IE-EA is the difference between the ionization energy
[E=Fation-Fo and the electron affinity EA=FEy-F,nion, Where Ey is the energy of the ground
state.

Energy gaps (kcal/mol)

Molecule Energy Gap HF CCSD CR-CC(2,3) 2-RDM
Olympicene Singlet-Triplet — 77.747  70.920 68.013  53.234
IE 155.154 163.336 161.247 162.057

EA -26.984 -19.223 -17.462 -18.837

IE-EA 182.138 182.560 178.709 180.894

Dissociation 68.154  69.432 68.019  67.399

Pentacene  Singlet-Triplet — 22.175  28.417 28.498  25.215
IE 128.932 142.232 141.279 145.450

EA 7.630 9.777 10.329 5.756

IE-EA 121.302 132.455 130.951 139.695

isomers of olympicene exist, and that its most stable isomer is the Cq,-symmetric structure.
Pentacene’s success as a organic semiconductor suggests that olympicene might likewise
possess useful electronic properties. Calculations reveal that olympicene has less strong
correlation than pentacene, which is consistent with previous results showing linear acenes
to be more strongly correlated than nonlinear acenes [10].

We find that the isomers of olympicene may be divided into two categories: aromatic
and diradical. Olympicene may isomerize between these different structures as one of the
out-of-plane hydrogen atoms migrates around the molecule. A 7w-bond breaks during this
isomerization, giving diradical isomers that are intermediates along the reaction pathway. We
find that these diradicals are unsurprisingly much higher in energy than the aromatic isomers,
and the parametric 2-RDM method is able to capture most of their diradical character, as
confirmed by natural occupation numbers. In addition, aromaticity becomes increasingly
restricted during the hydrogen migration, with a corresponding increase in energy and in
polyradical character. Despite the higher energies of the diradical isomers, however, the

parametric 2-RDM method indicates that they are 2-20 kcal/mol more stable than C-H
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bond dissociation asymptote, which raises the possibility of their synthesis.

Several important chemical properties, such as polyradical character and energy gaps,
can only be fully captured with accurate treatments of strong correlation. The analysis of
olympicene’s many isomers, with their varying degrees of radical character, therefore requires
electronic structure methods with a robust ability to treat medium and strong electron
correlation, both static and dynamic. Unlike the traditional single-reference wavefunction
methods we employed, the parametric 2-RDM method [17] was able to capture a substantial
portion of the polyradical character of olympicene and its isomers, despite being constructed
from a single slater determinant. Likewise, 2-RDM was able to observe diradical character in
the non-aromatic isomers of olympicene, while coupled-cluster methods predicted almost no
such behavior. Finally, only the 2-RDM method predicts stable forms of all five non-aromatic
(diradical) isomers studied, all at a lower computational cost than CCSD or CR-CC(2,3).
The calculations with olympicene demonstrate the applicability of the parametric 2-RDM

method to a broad range of electron correlation problems in chemistry and physics.
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CHAPTER 5
ANALYTICAL NUCLEAR DERIVATIVES FOR THE
PARAMETRIC TWO-ELECTRON
REDUCED-DENSITY-MATRIX METHOD

5.1 Introduction

In quantum chemistry, the electronic Schrédinger equation is solved in order to find the
electronic energy, typically using the many-electron wavefunction as the primary variable.
However, because the Hamiltonian contains only pairwise interactions between particles,
it was observed by Coleman in 1951 that the energy may equally be expressed using the
two-electron reduced density matrix (2-RDM) [1]. The set of all possible 2-RDMs is much
larger than the set of all N-electron wavefunctions, and thus direct minimization of the
energy with respect to the 2-RDM yields energies that are much too low. Constraints or
N-representability conditions are required for the 2-RDM to represent a physically realistic
N-electron density matrix [2]. There are currently several categories of 2-RDM methods,
with differing mechanisms for enforcing approximate N-representability. The contracted
Schrodinger equation [3-5] or its anti-Hermitian part [6] are root-finding algorithms that
begin with an initial wavefunction guess. The variational 2-RDM method [7-9] directly min-
imizes the energy with respect to the 2-RDM while enforcing necessary N-representability
conditions. Lastly, the parametric 2-RDM (p2-RDM) method [10, 11] features a parameteri-
zation, derived from configuration interaction (CI) methods [12], that preserves approximate
N-representability. Parametric 2-RDM has proven particularly adept at treating strongly
correlated systems where multireference correlation plays an important role, such as transi-
tion states [13, 14] or bond-dissociation pathways [15, 16].

Geometry optimization is the process of finding the minimum-energy structure of a

molecule. This minimization can be performed efficiently using quasi-Newton methods,
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provided that the exact nuclear gradient is known at each geometry step. The gradient may
be found numerically, but this requires at least two complete electronic structure calcula-
tions for each of the 3/N-6 nuclear degrees of freedom, making the evaluation very costly. If
the gradient can be found analytically, only one electronic structure calculation is required
per geometry step, greatly accelerating the optimization [17]. For this reason, analytical
gradients have been implemented for many quantum chemical methods, including coupled
cluster [18], configuration interaction [19], density functional theory [20], and density-matrix
renormalization group [21] methods. It was observed [22] early on that analytical gradients
are also possible for the parametric 2-RDM method. Initial attempts to implement such
gradients for p2-RDM used numerical gradients of electron integrals in the molecular orbital
(MO) basis [22, 23|. However, MOs can easily change in either phase or energetic ordering,
even for very slight nuclear perturbations, and therefore these gradients proved insufficiently
stable to be of general practical use. Geometry optimizations for p2-RDM have since fea-
tured numerical nuclear gradients [13, 16, 24], limiting the size of systems that could be
treated. In this work, we will for the first time present full analytical nuclear gradients for

p2-RDM, and will discuss both their efficacy and implementation.

5.2 Theory

5.2.1 Parametric 2-RDM method

The wavefunction ansatz for configuration interaction with double excitations (CID) is given
by
|0) = Ty|@g) + 271 |@ (5.1)
1<J
a<b
where |®() is the reference wavefunction (typically obtained from Hartree-Fock) and ](ID?;’)

is the Slater determinant where two electrons have been excited from the occupied orbitals ¢

and j into the virtual orbitals a and b. The Latin letters {7, j, k,(} in this work will refer to
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orbitals that are occupied in the reference, the letters {a, b, ¢, d} will refer to virtual orbitals,

and the letters {p, ¢, r, s} will refer to any generic orbitals. Direct minimization of the energy
E = (V|H|T) (5.2)

with respect to the coefficients Ty and {7 i%b} will yield the CID wavefunction, provided

that the wavefunction is normalized, or

_ _ 2ab)2
To= |1-) (2132 (5.3)
i<j
a<b
This method may equivalently be represented using two-electron reduced density matrices
(2-RDM) by directly contracting the wavefunction ansatz in Eq. 5.1 onto a 2-RDM using

Wick’s Theorem [10-12]. The exact expression for 2DP? depends on the number of orbitals

in {p, q,r, s} that are occupied and virtual, respectively. The fully unoccupied portion of the

2-RDM, for example, may be expressed in terms of {2T{;-b} as
DG =TT (5.4)

1<j

Expressions for other portions of the 2-RDM may be found in previous work [25]. When the
energy of the CID 2-RDM
E=Tr(2K?D) (5.5)

is minimized with respect to the same variables, an identical energy to CID is obtained, where
2K is the two-electron reduced Hamiltonian matrix. The variational condition satisfied by

this minimization is given by
oF

ot = Vijab (5.6)
]

It is well known that truncated CI methods such as CID are not size-extensive. A
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correlated method is size extensive if its correlation energy increases linearly with the size of

a molecule. This lack of size extensivity arises from a single class of 2-RDM elements
2D = Ty 17 (5.7)

due to the normalization condition in Eq. 5.3 containing unconnected terms [10-12]. The

density matrix formulation of CID may be rendered size extensive by the insertion of a

topological factor fi‘ﬁcld into the normalization condition, converting the expression in Eq. 5.4
to
2mab _ 2qab . abed ( 2ed\2
Dy = "Tij |1 Zfijkl (*T%) (5.8)
k<l
c<d

If f is set to 1 for all values of {ijklabed}, the CID method is recovered, whereas if it is set to
zero, the method is equivalent to the coupled-electron pair approximation (CEPA) [26, 27].
Several choices of f have been proposed, both in the context of extensions to CEPA and the
parametric 2-RDM method (our work). The p2-RDM family of methods is distinct from the
earlier CEPA methods in that it employs a specific, more accurate class of functions, derived
from N-representability conditions on the 2-RDM [10]. One of the most accurate functionals
is the M parameterization, wherein f is equal to 1 if {klcd} share at least two indices with

{ijab}, and 0 otherwise [10, 25].

5.2.2 Nuclear Derivatives

Differentiating the energy in Eq. 5.5 with respect to some nuclear perturbation R yields two

terms

d2D
D)+ Tr(2PK == .
) + Tr( dR) (5.9)

dE ’K

“ T
ar ~ TR

which will be treated individually in the following sections.
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Nuclear Derivatives of the 2-RDM

The second term in Eq. 5.9 may be expressed as

d®D
dR

d’D
TR ——) =Y 2KP

pqrs

s, (5.10)

Because the 2-RDM is a function only of {QTZ-‘;.I’}, its derivative may be expressed using the

chain rule ool
d2D 82qu d“T«
2 o 2 1.-Pq rs ¥
(K —) = > 2Kl pab dn (5.11)
pgrs 1<j 1)
a<b
Rearranging the order of summation gives
2, d°D PTE o pg DR
i<j pqrs ij
a<b
However, examining the term within the second summation, we observe that
2 nPq
D E
2ppgd Drs _ 0 (5.13)

TS g2mab ~ 427ab
pqrs Ty O

which, as per the variational condition in Eq. 5.6, is 0 for all {i, j, a,b}. Consequently, the
first derivative of the 2-RDM does not contribute to the first derivative of the energy, which
is generally true for any method which employs a variational condition. The nuclear gradient

therefore depends only on 2D and the derivative of 2K.

Nuclear Derivatives of the Reduced Hamiltonian Matrix

The nuclear first derivative of the energy for the parametric 2-RDM method depends only
on the derivative of the reduced Hamiltonian matrix 2K . This matrix contains the one- and

two-electron integrals, which are given in the basis of molecular orbitals (MOs). MOs are
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themselves linear combinations of atomic orbitals (AOs), defined as

6i) = > 1 X (5.14)
i
where C'is the MO coefficient matrix and the Greek letters {u, v} denote AOs. The reduced

Hamiltonian matrix in the MO basis may be transformed from 2K in the AO basis by
MOEE = (ChaCl ) 43K (Con ). (5.15)

The derivative of this matrix, then, will depend on the derivatives of both the bare AO
integrals and the MO expansion coefficients C'. The former may be obtained directly from
any software package that evaluates electron integrals, while the latter must be solved for.

Expressing % in terms of the initial expansion coefficients
dC\;
pi sl
b= Z UiiC, (5.16)
J

the total derivative of 2K can be written as

K ot PRI t ot 25
(3 «
—L = 3 L0 Ca+ Y (Uil Ol K304 Cs + 3 other terms|
afyo mafyd

(5.17)
where there are four terms in the second summation because there is a derivative for each
of the four C' coefficients. In general, the MO coefficients C' are coupled to the other wave-
function parameters, making the process of determining U non-trivial. If one uses canonical
HF MOs, however, U may be found by solving the coupled-perturbed Hartree-Fock (CPHF)

equations [28]. In the case of restricted Hartree-Fock (RHF') references for singlet states, U
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has the following expression

virt d.o.
Uij: gy ZZA Ukl"—Bw (5.18)
7
where
kl 21kl 2v,90 21,7k
Afj =PV =V =V (5.19)
OFij 95ij_ ISkl o2kl /il
Bij =5~ 55 Z on 2Vii = Vi) (5.20)

Here F' is the Fock matrix, S the overlap matrix in the MO basis, {¢;} the Hartree-Fock MO
energies, and d.o. means a summation over doubly-occupied MOs. Equation 5.18 may be
solved iteratively to find U, at a computational cost comparable to a single HF calculation.
This process must be performed for each nuclear degree of freedom (DOF). As seen in
Eq. 5.18, the derivative matrix AO2K must be rotated into the MO basis for each DOF,
which scales as 9, where 7 is the number of MOs. Analytical gradients may be rendered
computationally cheaper still by implementing the Z-vector method [29], an alternative way
of solving the CPHF equations that instead involves rotating 2D into the AO basis, reducing
the number of orbital rotations from 3/N to 1 for each geometry step. For a more detailed
discussion of the CPHF equations and the more efficient Z-vector method of solving them,

see Ref. [30].

5.3 Applications

Analytical gradients are implemented for the parametric 2-RDM method. Benchmark cal-
culations to test their efficacy are presented. These gradients are then applied to the opti-

mization of trans-polyacetylene chains.
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5.3.1 Methodology

The parametric 2-RDM method was used to find the optimized geometries of a suite of
molecules in a series of basis sets. Hartree-Fock and the p2-RDM method were implemented
by the authors in C++. Atomic orbital integrals and their derivatives were obtained from
the LIBINT package of the Valeev group [31]. Energy gradients were evaluated using the Z-
vector method [29]. Energy minimization, during either single-point p2-RDM calculations or
geometry optimizations, was performed using L-BFGS [32], implemented with the ALGLIB
package [33]. Core orbitals (that is, all occupied MOs not in the valence shell) were frozen
during all p2-RDM calculations. Geometry optimizations were carried out in Cartesian
coordinates; where necessary, the relevant nuclear degrees of freedom were frozen for the

atom nearest the molecular center of mass to prevent translation of the molecule.

5.3.2 Results

To highlight the benefits of using analytical rather than numerical nuclear gradients, we
performed a series of geometry optimizations for a variety of small molecules and basis
sets [34], presented in Table 5.1. It is readily apparent that analytical gradients substantially
reduce the CPU times of geometry optimizations in nearly every instance. This increase in
computational efficiency is possible because numerical gradients require two full p2-RDM
single-point calculations for each nuclear degree of freedom (DOF), whereas the analytical
gradients require only a single single-point calculation per geometry step. Consequently, the
gap between the two methods grows as the number of nuclear DOF increases; even NHs,
which has only 5 unfrozen DOF, sees a runtime reduction of almost 7 hours in the cc-pVQZ
basis. In the one instance where the numerical gradients are faster, CO in the cc-pVDZ
basis, there is only a single nuclear DOF, and the electronic DOF are so few that both
methods finish almost immediately. Analytical gradients will yield greater benefits for larger
molecular systems, allowing the p2-RDM method to treat molecular geometries that were

previously inaccessible.
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Table 5.1: A comparison of CPU times for geometry optimizations using either analytical or
numerical gradients from the parametric 2-RDM method. The number of unfrozen nuclear
degrees of freedom (nuc. DOF) are given in parentheses for each species. Results are
presented in three basis sets for each molecule, with the number of molecular orbitals (MOs)
given. CO, H90, and CH4 were given the point group Coy,, while NH3 was examined in the
Cs point group. The runtimes for geometry optimizations are greatly decreased by using
analytical gradients.

Molecule (Nuc. DOF) Basis MOs Time: Numerical (s) Time: Analytical (s)

CO (1) cc-pVDZ 28 2.5 5.2
cc-pVTZ 60 41.5 29.4
c-pVQZ 110 872 668
Hs0 (2) cc-pVDZ 24 2.9 1.7
cc-pVTZ 58 65.0 40.4
cc-pVQZ 115 2031 1080
CHy4 (4) cc-pVDZ 34 5.8 3.1
cc-pVTZ 86 604 166
c-pVQZ 175 12467 3626
NH;3 (5) ccpVDZ 29 12.6 7.1
cc-pVTZ 72 1745 329
ce-pVQZ 145 34917 9906

As a further demonstration of the abilities of analytical gradients, the parametric 2-RDM
method was used to optimize the geometries of trans-polyacetylene (PA), H[CoHo] 5 H, for
N of 2, 4, 6, and 8. The bond length alternation (BLA) of this species, defined as the
difference in length between adjacent double and single bonds, is notoriously difficult for
theoretical methods to predict accurately [35]. Experiment suggests that the BLA in the
infinite polymer limit lies between 0.08 and 0.09 A [36, 37], while theoretical studies have
suggested values ranging from 0.05 to 0.12 A [21, 35, 38, 39]. Even among coupled cluster
methods, CCSD(T) accurately predicts a BLA around 0.085 Ain the infinite limit, while
CCSD predicts a BLA that is much higher at 0.0995 A [39]. Part of the difficulty in treating
the polymer theoretically is the fact that multireference correlation increases as a conjugated
m-bond network gets longer, and consequently the relative proportion of static and dynamic
correlation captured by a given method will have a large effect on the BLA predicted for
larger chains.

The BLA obtained from p2-RDM of the central bond of PA chains is plotted in Fig. 5.1,
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along with the results from a number of other methods. As has typically been seen with
p2-RDM, the results most closely resemble those of CCSD(T). CCSD and MP2 both fall
substantially outside the experimental range, while Monte Carlo predicts a BLA in rea-
sonably close agreement to experiment. The extrapolation used in Fig. 5.1 is of the form

Ae BN 4 €. A recent work [35] examined various extrapolation schemes: the exponential

fit, Kuhn’s fit [40] (A\/l + 2Bcos (HLN> ), and a linear combination of the two that would
have 4 parameters. They concluded that the 4 parameter function gave the best fit for the
data, particularly in the case of Monte Carlo. While both the exponential fit (0.080 A) and
Kuhn'’s fit (0.076 A) gave reasonable values of the BLA for p2-RDM in the infinite limit, the
4 parameter function yields an unphysical prediction of 0.071 A. However, given that the
BLA from most methods is nearly converged by N = 10 or N = 12, it seems unlikely that
the BLA of p2-RDM would drop an additional 0.011 A in the infinite limit, and for that
reason the 4 parameter fit is rejected for these data. It is also worth noting that the gap in
BLA between p2-RDM and CCSD(T) widens as the chain lengthens. This is broadly con-
sistent with past results, which have demonstrated that CCSD(T) captures more dynamic
correlation than p2-RDM, while the latter captures more static correlation. It is unsurpris-
ing, therefore, that we see greater differences between the two methods for longer chains,
for which multireference correlation is larger. When the BLA is shorter, single and double
bonds are closer in length, allowing more configurations to contribute to the wavefunction; it
seems that p2-RDM, with its greater tolerance of static correlation, is able to leverage that

fact in order to lower the energy.

5.4 Discussion and Conclusion

In this work, we have for the first time implemented completely analytical nuclear gradients
for the parametric two-electron reduced-density-matrix method. The p2-RDM method scales
as n2h* 4+ n*h?, where n is the number of particles and h is the number of holes, and

therefore, the single-point p2-RDM calculation is by far the most computationally expensive
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Figure 5.1: Bond length alternation (BLA) for trans-polyacetylene from various methods as
a function of polymer length. Values are presented from p2-RDM, perturbation theory [38],
Monte Carlo [35], and coupled cluster methods [39]. The upper and lower black lines are
experimental values from NMR [36] and X-ray diffraction [37], respectively. Extrapolations
of the data are of the form Ae BY 4+ C. The parametric 2-RDM method predicts BLAs
that are similar to those of CCSD(T), though closer to the experimental lower bound.
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portion of the calculation. By limiting the number of single-point calculations required,
analytical gradients dramatically decrease the computational cost of geometry optimizations.
Even the small molecules used as benchmarks in this study saw sharp decreases in CPU
times; for molecules with more nuclear degrees of freedom, the computational savings will
be larger still. For example, the N = 6 trans-polyacetylene chain featured above would have
computationally intractable using numerical gradients, and the N = 8 chain would have
been unthinkable. Analytical nuclear gradients will allow us to apply p2-RDM’s uniquely
accurate and balanced treatment of strong electron correlation to systems of a size that were

not previously accessible.
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CHAPTER 6
INCREASING THE STABILITY OF THE PARAMETRIC
TWO-ELECTRON REDUCED-DENSITY-MATRIX METHOD:
A NEW FUNCTIONAL

6.1 Introduction

The parametric two-electron reduced-density-matrix (2-RDM) method has proven to be an
accurate electronic structure method with a desirable computational scaling. One of the most
promising aspects of p2-RDM is its ability to detect substantial multireference correlation
effects, as it is able to correct poor reference wavefunctions much more than comparable single
reference methods. However, in certain cases where the system is particularly multireference
and the reference wavefunction is exceptionally poor, p2-RDM may fail to converge. In
this chapter, I will present a derivation of the method, and using it, I will highlight where
and why this lack of convergence can occur. With this understanding, I will propose a new
parameterization that may resolve the issue. Lastly, I will present calculations on the nitric
oxide dimer (NO)g, a very difficult system for single-reference methods such as p2-RDM to

treat.

6.2 Derivation of Parametric 2-RDM methods

Configuration interaction with double excitations (CID) postulates the following wavefunc-

tion ansatz

) = Th|®o) + > *TH|® (6.1)
1<j
a<b

The wavefunction is comprised of the reference Slater determinant |®() (often obtained from
Hartree-Fock) and all possible determinants {|<I>%b>} generated by exciting two electrons out

of the occupied orbitals ¢ and j into the virtual orbitals a and b. Orbitals that are occupied
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in the reference determinant are denoted by the letters {i,j, k,l,m,n,o,p}, orbitals that
are unoccupied are denoted by {a,b,c,d, e, f, g, h}, and arbitrary orbitals are designated as
{p,q,r,s}. The goal of CID is to vary the weights 2T, and {2T“b} so0 as to minimize the
electronic energy

— (w|H|®). 62)

This energy can be broken into two components: the reference energy Fy, equal to (®g| H|Pg),
and the correlation energy FE o, defined as the difference between the total electronic energy

in Eq. 6.2 and Ej. The correlation energy can be expanded as

Ecorr = AE + Vo + Vij
Z Tab AEab i Z2To2ipic;b2‘/iab Lz Z Z zTasz (I)ab|H|(I) dy (6.3)

1<j 1<j 2<] k<l
a<b a<b a<bc<d

Here AEab is the difference between the energy of the determinant |(I>ab), or <<I> b H |<I> by,

and the reference energy E. The two-electron integral 2V-“-b is the coupling element between
the determinant ]CD%@) and the reference, and (@ab|H | DT ) is the coupling element between
two excited determinants. The first two terms in Eq. 6.3 are usually the most important. If
the reference wavefunction was obtained from Hartree-Fock, which is the method of finding
of the lowest-energy determinant possible, then AE%Z’ will be non-negative for all excited
determinants, and the first term AFE will strictly be positive. CID is able to lower the
energy, however, by balancing this increase in energy with the coupling Vjj between excited
determinants and the reference, which is negative.

The coefficients {QTab} must be bounded in some fashion: the wavefunction is normalized,

such that

_ 2maby2
To= |1-) (212 (6.4)
i<j
a<b

If any coefficient {2T ab} increases in magnitude, 7Ty must decrease, reducing the coupling
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available to the other excited determinants. In effect, the normalization condition provides
a restoring force that prevents amplitudes from increasing indefinitely. This presents a way
of understanding one of the fundamental flaws of CID (and in fact, of any truncated form of
CI): it is not size-consistent. A method if size-consistent if it gives an energy for two non-
interacting molecules that is equal to the sum of the respective energies of each molecule.
CID cannot be size-consistent because an excitation in one molecule reduces Tj for the other
molecule, reducing the coupling of the second molecule and ultimately increasing the energy.
It was observed by Kollmar [1] that size-consistency could be restored by replacing the global

Ty of Eq. 6.4 with a determinant-specific term

2 ab __ 2 rab
Tos5 = /"I

- 1= Z f_abcd( 2T]§ld)2 (6.5)

ijkl
k<l
c<d

where f is called the topological factor. If f is equal to 1 in all cases, Eq. 6.5 is of course
equal to Eq. 6.4, and minimization of the energy would again give the CID result. However,
if f is zero whenever {i,j,a,0} N {k,l,c,d} = 0, for instance when comparing an ampli-
tude 2T7%J;L on one molecule and another amplitude 2T@q£ on a second molecule, the method
is size-consistent because excitations on one moiety will not affect excitations on another
non-interacting moiety. The parameterization depends upon the choice of f for different
classes of elements. Kollmar [1] derived the K functional from considerations of partial N-
representability conditions on the two-particle, two-hole, and one-particle-one-hole matrices,
while Mazziotti [2] arrived at a different functional M by imposing particle-hole symmetry
on the derivation. Later, an entire class of functionals F(«a, 3) were proposed [3], to which
K and M both belong. The various functionals are given in Table 6.1. Whatever the func-
tional, these methods are collectively called parametric two-electron reduced-density-matrix

(2-RDM) methods because the wavefunction in Eq. 6.1 is typically first directly contracted
onto a 2-RDM.
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Table 6.1: Various functionals flfljl;fld, defined for classes of n,/n,, where n, is the number

of orbitals shared between (i, j) and (k,1), and n, is the number shared between (a,b) and
(¢,d).

Topological factor f.‘;.l;fld

?

Method 0/0 1/0 2/0 0/1 0/2 1/1 2/1 1/2 2/2

CID 1 1 1 1 1 1 1 1 1
CEPAO) 0O 0 O 0O 0 0 0 0 0
K o0 1/2 1 1/2 1 34 1 1 1

M 0 0 1 0 1 1 1 1 1

F(a, 5) 0 « 1 Q 1 I6; 1 1 1

6.3 Challenges from Strongly Multireference Systems

The parametric 2-RDM method has been seen to provide accurate energies for difficult elec-
tronic structure cases such as bond-breaking [4-6], transition states [7, 8], and diradical
systems [9, 10]. These are all systems for which a restricted Hartree-Fock reference is insuf-
ficient to describe the wavefunction, yet p2-RDM has proven remarkably adept at correcting
the qualitatively poor reference and revealing the true multireference character of the sys-
tem. For example, the restricted HF reference used in Chapter 4 cannot possibly describe
the two unpaired electrons of the diradical isomers of olympicene, yet p2-RDM finds that
these isomers have strong radical character, in contrast to CCSD which finds hardly any
radical character at all. However, when the reference is exceptionally poor, p2-RDM may
on occasion fail to converge. To see why, examine the determinant-specific normalization
in Eq. 6.5. This term can obviously only be real if ZFZ.‘;I’ > (0, but we have imposed no
constraints upon 27T to force 2F to be strictly positive. For systems that are mostly single
reference, or well described by a single Slater determinant, the 2T amplitudes are modest
in size and no 2F approaches zero. In contrast, if the system becomes sufficiently multiref-
erence and the reference becomes sufficiently poor, 27 amplitudes may become very large
and some 2F terms may fall below zero, immediately terminating the optimization because

2T ab

0.1 has become imaginary. The effect of the reference on the convergence of p2-RDM can

be subtle, as the method may converge at one geometry for a problematic molecule, yet fail
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to converge at a slightly perturbed geometry. For such molecules, geometry optimizations
are very difficult, because they require sampling many geometric configurations in order to
find the minimum-energy structure. If any one single-point calculation fails to converge, the
entire search algorithm may fail. A mechanism for altering the parameterization in order to
treat these difficult systems would be greatly desirable.

To explore why p2-RDM may fail to converge, consider a strongly multireference system

in which the two determinants |<I>7€7{n> and |<I>2]’,}>, with AE5), and AEgg both small and

2yl and 2V0%h both large, possess the largest amplitudes in the system QTﬁ{; and 2T091§L ,
respectively. Because {m,n,e, f} and {o,p, g,h} are disjoint, neither amplitude appears in
the other determinant’s topological factor, nor does the Hamiltonian directly couple the two
determinants (as it only couples determinants that differ by at most two spin orbitals). As a
result, neither amplitude is directly affected by the other. Consider now a third determinant,
]@%lp), with a large AE%LP and a small ZV,%%, whose amplitude ZTf}L]}? is very small. This
determinant shares two indices with each of the first two determinants, whose amplitudes
are therefore included in QF;,%. During the p2-RDM optimization, QFT%}]LD is the first term

to fall below zero. As 2Fﬁ{;, approaches zero during the optimization, we would expect the

following forces to diverge

0 1
V eh — 2T€h 2Veh 2Tef
aQTﬁzJ;L 0,mp mp Vmp ZF%}ZL? mn
(6.6)
0 1 h
eh 2Teh 2Veh QTgp

VO mp — m
, p ~mp
o2l P J2Feh

and restrain the growth of 27, ,%J; and QT(%L . However, if the product |2Vn61}]§2Tf;{%| is less than,
say, ~ 107° (not an uncommon occurrence) as 2Fﬁgj approached zero, 2Fﬁg, would have to
be be greater than zero but less than ~ 10716 in order for the forces in Eq. 6.6 to be of
numerical relevance. Clearly, from a computational standpoint, this is too narrow a range
to present a substantial constraint on the magnitude of 27"
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6.4 A New Functional

One solution to a lack of convergence would be to explicitly enforce constraints on 27" such
that 2F i‘}b is positive for all {i, j, a,b}. However, this would remove one of the most desirable
qualities of the parametric 2-RDM method: as an unconstrained optimization, the method
is substantially faster than other constrained 2-RDM methods such as the variational 2-
RDM method [11]. In addition, 2F Z-‘;.b represents the population of the reference state: if this
quantity falls near zero, the method has clearly failed to capture the qualitative character
of the system. A better approach would seek to alter the parameterization such that no 2F
nears zero at all.

Even though CID is inaccurate even for systems of modest size, it does not suffer from
a lack of convergence because the topological factor f in Eq. 6.5 is 1 for all pairs (4, j, a, b)
and (k,l,c,d), treating every amplitude identically. However, this normalization prevents
the method from being size-consistent. Parametric 2-RDM methods greatly relax the nor-
malization condition by setting f to zero for the majority of pairs in order to restore size
consistency, yielding lower and more accurate energies, but sometimes the remaining implicit
constraints are not strong enough to prevent the optimization from straying into unfeasible
regions. It stands to reason, then, that there must be a point on the spectrum between CID
and parametric 2-RDM methods where the optimization is well-behaved yet the energy is
still reasonably low and approximately size-consistent.

It would be tempting to search for a topological factor within the general F(«, 5) family
outlined in Table 6.1, but as the above example is meant to show, it is possible even for
F(a,8) =F(1,1) (where f = 0 only for totally disjoint pairs) to lead to convergence issues
if a system is sufficiently ill described with a single reference. In that example, 2Fﬁ{]§ falls
below zero because both 275, and QTOQZ? are very large, but the method does not explicitly
couple the two amplitudes. However, if fﬁl];gozlg were set to 1, the two amplitudes would be
coupled and their magnitudes would be more constrained, possibly preventing 2Fﬁ{§, from

falling below zero. This suggests that explicitly coupling more amplitudes by setting f to 1
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for more sets of indices may increase the likelihood of convergence. To that end, we propose
a new functional featuring a set P, containing a number of amplitudes {QT}. The topological
factor ffj%d will be equal to 1 if (7, j,a,b) and (k,, ¢, d) share at least two indices, as before,
or if there is a 2Tﬁ{; contained in P such that (i, j,a,b) and (k,[,c,d) each share at least
two indices with (m,n,e, f). As more amplitudes are added to P, more implicit constraints
will be added to the optimization, rendering the method more stable. Eventually, if enough
amplitudes were included in P, the method would again become equivalent to CID, offering
a systematic way of moving along the spectrum from parametric 2-RDM to CID. Most
importantly, for the vast majority of systems that p2-RDM can already treat accurately,
this parameterization would yield the same solution as the M functional because the set P
would be empty.

The question remains of how to select amplitudes to be included in P. One option would
be to wait until a given QF%I’ falls below a threshold, add QTZ-‘;-b to P, and then restart the
algorithm. This has the advantage of focusing on the largest amplitudes, but it has the
disadvantage of requiring the algorithm to first fail before attempting a correction. This is
problematic because it would be very difficult to compare calculations between two species:
if the optimization is immediately successful for one species, it will have used a different
functional than the second. Instead, we propose adding 2Ti‘;b to P in order of smallest AE%b.
Determinants with a smaller AFE are usually associated with larger amplitudes because their
energetic penalty is smaller, so this choice of addition is also likely to target the largest
amplitudes. Additionally, because the set P can be selected prior to the optimization, it
will be easier to compare calculations of different species by specifying that each calculation

include the same number of amplitudes in P.

6.5 The Nitric Oxide Dimer

In order to demonstrate the effect of this new functional, we examine the NO dimer. The

equilibrium structure of singlet (NO)s is a Cy,,-symmetric structure with an unusually long N-
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Table 6.2: Equilibrium N-N bond length of the (NO)y dimer. Parametric 2-RDM results
were found using the code from Chapter 5, while CCSD and CR-CC(2,3) were calculated
in GAMESS [16-18]. Results from CCSD(T) and 2R-AQCC come from Ref. [19], while
those of MRMP2(18,14) are from Ref. [20]. The p2-RDM bond length closely mirrors that
of CCSD(T), and is substantially more accurate than other single-reference coupled cluster
methods.

Method cc-pVDZ aug-cc-pVDZ  ce-pVTZ  aug-cc-pVTZ

CCSD 1.984 1.933 1.893 1.811
CR-CC(2,3) 2.154 2.095 2.052 2.028
p2-RDM 2.326 2.203 2.193 2.046
CCSD(T) 2.227 2.164 2.100
2R-AQCC 2.421 2.314 2.314 2.219
MRMP2(18,14) 2.455 2.383 2.385 2.436

N bond of 2.24-2.33 A [12-15]. This can be viewed as either a highly stretched covalent bond
or a very short range non-covalent interaction between two radical species; either scenario
presents formidable challenges for a single-reference method. The conventional parametric 2-
RDM method fails to converge for this species in certain basis sets and at certain geometries,
making the global optimization of this species difficult. In order to optimize the geometry,
we use the method outlined in Chapter 5, with a P that includes only the lowest-energy
doubly-excited determinant. FEven though P contains a single amplitude, p2-RDM now
converges at every geometry and basis sampled. The equilibrium N-N bond length from p2-
RDM, along with those of the single-reference coupled cluster methods CCSD, CR-CC(2,3),
and CCSD(T) and the multireference methods 2R-AQCC and MRMP2(18,14) are plotted
in Table 6.2.

The NO dimer is a somewhat unique molecule in that single-reference methods such
as p2-RDM and CCSD(T) give more accurate bond lengths in small bases. As the basis
set increases in size and becomes more diffuse, the dimer is stabilized in energy at shorter
separations and the equilibrium bond length lessens. It appears that truly multireference
methods such as 2R-AQCC and MRMP2 are required to accurately treat the dimer in the
complete basis limit. As Tobita et al. observe [19], the dication of the NO dimer would be

isoelectronic to two N9 molecules, with four nearly degenerate 7* orbitals into which the
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two additional electrons could be placed to make the dimer neutral again. This leads to
many low-lying determinants that contribute strongly to the wavefunction and renders the
molecule very highly multireference. That the equilibrium distance predicted by CCSD is
off by 20% attests to the very poor quality of the reference. A single-reference method may
partially compensate for a qualitatively poor reference by including excitations of high order,
or in the case of p2-RDM, by relaxing constraints on the wavefunction such as normalization
in order to increase the magnitude of double excitations. In this instance, the molecule is
sufficiently multireference as to make convergence difficult for p2-RDM, but by adding only
a single determinant to P, the method converges smoothly throughout the investigation.
Additionally, despite potentially ”corrupting” the method by including a small number of
unconnected terms in Eq. 6.5, p2-RDM continues to predict structures that are more ac-
curate that the comparable CCSD and the more computationally expensive CR-CC(2,3).
This suggests that convergence issues within p2-RDM may be resolved by minimally alter-
ing the parameterization, preserving its important advantages of low computational cost,

approximate size consistency, and flexibility in treating strongly multireference systems.

6.6 Concluding Remarks

The parameterization presented in this chapter is far from the final word on the topic. The
use of a set P to alter the topological factor f is clearly not the only possible solution to
convergence issues for p2-RDM, and even then, it remains an open question what the most
desirable scheme would be for deciding which amplitudes to include within P. However,
this scheme does appear to have several attractive features. It does not add any explicit
constraints to the optimization nor does it alter the polynomial scaling of the method, so it
is computationally efficient. It can be used to smoothly vary from the M parameterization to
CID, allowing one to assess the degree to which the parameterization has been altered. And
the NO dimer example suggests that maybe only very minor tweaks to the parameterization

are required for convergence to be obtained. Above all, this work indicates that other classes
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and forms of parametric 2-RDM methods may yet be found.

The M parameterization of p2-RDM suffers convergence issues only when the reference
is particularly poor: for the NO dimer, a restricted Hartree-Fock wavefunction simply can-
not qualitatively describe two doublet molecules interacting at relatively long range. In
other words, garbage in, garbage out. The next stage in the evolution of p2-RDM meth-
ods may well be the formation of an explicitly multireference formulation, replacing |®() in
Eq. 6.1 with a multireference wavefunction (such as from CASSCF) and creating a method
analogous to multireference CISD. With a qualitatively accurate reference, and preserving
the computationally efficient and accurate inclusion of dynamic correlation from p2-RDM,
such a multireference p2-RDM method could push the accuracy and applicability of 2-RDM
methods to a level heretofore unseen. In addition, such a method could offer the possibility
of extending the p2-RDM method to the treatment of excited states. Parametric 2-RDM
methods are currently ill-suited for finding excited states because, among other reasons, it
is unclear what single determinant could serve as the reference |®q). If an excited reference
from CASSCF were used as |®), the single and double excitations from p2-RDM could be
used to stabilize the excited state, producing potentially very accurate excited-state energies.
The field of parametric 2-RDM remains verdant, with many promising avenues for future

developments.
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